

Improving our water resources with collaboration and innovation

ILLINOIS NUTRIENT LOSS

REDUCTION STRATEGY

Lake Defiance at Moraine Hills State Park Courtesy of Holly Hudson, Chicago Metropolitan Agency for Planning

Key Points

- Overview of Illinois NLRS
- Gulf Hypoxia
- Nutrient Strategy Framework
- Illinois Process
 - Science Assessment
 - Policy Working group
 - Priorities & Approach
- Implementation of NLRS
- 2023 Biennial Report

What causes hypoxia?

- Freshwater discharge and nutrient loading of the Mississippi River
- Nutrient-enhanced primary production, or eutrophication
- Decomposition of biomass by bacteria on the ocean floor
- Depletion of oxygen due to stratification

Gulf of Mexico

Bottom-Water Area of Hypoxia 1985-2023

Gulf Hypoxia Task Force Study

• Goal:

- Reduce Hypoxic Zone 1,930 sq mi
- Reduce Nutrient Loading to Gulf of Mexico
- Reduce Total Phosphorus and Total Nitrogen load by 45%
- Plan was later amended
 - 20% reduction by 2025
 - 45% reduction by 2035

Gulf Hypoxia Action Plan 2008

for Reducing, Mitigating, and Controlling Hypoxia in the Northern Gulf of Mexico and Improving Water Quality in the Mississippi River Basin

REDUCTION STRATEGY

USEPA Nutrient Strategy Elements

- 1. Prioritize watersheds for nitrogen and phosphorus loading reductions
- 2. Set watershed load reduction goals based upon best available information
- 3. Ensure effectiveness of point source permits in priority sub-watersheds
- 4. Agricultural Areas
- 5. Stormwater (non-MS4) and Septic Systems
- 6. Accountability and verification measures
- 7. Annual reporting of implementation and biennial reporting of load reductions
- 8. Develop work plan and schedule for numeric nutrient criteria development

Illinois Nutrient Loss Reduction Strategy

RELEASED JULY 2015

Illinois Nutrient Loss Reduction Strategy

GOALS

Establishes 45% Reduction of Nitrogen and Phosphorus

Interim Milestone-2025

25% Reduction in Phosphorus Loads 15% Reduction in Nitrate-Nitrogen Loads

Illinois Nutrient Loss Reduction Strategy

Addresses nutrient loads from:

Agriculture

Point Sources (wastewater treatment facilities)

Urban Stormwater

Illinois NLRS Science Assessment

Figure 2.1. The proportion of nitrate and total phosphorus lost to the Mississippi River by source.

(Illinois Nutrient Loss Reduction Strategy, 2015)

Nutrient Sources (Million Pounds Per Year)

NLRS- Priority Watersheds

Prioritized by:

- Total loads (N or P)
- Local water quality concerns
- Active watershed plans

Example Statewide Implementation Scenarios

Name	Combined Practices and/or Scenarios	Nitrate-N (% reduction)	Total P (% reduction)	Cost of Reduction (\$/lb)	Annualized Costs (million \$/year)
NP1	MRTN, fall to spring, bioreactors 50%, wetlands 25%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, buffers on all applicable lands, point source to 1.0 mg TP/L and 10 mg nitrate-N/L	35	45	**	383
NP2	MRTN, fall to spring, bioreactors 50%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on all CS, point source to 1.0 mg TP/L and 10 mg nitrate-N/L	45	45	**	810
NP3	MRTN, fall to spring, bioreactors 15%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on 87.5% of CS, buffers on all applicable lands, perennial crops on 1.6 million ac >T, and 0.9 million additional ac.	45	45	**	791
NP4	MRTN, fall to spring N, bioreactors 35%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, buffers on 80% of all applicable land	20	20	**	48
NP5	MRTN, fall to spring N, bioreactors 30%, wetlands 15%, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, point source to 1.0 mg TP/L and 10 mg nitrate-N/L on 45% of discharge	20	20	**	66
NP6	MRTN, fall to spring N, no P fert. on 12.5 million ac above STP maintenance, reduced till on 1.8 million ac conv. till eroding > T, cover crops on 1.6 million ac eroding >T and 40% of all other CS	24	20	**	244

NLRS Implementation Recommendations: Agriculture

Practice Type	Nitrate	Total Phosphorus
In Field Practices	Nitrogen Management (MRTN, Inhibitors, Split Applications) Cover Crops	Reduced Tillage (no-till, strip till) Nutrient Management Cover Crops Terraces WASCOBs
Edge of Field Practices	Woodchip Bioreactors Stream Buffers (non-tile drained land) Constructed Wetlands Saturated Buffers	Stream Buffers
Land Use Change	Perennial/Energy Crops	Perennial/Energy Crops

NLRS Implementation Recommendations: Urban Stormwater

- Municipal Separate Storm Sewer System (MS4) Permits
- Prioritize Green
 Infrastructure
- Technical and Financial Assistance for Green Infrastructure
- Urban Streambank
 Stabilization and Restoration
- Encourage Stormwater Collaboratives

Photo: Forest Preserve District of DuPage County

NLRS Implementation Recommendations: Point Sources

- National Pollutant Discharge Elimination System (NPDES) Permits
- Administered by Illinois EPA
- Total Phosphorus limits for major (> 1 MGD) wastewater treatment facilities
- Feasibility and Optimization studies for nutrient removal
- Nutrient Assessment Reduction Plans
 - 1.0 mg/L total phosphorus
 - 0.5 mg/L total phosphorus
- Encourage Urban Watershed Planning Groups

NLRS Committee Structure

- Policy Working Group
- Communications Subgroup
- Agriculture Water Quality Partnership Forum
 - Technical Subgroup
- Urban Stormwater Working Group
 - Education Subgroup
 - Tracking Subgroup
- Performance Benchmark Working Group
- Nutrient Monitoring Council
- Nutrient Science Advisory Committee (has completed its objective and no longer meets)

Photo: Kate Gardiner

Illinois NLRS Policy Working Group Participants

Biennial Reports

Tracking Measures

Biennial Reports are structured to report data on these tracking measures by each sector.

The NLRS Logic Model

2023 Biennial Report

(2021-2022 Reporting Years)

Released December 1, 2023

2023 NLRS Biennial Report

TABLE OF CONTENTS

- **Chapter 1 Executive Summary**
- **Chapter 2 Introduction**
- Chapter 3 Science Assessment Update
- Chapter 4 Agriculture Sector
- **Chapter 5 Point Source Sector**
- **Chapter 6 Stormwater Sector**
- Chapter 7 Working Group Accomplishments
- Chapter 8 Adaptive Management and Measuring Progress

Water Quality Goals: Baseline and Current Status

Figure 1.1 Quantities and percent increases of recent five-year averages (2017–21) of nitrate-nitrogen, total phosphorus, and water yield relative to baseline and to interim and long-term NLRS goals in Illinois.

Development of additional Implementation Scenarios

Figure 8.5. Agricultural implementation as compared with scenario NP7. Scenario NP7 represents the level of practice adoption needed to meet 2025 interim reduction goals.

NP8 45% Reduction

Implementation Level (2021-2022)

Interim Values (N) 15% Reduction

Interim Values (P) 25% Reduction

Figure 8.6. Agricultural implementation as compared with scenario NP8

0M

5M

10M

15M

Millions of Acres Treated

20M

25M

Addition of Conservation Practices

- The Science Team at the University of Illinois developed a process for adding new practices or updating practice performance.
- In 2022, Water and Sediment Control Basin, WASCOB, was approved and added to the list of recommended conservation practices.

Practice	Decision	Efficiency Number	Cost
Water and sediment control basins	Include as an NLRS practice	60% P loss reduction in non-tiled fields; 0% nitrate-N loss reduction	\$64/ac/yr

Statewide Nutrient Export Loading Network

Stream Name	Location	Station Drainage Area in Illinois only, in mi ²
Rock River	Joslin	3,973
Green River	Geneseo	1,000
Illinois River	Florence	22,631
Kaskaskia River	New Athens	5,189
Big Muddy River	Murphysboro	2,168
Vermilion River	Danville	1,199
Embarras River	Lawrenceville	2,348
Little Wabash River	Carmi	3,102
Des Plaines River	Joliet	1,502

Basins cover almost 75% of the land area in the state

"Super Gages"

Parameters (measured every 15 minutes)

- Streamflow
- Nitrate
- Orthophosphate
- Turbidity
- Temperature
- Specific Conductance
- Dissolved Oxygen
- pH

Statewide Riverine Waterflow and Nutrient Load Changes (2017-21)

Figure 1.1 Quantities and percent increases of recent five-year averages (2017–21) of nitrate-nitrogen, total phosphorus, and water yield relative to baseline and to interim and long-term NLRS goals in Illinois.

- Water Yield increased 23%
- Nitrate-N load increased 4.8%
- Total phosphorus load increased 35%
- Influential factors: climate change, legacy nutrients, and watershed

management.

Specific River Insights

- Illinois River
 - TP load increased 23%, streamflow increased 17%.
 - Over ¾ of the increased could be attributed to the lower mainstem, indicating a shift from sink to source.
- Kaskaskia River
 - TP load increased 102%, streamflow increased 28%.
- Little Wabash River
 - TP load increased 86%, streamflow 30%.
- Rock River (between Rockton and Joslin)
 - Nitrate-N increased 117%, streamflow increased 62%.

Subwatershed Scale Variability

Nitrate-N loads

ranged -19% to 117%

Table 4.1. Funding resources in the agricultural sector20	2021
--	------

e agricultural sector	2021	2022
Grants or Loans Received	\$5,952,381	\$11,150,423
Grants or Loans Given	\$6,031,760	\$7,551,601
Funded Programs	\$6,691,548	\$13,380,377
Total	\$18,675,690	\$32,082,402

Table 4.2.NLRS outreach events 2021-22

Type of Outreach	Number of Events	Total Reported Attendance
Presentations	625	70,961
Field Days	186	13,548
Workshops	85	7,939
Conferences	44	18,212
Total	940	110,660

NLRS NASS Survey 2022

Based on 2021 Cropping Year

- Survey sent to a sample of farmers in Illinois.
- Statistical results extrapolated statewide.
- Survey questions gauge knowledge of nutrient loss issues and level of implementation of recommended agriculture conservation practices.
- Used to estimate implementation of agriculture conservation practices with or without enrollment in state or federal cost share programs.
- This is the fourth time the survey has been conducted.

Table 4.21. General knowledge questions (percent reporting)

	Not at All Knowledgeable	Slightly Knowledgeable	Somewhat Knowledgeable	Knowledgeable	Very Knowledgeable
Nutrient Loss Reduction Strategy	20.3%	24.8%	36.7%	15.7%	2.5%
MRTN Strategy	30.2%	29.0%	17.6%	14.7%	8.5%
Woodchip Bioreactors	68.6%	14.7%	11.1%	4.8%	0.8%
Constructed Wetlands	54.7%	17.2%	14.4%	11.5%	2.2%
Cover Crop Management	42.1%	20.5%	16.5%	17.9%	3%
Saturated Buffers	9.1%	24.7%	27.7%	26.1%	12.4%
Nutrient Loss Reduction Strategy	21%	27%	38.4%	11.6%	2%
MRTN strategy	20.3%	33.5%	25.5%	14.1%	6.6%
Woodchip Bioreactors	53.8%	23%	15%	5.5%	2.7%
Constructed Wetlands	19.7%	29.6%	38%	10.2%	2.5%
Cover Crop Management	9.1%	24.7%	27.7%	26.1%	12.4%

ILLINOIS NUTRIENT LOSS REDUCTION STRATEGY

Table 4.14. Acres with a nitrogen management strategy

		Acres in 2015	Acres in 2017	Acres in 2019	Acres in 2021
Acres of corn planted	12,600,000	11,700,000	11,200,000	10,500,000	11,000,000
Acres where an MRTN strategy was used to determine application rates	8,820,000 or 70% of planted acres	9,430,000 or 81% of planted acres	3,730,000 or 33% of planted acres	3,700,000 or 33% of planted acres	8,360,000 or 76% of planted acres*
Acres where other industry- approved technique was used to determine application rates	Not asked	Not asked	7,750,000 or 69% of planted acres	7,390,000 or 70% of planted acres	Not Asked

*Data for the 2021 crop season are not directly comparable to results from previous surveys as the data collection process was changed significantly

This significant increase in MRTN acres is almost certainly due to the changes NASS made to the survey question wording and to the use of the MRTN location and the year's corn/soy rotation reference map.

Table 4.15. Fertilizer application strategies for corn acres

	2017	2019	2021
Corn acres planted	11,200,000	10,500,000	11,000,000
Corn acres fertilized in the fall and winter with dry fertilizer blends	N/A	N/A	4,560,000 or 41.5% of planted acres
Corn acres fertilized in the fall and winter with NH3	N/A	N/A	4,020,000 or 36.5% of planted acres
Corn acres fertilized in the fall and winter with nitrification inhibitors	4,590,000	2,000,000	3,410,000 or 31% of planted acres
Corn acres fertilized in the spring with any fertilizer. This includes split applications and spring only acres	N/A	N/A	8,250,000 or 75% of planted acres
Corn acres fertilized only in the spring with any fertilizer	N/A	N/A	4,440,000 or 40% of planted acres
Corn acres fertilized in the spring with nitrification inhibitors	3,810,000 or 34% of planted acres	4,290,000 or 41% of planted acres	3,690,000 or 33.5% of planted acres

Table 4.16. Fertilizer application timing for corn acres

	2021
NASS Corn Planted Acres	11,000,000
Acres fertilized only in the fall	2,740,000
Acres fertilized in the spring and fall (split applications)	3,820,000
Acres fertilized only in the spring	4,440,000

Corn fertilization timing: 25% of acres fall/winter, 35% fall-spring split, 40% in spring

Table 4.17. Total cropland acres with reduced phosphorus application

		Acres in 2017	Acres in 2019	Acres in 2021
Tiled Acres	Acres where phosphorus application rates were reduced since 2011	4,440,000	7,410,000	6,210,000
Non-Tiled Acres	Acres where phosphorus application rates were reduced since 2011	2,150,000	3,800,000	0,210,000
Tiled Acres	Acres where placement of phosphorus applications were moved from broadcast to subsurface or banding	1,530,000	1,440,000	1 020 000
Non-Tiled Acres	Acres where placement of phosphorus applications were moved from broadcast to subsurface or banding	280,000	870,000	1,080,000

Table 4.18. Reasons cited for reducing phosphorus applications

	Acres in 2017	Acres in 2019	Acres in 2021
The Illinois Agronomy Handbook removal rates for phosphorus were updated	2,390,000	4,460,000	1,940,000
Soil test information	4,520,000	9,470,000	4,570,000
Other reasons, including cost	2,420,000	5,030,000	2,010,000

	Acres
2021 corn acres planted after cover crops	450,000
2021 soybean acres planted after cover crops	890,000
2021 total cover crops	1,390,000
Corn / Soybean acres planted to cover crops after the 2019 crop season on tiled ground.	930,000
Corn / Soybean acres planted to cover crops after the 2019 crop season on non-tiled ground.	480,000
Corn / Soybean acres planted to cover crops after the 2017 crop season on tiled ground.	290,000
Corn / Soybean acres planted to cover crops after the 2017 crop season on non-tiled ground.	420,000
Corn / Soybean acres planted to cover crops after the 2015 crop season on tiled ground.	490,000
Corn / Soybean acres planted to cover crops after the 2015 crop season on non-tiled ground.	630,000
Corn / Soybean acres planted to cover crops after the 2011 crop season on tiled ground.	220,000
Corn / Soybean acres planted to cover crops after the 2011 crop season on non-tiled ground.	380,000

ILLINOIS NUTRIENT LOSS REDUCTION STRATEGY

For comparison, in 2022 farmers reported 520,292 acres of cover crops to FSA.

Table 4.20. Tiled acres in 2021

	2021
Corn	7,020,000
Soybeans	6,150,000
Other Crops	390,000
Total Cropland	13,560,000

Agriculture Sector: State and Federal Cost-Share Programs

Conservation Reserve Program

Conservation Stewardship Program Environmental Quality Incentives program

Wetland Reserve Easement Program

Partners for Conservation

Cover Crop Premium Discount Program

DEPARTMENT OF NATURAL RESOURCES

319 Nonpoint Source Grant Program Conservation Reserve Enhancement Program

Conservation Reserve Program

Figure 4.3. Acres in perennials/energy/pasture. See Appendix G for companion data

Figure 4.2. Acres enrolled in CRP wetlands and buffers. See Appendix G for companion data.

---- Cover Crops

Figure 4.4. Acres in cover crops reported by producers to FSA. See Appendix G for companion data.

Environmental Quality Incentives Program

USDA ONRCS U.S. Department of Agriculture Natural Resources Conservation Service

Conservation Stewardship Program

Figure 4.5. Total acres enrolled in EQIP. See Appendix G for companion data.

2.5M 2.0M 1.5M 1.0M 0.5M 0.0M 2015 2016 2017 2018 2019 2020 2022 2012 2013 2014 2021 2011 Cumulative Acres — Acres Per Year (New + Renewed) — Subtracting the 5-year Dropoff

Figure 4.7. Cumulative acres enrolled in CSP, 2011–22. See Appendix G for companion data

Environmental Quality Incentives Program

Conservation Stewardship Program

Figure 4.6. Acres implemented and dollars spent on nutrient conservation practices through EQIP. See Appendix G for companion data.

2021 Acres 2022 Acres + 2021 Dollars + 2022 Dollars

Figure 4.8. Acres implemented and dollars spent on nutrient conservation practices through CSP. See Appendix G for companion data

Wetland Reserve Easement Program

Figure 4.9. New wetland acres enrolled in ACEP-WRE and ACEP-WRE/WREP programs. See Appendix G for companion data.

Conservation Reserve Enhancement Program

- Wetlands (CP9, CP23) - Buffers (CP21, CP22) - Perennials/Energy Crops (CP2, CP4D)

Figure 4.21. Acres of Illinois CREP easements contributing to NLRS. See Appendix G for companion data.

Note: CREP enrollment was suspended 2015-2022.

Partners for Conservation

Figure 4.22. Acres treated by and dollars spent on PFC in 2021 and 2022

Acres Submitted Acres Funded

Illinois Agriculture

Figure 8.10 Acres submitted to and funded by the Fall Covers for Spring Savings program since 2019

319 Nonpoint Source Grant Program

Companion data to Figure 4.25. Acres treated by agricultural practices installed under the

Section 319 grant program 2021-22

	Cover and Green Manure Crops	Filter Strips Nutrient Management	
2021	1,434	3	-
2022	591	-	3,294
4,0	000		
3,5		······	· · · · · · · · · · · · · · · · · · ·
3,0	000		
ഴ 2,5	00		
2,5 2,0 2,0	000		
1,5	00		
1,0	000		
5	00		
	0 2021	2022	

Companion data to Figure 4.26. Calculated total nitrogen and total phosphorus load reductions (lb/yr) from Section 319 grant program agricultural practices 2021–22

	N reduction (lbs/yr)	P reduction (lbs/yr)
2021	8,807	972
2022	3,685	460

Cover and Green Manure Crops

Filter Strips

Nutrient Management

Figure 4.25. Acres treated by agricultural practices installed under the Section 319 grant program 2021-22. See Appendix G for companion data.

University of Illinois

- 9 new bioreactors added in 2021-22
- Subtracted bioreactors
 >10 years old
- By the end of 2022, 37
 known Woodchip
 Bioreactors treating
 1,499 acres

Photo: Janith Chandrasoma

Partner Updates

ILLINOIS NUTRIENT LOSS REDUCTION STRATEGY

39 NGO Agricultural Partner Programs & Projects Supporting NLRS

- 4R Field Day
- 4R Metrics Survey
- 5-Year Soil Health Transition
- Carbon and Ecosystem Market Resources and Programs
- Edge-of-Field Partnership for Saturated •
 Buffers •
- Edge-of-Field Partnership for Woodchip
 Bioreactors
- Farm Gate
- Illinois Ag Retailer Survey
- Illinois Farm Bureau NLRS Priority Watershed Work
- IFCA-supported NREC Projects
- Illinois Buffer Partnership
- Illinois Cover Crop Initiative

- Illinois Cover Crop Programs
- Illinois Grazing Lands Coalition
- Illinois Sustainable Ag Partnership
- ILSoyAdvisor
- Keep it 4R Crop
- Mackinaw River Program
- Nitrogen Rate Trials
- Nutrient Research & Education Council
- Nutrient Stewardship Grant Program
- Post Application Coverage Endorsement
- Partnerships with Drinking Water Suppliers and Wastewater Treatment Plants
- Perennial Bioenergy Crop Diversification Project

- Precision Conservation Management
- Soil and Water Outcomes Fund
- STAR Conservation Evaluation Tool
- Sustaining Our Future: A Farm Family Story
- Tree Buffer Program
- Upper Macoupin Creek Watershed
 Partnership
- Vermilion Headwaters Watershed
 Partnership
- Water Supply & Industry Partnerships
- Water Testing Initiative

Point Source Updates

- 2021 and 2022 Nitrogen and Phosphorus loads
 - Municipal sewage treatment plants and Industrial facilities
 - Reductions compared to 2011 baseline loads
- Facilities with annual average concentrations
 - 1.0 mg/l
 - 0.5 mg/l
- Nutrient Assessment and Reduction Plans
- Optimization and Feasibility Plans for reducing phosphorus loads
- Watershed Planning group updates

Table 5.1. Reported expenditures supporting 2021-22 nutrient reduction activities in the point source sector for Illinois Association of Wastewater Agencies reporting agencies, watershed groups, and Illinois EPA

Nutrient Reduction-Related Activity	2021 Totals	2022 Totals
Capital improvement	\$19,970,913	\$5,954,693
Operations and maintenance	\$4,761,296	\$4,592,671
Feasibility studies or permit-required projects	\$700,830	\$20,668
Staff	\$4,762,150	\$4,740,326
Other resources	\$225,278	\$169,321
Illinois EPA State Revolving Fund's Water Pollution Control Loan Program	\$107,296,729	\$84,520,637
Total	\$137,717,196	\$99,998,316

Table 5.2. Point source sector activities and attendance 2021-22

Type of Activity	Number of Events	Attendance
Field Days	2	100
Presentations	12	4,000
Workshops	2	175
Conferences	2	45
Totals	18	4,320

Point Source Updates

Table 5.3. Statewide total phosphorus loads from the point source sector from 2021-22

Figure 5.4.

Percentage of major municipal NPDES permits with total phosphorus limits statewide

Point Source Sector	2021 Total Phosphorus Load (million lb/yr)	2022 Total Phosphorus Load (million lb/yr)
 Annual Point Source Load 211 Major Municipals Minor Municipals All Industrials 	12.5 10.7 1.3 0.5	11.9 10.2 1.3 0.4
Reductions from 2011 Baseline load of 18.1 million lb/yr	5.6 (31%)	6.2 (34%)

2022: 34% Total Phosphorus Reduction

Point Source Updates

Table 5.9. Statewide total nitrogen loads from the point source sector from 2021-22

Point Source Sector	2021 Total Nitrogen Load (million lb/yr)	2022 Total Nitrogen Load (million lb/yr)
 Annual Total Nitrogen Load 211 Major Municipals Minor Municipals Major and Minor Industrials 	76.6 71.4 3.0 2.2	77.2 72.2 3.0 2.0
Reductions from 2011 Baseline of 87.3 million pounds per year	10.7 (12.2%)	10.1 (11.6%)

2022: 11.6% Total Nitrogen Reduction

Top 10 Wastewater Treatment Facilities for Total Phosphorus Discharge

Table 5.4. Top 10 major municipal facilities contributing total phosphorus loads in 2022

Table 5.5. Top 10 major municipal facilities' flow and total phosphorus concentrations in 2021-22

NPDES	Facility Name	Total Phosphorus Load (lb/yr)					Percent Change	
Permit		2011	2018	2019	2020	2021	2022	2011-22
IL0028061	Calumet Water Reclamation Plant (MWRDGC)	2,450,714	1,990,902	2,191,160	2,569,259	2,553,033	2,756,427	12%
IL0028321	Sanitary District of Decatur – Main Sewage Treatment Plant	1,562,750	2,022,573	2,011,785	1,897,809	1,601,329	1,745,380	12%
IL0028053	Stickney Water Reclamation Facility (MWRDGC)	2,351,312	707,230	2,164,828	2,435,218	1,277,750	995,924	-58%
IL0028088	Terrence J. O'Brien WRP (MWRDGC)	971,083	931,333	947,758	978,314	1,036,758	873,938	-10%
IL0027201	Four Rivers Sanitation Authority Sewage Treatment Plant	216,837	280,052	231,141	223,527	235,553	229,546	6%
IL0036340	John E. Egan WRP (MWRDGC)	233,759	209,074	219,942	210,437	221,709	194,107	-17%
IL0027723	Thorn Creek Basin Sanitary District Sewage Treatment Plant	104,111	130,969	99,404	96,844	123,564	176,694	70%
IL0034061	Springbrook Water Reclamation Center – Naperville	190,457	166,060	155,307	162,805	181,804	149,175	-22%
IL0027731	Bloomington-Normal Water Reclamation District west- side plant	139,207	101,236	132,693	124,924	127,637	101,959	-27%
IL0028380	Downers Grove Sanitary District Wastewater Treatment Center	91,396	85,647	103,297	110,224	113,246	86,741	-5%

NPDES Permit	Facility Name	2021 Average Flow (MGD)	2021 Average TP Concentration (Mg/L)	2022 Average Flow (MGD)	2022 Average TP Concentration (Mg/L)
IL0028061	Calumet Water Reclamation Plant (MWRDGC)	233	3.67	236	4.19
IL0028321	Sanitary District of Decatur – Main Sewage Treatment Plant	35	15.08	36	16.39
IL0028053	Stickney Water Reclamation Facility (MWRDGC)	604	0.72	665	0.52
IL0028088	Terrence J. O'Brien WRP (MWRDGC)	204	1.68	209	1.43
IL0027201	Four Rivers Sanitation Authority Sewage Treatment Plant	27	2.77	28	2.67
IL0036340	John E. Egan WRP (MWRDGC)	22	3.36	22	2.95
IL0027723	Thorn Creek Basin Sanitary District Sewage Treatment Plant	12	3.35	13	4.41
IL0034061	Springbrook Water Reclamation Center – Naperville	17	3.48	18	2.77
IL0027731	Bloomington-Normal Water Reclamation District west-side plant	18	2.33	16	2.23
IL0028380	Downers Grove Sanitary District Wastewater Treatment Center	10	4.01	10	3.13

Nutrient Assessment and Reduction Plan (NARP)

- IAWA and NGO Agreement for Major (>1 MGD) Facilities
- Special Condition in NPDES permits
- Required if facility is:
 - located upstream of a waterbody or stream segment that has been determined to have a phosphorus related impairment, or
 - determined to be at risk of eutrophication due to phosphorus levels in the waterbody.
 - Effluent limit of 0.5 mg/L Total Phosphorus 12 month rolling geometric mean by January 1, 2030 unless not technologically feasible or economically reasonable or meets one of the special circumstances
- Not an Effluent or Water Quality Standard

Nutrient Assessment and Reduction Plan (NARP)

- Developed and submitted to Illinois EPA by December 31, 2023 or 2024
- Supported by data and sound scientific rationale
- Must cooperate and work with other stakeholders in the watershed
- Target Levels
 - Recommendations by the Nutrient Science Advisory Committee Dec 2018
 - Develop its own watershed-specific target levels
- Identify phosphorus input reductions from point sources and non-point sources
- Schedule for implementation
- Provisions for water quality trading

67 facilities are developing Nutrient Assessment

Reduction Plans. Another 89 are developing NARPs as part of a watershed group.

Watershed Groups

- Des Plaines River Watershed Workgroup
- DuPage River Salt Creek Workgroup
- Fox River Study Group
- Lower Des Plaines Watershed Group
- Lower DuPage River Watershed Coalition
- North Branch Chicago River Watershed
 Workgroup
- the newly formed Illinois River Watershed Study Group

REDUCTION STRATEGY

Table 6.1. Resources reported by stormwater sector partners

	2021	2022
Grants or Loans Received	\$279,500	\$655,001
Grants or Loans Given	\$1,140,043	\$1,467,191
Funded Programs	\$641,256	\$39,334
Total	\$2,060,799	\$2,161,526

In addition, the Metropolitan Water Reclamation District of Greater Chicago, MWRDGC, invested \$1.45 million in Green Infrastructure Program projects in 2021, adding over half a million gallons of retention capacity. MWRDGC committed \$44.7 million for the 2021 stormwater program.

Table 6.2. Types of outreach activities by the stormwater sector as reported by NLRS partners

Type of Activity	Number of Events	Attendance
Field Days	18	2,830
Presentations	57	1,231
Conferences	10	1,800
Education and Training Workshops	36	3,106
Totals	121	8,967

Table 6.3. Scope of stormwater sector outreach based on MS4 community reportsfrom 2022

Type of Activity	Number of MS4 reports	Percent of total MS4 reports	
Education and Training Workshops	297	95%	
Presentations	278	89%	
Conferences	86	27%	
Field Days	38	12%	
Technical Assistance	159	51%	

Trees

Porous Pavement 🛛 Rain Garden 💷 Urban Filter Strip 💷 Woodland Management

Sediment Basin
Structure for Water Control

Figure 6.2. Types and numbers of urban practices installed under Section 319 grant program in 2021-22. See Appendix G for companion data.

REDUCTION STRATEGY

- Summary of Municipal Separate Storm Sewer Systems (MS4) Annual Inspection Reports
- Illinois EPA 319 and Green Infrastructure Grant programs
- Metropolitan Water Reclamation District of Great Chicago's Green Infrastructure Program
- Partner updates on stormwater programs
 - Calumet Stormwater Collaborative
 - CMAP
 - Conservation@Home
 - DuPage County programs
 - IDOT
 - Illinois Groundwork
 - Parkland College NGIC Program
 - Lawn to Lake Midwest
 - MWRD GI Program
 - Rainscaping
 - Red Oak Rain Garden
 - Watershed-Based planning
 - CMAP
 - DuPage County
 - Greater Egypt RPDC

St. Louis Metro East Region

Figure 6.5. Illinois MS4 communities evaluated in 2021 and 2022

Legend

2021 & 2022 MS4 Communities

Nutrient Loads and Water Quality Goals

Figure 8.1. Illinois nitrate-nitrogen loads relative to the 2025 interim and long-term reduction goals

ILLINOIS

REDUCTION STRATEGY

NUTRIENT

.OSS

Figure 8.2. Illinois total phosphorus loads relative to the 2025 interim and long-term reduction goals

Agriculture Implementation Scenarios

Figure 8.3. Agricultural implementation as compared with scenario NP2

Figure 8.4. Agricultural implementation as compared with scenario NP3

Agriculture Implementation Scenarios

Figure 8.5. Agricultural implementation as compared with scenario NP7.

Scenario NP7 represents the level of practice adoption needed to meet 2025 interim reduction goals.

Maximum Return To Nitrogen (MRTN) Soil Test Phosphorus (STP) (rate reduction) Conservation Tillage Bioreactors Wetlands Cover Crops (grass-based) Nitrogen Management (fall-spring split applications) Nitrification Inhibitor Buffers NP8 45% Reduction 5M 0M 10M 15M 20M 25M Implementation Level (2021-2022) Millions of Acres Treated

Scenario NP8

- Interim Values (N) 15% Reduction
- Interim Values (P) 25% Reduction

Point Source Total Phosphorus Reductions

Major Municipal Facilities Industrial and Minor Municipal Facilities *Estimated future phosphorus point source load

Figure 8.7. Total phosphorus point source load relative to the 2025 interim and long-term reduction goals

Moving Forward

- Policy Working Group and other workgroups and committees will continue to meet.
- Collaboration among agencies and organizations is encouraged to continue.
- Promote Planning and Implementation at the watershed scale.

Photo: Haley Haverback-Gruber

Improving our water resources with collaboration and innovation

Contact Us

Visit the webpage at go.Illinois.edu/NLRS

Trevor Sample—Illinois Environmental Protection Agency Trevor.Sample@Illinois.gov Michael Woods—Illinois Department of Agriculture

Michael.Woods@Illinois.gov

Joan Cox—University of Illinois Extension

jesarey@Illinois.edu

