

Illinois Environmental Protection Agency Bureau of Water P.O. Box 19276 Springfield, IL 62794-9276 www.epa.illinois.gov

June 2020

IEPA/BOW/IL-2020-002

Upper Fox River/Flint Creek Watershed TMDL Report

Upper Fox River/Flint Creek Watershed

THIS PAGE LEFT INTENTIONALLY BLANK

TMDL Development for the Upper Fox River/Flint Creek Watershed, Illinois

This file contains the following documents:

- 1) U.S. EPA Approval Letter and Decision Document for the Final TMDL Report
- 2) TMDL Report

THIS PAGE LEFT INTENTIONALLY BLANK

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

June 2, 2020

REPLY TO THE ATTENTION OF: $WW\mbox{-}16J$

Sanjay Sofat, Chief Bureau of Water Illinois Environmental Protection Agency P.O. Box 19276 Springfield, Illinois 62794-9276

Dear Mr. Sofat:

The U.S. Environmental Protection Agency has conducted a complete review of the final Total Maximum Daily Loads (TMDLs) for phosphorus and fecal coliform for the Upper Fox River – Flint Creek watershed, including supporting documentation and follow up information. The waterbodies are located in northeastern Illinois. The TMDLs submitted by the Illinois Environmental Protection Agency address the impaired Primary Contact and Aesthetic Quality Uses for the waterbodies.

The TMDLs meet the requirements of Section 303(d) of the Clean Water Act and EPA's implementing regulations at 40 C.F.R. Part 130. Therefore, EPA hereby approves Illinois' 17 TMDLs for phosphorus and fecal coliform as noted in the enclosed decision document. The statutory and regulatory requirements, and EPA's review of Illinois' compliance with each requirement, are described in the enclosed decision document.

We wish to acknowledge Illinois' effort in submitting these TMDLs and look forward to future TMDL submissions by the State of Illinois. If you have any questions, please contact Mr. David Werbach, at 312-886-4242 or werbach.david@epa.gov.

Sincerely,

Tera L. Fong Digitally signed by Tera L. Fong Date: 2020.06.02 15:05:03 -05'00'

Tera L. Fong Divison Director, Water Division **TMDL:** Upper Fox River -Flint Creek Watershed TMDL, IL **Date:** 06/02/2020

DECISION DOCUMENT FOR THE APPROVAL OF THE UPPER FOX RIVER-FLINT CREEK, ILLINOIS WATERSHED TMDL

Section 303(d) of the Clean Water Act (CWA) and EPA's implementing regulations at 40 C.F.R. Part 130 describe the statutory and regulatory requirements for approvable TMDLs. Additional information is generally necessary for EPA to determine if a submitted TMDL fulfills the legal requirements for approval under Section 303(d) and EPA regulations, and should be included in the submittal package. Use of the verb "must" below denotes information that is required to be submitted because it relates to elements of the TMDL required by the CWA and by regulation. Use of the term "should" below denotes information that is generally necessary for EPA to determine if a submitted TMDL is approvable. These TMDL review guidelines are not themselves regulations. They are an attempt to summarize and provide guidance regarding currently effective statutory and regulatory requirements relating to TMDLs. Any differences between these guidelines and EPA's TMDL regulations should be resolved in favor of the regulations themselves.

1. Identification of Waterbody, Pollutant of Concern, Pollutant Sources, and Priority Ranking

The TMDL submittal should identify the waterbody as it appears on the State's/Tribe's 303(d) list. The waterbody should be identified/georeferenced using the National Hydrography Dataset (NHD), and the TMDL should clearly identify the pollutant for which the TMDL is being established. In addition, the TMDL should identify the priority ranking of the waterbody and specify the link between the pollutant of concern and the water quality standard (see section 2 below).

The TMDL submittal should include an identification of the point and nonpoint sources of the pollutant of concern, including location of the source(s) and the quantity of the loading, e.g., lbs/per day. The TMDL should provide the identification numbers of the NPDES permits within the waterbody. Where it is possible to separate natural background from nonpoint sources, the TMDL should include a description of the natural background. This information is necessary for EPA's review of the load and wasteload allocations, which are required by regulation.

The TMDL submittal should also contain a description of any important assumptions made in developing the TMDL, such as:

(1) the spatial extent of the watershed in which the impaired waterbody is located;

(2) the assumed distribution of land use in the watershed (e.g., urban, forested, agriculture);

(3) Population characteristics, wildlife resources, and other relevant information affecting the characterization of the pollutant of concern and its allocation to sources;

(4) present and future growth trends, if taken into consideration in preparing the TMDL (e.g., the TMDL could include the design capacity of a wastewater treatment facility); and

Upper Fox River-Flint Creek Watershed, IL Final Decision Document

(5) an explanation and analytical basis for expressing the TMDL through *surrogate measures*, if applicable. *Surrogate measures* are parameters such as percent fines and turbidity for sediment impairments; chlorophyll <u>a</u> and phosphorus loadings for excess algae; length of riparian buffer; or number of acres of best management practices.

Comment:

Location Description: The Illinois Environmental Protection Agency (IEPA) has developed 17 TMDLs for phosphorus and fecal coliform for 13 impaired lakes and one impaired river segment in the Upper Fox River-Flint Creek watershed in northeastern Illinois (Table 1 of this Decision Document). The Upper Fox River-Flint Creek watershed is located in Lake, McHenry, and Cook Counties in far northeastern Illinois (Figure 1-1 of the TMDL). This TMDL submittal includes 13 TMDLs for phosphorus impairing Aesthetic Quality Use (AQU) in the lakes and three TMDLs for fecal coliform that impairs Primary Contact Recreational Use (PCR) in three of the lakes. The submittal also addresses one river segment of the Fox River for fecal coliform that impairs the PCR use. IEPA also explained that low dissolved oxygen (DO) will be addressed in Woodland (Highland) Lake by the phosphorus TMDL (Section 7.1 of Appendix A of the TMDL).

Land use: Appendix B of the TMDL shows land use in the watershed, with agriculture at 37%, urban/built-up 40%, forest 10%, open water 7%, wetland 7%, and barren/exposed at 1%. Appendix B of the TMDL also contains land use data for each lake subwatershed. Original drainage in the watershed has been altered by agriculture and residential/recreational uses.

Problem Identification: Section 1.2 of the TMDL and Table 1 of this Decision Document note that three lakes are impaired for PCR Use by fecal coliform, and 13 lakes are impaired for AQU by phosphorus. Some of the lakes experience harmful algal blooms (HABs) or eutrophication that occur under certain conditions during the year, which impairs the aesthetic quality designated use. In earlier stages of TMDL development, the DO impairment for Woodland (Highland) Lake was reviewed. As discussed in Section 1.5.2 of the TMDL, this DO impairment will be addressed by the phosphorus TMDL for the lake. Section 1.2 of the TMDL also identifies the impairment for Segment DT-22 of the Fox River, which is impaired for fecal coliform.

There are Total Suspended Solids (TSS) impairments in several of the lakes, but IEPA decided that TMDLs would not be addressed at this time; rather, the State developed Load Reduction Strategies (LRSs). IEPA explained that the State defers development of TMDLs for certain pollutants that have no numeric criteria at this time.

Waterbody Name	Segment ID	TMDL Parameter	LRS Parameter
Fox River	DT-22	Fecal coliform	Sedimentation/Siltation
Lake Barrington	RTZT	Phosphorus, Fecal coliform	Total Suspended Sediments (TSS)
Drummond Lake	UTI	Phosphorus	TSS
Echo Lake	RTZR	Phosphorus	TSS
Grassy Lake	VTI	Phosphorus	TSS
Honey Lake	RTZU	Phosphorus, Fecal coliform	
Island Lake	RTZI	Phosphorus	TSS
Lake Fairview	STK	Phosphorus	TSS

Table 1: Waterbodies Addressed in the Upper Fox River-Flint Creek Watershed

Upper Fox River-Flint Creek Watershed, IL Final Decision Document

Lake Napa Suwe	STO	Phosphorus	TSS
Lake Louise	VTZI	Phosphorus	TSS
Slocum Lake	RTP	Phosphorus	TSS
Timber Lake (South)	RTZQ	Phosphorus	TSS
Tower Lake	RTZF	Phosphorus, Fecal coliform	TSS
Woodland (Highland) Lake	STV	Phosphorus, Dissolved Oxygen ¹	TSS

¹Dissolved oxygen impairment is directly related to excess nutrients (total phosphorus) in the waterbody and is addressed via total phosphorus TMDL.

Pollutant of Concern: Phosphorus and fecal coliform are the pollutants of concern for the TMDLs. The LRSs discuss implementation actions and activities that the State will pursue to reduce the TSS impairments in the waterbodies.

Sources: The sources of contaminants in the watershed are predominantly nonpoint source (NPS), but some lakes also have contributions from point sources.

<u>Nonpoint Sources for phosphorus</u> – The nonpoint sources of phosphorus are described in Section 6 of Appendix A of the TMDL.

<u>Internal loading</u>: The release of phosphorus from lake sediments via physical disturbance from benthic fish (rough fish, e.g., carp), the release of phosphorus from wind mixing the water column, and the release of phosphorus from decaying curly-leaf pondweeds, may all contribute internal phosphorus loading to the lakes in the TMDL watershed. Phosphorus may build up in the bottom waters of the lake and may be resuspended or mixed into the water column when the thermocline decreases, and the lake water mixes. Some of the lakes have only a few species of water plant life and contain predominantly nuisance species including Eurasian watermilfoil and curly-leaf pondweed. Problems are also exacerbated as many of the lakes are very shallow.

<u>Urban/residential sources</u>: Nutrients, organic material and organic-rich sediment may be added via runoff from urban/developed areas near the impaired lakes in the subwatersheds. Runoff from urban/developed areas can include phosphorus derived from fertilizers, leaf and grass litter, pet wastes, and other sources of anthropogenic derived nutrients.

<u>Stormwater runoff from agricultural land use practices:</u> Runoff from agricultural lands may contain significant amounts of nutrients, organic material and organic-rich sediment which may lead to impairments in the Upper Fox River-Flint Creek watershed. Stormwater runoff may contribute nutrients and organic-rich sediment to surface waters from livestock manure, fertilizers, vegetation and erodible soils.

<u>Stream channelization and stream erosion</u>: Eroding streambanks and channelization efforts may add nutrients, organic material and organic-rich sediment to local surface waters. Nutrients may be added if there is particulate phosphorus bound with eroding soils. Eroding riparian areas may be linked to soil inputs within the water column and potentially to changes in flow patterns. Changes in flow patterns may also encourage down-cutting of the streambed and streambanks. Stream channelization efforts can increase the velocity of flow (via the removal of the sinuosity of a natural channel) and disturb the natural sedimentation processes of the streambed. <u>Discharges from septic systems or unsewered communities</u>: Failing septic systems are a potential source of nutrients within the Upper Fox River-Flint Creek watershed. Septic systems generally do not discharge directly into a waterbody, but effluents from failing septic systems may leach into groundwater or pond at the surface where they can be washed into surface waters via stormwater runoff events. Age, construction and use of septic systems can vary throughout a watershed and influence the nutrient contribution from these systems.

<u>Wetland and Forest Sources:</u> Phosphorus, organic material and organic-rich sediment may be added to surface waters by stormwater flows through wetland and forested areas in the TMDL watershed. Storm events may mobilize phosphorus through the transport of suspended solids and other organic debris.

<u>Wildlife</u>: Wildlife is a known source of nutrients in waterbodies as many animals spend time in or around waterbodies. Deer, geese, ducks, raccoons, and other animals all create potential sources of nutrients via contaminated runoff from animal habitats, such as urban park areas, forest, and rural areas.

<u>Nonpoint sources for bacteria</u> - Fecal coliform can enter the impaired lakes or the Fox River through similar sources as for phosphorus.

<u>Urban/residential sources</u>: Bacteria may be added via runoff from urban/developed areas near the impaired waterbodies in the watershed. Runoff from urban/developed areas can include bacteria from pets and wildlife.

<u>Discharges from septic systems</u>: Failing septic systems are a potential source of bacteria within the TMDL watersheds. IEPA noted that while most of the watershed subwatershed is sewered, old septic systems may still be present (Section 3.5.2 of the TMDL). Septic systems generally do not discharge directly into a waterbody, but effluents from systems may leach into groundwater or pond at the surface where they can be washed into surface waters via stormwater runoff events.

<u>Wildlife</u>: Wildlife is a known source of nutrients in waterbodies as many animals spend time in or around waterbodies. Deer, geese, ducks, raccoons, and other animals all create potential sources of nutrients via contaminated runoff from animal habitats, such as urban park areas, forest, and rural areas.

Point Sources for phosphorus:

IEPA noted that only one lake (Grassy Lake) receives discharges from individually permitted phosphorus point sources (Section 2.3.2.4 of the TMDL). Only two small point sources were identified in the Grassy Lake watershed. IEPA determined phosphorus allocations for each facility, as discussed further in Section 5 of this Decision Document. IEPA identified MS4 dischargers in the Upper Fox River-Flint Creek watershed as sources of phosphorus in the TMDL watershed (Section 2.3.2.4 of the TMDL). A portion of the phosphorus load was allocated to each discharger based upon the areal extent of the MS4 area in the lake subwatershed (See Section 5 of this Decision Document).

Point Sources for bacteria:

IEPA determined that there are 10 individually permitted facilities that were assigned allocations for bacteria in the Fox River DT-22 watershed (Table 2-4 of the TMDL). MS4s were identified as a source of bacteria for the Fox River. No individually permitted point sources discharge to the bacteria impaired lakes in the TMDL watershed, although MS4 entities were identified as contributing bacteria and therefore, were assigned an allocation for bacteria(Section 2.3.3 of the TMDL)

Surrogates: Woodland (Highland) Lake is identified as impaired due to low DO (Table 1-1 of the TMDL). Section 3.5 of the TMDL states that low DO will be addressed through the phosphorus reduction at Woodland (Highland) Lake. A linkage has been established between phosphorus, excess plant and algal growth, and decreased oxygen levels with decomposition of plant life in the waters. The low DO is affected by internal loading and cycling of phosphorus and sediments.

Future growth: Section 2.5 of Appendix A of the TMDL states that the overall Fox River watershed has a population over 1 million residents, approximately 11% of the state population. The TMDL watershed has a population of approximately 321,000. The population is expected to increase significantly though 2030. IEPA reviewed various reports regarding population growth, and determined that the WWTFs have adequate capacity to handle the anticipated growth (Section 2.3 of the TMDL). Therefore, no reserve capacity was calculated by IEPA for any of the waterbodies.

Priority ranking: The watershed was given priority for TMDL development due to the impairment impacts on the public value of the impaired water resource, and the timing as part of the Illinois basin monitoring process.

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this first element.

2. Description of the Applicable Water Quality Standards and Numeric Water Quality Target

The TMDL submittal must include a description of the applicable State/Tribal water quality standard, including the designated use(s) of the waterbody, the applicable numeric or narrative water quality criterion, and the antidegradation policy. (40 C.F.R. \$130.7(c)(1)). EPA needs this information to review the loading capacity determination, and load and wasteload allocations, which are required by regulation.

The TMDL submittal must identify a numeric water quality target(s) - a quantitative value used to measure whether or not the applicable water quality standard is attained. Generally, the pollutant of concern and the numeric water quality target are, respectively, the chemical causing the impairment and the numeric criteria for that chemical (e.g., chromium) contained in the water quality standard. The TMDL expresses the relationship between any necessary reduction of the pollutant of concern and the attainment of the numeric water quality target. Occasionally, the pollutant of concern is different from the pollutant that is the subject of the numeric water quality target (e.g., when the pollutant of concern is phosphorus and the numeric water quality target is expressed as Dissolved

Oxygen (DO) criteria). In such cases, the TMDL submittal should explain the linkage between the pollutant of concern and the chosen numeric water quality target.

Comment:

Section 4.2 of Appendix A of the TMDL identifies the designated use for the impaired segments as General Use. General Use is defined by the Illinois Pollution Control Board as a standard that, "will protect the state's water for aquatic life, wildlife, agricultural use, secondary contact use and most industrial uses, and ensure the aesthetic quality of the state's aquatic environment."

The applicable water quality standards (WQS) for these waterbodies are established in Illinois Administrative Rules Title 35, Environmental Protection; Subtitle C, Water Pollution; Chapter I, Pollution Control Board; Part 302, Water Quality Standards, Subpart B for General Use Water Quality Standards. The portions of the WQS that apply to the Upper Fox River-Flint Creek watershed are General Use, specifically the Aesthetic Quality Use and Primary Contact Use (Section 2.1 of the TMDL). As noted in Table 1 of this Decision Document, 13 lakes are not supporting the Aesthetic Quality Use due to exceedances of the phosphorus criteria. Three lakes are not supporting their Primary Contact Use (Section 1.2 of the TMDL) and are impaired by fecal coliform. One river segment of the Fox River is not supporting the Primary Contact Use and is impaired by fecal coliform.

Criteria: The applicable criteria are found in Table 2 of this Decision Document.

Pollutant	Units	Criteria
Phosphorus	mg/L	0.05 (lakes)
Fecal coliform	Count/100 mL	May through October 200 [*] , 400 ^{**}

Table 2: WQSs for the impaired waters in the Upper Fox River-Flint Creek watershed

* - geometric mean based upon a minimum of 5 samples in a 30 day period

** - not to be exceed by more than 10% of the samples in a 30 day period

Target: The water quality targets for these TMDLs are in Table 2 of this Decision Document.

<u>Fecal Coliform</u>: IEPA used the geometric mean portion of the WQS to determine loads. Allocations were developed for each bacteria-impaired segment based upon the 200 counts/100mL geometric mean portion of the WQS (Table 2 of this Decision Document). Although the loads were developed based upon the geometric mean portion of the WQS, EPA notes that both portions of the WQS apply and must be met.

<u>Phosphorus</u>: The IEPA used the numeric WQS for phosphorus for lakes of 0.05 mg/L as the TMDL target.

Other impairments: Woodland (Highland) Lake is also impaired for low dissolved oxygen (DO) (Table 1-1 of the TMDL). IEPA noted that the low DO impairment was reviewed and determined to be due to eutrophication, where excess algae blooms have scavenged dissolved oxygen and carbon dioxide (necessary to maintain pH balance)(Section 7.1 of Appendix A of the TMDL). The State determined that the phosphorus TMDL will reduce the eutrophic conditions in the lake and

improve DO levels.

IEPA also noted that many of the waterbodies were impaired due to total suspended solids. IEPA explained that TMDLs for these impairments will be developed after numeric criteria are developed for this pollutant. However, IEPA did develop LRSs that contain Best Managment Practices (BMPs) designed to reduce phosphorus and sediment loads entering the impaired waterbodies (Sections 3.3 and 3.4 of the TMDL).

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this second element.

3. Loading Capacity - Linking Water Quality and Pollutant Sources

A TMDL must identify the loading capacity of a waterbody for the applicable pollutant. EPA regulations define loading capacity as the greatest amount of a pollutant that a water can receive without violating water quality standards (40 C.F.R. §130.2(f)).

The pollutant loadings may be expressed as either mass-per-time, toxicity or other appropriate measure (40 C.F.R. §130.2(i)). If the TMDL is expressed in terms other than a daily load, e.g., an annual load, the submittal should explain why it is appropriate to express the TMDL in the unit of measurement chosen. The TMDL submittal should describe the method used to establish the cause-and-effect relationship between the numeric target and the identified pollutant sources. In many instances, this method will be a water quality model.

The TMDL submittal should contain documentation supporting the TMDL analysis, including the basis for any assumptions; a discussion of strengths and weaknesses in the analytical process; and results from any water quality modeling. EPA needs this information to review the loading capacity determination, and load and wasteload allocations, which are required by regulation.

TMDLs must take into account *critical conditions* for stream flow, loading, and water quality parameters as part of the analysis of loading capacity. (40 C.F.R. §130.7(c)(1)). TMDLs should define applicable *critical conditions* and describe their approach to estimating both point and nonpoint source loadings under such *critical conditions*. In particular, the TMDL should discuss the approach used to compute and allocate nonpoint source loadings, e.g., meteorological conditions and land use distribution.

Comment:

Loading Capacity: The loading capacities are found in Section 2 of the TMDL submittal. Tables 3-15 of this Decision Document (Tables 2-20 through 2-32 of the TMDL except as noted) summarize the phosphorus TMDLs for the lakes, and Tables 16-18 of this Decision Document (Tables 2-37 to 2-39 of the TMDL) summarize the fecal coliform TMDLs for the lakes. Table 2-6 of the TMDL (Table 19 of this Decision Document) summarizes the fecal coliform TMDL for the Fox River. The tables are found at the end of this Decision Document.

Methodology – IEPA used the Simplified Lake Analysis Model (SLAM) to determine allocations for phosphorus. For the three lake fecal coliform TMDLs, IEPA used a spreadsheet model, and used the Load Duration Curve method for the Fox River (Section 2 of the TMDL).

SLAM – This model uses a simple loading analysis for lakes, described in Section 1.4.2 of the TMDL. A more traditional method for lake analysis, such as BATHTUB, was not used because IEPA determined that SLAM could also integrate the sediment dynamics and characteristics within lakes to determine phosphorus loading by using lake and sediment interactions. Parameter inputs considered in the calculations include: lake morphology, hydraulics, and thermal stratification; segmentation and flow direction; watershed inflows via runoff and point source discharge into the reservoir watershed; in-lake nutrients, settling velocity and nutrient uptake and burial; and sediment layer dynamics. Confirmatory analysis was also completed to document that the observed and simulated values supported the methodology. Comparison of observed and predicted calculations yielded a range of -3.4 - 9.7 percent difference amongst all the lakes (Section 1.5 of the TMDL).

<u>Modeling results</u>: Loading of phosphorus from the surrounding watershed was calculated using estimated runoff values and export coefficients based upon land use (Appendix F of the TMDL). Several of the lakes are interconnected, which can be modeled separately in SLAM. Many of the lakes also are interconnected by streams. IEPA accounted for the downstream flow of water and pollutant loads by modeling the upstream lakes first, and then using the outputs from the upstream lake in the inputs for the downstream lake (Section 1.5.2 of the TMDL). All lakes exhibited signs of internal loading of phosphorus, so IEPA adjusted each lake model to account for additional internal load.

Fecal coliform Spreadsheet Approach – Illinois used a spreadsheet approach for Lake Barrington, Honey Lake, and Tower Lake, all impaired for fecal coliform. Flow estimates, watershed proportions and measured in-lake fecal concentrations were used to determine the daily loading capacity for fecal coliform in the three lakes (Section 1.5.3 of the TMDL).

Load Duration Curve Approach - For the bacteria TMDLs the geometric mean of 200 counts/100 ml fecal coliform for five samples equally spaced over a 30-day period, was used to calculate the loading capacity of the Fox River bacteria TMDL.

Typically loading capacities are expressed as a mass per time (e.g., pounds per day). However, for bacteria loading capacity calculations, mass is not always an appropriate measure because bacteria is expressed in terms of organism counts. This approach is consistent with the EPA's regulations which define "load" as "an amount of matter that is introduced into a receiving water" (40 CFR §130.2). To establish the loading capacities for the Fox River bacteria TMDL, IEPA used Illinois's geometric mean portion of the water quality standards for fecal coliform (200 counts/100 mL). A loading capacity is, "the greatest amount of loading that a water can receive without violating water quality standards." (40 CFR §130.2). Therefore, a loading capacity set at the WQS will assure that the water does not violate WQS. IEPA's fecal coliform TMDL approach is based upon the premise that all discharges (point and nonpoint) must meet the WQS when entering the waterbody. If all sources meet the WQS at discharge, then the waterbody should meet the WQS and the designated use.

Flow data from a USGS gage in the watershed was used to develop the Load Duration Curve (LDC). Flow data was available for a number of years (Section 2.7 of Appendix A of the TMDL). Daily stream flows are necessary to implement the LDC approach.

The LDCs were created by multiplying individual flow values by the WQS and then multiplying that value by a conversion factor. The resulting points are plotted onto a load duration curve graph. The LDC graphs for impaired waterbodies have flow duration interval (percentage of time flow exceeded) on the X-axis and pollutant loads (number of bacteria or pollutant mass per unit time) on the Y-axis. The fecal coliform LDC used fecal coliform measurements in millions of bacteria per day, while the chloride LDC used pounds per day. The curved line on a LDC graph represents the TMDL for the respective flow conditions observed at that location.

Pollutant values from the monitoring sites were converted to individual sampling loads by multiplying the sample concentration by the instantaneous flow measurement observed/estimated at the time of sample collection. The individual sampling loads were plotted on the same figure with the LDC (Section 1.5 of the TMDL).

The LDC plot was subdivided into five flow regimes; high flow conditions (exceeded 0–10% of the time), moist flow conditions (exceeded 10–40% of the time), mid-range flow conditions (exceeded 40–60% of the time), dry flow conditions (exceeded 60–90% of the time), and low flow conditions (exceeded 90–100% of the time). LDC plots can be organized to display individual sampling loads and the calculated LDC. Watershed managers can interpret these plots (individual sampling points plotted with the LDC) to understand the relationship between flow conditions and water quality exceedances within the watershed. Individual sampling loads which plot above the LDC represent violations of the WQS and the allowable load under those flow conditions at those locations. The difference between individual sampling loads plotting above the LDC and the LDC, measured at the same flow, is the amount of reduction necessary to meet WQS.

The strengths of using the LDC method are that critical conditions and seasonal variation are considered in the creation of the LDC by plotting hydrologic conditions over the flows measured during the recreation season. Additionally, the LDC methodology is relatively easy to use and cost-effective. The weaknesses of the LDC method are that nonpoint source allocations cannot be assigned to specific sources, and specific source reductions are not quantified. Overall, IEPA believes and EPA concurs that the strengths outweigh the weaknesses for the LDC method.

Implementing the results shown by the LDC requires watershed managers to understand the sources contributing to the water quality impairment and which BMPs may be the most effective for reducing pollutant loads based on flow magnitudes. Different sources will contribute pollutant loads under varying flow conditions. For example, if exceedances are significant during high flow events this would suggest storm events are the cause and implementation efforts can target BMPs that will reduce stormwater runoff and consequently pollutant loading into surface waters. This allows for a more efficient implementation effort.

The TMDL for the Fox River was calculated as appropriate. The regulated permittees discharging fecal coliform have allocations determined for them (Section 5 of this Decision Document). The load allocations were calculated after the determination of the Margin of Safety. Other load allocations (e.g., non-regulated stormwater runoff, wildlife inputs, etc.) were not divided amongst individual nonpoint contributors. Instead, load allocations were combined into a generalized loading.

The LDC for fecal coliform shows exceedances under all flow conditions, and in similar magnitudes, indicating a variety of sources are contributing to the impairment (Figures 1-4 of the TMDL; incorporated herein).

Table 19 of this Decision Document calculate five points (the midpoints of the designated flow regime) on the loading capacity curves. However, it should be understood that the components of the TMDL equation could be illustrated for any point on the entire loading capacity curve. The load duration curve method can be used to display collected pollutant monitoring data and allows for the estimation of load reductions necessary for attainment of the appropriate water quality standards. Using this method, daily loads were developed based upon the flow in the waterbody. Loading capacities were determined for the segment for multiple flow regimes. This allows the TMDL to be represented by an allowable daily load across all flow conditions. Although there are numeric loads for each flow regime, the LDC is what is being approved for this TMDL.

Critical Conditions - Section 2.3.2.2 of the TMDL states that the critical condition for phosphorus in the lakes is primarily during the growing season. The critical condition for fecal coliform is the recreational period from May through October when most primary contact recreation occurs (Section 2.3.1.2 of the TMDL). The critical conditions were taken into account because the data were collected at these critical times, as well as times with different runoff characteristics and flow regimes.

EPA finds IEPA's approach for calculating the loading capacity to be reasonable and consistent with EPA guidance. EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this third element.

4. Load Allocations (LAs)

EPA regulations require that a TMDL include LAs, which identify the portion of the loading capacity attributed to existing and future nonpoint sources and to natural background. Load allocations may range from reasonably accurate estimates to gross allotments (40 C.F.R. §130.2(g)). Where possible, load allocations should be described separately for natural background and nonpoint sources.

Comment:

The Load Allocations for phosphorus and fecal coliform are in Tables 3-19 at the end of this Decision Document. IEPA did identify the internal load portion of the LA for phosphorus. IEPA did not further quantify the LA for bacteria.

EPA finds IEPA's approach for calculating the LA to be reasonable and consistent with EPA guidance. EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this fourth element.

5. Wasteload Allocations (WLAs)

EPA regulations require that a TMDL include WLAs, which identify the portion of the loading

capacity allocated to individual existing and future point source(s) (40 C.F.R. §130.2(h), 40 C.F.R. §130.2(i)). In some cases, WLAs may cover more than one discharger, e.g., if the source is contained within a general permit.

The individual WLAs may take the form of uniform percentage reductions or individual mass based limitations for dischargers where it can be shown that this solution meets WQSs and does not result in localized impairments. These individual WLAs may be adjusted during the NPDES permitting process. If the WLAs are adjusted, the individual effluent limits for each permit issued to a discharger on the impaired water must be consistent with the assumptions and requirements of the adjusted WLAs in the TMDL. If the WLAs are not adjusted, effluent limits contained in the permit must be consistent with the individual WLAs specified in the TMDL. If a draft permit provides for a higher load for a discharger than the corresponding individual WLA in the TMDL, the State/Tribe must demonstrate that the total WLA in the TMDL will be achieved through reductions in the remaining individual WLAs and that localized impairments will not result. All permitees should be notified of any deviations from the initial individual WLAs contained in the TMDL. EPA does not require the establishment of a new TMDL to reflect these revised allocations as long as the total WLA, as expressed in the TMDL, remains the same or decreases, and there is no reallocation between the total WLA and the total LA.

Comment:

WLA for Phosphorus for Individually Permitted NPDES sources: IEPA determined loads for phosphorus for the two dischargers in the Grassy Lake watershed (Table 20 of this Decision Document).

To typically determine WLAs, IEPA reviews discharge data for flow and effluent concentrations, as well as permitted limits for each facility. These facilities are very small, and very limited data exists, as the permits do not contain effluent limits, and require monitoring only. IEPA reviewed similar facility data and applied an estimated concentration value for the facilities (Section 2.3.2.4 of the TMDL). For flows, the design average flow (DAF) for the facility was used.

NPDES			Estimated Total		
Permit			Phosphorus	DAF	WLA-DAF*
Number	Permit Name	Subwatershed	Concentration (mg/L)	(MGD)	(lbs/day)
IL0024716	North Barrington Elementary School STP	Grassy Lake	7.0*	0.005	0.292
IL0027286	Mount Saint Joseph Home-STP	Grassy Lake	5.0*	0.0125	0.521

Table 20: WLA summary for phosphorus for the Upper Fox River-Flint Creek TMDL

* Estimated based upon similar facilities

WLA for Phosphorus for MS4s: The overall WLAs for MS4 stormwater runoff are in Tables 21-30 of this Decision Document. The WLAs are based upon the total area within a municipality's boundaries that lie within the subwatershed of concern. The runoff load of phosphorus from the SLAM model was then multiplied by the MS4 proportion, and the resulting load assigned to the MS4 discharger. IEPA explained that this was done for each lake and discharger, so that the needed reductions will vary depending upon the lake.

WLA for Fecal Coliform for Lakes: IEPA did not identify any individually permitted point sources within the three lakes impaired for fecal coliform. The only point sources identified by IEPA are

MS4s (Section 2.3.3.4 of the TMDL). As with phosphorus, the MS4 allocations were based upon the percentage of the subwatershed area covered by a MS4 permit. The MS4 WLA information for Lake Barrington, Honey Lake, and Tower Lake are in Tables 32-34 at the end of this Decision Document.

WLA for Fecal Coliform Individually Permitted NPDES sources for the Fox River: IEPA assigned WLAs to 10 facilities in the Fox River DT-22 subwatershed. The WLAs are based upon two flow conditions; IEPA used the design average flow (DAF) of the facilities for the lower streamflow regimes (50%-100%) and the design maximum flow (DMF) of the facilities for the high streamflow regime (0%-50%). The appropriate flow was multiplied by the WQS of 200 counts/100 mL geometric mean for the facilities noted in Table 35 of this Decision Document (Section 2.3.1.4 and Table 2-4 of the TMDL). IEPA noted that one facility, IAWC-Terra Cotta, has received a disinfection exemption, and is not required to disinfect their effluent at the discharge point. Instead, they are required to meet the WLA at the downstream point contained in their NPDES permit (Section 2.3.1.4 of the TMDL)

WLA for Fecal Coliform MS4 NPDES sources for the Fox River: IEPA identified 31 MS4 discharges in the Fox River DT-22 subwatershed. As with phosphorus, the MS4 allocations were based upon the percentage of the subwatershed area covered by a MS4 permit. WLAs were calculated for the upper 50% of watershed flows, multiplied by the geometric mean portion of the WQS of 200 counts/100 mL. Table 36 at the end of this Decision Document contains a summary of the WLAs for each MS4 discharger.

EPA finds IEPA's approach for calculating the WLA to be reasonable and consistent with EPA guidance. EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this fifth element.

6. Margin of Safety (MOS)

The statute and regulations require that a TMDL include a margin of safety (MOS) to account for any lack of knowledge concerning the relationship between load and wasteload allocations and water quality (CWA 303(d)(1)(C), 40 C.F.R. 130.7(c)(1)). EPA's 1991 TMDL Guidance explains that the MOS may be implicit, i.e., incorporated into the TMDL through conservative assumptions in the analysis, or explicit, i.e., expressed in the TMDL as loadings set aside for the MOS. If the MOS is implicit, the conservative assumptions in the analysis that account for the MOS must be described. If the MOS is explicit, the loading set aside for the MOS must be identified.

Comment:

<u>Phosphorus</u>: IEPA determined that the MOS for phosphorus for the lakes are both implicit and explicit (Tables 3-15 of this Decision Document and Section 2.3.2.3 of the TMDL). An explicit MOS of 10% was used because of the lack of some site-specific data and uncertainty in the data due to flow, bathymetry, temperature variation, and well as uncertainty in chemical data. IEPA also noted that the SLAM modeling is implicitly conservative in using the default coefficients and conservative calculations, which are developed in that manner to account to be inherently

conservative. Default model values, such as dispersion rates, are based on scientific data accumulated from literature and represent a broad-reaching survey of lakes.

<u>Fecal coliform (river and lakes)</u>: The bacteria TMDLs incorporate an implicit MOS of 10% of the total loading capacity (Tables 16-19 of this Decision Document and Section 2.3 of the TMDL). IEPA did not use a rate of decay, or die-off rate of pathogen species, in the TMDL calculation. Bacteria have a limited capability of surviving outside their hosts, and normally a rate of decay would be incorporated. IEPA determined that it was more conservative to use the WQS (200/400 counts/100 mL) and not to apply a rate of decay, which could result in a discharge limit greater than the WQS.

As stated in *EPA's Protocol for Developing Pathogen TMDLs* (EPA 841-R-00-002), many different factors affect the survival of pathogens, including the physical condition of the water. These factors include, but are not limited to sunlight, temperature, salinity, and nutrient deficiencies. These factors vary depending on the environmental condition/circumstances of the water, and therefore it would be difficult to assert that the rate of decay caused by any given combination of these environmental variables was sufficient to meet the WQS of 200 cfu/100 mL. Thus, it is more conservative to apply the State's WQS as the MOS, because this standard must be met at all times under all environmental conditions.

EPA finds IEPA's approach for calculating the MOS to be reasonable and consistent with EPA guidance. EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this sixth element.

7. Seasonal Variation

The statute and regulations require that a TMDL be established with consideration of seasonal variations. The TMDL must describe the method chosen for including seasonal variations. (CWA \$303(d)(1)(C), 40 C.F.R. \$130.7(c)(1)).

Comment:

Section 2.3 of the TMDL states that for phosphorus, seasonal variation was included because the calculations were performed on a seasonal basis using over 16 years of data from 2000-2015. Both seasons and critical conditions are considered because the data calculations are performed on an average annual basis using all time periods, then the values were recalculated to a daily basis.

Section 2.3 of the TMDL states that for the fecal coliform TMDLs, IEPA considered seasonal variation and critical conditions because the standards were met under all flow conditions, and considered both stream and overland flows. Further, the recreational use standards were developed to meet seasonal standards (May through October) when there is contact with the water. There is not just one critical condition, and the spreadsheet method takes that into account and standards must be met under all flow scenarios. For the Fox River, the LDC method inherently accounts for seasonal variation by utilizing streamflows over a wide range. The LDC graphs can be used to determine under which conditions exceedances are occurring, and any seasonal component (i.e., spring melt).

Bacterial loads vary by season, typically reaching higher values in the dry summer months when low flows and warm water contribute to increased bacteria abundance, and reaching relatively lower values in colder months when bacterial growth rates attenuate. Bacterial WQS need to be met between May 1st to October 31st, regardless of the flow condition. The development of the LDC utilized flow measurements from local flow gages. These flow measurements were collected over a variety of flow conditions observed during the recreation season. The LDC developed from these flow records represents a range of flow conditions within the impaired watersheds and thereby accounted for seasonal variability over the recreation season.

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this seventh element.

8. Reasonable Assurances

When a TMDL is developed for waters impaired by point sources only, the issuance of a National Pollutant Discharge Elimination System (NPDES) permit(s) provides the reasonable assurance that the wasteload allocations contained in the TMDL will be achieved. This is because 40 C.F.R. 122.44(d)(1)(vii)(B) requires that effluent limits in permits be consistent with "the assumptions and requirements of any available wasteload allocation" in an approved TMDL.

When a TMDL is developed for waters impaired by both point and nonpoint sources, and the WLA is based on an assumption that nonpoint source load reductions will occur, EPA's 1991 TMDL Guidance states that the TMDL should provide reasonable assurances that nonpoint source control measures will achieve expected load reductions in order for the TMDL to be approvable. This information is necessary for EPA to determine that the TMDL, including the load and wasteload allocations, has been established at a level necessary to implement water quality standards.

EPA's August 1997 TMDL Guidance also directs Regions to work with States to achieve TMDL load allocations in waters impaired only by nonpoint sources. However, EPA cannot disapprove a TMDL for nonpoint source-only impaired waters, which do not have a demonstration of reasonable assurance that LAs will be achieved, because such a showing is not required by current regulations.

Comment:

Discussion regarding reasonable assurance that the reductions can occur are found in Section 3 of the TMDL. IEPA noted that there are several watershed groups interested in some or all of the TMDL watershed, and several of these groups have developed watershed plans to implement actions and activities to address the impairments in the waterbodies. Figure 3-1 of the TMDL identifies several of the watershed plans. Section 3.1 of the TMDL contains information and links regarding these plans, which are summarized below:

• 9 Lakes Watershed-Based Plan developed by the Chicago Metropolitan Agency for Planning (CMAP) developed in 2014. This plan outlines specific actions and activities to reduce pollutants to 9 of the 13 lakes addressed in this TMDL project. The Plan identifies several stakeholders involved in the implementation of the Plan, with the goal of restoring water quality of the lakes. This work is also in conjunction with the Fox River Ecosystem Partnership.

- *Boone-Dutch Creek Watershed Plan* addresses water quality issues in two tributaries to the Fox River, just upstream of the impaired segment. This plan addresses various BMPs and actions to reduce stormwater runoff, reduce pollutant loads, and actions to reduce impervious surfaces in the subwatershed.
- *Silver Creek and Sleepy Hollow Creek Watershed Action Plan* was developed by CMAP in conjunction with several local stakeholder groups to provide input on locations and actions to address water quality and quantity in the Silver Creek and Sleepy Hollow subwatershed of the Fox River. Stormwater controls and BMPs are prominently featured in this plan.

Lake County, through its Health Department's Ecological Services Division, will provide updates on the progress of watershed-based planning and specific projects, as well as monitoring results. Lake County also has an active Stormwater Management Commission, which develops Watershed Management Plans to address water quality impacts and controls throughout the county. More information can be found at https://www.lakecountyil.gov//2437/Watershed-Management-Plans. The Fox Waterway Agency also develops implementation actions and activities to protect the Fox River. More information can be found at https://www.foxwaterway.com/.

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this eighth element.

9. Monitoring Plan to Track TMDL Effectiveness

EPA's 1991 document, *Guidance for Water Quality-Based Decisions: The TMDL Process* (EPA 440/4-91-001), recommends a monitoring plan to track the effectiveness of a TMDL, particularly when a TMDL involves both point and nonpoint sources, and the WLA is based on an assumption that nonpoint source load reductions will occur. Such a TMDL should provide assurances that nonpoint source controls will achieve expected load reductions and, such TMDL should include a monitoring plan that describes the additional data to be collected to determine if the load reductions provided for in the TMDL are occurring and leading to attainment of water quality standards.

Comment:

Monitoring will be an essential part of tracking TMDL effectiveness as IEPA plans to use an adaptive management (Section 3.2 of the TMDL) or phased approach in implementation, and will need to monitor key response indicators to track effectiveness of nonpoint source BMPs. Section 3.12 of the TMDL states that monitoring of water quality will also include the Lake County Health Department (LCHD) Lakes Management Unit and the Volunteer Lake Monitoring Program (VLMP). The LCHD samples every five years and analyzes for total phosphorus and dissolved oxygen; VLMP is a group of local stakeholders that collects water quality data on a three-year cycle to determine changes and trends in phosphorus concentrations. The involvement of these two groups will assist IEPA with monitoring the effectiveness of BMPs.

Monitoring will aso be done by other groups discussed in Section 8 of this Decision Document. The Lake County Stormwater Management Commission and Fox Waterway Agency also perform routine monitoring in the TMDL watershed. Most of the existing watershed plans for the Upper Fox River-Flint Creek watershed discuss monitoring efforts to track BMP installation and effectiveness.

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this ninth element.

10. Implementation

EPA policy encourages Regions to work in partnership with States/Tribes to achieve nonpoint source load allocations established for 303(d)-listed waters impaired by nonpoint sources. Regions may assist States/Tribes in developing implementation plans that include reasonable assurances that nonpoint source LAs established in TMDLs for waters impaired solely or primarily by nonpoint sources will in fact be achieved. In addition, EPA policy recognizes that other relevant watershed management processes may be used in the TMDL process. EPA is not required to and does not approve TMDL implementation plans.

Comment:

Section 3.1 of the TMDL includes many aspects of implementation that would improve the watershed. These include actions such as identifying causes and sources of pollution, estimating reductions, describing the NPS management measures, estimating the technical assistance and costs, including public information, developing a schedule, developing the interim and measurable milestones, identifying indicators to determining the achievement of reductions, and developing a monitoring component for the project.

The siltation and sediment controls that are discussed at length as part of the LRSs are also applicable to effective phosphorus reduction. Section 3.3 of the TMDL has an exhaustive list of actions possible, including filter strips, field borders, conservation tillage, contour farming, conservation crop rotation, conservation cover, critical area planting, urban reforestation/riparian buffer restoration, wetland buffers, stormwater retention basins, vegetated swales, grassed waterways, pervious and porous pavement, stormwater reduction, bio-retention cells (rain gardens), and streambank stabilization. This section of the TMDL also provides maps of each subwatershed along with possible locations for BMP installation.

Section 3.5 of the TMDL recognizes the internal and external sources of phosphorus in lakes in relation to BMPs, and reiterates that both point and nonpoint sources should be addressed. Much of the wetland buffers, retention basins, bio-retention cells, and filter strips, etc., are the same as for the reduction of siltation and sediment from external sources. The internal loading may be addressed by more aeration, addition of aluminum to inactivate phosphorus, and/or dredging. Septic system management or connecting properties formerly on septic systems to a municipal system, or agricultural nutrient management efforts may decrease the phosphorus inputs that can enter lake environments.

Sections 3.6 and 3.7 of the TMDL contains BMP recommendations for fecal coliform reduction. Many of the exceedances occur during storm events, when pollutants are washed into the lakes or river. Municipalities with MS4s will review their stormwater plans, but most of the focus for

reducing bacteria inputs is likely to be toward eliminating illicit discharges caused when stormwater interacts with a sewage disposal system. The priority would be to locate the illicit sewage discharges to the storm drain system, and repair or eliminate those discharges. Much of the BMPs to reduce bacteria inputs are the same practices discussed above for phosphorus and sediment, for example, installation of wetland buffers, retention basins, bio-retention cells, and filter strips, etc.

Section 3.8 of the TMDL includes BMP cost estimates to control nonpoint sources in great detail, including the pricing of filter strips/ riparian buffer, nutrient management plans, wetland functions, bank stabilization/erosion controls, conservation cover, vegetated swales, green roofs, bio-retention cells, and septic maintenance.

Education and funding mechanisms are discussed in Section 3.9 and 3.10 of the TMDL. The funding mechanisms include Illinois Section 319(h) of the Clean Water Act funding, whereby Illinois EPA receives federal funds, contributing to as much as 60% of the total cost. There are also wetland program development grants, National Park Service financial assistance, the Conservation Reserve Program, the Conservation Stewardship Program, the Agricultural Conservation Easement Program and the Environmental Quality Incentive Program. Many of these programs provide cost-share funds to encourage implementation.

Illinois has provided timeline milestones in Section 3.12 of the TMDL for acquiring funds, implementing short and long-term projects, water quality monitoring efforts, holding stakeholder meetings, and providing education and outreach events/activities. IEPA provides local contact information for many of these entities in Section 3.10.4 of the TMDL.

EPA reviews, but does not approve, implementation plans. EPA finds that the tenth element has been adequately addressed.

11. Public Participation

EPA policy is that there should be full and meaningful public participation in the TMDL development process. The TMDL regulations require that each State/Tribe must subject calculations to establish TMDLs to public review consistent with its own continuing planning process (40 C.F.R. §130.7(c)(1)(ii)). In guidance, EPA has explained that final TMDLs submitted to EPA for review and approval should describe the State's/Tribe's public participation process, including a summary of significant comments and the State's/Tribe's responses to those comments. When EPA establishes a TMDL, EPA regulations require EPA to publish a notice seeking public comment (40 C.F.R. §130.7(d)(2)). Provision of inadequate public participation may be a basis for disapproving a TMDL. If EPA determines that a State/Tribe has not provided adequate public participation, EPA may defer its approval action until adequate public participation has been provided for, either by the State/Tribe or by EPA.

Comment:

Public involvement in the Upper Fox River-Flint Creek TMDL was held in conjunction with the Upper Fox River-Chain O' Lakes TMDL project. IEPA held a meeting for the Stage 1 TMDL Report at the University Center of Lake County, in Grayslake, Illinois on August 25, 2009. This

meeting was an opportunity for the public to be informed of the proposed project, and provide information to the State.

The TMDL was public noticed from May 14, 2019 to June 14, 2019. Copies of the draft TMDL were made available upon request, at the Illinois EPA and on IEPA's Internet web site at https://www2.illinois.gov/epa/public-notices/Pages/general-notices.aspx . IEPA held a public meeting on May 14, 2019, at the Fox Waterways Agency in the Village of Fox Lake, Illinois. The draft TMDL report was available for review in hard copy at the Fox Waterway Agency, Lake County Stormwater Commission, and the Grayslake Area Public Library. An additional public meeting was held on September 11, 2019, to address concerns from the public and provide additional information on the TMDL. Comments were received from the Sierra Club. A summary of the issues raised is set forth below.

The Sierra Club of Illinois raised several issues, most prominently regarding how the WLAs were calculated and will be used in permits. The Sierra Club of Illinois requested that the smaller facilities that have relatively high phosphorus effluent concentrations be required to substantially reduce phosphorus loads in their discharge. Even though the volume of discharges from smaller facilities can be small overall amounts of phosphorus, given the relatively small lakes, the smaller facilities could have an impact on water quality in those lake environments. IEPA explained that smaller facilities have historically not monitored for phosphorus, so the current modeled concentrations are estimates, and likely estimated at the higher end of the range of discharge estimates for these types of facilities. IEPA stated that the smaller or minor discharges. This includes Phosphorus Discharge Optimization Plans as well as including recommended phosphorus effluent monitoring requirements during the next NPDES permit cycle. The remaining comments from the Sierra Club of Illinois dealt with either implementation actions or corrections needed in the TMDL. IEPA revised the TMDL as appropriate.

During the review of the Response to Comments, IEPA determined that the allocations in the TMDL summaries (Tables 2-20 to 2-32 of the TMDL; Tables 3-15 of this Decision Document) needed to be revised slightly due to rounding errors (email from Abel Haile, IEPA, dated 5/21/2020). Tables 3-15 of this Decision Document contain the approved allocations.

EPA reviewed the comments and the IEPA responses, as well as changes made to the TMDL as a result of the comments. EPA determined that IEPA adequately responded to the comments. EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this eleventh element.

12. Submittal Letter

A submittal letter should be included with the TMDL submittal, and should specify whether the TMDL is being submitted for a technical review or final review and approval. Each final TMDL submitted to EPA should be accompanied by a submittal letter that explicitly states that the submittal is a final TMDL submitted under Section 303(d) of the Clean Water Act for EPA review and approval. This clearly establishes the State's/Tribe's intent to submit, and EPA's duty to review, the TMDL under the statute. The submittal letter, whether for technical review or final

review and approval, should contain such identifying information as the name and location of the waterbody, and the pollutant(s) of concern.

Comment:

EPA received the Upper Fox River-Flint Creek Watershed TMDL on May 8, 2020, accompanied by a submittal letter dated May 7, 2020. In the submittal letter, IEPA stated "Illinois is submitting the Upper Fox River-Flint Creek Watershed TMDL...for USEPA's final approval." The letter states that the Upper Fox River-Flint Creek Watershed is impaired on Illinois' 2016 303(d) list. The waterbodies are impaired for Primary Contact Use due to fecal coliform and Aesthetic Quality Use due to phosphorus.

EPA finds that the TMDL document submitted by IEPA satisfies all requirements concerning this twelfth element.

13. Conclusion

After a full and complete review, EPA finds that the 13 phosphorus TMDLs for lakes, three fecal coliform TMDLs for lakes, and one fecal coliform TMDL for a river, all in the Upper Fox River-Flint Creek Watershed, for a total of 17 TMDLs, satisfy all the elements of a TMDL (Table 1 of this Decision Document).

The EPA's approval of these TMDLs extends to the waterbodies which are identified in Table 1 of this Decision Document with the exception of any portions of the waterbodies that are within Indian Country, as defined in 18 U.S.C. Section 1151. The EPA is taking no action to approve or disapprove TMDLs for those waters at this time. The EPA, or eligible Indian Tribes, as appropriate, will retain responsibilities under the CWA Section 303(d) for those waters.

TMDL Summaries for Phosphorus

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
RTZT	Internal	0.466	-	0.419	0.047	1.503	69%
	External	0.190	0.170	0.001	0.019	0.190	0%
	Total	0.656	0.170	0.420	0.066	1.694	61%

Table 3: Total Phosphorus TMDL Summary for Lake Barrington

Table 4: Total Phosphorus TMDL Summary for Drummond Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
UTI	Internal	0.026	-	0.023	0.003	0.183	86%
	External	0.098	-	0.088	0.010	0.151	35%
	Total	0.124	-	0.111	0.13	0.334	63%

Table 5: Total Phosphorus TMDL Summary for Echo Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
RTZR	Internal	0.070	-	0.063	0.007	0.201	65%
	External	0.511	0.414	0.046	0.051	1.704	70%
	Total	0.581	0.414	0.109	0.058	1.905	70%

Table 6: Total Phosphorus TMDL Summary for Grassy Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
VTI	Internal	0.198	-	0.178	0.020	0.824	76%
	External	1.299	1.107	0.062	0.130	5.904	78%
	Total	1.497	1.107	0.240	0.150	6.728	78%

Table 7: Total Phosphorus TMDL Summary for Honey Lake

Segment	Loading Source	LC (Ibs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.291	-	0.262	0.029	3.236	91%
RTZU	External	0.363	0.268	0.059	0.036	1.036	65%
	Total	0.654	0.268	0.321	0.065	4.272	85%

Table 8: Total Phosphorus TMDL Summary for Island Lake

Segment	Loading Source	LC (Ibs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.345	-	0.311	0.035	1.150	70%
RTZI	External	1.951	0.671	1.085	0.195	7.806	75%
	Total	2.296	0.671	1.395	0.230	8.956	74%

Table 9: Total Phosphorus TMDL Summary for Lake Fairview

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.105	-	0.094	0.011	0.251	58%
STK	External	0.021	-	0.019	0.002	0.024	10%
	Total	0.126	-	0.113	0.013	0.275	54%

Segment	Loading Source	LC (Ibs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
STO	Internal	0.143	-	0.129	0.014	0.763	81%
	External	0.271	0.098	0.146	0.027	1.041	74%
	Total	0.414	0.098	0.275	0.041	1.804	77%

Table 10: Total Phosphorus TMDL Summary for Lake Napa Suwe

 Table 11: Total Phosphorus TMDL Summary for Lake Louise

Segment	Loading Source	LC (Ibs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.126	-	0.113	0.013	0.699	82%
VTZJ	External	0.266	0.188	0.051	0.027	1.330	80%
	Total	0.392	0.188	0.164	0.040	2.029	81%

Table 12: Total Phosphorus TMDL Summary for Slocum Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.673	-	0.606	0.067	2.691	75%
RTP	External	1.983	0.738	1.046	0.199	6.609	70%
	Total	2.656	0.738	1.652	0.266	9.300	71%

Table 13: Total Phosphorus TMDL Summa	ry for Timber Lake (South)
---------------------------------------	----------------------------

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.149	-	0.134	0.015	0.550	73%
RTZQ	External	0.399	0.144	0.215	0.040	1.288	69%
	Total	0.548	0.144	0.349	0.055	1.838	70%

Table 14: Total Phosphorus TMDL Summary for Tower Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.201	-	0.181	0.020	0.478	58%
RTZF	External	0.920	0.403	0.425	0.092	2.045	55%
	Total	1.121	0.403	0.606	0.112	2.523	56%

Table 15: Total Phosphorus TMDL Summary for Woodland (Highland) Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.019	-	0.017	0.002	0.038	50%
STV	External	0.019	0.003	0.014	0.002	0.056	65%
	Total	0.038	0.003	0.031	0.004	0.093	59%

TMDL Summaries for Fecal Coliform (Lakes)

Location	LC	LA	WLA	MOS	Current Loadı	Percent Reduction
	(mil col/day)	Needed (%)				
RTZT	1,986	15	1,772	199	5,582	64%

Table 16: Fecal coliform TMDL Summary for Lake Barrington

Table 17: Fecal coliform TMDL Summary for Honey Lake

Location	LC	LA	WLA	MOS	Current Loadı	Percent Reduction
	(mil col/day)	Needed (%)				
RTZU	8,315	1,351	6,132	831	52,299	84%

Table 18: Fecal coliform TMDL Summary for Tower Lake

Location	LC	LA	WLA	MOS	Current Load1	Percent Reduction
	(mil col/day)	Needed (%)				
RTZF	42,548	28,348	9,945	4,255	121,261	65%

TMDL Summary for Fecal Coliform (River)

	Flow				MOS		Percent
	Exceedance	LC	LA	WLA	(mil	Current Load1	Reduction
Zone	Range (%)	(mil col/day)	(mil col/day)	(mil col/day)	col/day)	(mil col/day)	Needed (%)
High	0 - 10	15,499,866	11,082,138	2,867,741	1,549,987	121,377,401	87%
	10 - 20	8,844,162	6,248,155	1,711,590	884,416	no data	no data
Moist	20 - 30	6,508,054	4,551,459	1,305,789	650,805	18,392,022	65%
	30 - 40	4,789,031	3,302,947	1,007,181	478,903	812,008	0%
Mid-	40 - 50	3,598,938	2,554,932	684,112	359,894	no data	no data
Range	50 - 60	2,928,960	2,563,019	73,045	292,896	111,400,261	97%
	60 - 70	2,404,438	2,090,948	73,045	240,444	487,058	0%
Dry	70 - 80	1,888,731	1,626,812	73,045	188,873	586,664	0%
	80 - 90	1,439,140	1,222,181	73,045	143,914	125,854	0%
Low Flow	90 - 100	738,308	591,432	73,045	73,831	761,347	3%

Table 19: Fecal coliform TMDL Summary for Fox River Segment DT-22

WLAs for Phosphorus for MS4s (Lakes)

Table 21: Allocation Summary for MS4s in the Lake Barrington Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400216	Lake Barrington	278	99.7%	0.169
ILR400228	North Barrington	0.03	0.01%	0.00002
ILR400493	IDOT	0.69	0.25%	0.0004
ILR400517	Lake County	0.17	0.06%	0.0001
Total MS4		279	100%	0.169

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400370	Lake Zurich	1,116	98.9%	0.405
ILR400493	IDOT	0.03	0.003%	0.00001
ILR400517	Lake County	12	1.1%	0.004
Total MS4		1,128	100%	0.41

Table 22: Allocation Summary for MS4s in the Echo Lake Watershed

Table 23: Allocation Summary for MS4s in the Grassy Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	861	15%	0.043
ILR400216	Lake Barrington	262	5%	0.013
ILR400370	Lake Zurich	2,040	35%	0.103
ILR400228	North Barrington	2,602	45%	0.131
ILR400517	Lake County	40	0.7%	0.002
ILR400493	IDOT	11	0.2%	0.001
Total MS4		5,817	100%	0.294

Table 24: Allocation Summary for MS4s in the Honey Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400370	Lake Zurich	265	27%	0.073
ILR400228	North Barrington	690	71%	0.189
ILR400493	IDOT	10	1.1%	0.003
Total MS4		966	100%	0.262

Table 25: Allocation Summary for MS4s in the Island Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400632	Island Lake	623	27%	0.18
ILR400371	Lakemoor	0.5	0%	0.0001
ILR400657	Volo	354	15%	0.10
ILR400501	Wauconda	1,288	56%	0.37
ILR400493	IDOT	15	0.7%	0.004
ILR400517	Lake County	23	1.0%	0.007
ILR400264	McHenry County Div. of Trans.	0.08	0.003%	0.00002
Total MS4		2,304	100%	0.649

Table 26:	Allocation	Summary	for	MS4s	in the	e Lake	Napa	Suwe	Watershed
-----------	------------	---------	-----	------	--------	--------	------	------	-----------

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400501	Wauconda	452	98.8%	0.096
ILR400517	Lake County	5.4	1.2%	0.001
Total MS4		457	100%	0.097

Table 27: Allocation Summary for MS4s in the Lake Louise Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400285	Barrington	978	77%	0.143

Upper Fox River-Flint Creek Watershed, IL Final Decision Document

ILR400323	Deer Park	157	12%	0.023
ILR400359	Inverness	125	10%	0.018
ILR400517	Lake County	4.0	0.3%	0.001
ILR400485	Cook County Hwy Dept.	0.8	0.1%	0.000
ILR400493	IDOT	11	0.8%	0.002
Total MS4		1,274	100%	0.186

Table 28: Allocation Summary for MS4s in the Slocum Lake Watershe

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	0.2	0.01%	0.00006
ILR400632	Island Lake	293	12.83%	0.093
ILR400519	Port Barrington	24	1.06%	0.008
ILR400501	Wauconda	1,933	84.65%	0.616
ILR400517	Lake County	7.3	0.32%	0.002
ILR400264	McHenry County Div. of Trans.	0.05	0.00%	0.00002
ILR400493	IDOT	26	1.13%	0.008
Total MS4	2,284	100%	0.728	

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	422	84%	0.12
ILR400228	North Barrington	72	14%	0.020
ILR400517	Lake County	3.3	0.7%	0.0009
ILR400493	IDOT	8.1	1.6%	0.0023
Total MS4		505	100%	0.141

Table 30: Allocation Summary	y for MS4s in the Tower Lake Watershed
------------------------------	--

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	422	27%	0.109
ILR400216	Lake Barrington	543	35%	0.140
ILR400228	North Barrington	114	7%	0.029
ILR400249	Tower Lakes	483	31%	0.124
ILR400501	Wauconda	3.3	0.2%	0.0008
Total MS4		1,565	100%	0.403

Table 31: Allocation Summa	y for MS4s in the Woodland	(Highland) Lake Watershed
----------------------------	----------------------------	---------------------------

NPDES ID Source		Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)	
ILR400632	Island Lake	10.9	100%	0.0032	
Total MS4		10.9	100%	0.0032	

WLAs for Fecal Coliform for MS4s (Lakes)

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400216	Lake Barrington	278	99.7%	1,764
ILR400228	North Barrington	0.03	0.01%	0.19
ILR400493	IDOT	0.69	0.25%	4.38
ILR400517	Lake County	0.17	0.06%	1.08
Total MS4		279	100%	0.169

Table 32: Fecal Coliform Allocation Summary for MS4s in the Lake Barrington Watershed

Table 33: Fecal Coliform Allocation Summary for MS4s in the Honey Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400370	Lake Zurich	265	27%	1,667
ILR400228	North Barrington	690	72%	4,340
ILR400493	IDOT	10	1.0%	63
Total MS4		965	100%	6,069

Table 34: Allocation Summary for MS4s in the Tower Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400209	Hawthorn Woods	422	27%	2,681
ILR400216	Lake Barrington	543	35%	3,449
ILR400228	North Barrington	114	7.3%	725
ILR400249	Tower Lakes	483	31%	3,069
ILR400501	Wauconda	3.3	0.2%	21
Total MS4		1,565	100%	9,945

WLAs for Fecal coliform (River)

Table 35: WLAs for Fecal Coliform from Permitted Discharges in the Fox River DT-22 Subwatershed

NPDES Permit Number	Facility	DAF (MGD)	WLA- DAF (mil. col/Day)	DMF (MGD)	WLA-DMF (mil. col/Day)
IL0001716	Rohm & Haas Chemical, LLC	2.463	n/a¹	n/a	n/a¹
IL0020109	Wauconda Village WWTF	1.9/2.42	18,172	5.693/7.93 ²	60,043
IL0027286	Mount Saint Joseph Home STP	0.0125	95	0.025	189
IL0031933	Northern Moraine WW Rec Dist WWTP	2	15,143	5	37,858
IL0038202	IAWC-Terra Cotta STP ¹	0.1/1.02	7,572	0.25/3.0 ²	22,715
IL0053457	City of Crystal Lake WWTP #3	1.7	12,872	5	37,858
IL0065480	Snap-On Tools Co	0.009	68	n/a	68
IL0070874	Port Barrington Shores STP	0.012	91	0.0504	382
IL0072851	Mathews Company	0.0039	n/a ¹	n/a	n/a ¹

IL0074969	Johnsburg STP, Village Of	0.5	3,786	1.62	12,266
IL0075973	Oak Creek Townhomes WWTF	0.0137	104	0.0528	400
IL0077836	Wonder Lake Water Reclamation Facility	1.0/2.03	15,143	3.0/6.0 ³	45,430
IL0079553	Huntsman International LLC	0.3	n/a¹	n/a	n/a¹

¹ Facility without reasonable potential to discharge fecal coliform

² Existing plant/new plant – WLAs calculated with new/proposed flows

³ Phase 1/Phase 2 of plant expansion – WLAs calculated with Phase 2 flows

			11iah	Maint		Mid Pango		Der		Low		
			High		IVIOIST		wiiu-Kalige		, Dry		FIOW	
		Area in				20						90 -
	Municipality	Basin (acros)	0 - 10%	10 - 20%	20 - 20%	30 -	40 - 50%	50- 60%	60- 70%	70- 80%	80-	100
	Antioch	2 769	1/2 79/	<u>10 - 20%</u> 81.066	50.052	40%	22 1/0	00%	70%	80%	90%	70
ILR400281	Cany	3,708	13 //6	7 5 8 1	5 5 2 2	42,834	3 100	-	-	-	-	-
ILR400510	Crystal Lake	2 892	110 340	62 210	45 317	32 886	25 438	_	_	_	_	_
ILR400175	Eox Lako	6 175	225 617	122 842	96 760	70 224	54 220	_			_	_
ILR400333	Gravelako	0,173	19 0/9	10 692	30,703	5 647	1 269	-	-	-	-	-
ILR400202	Haiposvillo	4,57	10,540	24.052	17 520	12 71/	4,500	_			_	_
111400205	Hawthorn	1,110	42,033	24,032	17,520	12,714	5,055	-	-	-	-	_
ILR400209	Woods	828	31.593	17.812	12.975	9.416	7.284	-	-	-	-	-
ILR400493	IDOT	227	8.668	4.887	3.560	2.583	1.998	-	-	-	-	-
II R400632	Island Lake	2.301	87,803	49.504	36.061	26,169	20.243	-	-	-	-	-
	Lake	2,002	07,000		00,001	20,200	20)210					
ILR400216	Barrington	1,552	59,217	33,387	24,321	17,649	13,652	-	-	-	-	-
ILR400517	Lake County	59	2,245	1,266	922	669	518	-	-	-	-	-
ILR400369	Lake Villa	4,225	161,230	90,902	66,218	48,053	37,171	-	-	-	-	-
ILR400371	Lakemoor	3,352	127,903	72,112	52,530	38,121	29,487	-	-	-	-	-
ILR400276	Lindenhurst	2	91	52	38	27	21	-	-	-	-	-
	McCullom											
ILR400225	Lake	241	9,191	5,182	3,775	2,739	2,119	-	-	-	-	-
ILR400385	McHenry	9,620	367,088	206,965	150,764	109,408	84,630	-	-	-	-	-
	McHenry											
	County Div.											
ILR400264	of Trans.	85	3,258	1,837	1,338	971	751	-	-	-	-	-
ILR400395	Mundelein	466	17,778	10,023	7,301	5,299	4,099	-	-	-	-	-
	North											
ILR400228	Barrington	114	4,353	2,454	1,788	1,297	1,004	-	-	-	-	-
11 0 400 5 1 2	Oakwood	000	20.702	17 244	12 (24	0.100	7 000					
ILK400512	Hills	806	30,763	17,344	12,634	9,169	7,092	-	-	-	-	-
II R/00519	Barrington	825	31 / 85	17 751	12 031	9 38/	7 259	_			_	_
111400515	Bound Lake	025	51,405	17,751	12,331	5,504	7,235	_	-	_	_	_
ILR400439	Beach	2.880	109.874	61.948	45.126	32,747	25.331	-	-	-	-	-
	Round Lake	2,000	100)07 1	01/010	.0,120	02,7 17	20,001					
ILR400241	Heights	390	14,889	8,395	6,115	4,438	3,433	-	-	-	-	-
	Round Lake											
ILR400242	Park	1,431	54,608	30,788	22,428	16,276	12,590	-	-	-	-	-
ILR400243	Round Lake	3,634	138,661	78,177	56,948	41,327	31,968	-	-	-	-	-
ILR400520	Spring Grove	5,650	215,575	121,542	88,537	64,250	49,700	-	-	-	-	-
ILR400249	Tower Lakes	661	25,226	14,223	10,360	7,518	5,816	-	-	-	-	-
ILR400657	Volo	2,584	98,583	55,582	40,488	29,382	22,728	-	-	-	-	-
ILR400501	Wauconda	3,669	140,006	78,936	57,501	41,728	32,278	-	-	-	-	-
ILR400503	Wonder Lake	3,800	145,006	81,755	59,554	43,218	33,430	-	-	-	-	-
ILR400499	Woodstock	5,258	200,642	113,123	82,404	59,800	46,257	-	-	-	-	-

Upper Fox River-Flint Creek Watershed, IL Final Decision Document

FINAL REPORT

Upper Fox River/Flint Creek Watershed TMDL Report

Prepared for Illinois EPA

June 2020

CDM Smith

Executive Summary	xiii
-------------------	------

Section 1 Methodology Development for the Upper Fox River/Flint Creek Watershed

1.1	Total M	aximum [aily Load O	verview	1-1			
1.2	TMDL (Goals and (Objectives fo	or the Upper Fox River/Flint Creek Watershed				
1.3	Existing	g Data Inv	entory		1-5			
	1.3.1	Existing	Water Qual	ity Data	1-6			
1.4	Method	ology Ove	erview		1-10			
	1.4.1	Load-Du	ration Curv	e Overview	1-11			
	1.4.2	SLAM O	verview		1-11			
	1.4.3	LRS Ove	rview for TS	SS in Lakes				
1.5	Method	ology Dev	elopment		1-12			
	1.5.1	Load-Du	d-Duration Curves					
		1.5.1.1	Watershee	d Delineation and Flow Estimation	1-13			
		1.5.1.2	Copper TM	ADL: Fox River Segment DT-22	1-15			
		1.5.1.3	Fecal Colif	form TMDL: Fox River Segment DT-22	1-16			
		1.5.1.4	Chloride T	MDL: Fox River Segment DT-22	1-17			
		1.5.1.5	Sedimenta	ation/Siltation LRS: Fox River Segment DT-22	1-18			
	1.5.2	SLAM D	evelopment	for Lake Impairments Caused by Total Phosphor	us and			
		D0			1-19			
		1.5.2.1	SLAM Dev	elopment for Lake Barrington	1-21			
			1.5.2.1.1	Model Segmentation	1-21			
			1.5.2.1.2	Lake Hydraulics	1-21			
			1.5.2.1.3	Watershed Parameters	1-23			
			1.5.2.1.4	Lake Nutrient Parameters	1-24			
			1.5.2.1.5	Sediment Layer Parameters	1-24			
			1.5.2.1.6	SLAM Confirmatory Analysis	1-24			
		1.5.2.2	SLAM Dev	elopment for Drummond Lake	1-25			
			1.5.2.2.1	Model Segmentation	1-25			
			1.5.2.2.2	Lake Hydraulics	1-25			
			1.5.2.2.3	Watershed Parameters	1-25			
			1.5.2.2.4	Lake Nutrient Parameters	1-27			
			1.5.2.2.5	Sediment Layer Parameters	1-27			
			1.5.2.2.6	SLAM Confirmatory Analysis	1-28			
		1.5.2.3	SLAM Dev	elopment for Echo Lake	1-28			
			1.5.2.3.1	Model Segmentation	1-28			
			1.5.2.3.2	Lake Hydraulics	1-28			
			1.5.2.3.3	Watershed Parameters	1-30			
			1.5.2.3.4	Lake Nutrient Parameters	1-30			
			1.5.2.3.5	Sediment Layer Parameters	1-31			
			1.5.2.3.6	SLAM Confirmatory Analysis	1-31			

1.5.2.4	SLAM Development for Grassy Lake				
	1.5.2.4.1	Model Segmentation	1-31		
	1.5.2.4.2	Lake Hydraulics	1-33		
	1.5.2.4.3	Watershed Parameters	1-33		
	1.5.2.4.4	Lake Nutrient Parameters	1-34		
	1.5.2.4.5	Sediment Layer Parameters	1-34		
	1.5.2.4.6	SLAM Confirmatory Analysis	1-34		
1.5.2.5	SLAM Development for Honey Lake				
	1.5.2.5.1	Model Segmentation	1-35		
	1.5.2.5.2	Lake Hydraulics	1-35		
	1.5.2.5.3	Watershed Parameters	1-35		
	1.5.2.5.4	Lake Nutrient Parameters	1-37		
	1.5.2.5.5	Sediment Layer Parameters	1-37		
	1.5.2.5.6	SLAM Confirmatory Analysis	1-37		
1.5.2.6	SLAM Development for Island Lake				
	1.5.2.6.1	Model Segmentation	1-38		
	1.5.2.6.2	Lake Hydraulics	1-38		
	1.5.2.6.3	Watershed Parameters	1-40		
	1.5.2.6.4	Lake Nutrient Parameters	1-41		
	1.5.2.6.5	Sediment Layer Parameters	1-41		
	1.5.2.6.6	SLAM Confirmatory Analysis	1-41		
1.5.2.7	SLAM Development for Lake Fairview				
	1.5.2.7.1	Model Segmentation	1-42		
	1.5.2.7.2	Lake Hydraulics	1-42		
	1.5.2.7.3	Watershed Parameters	1-42		
	1.5.2.7.4	Lake Nutrient Parameters	1-44		
	1.5.2.7.5	Sediment Layer Parameters	1-44		
	1.5.2.7.6	SLAM Confirmatory Analysis	1-44		
1.5.2.8	SLAM Development for Lake Louise				
	1.5.2.8.1	Model Segmentation	1-45		
	1.5.2.8.2	Lake Hydraulics	1-45		
	1.5.2.8.3	Watershed Parameters	1-45		
	1.5.2.8.4	Lake Nutrient Parameters	1-47		
	1.5.2.8.5	Sediment Layer Parameters	1-47		
	1.5.2.8.6	SLAM Confirmatory Analysis	1-47		
1.5.2.9	SLAM Development for Lake Napa Suwe				
	1.5.2.9.1	Model Segmentation	1-48		
	1.5.2.9.2	Lake Hydraulics	1-48		
	1.5.2.9.3	Watershed Parameters	1-50		
	1.5.2.9.4	Lake Nutrient Parameters	1-51		
	1.5.2.9.5	Sediment Layer Parameters	1-51		
	1.5.2.9.6	SLAM Confirmatory Analysis	1-51		
1.5.2.10	SLAM Development for Slocum Lake				
	1.5.2.10.1	Model Segmentation	1-52		
	1.5.2.10.2	Lake Hydraulics	1-52		
	1.5.2.10.3	Watershed Parameters	1-52		
	1.5.2.10.4	Lake Nutrient Parameters	1-54		

				1.5.2.10.5	Sediment Layer Parameters	1-54	
				1.5.2.10.6	SLAM Confirmatory Analysis	1-54	
			1.5.2.11	SLAM Devel	opment for Timber Lake (South)	1-55	
				1.5.2.11.1	Model Segmentation	1-55	
				1.5.2.11.2	Lake Hydraulics	1-55	
				1.5.2.11.3	Watershed Parameters	1-55	
				1.5.2.11.4	Lake Nutrient Parameters	1-57	
				1.5.2.11.5	Sediment Layer Parameters	1-57	
				1.5.2.11.6	SLAM Confirmatory Analysis	1-57	
			1.5.2.12	SLAM Devel	opment for Tower Lake	1-58	
				1.5.2.12.1	Model Segmentation	1-58	
				1.5.2.12.2	Lake Hydraulics	1-58	
				1.5.2.12.3	Watershed Parameters	1-60	
				1.5.2.12.4	Lake Nutrient Parameters	1-61	
				1.5.2.12.5	Sediment Layer Parameters	1-61	
				1.5.2.12.6	SLAM Confirmatory Analysis	1-61	
			1.5.2.13	SLAM Devel	opment for Woodland (Highland) Lake	1-62	
				1.5.2.13.1	Model Segmentation	1-62	
				1.5.2.13.2	Lake Hydraulics	1-62	
				1.5.2.13.3	Watershed Parameters	1-62	
				1.5.2.13.4	Lake Nutrient Parameters	1-64	
				1.5.2.13.5	Sediment Layer Parameters	1-64	
				1.5.2.13.6	SLAM Confirmatory Analysis	1-64	
		1.5.3	Spreadsh	eet Analyses	for Lake Impairments Caused by Fecal Coliform	11-65	
		1.5.4 Spreadsheet Analyses for Lake Impairments Caused by TSS					
Section	2 Tota	l Maximı	um Dailv I	Loads for th	e Upper Fox River/Flint Creek Watershed		
	2.1	TMDL E	ndnoints fo	or the Unner	Fox River/Flint Creek Watershed	2-1	
	2.2	Pollutan	t Sources a	and Linkages			
	2.3	TMDL A	llocation				
		2 3 1 Fecal Coliform TMDL					
			2.3.1.1	pacity			
			2.3.1.2	Seasonal Va	riation		
			2.3.1.3	Margin of Sa	afety		
			2.3.1.4	Waste Load	Allocation		
			2.3.1.5	Reserve Car	pacity		
			2.3.1.6	Load Alloca	tion and TMDL Summary		
		2.3.4	Total Phosphorus TMDL for Lakes				
			2.3.2.1	Loading Car	pacity		
			2.3.2.2	Seasonal Va	riation	2-10	
			2.3.2.3	Margin of Sa	afety	2-10	
			2.3.2.4	Waste Load	Allocation	2-10	
			2.3.2.5	Reserve Car	pacity	2-14	
			2.3.2.6	Load Alloca	tion and TMDL Summary	2-14	
		2.3.3	Fecal Coli	form TMDL	in Lakes	2-17	
			2.3.3.1	Loading Car	pacity	2-17	
			2.3.3.2	Seasonal Va	riation	2-17	
						······ · ·	
			2.3.3.3	Margin of Sa	afety	2-17	

			2.3.3.4	Waste Load Allocation	2-17
			2.3.3.5	Reserve Capacity	
			2.3.5.6	Load Allocation and TMDL Summary	2-19
2.	4	LRS Allo	ocation		2-19
		2.4.1	Sediment	ation/Siltation LRS: Fox River Segment DT-22	
			2.4.1.1	Target Loading Capacity	
			2.4.1.2	Percent Reduction and LRS Summary for Sedimentation	/Siltation
				in Fox River Segment DT-22	
		2.4.2	LRS for T	SS in Lakes	
Section 3 Ir	nple	ementa	tion Plan f	or the Upper Fox River/Flint Creek Watershed	
3.	1	Implem	entation O	verview	
3.	2	Adaptiv	e Managen	nent	
3.	3	BMP Re	commenda	ations for Reducing Sedimentation/Siltation in Fox River S	Segment
-	-	DT-22			
3.	4	BMP Re	commenda	ations for Reducing TSS in Lakes	
3.	5	BMP Re	commenda	ations for Reducing Total Phosphorus in All Lakes and Inc	reasing
		DO in W	oodland (I	Highland) Lake	
		3.5.1	Point Sou	rces of Phosphorus	
		3.5.2	Nonpoint	Sources of Phosphorus and Oxygen-Demanding Materials	s 3-41
3.	.6	BMP Re	commenda	ations for Reducing Fecal Coliform in Fox River Segment D	T-22.3-47
		3.6.1	NPDES P	ermitted Point Sources of Fecal Coliform	
		3.6.2	Nonpoint	Sources of Fecal Coliform	
3.	.7	BMP Re	commenda	ations for Reducing Fecal Coliform in Lake Barrington, Ho	ney Lake,
		and Tov	ver Lake		
		3.7.1	NPDES P	ermitted Point Sources of Fecal Coliform	
		3.7.2	Nonpoint	Sources of Fecal Coliform	
3.	.8	Cost Est	imates of I	3MPs	
		3.8.1	Filter Stri	ips and Riparian Buffers	
		3.8.2	Nutrient	Management Plan – NRCS	
		3.8.3	Nutrient	Management Plan – IDA and Illinois EPA	
		3.8.4	Wetlands		
		3.8.5	Bank Stal	oilization/Erosion Controls	
		3.8.6	Conserva	tion Cover	
		3.8.7	Vegetated	d Swales	
		3.8.8	Green Ro	ofs	
		3.8.9	Bio-reten	tion Cells	
		3.8.10	Septic Sys	stem Maintenance	
3.	9	Informa	ition and E	ducation	
3.	10	Project	Funding		
		3.10.1	Available	County-Level Programs for Nonpoint Sources	
			3.10.1.1	Watershed Management Board (WMB) Cost-Share Grant	Program
					3-55
		3.10.2	Available	State-Level Programs for Nonpoint Sources	3-55
			3.10.2.1	The Conservation Fund	3-55
			3.10.2.2	Illinois Department of Agriculture and Nutrient Managen	nent Plan
				Project	

	3.10.2.3 St	reambank Stabilization and Restoration Program	3-55
	3.10.2.4 Cl	ean Water Act Section 319 Grants	3-56
3.10.3	Available Fe	deral-Level Programs for Nonpoint Sources	3-57
	3.10.3.1 W	etland Program Development Grants	3-57
	3.10.3.2 Ri	vers, Trails, and Conservation Assistance	3-57
	3.10.3.3 Co	onservation Reserve Program	3-57
	3.10.3.4 Co	onservation Stewardship Program	3-58
	3.10.3.5 Ag	gricultural Conservation Easement Program	3-59
	3.10.3.6 Er	vironmental Quality Incentive Program	3-61
3.10.4	Local Progra	am Contact Information	3-62
3.11 Plannir	g Level Cost E	stimates for Implementation Measures	3-63
3.12 Milesto	nes and Monit	coring	3-64
3.12.1	Interim Mea	surable Milestones and Schedule	3-64
3.12.2	Monitoring	Plan	3-65
3.12.3	Success Crit	eria	3-66

Appendices

Appendix B – Land Use Categories

Appendix C - SSURGO Soil Series

Appendix D – Historical Water Quality Data

Appendix E – Load Duration Curve Calculations

Appendix F – Phosphorus Export Coefficients by Land Use Category

Appendix G – SLAM Model Files

Appendix H – DMR Data – Total Phosphorus in Effluent

Appendix I - Responsiveness Summary

List of Tables

1-1	Waterbodies and Impairments Originally Targeted for TMDL and LRS	
	Development in the Upper Fox River/Flint Creek Watershed (based on the	
	2016 303(d) list)	1-3
1-2	List of Parameters Included in the Water Quality Dataset Compiled for the	
	Upper Fox River/Flint Creek Watershed	1-6
1-3	Summary of Water Quality Data Reviewed for the Current Stage 3 Database	
	Relevant to TMDL and LRS Development in the Upper Fox River/Flint Creek	
	Watershed	1-6
1-4	Methodologies Used to Develop TMDLs and LRSs in the Upper Fox River/Flint	
	Creek Watershed	
1-5	Lake Barrington (RTZT) Lake Hydraulics Data	1-21
1-6	Lake Barrington Subbasin Areas and Phosphorus Loads	1-24
1-7	Summary of Model Confirmatory Analysis – Lake Barrington Annual Total	
	Phosphorus Concentrations (mg/L) During Model Calibration Period	1-25
1-8	Drummond Lake (UTI) Lake Hydraulics Data	1-25

1-9	Drummond Lake Tributary Subbasin Areas and Phosphorus Loads
1-10	Summary of Model Confirmatory Analysis – Drummond Lake Average Annual
	Total Phosphorus Concentrations (mg/L) During Model Calibration Period
1-11	Echo Lake (RTZR) Lake Hydraulics Data1-30
1-12	Echo Lake Tributary Subbasin Areas and Phosphorus
1-13	Summary of Model Confirmatory Analysis – Echo Lake Average Annual Total
	Phosphorus Concentrations (mg/L) During Model Calibration Period1-31
1-14	Grassy Lake (VTI) Lake Hydraulics Data1-33
1-15	Grassy Lake Tributary Subbasin Areas and Phosphorus Loads
1-16	Summary of Model Confirmatory Analysis – Grassy Lake Average Annual Total
	Phosphorus Concentrations (mg/L) During Model Calibration Period1-35
1-17	Honey Lake (RTZU) Lake Hydraulics Data1-35
1-18	Honey Lake Tributary Subbasin Areas and Phosphorus Loads
1-19	Summary of Model Confirmatory Analysis – Honey Lake Average Annual Total
	Phosphorus Concentrations (mg/L) During Model Calibration Period1-38
1-20	Island Lake (RTZI) Lake Hydraulics Data1-40
1-21	Island Lake Tributary Subbasin Areas and Phosphorus Loads
1-22	Summary of Model Confirmatory Analysis – Island Lake Average Annual Total
	Phosphorus Concentrations (mg/L) During Model Calibration Period 1-42
1-23	Lake Fairview (STK) Lake Hydraulics Data1-42
1-24	Lake Fairview Tributary Subbasin Areas and Phosphorus Loads
1-25	Summary of Model Confirmatory Analysis – Lake Fairview Average Annual
	Total Phosphorus Concentrations (mg/L) During Model Calibration Period1-45
1-26	Lake Louise (VTZJ) Lake Hydraulics Data1-45
1-27	Lake Louise Tributary Subbasin Areas and Phosphorus Loads
1-28	Summary of Model Confirmatory Analysis – Lake Louise Average Annual Total
	Phosphorus Concentrations (mg/L) During Model Calibration Period 1-48
1-29	Lake Napa Suwe (STO) Lake Hydraulics Data1-48
1-30	Lake Napa Suwe Tributary Subbasin Areas and Phosphorus Loads
1-31	Summary of Model Confirmatory Analysis – Lake Napa Suwe Average Annual
	Total Phosphorus Concentrations (mg/L) During Model Calibration Period
1-32	Slocum Lake (RTP) Lake Hydraulics Data1-52
1-33	Slocum Lake Tributary Subbasin Areas and Phosphorus Loads
1-34	Summary of Model Confirmatory Analysis – Slocum Lake Average Annual
	Total Phosphorus Concentrations (mg/L) During Model Calibration Period
1-35	Timber Lake (South) (RTZQ) Lake Hydraulics Data
1-36	Timber Lake (South) Tributary Subbasin Areas and Phosphorus Loads 1-57
1-37	Summary of Model Confirmatory Analysis – Timber Lake (South) Average
	Annual Total Phosphorus Concentrations (mg/L) During Model Calibration
1 00	Period
1-38	Tower Lake (RTZF) Lake Hydraulics Data
1-39	I ower Lake Tributary Subbasin Areas and Phosphorus Loads
1-40	Summary of Model Confirmatory Analysis – Tower Lake Average Annual Total
1	Phosphorus Concentrations (mg/L) During Model Calibration Period
1-41	woodland (Highland) Lake (STV) Lake Hydraulics Data
1-42	Woodland (Highland) Lake Tributary Subbasin Areas and Phosphorus Loads 1-64

1-43	Summary of Model Confirmatory Analysis – Woodland (Highland) Lake	
	Average Annual Total Phosphorus Concentrations (mg/L) During Model	
	Calibration Period	1-65
2-1	TMDL Endpoints for Impaired Constituents in the Upper Fox River/Flint	
	Creek Watershed	2-1
2-2	Example Source Area/Hydrologic Condition Considerations	2-2
2-3	Fecal Coliform Loading Capacity for Fox River DT-22	2-3
2-4	WLAs for Fecal Coliform from Permitted Discharges in the Fox River DT-22	
	Subwatershed	2-6
2-5	Fecal Coliform WLA (mil col/L) for MS4 Areas in Fox River Segment DT-22	2-7
2-6	Fecal Coliform TMDL for Fox River DT-22	2-8
2-7	Estimated Phosphorus Loading Capacities for Each Segment of Each	
	Phosphorus-Impaired Lake in the Upper Fox River/Flint Creek Watershed	2-10
2-8	WLAs for Total Phosphorus Loads	2-11
2-9	Allocation Summary for MS4s in the Lake Barrington Watershed	2-12
2-10	Allocation Summary for MS4s in the Echo Lake Watershed	2-12
2-11	Allocation Summary for MS4s in the Grassy Lake Watershed	2-12
2-12	Allocation Summary for MS4s in the Honey Lake Watershed	2-13
2-13	Allocation Summary for MS4s in the Island Lake Watershed	2-13
2-14	Allocation Summary for MS4s in the Lake Napa Suwe Watershed	2-13
2-15	Allocation Summary for MS4s in the Lake Louise Watershed	2-13
2-16	Allocation Summary for MS4s in the Slocum Lake Watershed	2-13
2-17	Allocation Summary for MS4s in the Timber Lake Watershed	2-14
2-18	Allocation Summary for MS4s in the Tower Lake Watershed	2-14
2-19	Allocation Summary for MS4s in the Woodland (Highland) Lake Watershed	2-14
2-20	TMDL Summary for Total Phosphorus in Lake Barrington	2-15
2-21	TMDL Summary for Total Phosphorus in Drummond Lake	2-15
2-22	TMDL Summary for Total Phosphorus in Echo Lake	2-15
2-23	TMDL Summary for Total Phosphorus in Grassy Lake	2-15
2-24	TMDL Summary for Total Phosphorus in Honey Lake	2-15
2-25	TMDL Summary for Total Phosphorus in Island Lake	2-15
2-26	TMDL Summary for Total Phosphorus in Lake Fairview	2-16
2-27	TMDL Summary for Total Phosphorus in Lake Napa Suwe	2-16
2-28	TMDL Summary for Total Phosphorus in Lake Louise	2-16
2-29	TMDL Summary for Total Phosphorus in Slocum Lake	2-16
2-30	TMDL Summary for Total Phosphorus in Timber Lake (South)	2-16
2-31	TMDL Summary for Total Phosphorus in Tower Lake	2-16
2-32	TMDL Summary for Woodland (Highland) Lake	2-17
2-33	Fecal Coliform Loading Capacity for Lake Barrington, Honey Lake, and Tower	
	Lake	2-17
2-34	Allocation Summary for MS4s in the Lake Barrington Watershed	2-18
2-35	Allocation Summary for MS4s in the Honey Lake Watershed	2-18
2-36	Allocation Summary for MS4s in the Tower Lake Watershed	2-18
2-37	Fecal Coliform TMDL for Lake Barrington	2-19
2-38	Fecal Coliform TMDL for Honey Lake	2-19
2-39	Fecal Coliform TMDL for Tower Lake	2-19
2-40	NVSS Loading Capacity in Fox River DT-22	2-20

2-41	LRS Targets for Sedimentation /Siltation in Fox River DT-22	2-21
2 - 1 - 1 - 2 - 4 - 2	LRS Summary for TSS in Lake Barrington	2_22
2-42	LRS Summary for TSS in Drummond Lake	2_22
2-43	LRS Summary for TSS in Echo Lake	2-22
2-45	LRS Summary for TSS in Grassy Lake	2_22
2-46	LRS Summary for TSS in Island Lake	2-22
2.40	LRS Summary for TSS in Lake Fairview	2-22
2-47	LRS Summary for TSS in Lake Nana Suwe	2-22 2 ₋ 22
2-40	LRS Summary for TSS in Lake Louise	2-22
2-45	LRS Summary for TSS in Slocum Lake	2-23
2-50	LRS Summary for TSS in Timber Lake (South)	2-23
2-51	LRS Summary for TSS in Tower Lake	2-23
2-52	LKS Summary for TSS in Woodland (Highland) Lake	2-23
2-55	Filter Strip Flow Lengths Based on Land Slope	2-23
2.2	Calculated Buffer Areas and Acroages of Convertible Land for DT 22 and its	
5-2	Calculated Duffer Areas and Acreages of Convertible Land for D1-22 and its	20
2.2	Major Tributaries	
3-3	Foot Puffor: For Diver Segment DT 22 and Major Tributaries	2 17
2.4	TMDL Endpoints for Impoined Constituents in the Upper East Diver /Elint	3-17
5-4	Creak Watershad	2.25
2 5	Greek Watersned	3-25
3-5	Average Slopes, Filter Strip Flow Length, Total Buffer Area, and Area of Land	2.26
2.6	Within Buffers Potentially Suitable for Conversion to Filter Strips, by Lake	3-26
3-6	I otal Area and Area of Grassland, Forest, and Agricultural Land Within 25-	0.00
o न	Foot Buffer of Impaired Lakes	3-32
3-7	Summary of Shoreline Erosion Classifications	3-38
3-8	TMDL Percent Reduction Summary for each Phosphorus-Impaired Lake in the	
	Upper Fox River/Flint Creek Watershed	3-39
3-9	Agricultural Land Use by Impaired Subbasin	3-45
3-10	Local SWCD and NRCS Contact Information	3-63
3-11	Cost Estimates of Various BMP Measures	3-63
3-12	Implementation Milestones	3-65

List of Figures

1-1	Upper Fox River/Flint Creek Watershed Impaired Waterbodies for TMDL and	
	LRS Development	1-4
1-2	Upper Fox River/Flint Creek Watershed Fox River Segment DT-22 Watershed	
	and Model Inputs	. 1-14
1-3	Upper Fox River Segment DT-22 Copper Load Duration Curve	. 1-16
1-4	Upper Fox River Segment DT-22 Fecal Coliform Load Duration Curve	. 1-17
1-5	Upper Fox River Segment DT-22 Chloride Load Duration Curve	. 1-18
1-6	Upper Fox River Segment DT-22 NVSS Load Duration Curve	. 1-19
1-7	Upper Fox River/Flint Creek Watershed Lake Barrington (RTZT) Watershed	
	and Model Inputs	. 1-22
1-8	Upper Fox River/Flint Creek Watershed Drummond Lake (UTI) Watershed	
	and Model Inputs	.1-26

1-9	Upper Fox River/Flint Creek Watershed Echo Lake (RTZR) Watershed and
1-10	Upper Fox River/Flint Creek Watershed Grassy Lake (VTI) Watershed and
	Model Inputs1-32
1-11	Upper Fox River/Flint Creek Watershed Honey Lake (RTZU) Watershed and Model Inputs1-36
1-12	Upper Fox River/Flint Creek Watershed Island Lake (RTZI) Watershed and
	Model Inputs1-39
1-13	Upper Fox River/Flint Creek Watershed Lake Fairview (STK) Watershed and
1 1 4	Model Inputs
1-14	Model Inputs1-46
1-15	Upper Fox River/Flint Creek Watershed Lake Napa Suwe (STO) Watershed
	and Model Inputs1-49
1-16	Upper Fox River/Flint Creek Watershed Slocum Lake (RTP) Watershed and
1 1 7	Model Inputs
1-1/	Upper Fox River/Fint Creek watersned South Timber Lake South (RTZQ)
1 10	watershed and Model Inputs
1-18	Opper Fox River/Flint Creek Watershed Tower Lake (RTZF) Watershed and Model Inputs1-59
1-19	Upper Fox River/Flint Creek Watershed Woodland (Highland) Lake (STV)
	Watershed and Model Inputs1-63
2-1	Fox River (DT-22) Subbasin – Individually Permitted NPDES Facilities
3-1	Areas Covered by Existing Watershed Plans
3-2	Upper Fox River/Flint Creek Watershed Segment DT-22 Buffer Areas and
	Lands Potentially Suitable for Conversion to Filter Strips
3-3	Unner Fox River/Flint Creek Watershed Segment DT-22 Existing Wetlands
00	and Hydric Soils 3-18
3-4	Unner Fox River/Flint Creek Watershed Drummond Lake (UTI) Lake Nana
0 1	Suwe (STO) Woodland Lake (STV) and Island Lake (RTZI) Buffer Areas and
	Lands Potentially Suitable for Conversion to Filter Strips 3-27
3-5	Unner Fox River/Flint Creek Watershed Grassy Lake (VTI) Honey Lake
00	(BTZII) and Echo Lake (BTZR) Buffer Areas and Lands Potentially Suitable for
	Conversion to Filter String
3-6	Unper Fox River /Flint Creek Watershed Lake Barrington (RTZT) Lake
3-0	Eajerview (STK) Tower Lake (PT7F) and Timber Lake (PT70) Buffer Areas
	and Lands Dotontially Suitable for Conversion to Filter Strips
27	Inner Fox Diver /Elipt Creek Watershed Lake Louice (VT71) Puffer Areas and
3-7	Landa Detentially Suitable for Conversion to Filter String
2.0	Lanus Potentiany Suitable for Conversion to Filter Strips
3-8	Upper Fox River/Finit Creek Watersheu Slocuni Lake (RTP) Builer Areas and
2.0	Lanus Potentially Suitable for Conversion to Filter Strips
3-9	Opper Fox River/Finit Creek Watersheu Drummonu Lake (UTI), Lake Napa
	Suwe (STOJ, WOODIAIIU Lake (STVJ, and ISIANU Lake (KTZIJ SUDDASIN EXISTING
2 10	Wettanus and Hydric Solls
3-10	Upper Fox Kiver/Filmt Creek watersned Grassy Lake (VTI), Honey Lake
	(RTZU), and Echo Lake (RTZR) Subbasin Existing Wetlands and Hydric Soils3-34

3-11	Upper Fox River/Flint Creek Watershed Lake Barrington (RTZT), Lake	
	Fairview (STK), Tower Lake (RTZF), and Timber Lake (RTZQ) Subbasin	
	Existing Wetlands and Hydric Soils	. 3-35
3-12	Upper Fox River/Flint Creek Watershed Lake Louise (VTZI) Subbasin Existing	
	Wetlands and Hydric Soils	. 3-36
3-13	Upper Fox River/Flint Creek Watershed Slocum Lake (RTP) Subbasin Existing	
	Wetlands and Hydric Soils	. 3-37

Acronyms

AISWCD	Association of Illinois Soil & Water Conservation Districts
ACEP	Agricultural Conservation Easement Program
BMP	best management practice
BOD	biochemical oxygen demand
CBOD	carbonaceous biochemical oxygen demand
cfs	cubic feet per second
cfu	colony forming unit
CPS	Conservation Practice Standard
CRP	Conservation Reserve Program
CSO	combined sewer overflow
CSP	Conservation Stewardship Program
CWA	Clean Water Act
DAF	design average flow
DMF	design maximum flow
DO	dissolved oxygen
EQIP	Environmental Quality Incentives Program
FSA	Farm Service Agency
GIS	geographic information system
IDA	Illinois Department of Agriculture
Illinois EPA	Illinois Environmental Protection Agency
LA	load allocation
lbs	pounds
LC	loading capacity
LRS	load reduction strategy
MGD	million gallons per day
mg/L	milligrams per liter
mL	milliliter
MOS	margin of safety
MS4	municipal separate storm sewer system
MWRD	Metropolitan Water Reclamation District of Greater Chicago
NMP	Nutrient Management Plan
NPDES	National Pollutant Discharge Elimination System
NPS	National Park Service
NRCS	Natural Resources Conservation Service
NTU	nephelometric turbidity unit
NVSS	non-volatile suspended solids
POTW	publicly owned treatment work

RC	reserve capacity
SLAM	Simplified Lake Analysis Model
SSRP	Streambank Stabilization and Restoration Program
STP	sewage treatment plant
SWCD	Soil and Water Conservation District
TMDL	total maximum daily load
TRM	turf reinforcement mat
TSS	total suspended solids
µg/L	micrograms per liter
USEPA	United States Environmental Protection Agency
USGS	U.S. Geological Survey
WLA	waste load allocation
WWTF	wastewater treatment facility
WWTP	wastewater treatment plant
WREP	Wetland Reserve Enhancement Partnership

This page intentionally left blank

A total maximum daily load, or TMDL, is a calculation of the maximum amount of a pollutant that a water body can receive and still meet water quality standards. Development of TMDLs for waters that do not support their designated uses is a requirement of Section 303(d) of the Clean Water Act (CWA). The Illinois EPA has a three-stage approach to TMDL development. The stages are:

Stage 1 – Watershed Characterization, Data Analysis, Methodology Selection

Stage 2 – Data Collection (optional)

Stage 3 - Model Calibration, TMDL Scenarios, Implementation Plan

TMDL development for this watershed began in 2008. Stage 1 was completed in March 2010 under a contract with AECOM (Upper Fox River/Flint Creek Watershed TMDL Final Stage 1 *Report*, AECOM 2010). The stage 1 report is provided in **Appendix A**. No formal Stage 2 data collection was completed, but additional water quality data were collected and gathered by Illinois EPA and other agencies in the time between the completion of Stage 1 and the commencement of Stage 3. While portions of the overall Fox River watershed are within Wisconsin, this TMDL Study encompasses 14 impaired waterbody segments within the Upper Fox River/Flint Creek watershed subbasin downstream of the Chain O'Lakes are in northern Illinois. TMDL allocations have been set for phosphorus and fecal coliform in lakes as well as fecal coliform in segment DT-22 of the Fox River. Additional impairments for chloride and copper in this segment of the Fox River are recommended for removal from the 303(d) list. Impairments for dissolved oxygen in one waterbody are directly related to excess nutrients and addressed via the total phosphorus TMDL for that lake. Additional impairments in the watershed include total suspended solids and sedimentation/siltation. TMDLs are not provided for these impairments due to a lack of applicable numerical water quality standard; however, a load reduction target and implementation strategies for these parameters are discussed.

The sources of pollutants in the watershed include NPDES permitted facilities such as wastewater treatment facilities and regulated stormwater. In addition, sources of nonpoint pollution are largely the result of stormwater runoff in developed and undeveloped areas. Sources of pollutants in agricultural areas are primarily related to nutrient and sediment loading as a result of crop production.

The loading capacity for fecal coliform stream impairments is determined using a load duration curve framework. The loading capacities for total phosphorus impairments in lakes are developed using the Simplified Lake Assessment Model (SLAM). TMDLs and needed load reductions are presented in Section 2. The TMDL, or loading capacity, is distributed among permitted point sources as waste load allocations (WLA) and nonpoint and background sources as load allocations (LA). A margin of safety (MOS) is also included to account for uncertainty. Reserve Capacity (RC) may also be included in the TMDL load capacity (LC) analysis to account for future growth if the necessary information is available. The required pollutant reductions range from zero to 91%.

Section 3 of this report includes an implementation plan intended to provide basic information and direction to additional resources detailing potential implementation activities that can be employed to address the pollutant loads within the watershed.

This Page Intentionally Blank

Section 1

Methodology Development for the Upper Fox River/Flint Creek Watershed

1.1 Total Maximum Daily Load Overview

A total maximum daily load, or TMDL, is a calculation of the maximum amount of a pollutant that a water body can receive and still meet water quality standards. TMDLs are a requirement of Section 303(d) of the Clean Water Act (CWA). To meet this requirement, the Illinois Environmental Protection Agency (Illinois EPA) must identify water bodies not meeting water quality standards and then establish TMDLs for restoration of water quality. Illinois EPA develops a list known as the "303(d) list" of water bodies not meeting water quality standards every two years, and it is included in the Integrated Water Quality Report. Water bodies on the 303(d) list are then targeted for TMDL development. The Illinois EPA's most recent Integrated Water Quality Report was submitted to the United States Environmental Protection Agency (USEPA) in July 2016. In accordance with USEPA's guidance, the report assigns all waters of the state to one of five categories. 303(d) listed water bodies make up category five in the integrated report (Appendix B of the Integrated Report, available at: <u>https://www2.illinois.gov/epa/topics/waterquality/watershed-management/tmdls/Pages/303d-list.aspx</u>).

In general, a TMDL is a quantitative assessment of water quality impairments, contributing sources, and pollutant reductions needed to attain water quality standards. The TMDL specifies the amount of pollutant or other stressor that needs to be reduced to meet water quality standards, allocates pollutant control or management responsibilities among sources in a watershed, and provides a scientific and policy basis for taking actions needed to restore a water body.

Water quality standards are laws or regulations that states authorize to enhance water quality and protect public health and welfare. Water quality standards provide the foundation for accomplishing two of the principal goals of the CWA. These goals are:

- Restore and maintain the chemical, physical, and biological integrity of the nation's waters
- Where attainable, to achieve water quality that promotes protection and propagation of fish, shellfish, and wildlife, and provides for recreation in and on the water

Water quality standards consist of three elements:

- The designated beneficial use or uses of a water body or segment of a water body
- The water quality criteria necessary to protect the use or uses of that particular water body
- An antidegradation policy

Examples of designated uses are primary contact (swimming), protection of aquatic life, and public and food processing water supply. Water quality criteria describe the quality of water that will support a designated use. Water quality criteria can be expressed as numeric limits or as a narrative statement. Antidegradation policies are adopted so that water quality improvements are conserved, maintained, and protected.

1.2 TMDL Goals and Objectives for the Upper Fox River/Flint Creek Watershed

The Illinois EPA has a three-stage approach to TMDL development. The stages are:

Stage 1 – Watershed Characterization, Data Analysis, Methodology Selection

Stage 2 - Data Collection (optional)

Stage 3 - Model Calibration, TMDL Scenarios, Implementation Plan

TMDL development for this watershed began in 2008. Stage 1 was completed in March 2010 under a contract with AECOM (AECOM 2010). The Stage 1 report included land use information (included in Appendix B) and soils information (included in Appendix C) as well as detailed watershed and use attainment information. The Stage 1 report is provided as **Appendix A** of this document. Stage 2 data collection was recommended but described as not imperative in the Stage 1 reporting process. No formal Stage 2 data collection was completed, but additional water quality data were collected and gathered by Illinois EPA, the Metropolitan Water Reclamation District of Greater Chicago (MWRD), and other agencies in the time between the completion of Stage 1 and the commencement of Stage 3. All newly available data were assessed and incorporated into this Stage 3 report as appropriate, and are provided in Appendix D.

Following are the impaired waterbody segments in the Upper Fox River/Flint Creek watershed:

- Fox River (DT-22)
- Lake Barrington (RTZT)
- Drummond Lake (UTI)
- Echo Lake (RTZR)
- Grassy Lake (VTI)
- Honey Lake (RTZU)
- Island Lake (RTZI)
- Lake Fairview (STK)
- Lake Napa Suwe (STO)
- Lake Louise (VTZJ)
- Slocum Lake (RTP)
- Timber Lake (South) (RTZQ)
- Tower Lake (RTZF)
- Woodland (Highland) Lake (STV)

These impaired waterbody segments are shown on **Figure 1-1**. There are fourteen impaired waterbody segments within the watershed for which TMDL and/or a load reduction strategy

(LRS) development was initiated in 2008. **Table 1-1** lists the water body segment and cause of impairment for the water body.

Segment ID	Waterbody Name	Parameters with Numeric Water Quality Standards	Parameters without Numeric Water Quality Standards
DT-22	Fox River	Fecal Coliform, Chloride, Copper, Dissolved Oxygen, pH	Sedimentation/Siltation
DT-23	Fox River	Dissolved Oxygen	
RTZT	Lake Barrington	Phosphorus, Fecal Coliform	Total Suspended Solids (TSS)
UTI	Drummond Lake	Phosphorus	TSS
RTZR	Echo Lake	Phosphorus	TSS
VTI	Grassy Lake	Phosphorus	TSS
RTZU	Honey Lake	Phosphorus, Fecal Coliform	
RTZI	Island Lake	Phosphorus	TSS
STK	Lake Fairview	Phosphorus	TSS
STO	Lake Napa Suwe	Phosphorus	TSS
VTZJ	Lake Louise	Phosphorus	TSS
RTP	Slocum Lake	Phosphorus	TSS
RTZQ	Timber Lake (South)	Phosphorus	TSS
RTZF	Tower Lake	Phosphorus, Fecal Coliform	TSS
STV	Woodland (Highland) Lake	Phosphorus, Dissolved Oxygen	TSS

Table 1-1: Waterbodies and Impairments Originally Targeted for TMDL and LRS Development in the Upper Fox River/Flint Creek Watershed (based on the 2016 303(d) List)

Italicized parameters have been removed from the 303(d) list since completion of the Stage 1 report.

Dissolved oxygen (DO) impairments listed in the Stage 1 report for Fox River segments DT-22 and DT-23, and the pH impairment in DT-22, were removed from the 303(d) list after Stage 1 development was completed. In addition, the Stage 1 report was developed without investigating impairments caused by parameters without numeric water quality standards (sedimentation/siltation, TSS, and phosphorus in streams). Illinois EPA has previously only developed TMDLs for parameters that have numeric water quality standards while deferring development of TMDLs for parameters without numeric water quality standards until those criteria have been developed and adopted. As part of the TMDL development process, Illinois EPA started to include LRSs in TMDL watershed projects in 2012 for those pollutants that do not currently have numeric water quality standards.

For the potential causes that do not have numeric water quality standards noted in **Table 1-1**, TMDLs were not developed. However, LRSs (similar to TMDLs) were developed as part of Stage 3 based on target values established by Illinois EPA. In addition, some of these potential causes may be addressed by implementation of controls for the pollutants with numeric water quality standards.

Upper Fox River/Flint Creek Watershed Impaired Waterbodies for TMDL and LRS Development

The TMDLs for the segments listed above specify the following elements:

- Loading Capacity (LC), or the maximum amount of pollutant loading a water body can receive without violating water quality standards
- Waste Load Allocation (WLA), or the portion of the TMDL allocated to existing or future point sources
- Load Allocation (LA), or the portion of the TMDL allocated to existing or future nonpoint sources and natural background
- Margin of Safety (MOS), or an accounting of uncertainty about the relationship between pollutant loads and receiving water quality
- Reserve Capacity (RC), or a portion of the load explicitly set aside to account for growth in the watershed

These elements are combined into the following equation:

$$TMDL = LC = \Sigma WLA + \Sigma LA + MOS + RC$$

Developing an LRS involves determining the LC and load reduction that is needed in order for the waterbody to meet "Full Use Support" for its designated uses. In an LRS, the LC is not divided into WLA, LA, or MOS. These TMDL components are represented by one number as a target concentration for load reduction within each unique watershed. The LRS provides guidance (with no regulatory requirements) for voluntary nonpoint source reduction efforts by implementing agricultural and urban stormwater best management practices (BMPs).

TMDL and LRS development also takes into account the seasonal variability of pollutant loads so that water quality standards are met during all seasons of the year. Also, reasonable assurance that the TMDL and LRS targets will be achieved is described in the implementation plan. The implementation plan for the Upper Fox River/Flint Creek watershed describes how water quality standards and targets will be met and attained. This implementation plan includes recommendations for implementing point source controls, urban and rural BMPs, cost estimates, institutional needs to implement BMPs and controls throughout the watershed, and a timeframe for completion of implementation activities.

1.3 Existing Data Inventory

Illinois EPA provided project files previously collected and analyzed by AECOM for the Upper Fox River/Flint Creek watershed TMDL project completed under the previous consultant's TMDL contract. This dataset included a large number of files containing both water quality data and general watershed data related to the TMDL development process. Versions of several of the water quality models proposed in the Stage 1 report for TMDL development were included in the data transfer. While this dataset provided much of the information necessary to complete Stage 3 of the TMDLs, some level of uncertainty existed as to the completeness and usability of each of the data sources. Review and assessment of the existing dataset were necessary, the results of which are discussed below.

1.3.1 Existing Water Quality Data

Water quality data provided by Illinois EPA included a number of MS Access and MS Excel files containing water quality data originating from several sources. The bulk of the available water quality data were originally collected by Illinois EPA and MWRD. Based on a review of the data

summary and progress report documents produced by AECOM during the early stages of Stage 3 development, the original datasets compiled and used by AECOM did not appear to have been provided in full. Therefore, available data sources (Illinois EPA, Lake County, etc.) were queried for relevant water quality data to supplement the existing water quality dataset provided. All data identified were compiled into a watershed-specific database that contains approximately 22,000

Table 1-2: List of Relevant Parameters Included in theWater Quality Dataset Compiled for the Upper FoxRiver/Flint Creek Watershed

Biochemical oxygen demand (BOD)	Nitrogen, Nitrate + Nitrite
BOD, carbonaceous (CBOD)	Nitrogen, Nitrite + Nitrate as N
Carbon, Total Organic	Nitrogen, Total Kjeldahl
Chloride	Oxygen, Dissolved
Chlorophyll (a+b+c)	Phosphorus
Chlorophyll a, corrected	Solids, Fixed
Chlorophyll a, uncorrected	Solids, Fixed Total
Coliform, Fecal	Solids, Fixed Volatile
Depth	Solids, Suspended Volatile
Depth, bottom	TSS
Depth, Secchi Disk	Solids, Total Volatile
Nitrogen, ammonia as N	Temperature, water
Nitrogen, Ammonia as NH3	

sample results for the sampled waterbodies in the Upper Fox River/Flint Creek watershed. The dataset includes sample results for approximately 140 different parameters, approximately 25 of which were potentially relevant to the TMDL and LRS development process, as shown in **Table 1-2**.

A summary of the relevant available data from the dataset compiled from Stage 1 data and additional data queried prior to the current Stage 3 development for each waterbody, including period of record, sample count, minimum value, maximum value, and average value is provided in **Table 1-3**.

Waterbody	Parameter	Units	Period of Record	Sample Count	Min	Max	Average
	Carbon, Total Organic	mg/L	2008-2013	52	4.5	13.8	7.5
	Chloride	mg/L	2008-2013	52	62.6	942	124.6
	Chlorophyll a, corrected	μg/L	2008-2013	51	1.1	231	59.1
	Chlorophyll a, uncorrected	μg/L	2002-2013	120	1.7	362	90.7
	Coliform, Fecal	cfu/100mL	1999-2013	219	0	8,400	260.9
	Copper, Dissolved	μg/L	2008-2013	51	0	6.86	1.88
	Nitrogen, ammonia as N	mg/L	1974-2013	478	0.005	1.5	0.15
Fox River	Nitrogen, Nitrite + Nitrate as N	mg/L	2008-2010	23	0.21	2.8	1.1
DT-22	Nitrogen, Total Kjeldahl	mg/L	1979-2013	317	0.05	5.1	1.7
	Oxygen, Dissolved	mg/L	1964-2013	663	4	20.2	10.5
	Phosphorus, Dissolved	mg/L	1979-2013	322	0.001	0.7	0.04
	Phosphorus, Total	mg/L	1967-2013	466	0	1	0.16
	Solids, Suspended Volatile	mg/L	2008-2013	50	4	38	12.9
	TSS	mg/L	2008-2013	52	4	68	24.0
	Temperature, water	deg C	1964-2013	651	-3	31.7	14.4
	Turbidity	NTU	2008-2013	52	3.3	50	20.0

Table 1-3: Summary of Water Quality Data Reviewed for the Current Stage 3 Database Relevant to TMD
and LRS Development in the Upper Fox River/Flint Creek Watershed

Waterbody	Parameter	Units	Period of Record	Sample Count	Min	Max	Average
	Chloride	mg/L	2007-2015	34	103	133	120.2
	Chlorophyll a, corrected	μg/L	1989-2013	48	0	21.2	3.1
	Chlorophyll a, uncorrected	μg/L	1989	17	0.5	21.2	8.8
	Coliform, Fecal	cfu/100mL	2001	15	10	890	215.3
	Depth, Secchi Disk	ft	1989-2015	25	1.5	13	6.4
Lake	Nitrogen, ammonia as N	mg/L	1989-2001	10	0.1	1.1	0.4
Barrington	Nitrogen, Nitrate (NO3) as N	mg/L	1989	10	0.051	0.072	0.059
RTZT	Nitrogen, Total Kjeldahl	mg/L	1989-2015	60	0.7	2.6	1.2
	Oxygen, Dissolved	mg/L	2001-2015	87	0.03	13.8	6.6
	Phosphorus, Total	mg/L	1989-2015	59	0.01	0.4	0.1
	TSS	mg/L	1989-2015	60	0.2	18	5.7
	Solids, Total Volatile	mg/L	1989-2015	62	30	174	113.3
	Temperature, water	deg C	2001	63	16.7	28.8	22.5
	Chloride	mg/L	2009	5	50.2	65.6	57.9
	Chlorophyll a	μg/L	2002-2009	10	0	0	0
	Depth, Secchi Disk	ft	2002-2009	10	0.3	1.3	0.7
	Nitrogen, ammonia as N	mg/L	2002	1	0.4	0.4	0.4
Drummond	Nitrogen, Nitrate (NO3) as N	mg/L	2002-2009	3	0.1	0.6	0.4
Lake UTI	Nitrogen, Total Kjeldahl	mg/L	2002-2009	15	1.4	3.4	2.4
	Oxygen, Dissolved	mg/L	2002	23	4.8	11.0	6.8
	Phosphorus, Total	mg/L	2002-2009	13	0.1	0.3	0.2
	TSS	mg/L	2002-2009	10	27	110	66.1
	Solids, Total Volatile	mg/L	2002-2009	10	90	180	143.5
	Temperature, water	deg C	2002	23	10.6	27.5	20.4
	Chloride	mg/L	2008-2015	28	221	290	246.6
	Chlorophyll a	μg/L	1995-2015	37	0	0	0
	Depth, Secchi Disk	ft	1995-2015	20	1.1	4.4	2.5
	Nitrogen, ammonia as N	mg/L	1995-2008	21	0.1	0.5	0.2
Echo Lake	Nitrogen, Nitrate (NO3) as N	mg/L	1995-2015	21	0.1	0.1	0.1
UTI	Nitrogen, Total Kjeldahl	mg/L	1995-2015	68	0.6	4.7	1.6
	Oxygen, Dissolved	mg/L	2000-2015	74	0	13.2	6.1
	Phosphorus, Total	mg/L	1995-2015	39	0.04	0.22	0.11
	TSS	mg/L	1995-2015	39	4.9	43	14.6
	Solids, Total Volatile	mg/L	1995-2015	39	101	209	148.4
	Temperature, water	deg C	2000	55	10.6	26.7	20.8
	Chlorophyll a, corrected	μg/L	2010	5	17.6	33.8	25.6
	Chlorophyll a, uncorrected	μg/L	1988-2010	11	18.2	335	100.8
	Depth, Secchi Disk	ft "	1955-2015	13	0.6	2.1	1.4
	Nitrogen, ammonia as N	mg/L	1988-2010	14	0.01	0.39	0.11
	Nitrogen, Nitrate (NO3) as N	mg/L	1988-2008	15	0.1	0.6	0.2
	Nitrogen, Nitrite + Nitrate as N	mg/L	2010	5	0.01	0.41	0.18
Grassy Lake	Nitrogen, Lotal Kjeldahl	mg/L	2000-2015	20	0.6	2.2	1.5
VII	Oxygen, Dissolved	mg/L	2000-2015	43	3.5	13.5	7.9
	Phosphorus, Dissolved	mg/L	2010	5	0.02	0.07	0.04
	Phosphorus, Iotal	rng/L	2008-2015	26	0.1	0.4	0.2
	Solids, Suspended Volatile	mg/L	2010	5	4	8	b.b
		rng/L	2000-2015	22	110	52.8	22.4
	Solids, Total Volatile	mg/L	2000-2015	15	118	236	166.3
	Temperature, water	deg C	2000	37	14.8	26.3	20.7

Waterbody	Parameter	Units	Period of Record	Sample Count	Min	Max	Average
	Chloride	mg/L	2008-2015	38	135	504	257.9
	Chlorophyll a, corrected	μg/L	2012-2013	7	20.2	80.1	50.3
	Chlorophyll a, uncorrected	μg/L	1988-2013	13	0.1	72.6	31.2
	Coliform, Fecal	cfu/100mL	2001	21	10	1700	431.9
	Depth, bottom	ft	2008	42	15	19	16.5
	Depth, Secchi Disk	ft	1988-2015	63	1.7	141	53.6
_	Nitrogen, ammonia as N	mg/L	1988-2013	27	0.03	5.33	1.11
Honey Lake	Nitrogen, Nitrate (NO3) as N	mg/L	1988-2015	15	0.05	0.13	0.07
RIZU	Nitrogen, Total Kjeldahl	mg/L	1998-2015	51	0.7	8.1	2.0
	Oxygen, Dissolved	mg/L	2001-2015	76	0	12.2	5.6
	Phosphorus, Total	mg/L	1988-2015	61	0.02	1.32	0.19
	Solids, Suspended Volatile	mg/L	2008-2013	10	5	10	7.8
	TSS	mg/L	1998-2015	50	1	34.6	6.8
	Solids, Total Volatile	mg/L	1998-2015	38	104	218	147.9
	Temperature, water	deg C	2001	56	14.6	27.0	21.1
	Chloride	mg/L	2008-2013	41	62.9	148	90.1
	Chlorophyll a, corrected	μg/L	2008-2012	49	6.2	167	44.6
	Chlorophyll a, uncorrected	μg/L	1989-2012	40	7.3	173	45.9
	Depth, bottom	ft	2008	30	4	9	6.3
	Depth, Secchi Disk	ft	1989-2013	48	0.9	72	20.5
Island Lake	Nitrogen, ammonia as N	mg/L	1989-2011	45	0.01	4.57	0.27
RTZI	Nitrogen, Nitrate (NO3) as N	mg/L	1989-2013	26	0.03	2.86	0.71
	Nitrogen, Nitrite + Nitrate as N	mg/L	2008-2009	28	0.01	0.65	0.08
	Nitrogen, Total Kieldahl	mg/L	1989-2013	61	0.8	3.5	2.0
	Oxygen, Dissolved	mg/L	1989-2013	55	1.5	12.8	7.4
	Phosphorus, Dissolved	mg/L	1989-2009	16	0.01	0.06	0.03
	Phosphorus, Total	mg/L	1989-2013	67	0.04	0.26	0.11
	Chloride	mg/L	2007-2013	15	156	214	189.7
	Chlorophyll a	ug/L	2000-2007	20	0	0	0
	Depth. Secchi Disk	ft	2000-2013	14	1.3	9.1	4.8
	Nitrogen, ammonia as N	mg/L	2000-2007	6	0.2	1.8	0.8
	Nitrogen, Nitrate (NO3) as N	mg/L	2000	5	3	7	4.4
Lake	Nitrogen. Total Kieldahl	mg/L	2000-2013	25	0.7	2.6	1.4
Fairview STK	Oxygen, Dissolved	mg/L	2000-2013	50	0.1	12.5	5.6
	Phosphorus, Total	mg/L	2000-2013	25	0.02	0.22	0.09
	TSS	mg/L	2000-2013	25	1	24	6.2
	Solids. Total Volatile	mg/L	2000-2013	25	83	149	116.2
	Temperature, water	deg C	2000	45	16.3	25.0	21.5
	Chloride	mg/L	2008-2013	25	102	176	130.7
	Chlorophyll a, corrected	ug/L	2012	2	24.9	33.8	29.35
	Chlorophyll a, uncorrected	μg/L	2012	2	25.8	35	30.4
	Depth. Secchi Disk	ft	2002-2013	20	0.6	4.3	1.5
	Nitrogen, ammonia as N	mg/L	2002	3	0.2	0.7	0.4
Lake Napa	Nitrogen, Nitrate (NO3) as N	mg/L	2002-2013	3	0.06	0.15	0.09
Suwe STO	Nitrogen, Nitrite + Nitrate as N	mg/L	2008	1	0.02	0.02	0.02
	Nitrogen, Total Kieldahl	mg/L	2002-2013	32	0.9	5.6	2.6
	Oxygen, Dissolved	mg/L	2002-2013	45	1.4	10.2	6.3
	Phosphorus. Total	mg/L	2002-2013	35	0.02	0.37	0.15
	Solids Suspended Volatile	mg/l	2008-2012	5	8	27	14.2

Waterbody	Parameter	Units	Period of Record	Sample Count	Min	Max	Average
	TSS	mg/L	2002-2013	35	3.5	122	38.2
	Solids, Total Volatile	mg/L	2002-2013	30	83	250	159.8
	Temperature, water	deg C	2002	37	10.9	27.9	20.1
	Chloride	mg/L	2008-2015	13	91.8	215	165.3
	Chlorophyll a, uncorrected	μg/L	1988	6	17.9	45.1	35.6
	Depth, Secchi Disk	ft	1988-2015	22	0.4	4	1.7
	Nitrogen, ammonia as N	mg/L	1998-2008	14	0	0.7	0.3
Laba Lautaa	Nitrogen, Nitrate (NO3) as N	mg/L	1988-2015	19	0.1	0.7	0.2
	Nitrogen, Total Kjeldahl	mg/L	1988-2015	34	0.9	4.6	1.9
VIZJ	Oxygen, Dissolved	mg/L	2003-2015	43	0.4	14.5	8.1
	Phosphorus, Total	mg/L	1988-2015	46	0.04	0.40	0.16
	TSS	mg/L	1998-2015	35	6.4	62.8	23.5
	Solids, Total Volatile	mg/L	1998-2015	25	90	147	120.2
	Temperature, water	deg C	2003	28	16.5	26.6	22.0
	Chloride	mg/L	2005-2013	10	97.5	277.0	199.0
	Chlorophyll a	μg/L	1995-2005	25	0	0	0
	Depth, Secchi Disk	ft	1995-2013	20	0.6	8.1	1.3
	Nitrogen, ammonia as N	mg/L	1973-1995	8	0.06	0.22	0.14
	Nitrogen, Nitrate (NO3) as N	mg/L	1995-2013	13	0.06	0.11	0.08
	Nitrogen, Total Kjeldahl	mg/L	1973-2013	60	0.94	6.40	2.82
NIF	Oxygen, Dissolved	mg/L	1973-2013	55	0.0	16.8	9.5
	Phosphorus, Total	mg/L	1973-2013	60	0.12	1.33	0.23
	TSS	mg/L	1995-2013	30	19	77	37
	Solids, Total Volatile	mg/L	1995-2013	30	106	215	158
	Temperature, water	deg C	1973-2005	51	14.6	27.5	22.6
	Chloride	mg/L	2012-2013	4	83	189	138
	Nitrogen, ammonia as N	mg/L	1989-2013	13	0.03	1.36	0.26
	Nitrogen, Total Kjeldahl	mg/L	1989-2013	22	0.98	2.92	1.50
Timber Lake	Oxygen, Dissolved	mg/L	1989-2000	72	0.33	12.49	7.29
(South)	Phosphorus, Dissolved	mg/L	1989	2	0.013	0.015	0.014
RTZQ	Phosphorus, Total	mg/L	1989-2013	24	0.01	0.41	0.10
	Solids, Suspended Volatile	mg/L	2013	1	6	6	6
	TSS	mg/L	2013	1	6	6	6
	Temperature, water	deg C	1989-2000	72	10.8	26.1	21.0
	Chloride	mg/L	2007-2013	17	91.8	265.0	150.3
	Coliform, Fecal	cfu/100mL	2001	15	10	820	233
	Depth, Secchi Disk	ft	1988-2013	21	1	7	3
	Nitrogen, ammonia as N	mg/L	1988-2013	14	0.04	0.92	0.26
	Nitrogen, Nitrate (NO3) as N	mg/L	1988	15	0.05	0.14	0.08
Tower Lake	Nitrogen, Total Kjeldahl	mg/L	2001-2013	24	0.80	2.44	1.47
RTZF	Oxygen, Dissolved	mg/L	2001-2013	44	0.03	11.34	7.14
	Phosphorus, Total	mg/L	1988-2013	45	0.02	0.17	0.08
	Solids, Suspended Volatile	mg/L	2012-2013	7	5	13	8.6
	TSS	mg/L	1988-2013	45	2.7	1.39	20.2
	Solids, Total Volatile	mg/L	1988-2013	38	103	257	164.2
	Temperature, water	deg C	2001	39	15.3	29.5	22.5
Woodland	Chloride	mg/L	2013	5	90.8	98.3	95.8
(Highland)	Depth, Secchi Disk	ft	2004-2013	10	1.4	3.0	2.1
Lake STV	Nitrogen, ammonia as N	mg/L	2004	1	0.17	0.17	0.17

Waterbody	Parameter	Units	Period of Record	Sample Count	Min	Max	Average
	Nitrogen, Total Kjeldahl	mg/L	2004-2013	10	1.1	1.7	1.4
	Oxygen, Dissolved	mg/L	2004-2013	41	1.1	17.5	9.0
	Phosphorus, Total	mg/L	2004-2013	10	0.06	0.13	0.09
	TSS	mg/L	2004-2013	10	7.2	25.0	17.1
	Solids, Total Volatile	mg/L	2004-2013	10	53	72	64
	Temperature, water	deg C	2004	36	13.8	27.9	21.8

1.4 Methodology Overview

Table 1-4 contains information on the methodologies selected and used to develop TMDLs and LRSs for impaired segments within the Upper Fox River/Flint Creek watershed. Fox River segment DT-23 was included in the Stage 1 report but has since been removed from the 303(d) list and is not included in this Stage 3 TMDL report.

Waterbody Name	Impairment	Assessment	Approach	
(Segment ID)	mpannent	Туре		
	Fecal Coliform	TMDL	Load-duration Curve	
	Chloride	TMDL	Load-duration Curve	
Fox River (DT-22)	Copper	TMDL	Load-duration Curve	
	Sedimentation/Siltation	IRS	Load-duration Curve (for non-volatile	
	Sedimentation/Siltation	LING	suspended solids [NVSS])	
	Phosphorus	TMDL	Simplified Lake Analysis Model (SLAM)	
Lake Barrington (RTZT)	Fecal coliform	TMDL	Spreadsheet model for target reductions	
	TSS	LRS	Spreadsheet model for target reductions	
Drummond Lake (UTI)	Phosphorus	TMDL	SLAM	
Didititiond Lake (011)	TSS	LRS	Spreadsheet model for target reductions	
Echo Lako (PT7P)	Phosphorus	TMDL	SLAM	
	TSS	LRS	Spreadsheet model for target reductions	
Grassy Lake (V/TI)	Phosphorus	TMDL	SLAM	
	TSS	LRS	Spreadsheet model for target reductions	
Hopoy Lako (PTZLI)	Phosphorus	TMDL	SLAM	
Holley Lake (K120)	Fecal coliform	TMDL	Spreadsheet model for target reductions	
Island Lako (PTZI)	Phosphorus	TMDL	SLAM	
	TSS	LRS	Spreadsheet model for target reductions	
Lako Eainiow (STK)	Phosphorus	TMDL	SLAM	
Lake Fail New (STR)	TSS	LRS	Spreadsheet model for target reductions	
Laka Nana Sunya (STO)	Phosphorus	TMDL	SLAM	
Lake Napa Suwe (STO)	TSS	LRS	Spreadsheet model for target reductions	
	Phosphorus	TMDL	SLAM	
Lake Louise (VTZJ)	TSS	LRS	Spreadsheet model for target reductions	
	Phosphorus	TMDL	SLAM	
SIOCUM Lake (RTP)	TSS	LRS	Spreadsheet model for target reductions	
Timber Lake (South)	Phosphorus	TMDL	SLAM	
(RTZQ)	TSS	LRS	Spreadsheet model for target reductions	
	Phosphorus	TMDL	SLAM	
Tower Lake (RTZF)	TSS	LRS	Spreadsheet model for target reductions	
	Fecal coliform	TMDL	Spreadsheet model for target reductions	
Maadland (Highland) Lake	Phosphorus	TMDL for	SLANA	
	Dissolved Oxygen ¹	Phosphorus	SLAIVI	
(317)	TSS	LRS	Spreadsheet model for target reductions	

Table 1-4 Methodologies Used to Develop TMDLs and LRSs in the Upper Fox River/Flint Creek Watershed

¹DO impairment is directly related to excess nutrients in the waterbody and is addressed via the total phosphorus TMDL.

1.4.1 Load-Duration Curve Overview

Loading capacity analyses were performed for the Fox River segment DT-22 impairments for copper, fecal coliform, chloride, and sedimentation/siltation through the development of a series

of load-duration curves. A load-duration curve is a graphical representation of the maximum load of a pollutant that a stream segment can assimilate over a range of flow scenarios, while still meeting the instream water quality standard. The load-duration curve approach utilizes historical flow data and observed water quality data to assess the magnitude and frequency of exceedances, as well as to determine the flow scenarios when exceedances occur most often (see Schematic 1). In the Upper Fox River/Flint Creek watershed, load-duration curves were constructed for Fox River segment DT-22 for dissolved copper, fecal coliform, and chloride, as well as for loads of non-volatile suspended solids (NVSS), which was selected as a surrogate by Illinois EPA to address sedimentation/siltation impairments.

1.4.2 SLAM Overview

The Simplified Lake Analysis Model (SLAM) was used to develop TMDLs for each of the lakes impaired by total phosphorous. SLAM was developed specifically to address an identified need for a practical and low-cost water quality model focused on lake eutrophication that could be easily and simply applied in planning studies by a wide range of end-users. SLAM has proven to be highly versatile, with streamlined functionality and data requirements, while still providing for a robust simulation of small lake nutrient and phytoplankton dynamics. The model was originally developed as an enhanced version of the USEPA-supported BATHTUB model and retains many of the core algorithms of that model.

SLAM requires inputs from several data sources including online databases and geographic information system (GIS)-compatible data. This model calculates lake mass and flow balances on a daily time step, assuming one or more well-mixed lake zones. Each zone follows the conceptual model often referred to as a "continuously stirred tank reactor", whereby complete and immediate mixing is assumed for each zone in both the vertical and horizontal directions. This assumption makes the model particularly well suited for lakes that are generally well-mixed and can justifiably be divided into a limited number of small and/or shallow zones. The model targets the key parameters important for eutrophic lakes: phytoplankton (as chl-a), phosphorus (P), and nitrogen (N).

SLAM also includes a dynamic sediment nutrient flux module. This module calculates internal nutrient loads from the sediments to the water column as a function of shallow sediment nutrient dynamics and diffusive exchanges between sediment pore water and the overlying water column. Internal nutrient loads are a key component of many eutrophic lakes, particularly small and/or shallow lakes with moderate to large catchment areas. The inclusion of dynamic and rigorous sediment nutrient calculations within a practical planning level water quality model distinguishes

SLAM from the majority of other published lake water quality models and is a particularly appealing feature for this application.

The model relies on empirical relationships to predict lake trophic conditions and subsequent DO conditions as functions of total phosphorus and nitrogen loads, residence time, and average lake

depths. Watershed loadings to the lakes were estimated using event mean concentration data, precipitation data, and estimated runoff flows within the watershed. Subbasin flows were estimated using the area ratio method, and phosphorus loadings to each reservoir from the surrounding watersheds were estimated using the unit area load method, also known as the "export coefficient" method (USEPA 2001). This method is based on the assumption that, on an annual basis and normalized to area, a roughly constant runoff pollutant loading can be expected for a given land use type. This method also requires that unit area loads are not applied to watersheds that differ greatly in climate, hydrology, soils, or ecology from those from which the parameters were derived.

1.4.3 LRS Overview for TSS in Lakes

A simple spreadsheet approach was used to calculate the reductions in TSS loading into TSSimpacted lakes required to meet the watershed-specific target value of 11.3 mg/L established by Illinois EPA. LRS targets are based on data from all stream segments or lakes within the HUC-10 basins of the watershed, as well as stream segments or lakes which closely border the watershed in neighboring HUC-10 basins, in order to best represent the land use, hydrologic, and geologic conditions unique to the watershed. Load reduction targets were calculated by Illinois EPA using data from stream/lake segments whose most current assessment shows full support for aquatic life and data that has passed quality assurance and quality checks within Illinois EPA and are in accordance with state and federal laws.

The LRS calculations utilize watershed flow estimates similar to those developed as part of the SLAM, the relative proportion of the lake watershed made up by each subbasin, measured in-lake TSS concentrations, and the target value developed by Illinois EPA to calculate the current daily load of TSS into the lake (pounds [lbs]/day), the target load (lbs/day), and the percent reduction needed in order to meet the LRS target. This simplified approach is appropriate for LRS development as it does not require the explicit assessment of WLAs or LAs.

1.5 Methodology Development

The following sections further discuss and describe the methodologies utilized to examine copper, fecal coliform, total phosphorus, and sedimentation/siltation levels in the Fox River DT-22 stream segment of the Upper Fox River/Flint Creek watershed, as well as total phosphorous, TSS, DO, and fecal coliform levels in the lake segments of the watershed.

Copper and chloride data were not compiled during Stage 1 because the impairments for copper and chloride in Fox River DT-22 were added to the state-wide 303(d) list after Stage 1 development was completed. Therefore, as part of the Stage 3 evaluation, CDM Smith reviewed the Stage 1 datasets and queried the available Illinois EPA MS Access databases to obtain additional data, as available, for several parameters, including TSS, copper, chloride, and streamflow. The subsequent data queried from Illinois EPA databases during TMDL development are summarized in **Table 1-3**.

1.5.1 Load-Duration Curves

Load-duration curves are useful for assessing the range of pollutant loads allowable at various flow rates throughout the full flow regime of a stream. This approach was used to characterize the current loading of copper, fecal coliform, chloride, and NVSS (for sedimentation/siltation impairments) to segment DT-22 of Fox River.

1.5.1.1 Watershed Delineation and Flow Estimation

Watershed area for the impaired stream segment was delineated with GIS analysis through use of the National Elevation Dataset, as well as through visual assessment of aerial photographs. The watershed delineation resulted in the following estimate of the directly contributing watershed used for the impaired segment's load-duration curve development:

• Fox River DT-22: 1,287 square miles

Figure 1-2 shows the location of the water quality stations on the segment, as well as the boundary of the GIS-delineated watersheds and subbasins. Note that the contributing watershed at segment DT-22 extends beyond the boundaries of the Upper Fox River/Flint Creek subbasin being characterized in this report. Approximately 70% of the contributing watershed is in the neighboring state of Wisconsin, which is outside the jurisdictional boundaries of Illinois' TMDL program. However, TMDL calculations and resulting load allocations discussed in this report are focused on the portion of the watershed within Illinois and specifically within the Upper Fox River/Flint Creek subbasin downstream of Pistakee Lake (which is included in the Chain O'Lakes subbasin) as shown on Figure 1-2. Implementation strategies and percent reductions discussed do not include the portion of the watershed outside of Illinois.

In order to create a load-duration curve, it is necessary to obtain stream flow data corresponding to each water quality sample. There are five U.S. Geological Survey (USGS) stream gauges within the Upper Fox River/Flint Creek watershed. USGS gauge (05550001 Fox River at Algonquin, IL), located approximately eight miles downstream of the DT-22 segment, was used as a surrogate gauge during Stage 3 to estimate flows within DT-22. Streamflow data from this gauge were used to estimate flows at the Fox River DT-22 segment using the drainage area ratio method represented by the following equation:

Upper Fox River/Flint Creek Watershed Fox River Segment DT-22 Watershed and Model Inputs

where	$\mathbf{Q}_{\text{gauged}}$	=	Streamflow of the gauged basin
	$\mathbf{Q}_{ungauged}$	=	Streamflow of the ungauged basin
	$Area_{gauged}$	=	Area of the gauged basin
	Areaungauged	=	Area of the ungauged basin

The assumption behind the equation is that the flow per unit area is equivalent in watersheds with similar characteristics. Therefore, the flow per unit area in the gauged watershed multiplied by the area of the ungauged watershed estimates the flow for the ungauged watershed.

Data downloaded through the USGS for the surrogate gauge for the available period of record were adjusted to account for point source influences in the watershed upstream of the gauging station. Average daily flows from all National Pollutant Discharge Elimination System (NPDES) permitted facilities upstream of the surrogate USGS gauge were subtracted from the gauged flow prior to flow-per unit-area calculations. The resulting estimates account for flows associated with precipitation and overland runoff only. Average daily flows from permitted NPDES discharges upstream of the impaired segments in the Upper Fox River/Flint Creek watershed were then added back into the equation to more accurately reflect estimated daily streamflow conditions in each segment.

1.5.1.2 Copper TMDL: Fox River Segment DT-22

A load-duration curve for copper in impaired segment DT-22 was generated by ranking the estimated daily flow data generated through the area ratio method discussed above, determining the percent of days these flows were exceeded, and then graphically plotting the results. The flows in the duration curve were then multiplied by the lowest calculated chronic water quality standard to generate a load-duration curve. The general use water quality standard for copper includes both chronic and acute standards that are calculated based on the total hardness concentration in the stream at the time of sampling, resulting in a unique standard for each sample collected. As a conservative measure, the allowable load calculations for this TMDL are based on the lowest calculated chronic water quality standard in the available dataset for segment DT-22, 18.6 μ g/L (calculated using the lowest reported in-stream hardness of 220 mg/L).

Copper data were paired with the corresponding flow for the sampling dates and plotted against the load-duration curve. **Figure 1-3** shows the load-duration curve as a solid line and the historically observed pollutant load for copper as points on the graph.

Figure 1-3 Upper Fox River Segment DT-22 Copper Load Duration Curve.

Zero of the 51 dissolved copper samples on segment DT-22 since 2008 have exceeded the lowest calculated chronic water quality standard. Plotting the available copper load data against the load-duration curve for copper shows that actual loads are always less than the allowable load, suggesting that this stream segment is not currently impaired for dissolved copper. Further assessment performed by Illinois EPA in early 2017 confirmed that impairment caused by dissolved copper does not exist in segment DT-22. This impairment is recommended for removal from the 303(d) list upon the next revision. Copper data collected during the Stage 3 evaluation are provided in **Table 1-3**, and spreadsheets used for the calculation of the copper load-duration curve are provided in **Appendix E**.

1.5.1.3 Fecal Coliform TMDL: Fox River Segment DT-22

A load-duration curve for fecal coliform was developed for Fox River segment DT-22 by determining the percent of days each estimated flow was exceeded, and then graphically plotting the results. Because the fecal coliform standard is seasonal and is applicable only between the months of May and October, data inputs into the analyses were limited to the concentration and flow data recorded during these months. The flows in the duration curve were then multiplied by the lowest applicable water quality standard of 200 cfu/100 mL to generate a load-duration curve. Fecal coliform data compiled from data amassed during Stage 1 of TMDL development were then paired with the corresponding flows for the sampling dates and plotted against the

load-duration curve. **Figure 1-4** shows the load-duration curve for the segment as a solid line and the observed pollutant loads as points on the graphs.

Figure 1-4 Upper Fox River Segment DT-22 Fecal Coliform Load Duration Curve.

To assess primary contact use, Illinois EPA uses all fecal coliform bacteria from water samples collected in May through October, over the most recent five-year period. Therefore, only water quality data collected between the months of May and October since 2010 were used to establish a current condition for purposes of this TMDL.

A total of four of the 15 fecal coliform samples collected between May and October on segment DT-22 have exceeded the geometric mean standard of 200 cfu/100mL. Plotting the available sample data against the load-duration curve shows that single sample exceedances of the geometric mean fecal coliform standard at DT-22 occurred during high flow, moist, mid-range and low flow conditions. **Appendix E** contains spreadsheets used for the calculation of the load-duration curves for fecal coliform in Fox River segment DT-22.

1.5.1.4 Chloride TMDL: Fox River Segment DT-22

A load-duration curve was developed for chloride in segment DT-22 by determining the percent of days each estimated flow was exceeded, and then multiplying the estimated flows by the water quality standard of 500 mg/L to generate a load-duration curve. Chloride data were paired with the corresponding flow for the sampling dates and plotted against the load-duration curve as shown in **Figure 1-5**. The resulting load-duration curve developed for the impaired segment

depicts the maximum allowable chloride load at each flow level along with the actual chloride loads based on observed sample data.

Figure 1-5 Upper Fox River Segment DT-22 Chloride Load Duration Curve.

Only one of the 90 samples collected on the DT-22 segment exceeded the water quality standard for chloride. The exceedance occurred during mid-range flow conditions. Further assessment performed by Illinois EPA in early 2017 confirmed that current impairment caused by chloride does not exist in segment DT-22. This impairment is recommended for removal from the 303(d) list upon the next revision. Chloride data collected during the Stage 3 evaluation are provided in **Table 1-3**. **Appendix E** contains spreadsheets used for the calculation of the load-duration curve for chloride at segment DT-22.

1.5.1.5 Sedimentation/Siltation LRS: Fox River Segment DT-22

A load-duration curve was developed for the sedimentation/siltation impairment in Fox River segment DT-22. Numeric standards do not exist for sedimentation/siltation impairments in streams, so the watershed-specific LRS target value provided by Illinois EPA of 7 mg/L of NVSS was used to develop the load-duration curve for the impairment. NVSS data were paired with the corresponding flow for the sampling dates and plotted against the load-duration curve as shown in **Figure 1-6**.

Figure 1-6 Upper Fox River Segment DT-22 Sedimentation/Siltation (NVSS) Load Duration Curve.

In total, 36 of the 52 NVSS samples collected from Fox River segment DT-22 exceeded the LRS target value. Plotting the available sample data against the load-duration curve shows that exceedances of the target value occurred during high flow, moist, dry, and low flow conditions. NVSS data collected during the Stage 3 evaluation are provided in **Table 1-3**. **Appendix E** contains spreadsheets used for the calculation of the load-duration curve.

1.5.2 SLAM Development for Lake Impairments Caused by Total Phosphorus and DO

As shown in **Table 1-1**, all 13 of the lakes in the Upper Fox River/Flint Creek watershed are listed as impaired by total phosphorus and one lake is also impaired by low D0 (Woodland [Highland] Lake). A well-established link exists between excess nutrients like phosphorus, increased algal and aquatic plant (macrophyte) productivity, and decreased D0 concentrations in lakes and reservoirs. Excess loading of nutrients to lakes and reservoirs provides food to aquatic plants and algae. As these plants and algae decompose, they consume oxygen which depletes concentrations in the lake. As a result, reductions in total phosphorus needed to meet the water quality standard will likely result in reductions in nuisance algae and aquatic macrophyte growth, as well as likely address the impairment caused by low D0 concentrations in Woodland (Highland) Lake. The TMDL target for total phosphorus is 0.05 mg/L.

Historically, the U.S. Army Corps of Engineers BATHTUB model (Walker 1996) has been the primary model used for assessment of nutrient (total phosphorus, ammonia) and nutrient-related impairments (chlorophyll a, pH, DO). However, the BATHTUB model does not provide explicit modeling of the major lake and sediment interactions that are important drivers of nutrient issues in each of the relatively small and shallow lakes impaired for total phosphorus in the Upper Fox River/Flint Creek watershed. The BATHTUB model also relies on a dated platform that is less user friendly than other options and is primarily setup to model nutrient fate and transport on an annual basis. Modeling on an annual basis can lead to additional error and uncertainty when calibrating than one may typically see in models focusing on daily, or even monthly, time-steps.

As an alternative to BATHTUB, CDM Smith's SLAM was used to develop TMDLs for total phosphorus impairments in these lakes. The SLAM relies on the following primary inputs:

- Lake morphology and hydraulics: surface area, average and maximum depth, volume, inflows, mixing lengths, and thermal stratification
- Model segmentation: number of geographically distinct segments of a reservoir to be modeled, flow direction, and an estimate of longitudinal dispersion between segments
- Watershed inflows: estimated runoff and point source discharge into the reservoir's watershed, and average annual phosphorus load to each segment as a function of land use using runoff coefficients and point source data
- In-lake nutrients: initial nutrient concentrations in the lake, estimates of settling velocity nutrient uptake, and burial fractions. Seasonality factors may be included to account for expected variations in settling velocity and nutrient uptake over time.
- Sediment layer dynamics: sediment characteristics used for calculating nutrient fluxes, or seasonally prescribed nutrient fluxes can be used

The individual values input into each of the above portions of the model interface are described in the following sections along with watershed and operational information for each of the impaired lakes.

SLAM was used to develop total phosphorus TMDLs for the 13 phosphorus-impaired lakes in the Upper Fox River/Flint Creek watershed. SLAM has three primary input interfaces: global, reservoir segment(s), and watershed/tributary inputs. The individual inputs for each of these interfaces are described in the following sections along with watershed and operational information for each of the impaired lakes.

While a unique SLAM model was developed for each impaired waterbody, models developed for impaired lakes downstream of other impaired waterbodies were linked to model outputs for upstream lakes, as applicable. The calibrated model outputs for daily outflow volume and TP concentrations for impaired lakes upstream of other impaired lakes in the watershed were used as inputs into the models for the downstream receiving lakes. This approach allows for more direct representation of the impact of upstream lakes/reservoirs on water quality in waterbodies downstream in the watershed. The discharge from modeled lakes contribute to downstream impaired lakes within the Fox River/Flint Creek Watershed as follows:

- Grassy Lake receives inputs from Honey Lake and Echo Lake
- Island Lake receives inputs from Lake Napa Suwe and Woodland Lake
- Lake Napa Suwe receives inputs from Drummond Lake
- Tower Lake receives inputs from Timber Lake, Lake Fairview, and Lake Barrington

Further explanation of the linkage between SLAM models developed for impaired lakes in this watershed is provided in the applicable model descriptions below.

1.5.2.1 SLAM Development for Lake Barrington

Lake Barrington (RTZT) is a 91-acre reservoir located in the Village of Barrington. The lake is available for recreational uses such as fishing, swimming, and aesthetics, and is listed as impaired by total phosphorus. The TMDL target for total phosphorus is 0.05 mg/L.

1.5.2.1.1 Model Segmentation

Only one water quality monitoring location exists within Lake Barrington; therefore, only one model zone was defined in SLAM. The sampling location and watershed boundary are shown on **Figure 1-7**.

1.5.2.1.2 Lake Hydraulics

Lake hydraulics are defined in SLAM via either internal calculation or user prescription. Data needs for internal calculations of lake hydraulics are somewhat greater as the model performs dynamic water balance calculations of lake volumes at each time-step based on user-defined or calculated inflows, outflows, and evaporative losses. Corresponding lake depths, surface areas, and releases are calculated as a function of user-defined bathymetry tables. For the prescribed hydraulics option, users specify monthly-variable lake volumes, areas, and depths. Hydraulics are assumed static within a month and lake outflows are set equal to total lake inflows at each time-step. Evaporative losses are not explicitly included in the calculations but rather should be implicitly reflected in the prescribed volumes. Due to data availability and the mostly static nature of Lake Barrington, prescribed lake hydraulics were used in this model setup, and included total lake volumes by month.

The surface area, volume, and depth of Lake Barrington was estimated on an annual basis as there is little evidence of significant and consistent lake elevation fluctuation over the course of a year. Segment length, interface width, and surface area were determined in GIS. Lake depth and volume were estimated from available vertical profile and bathymetric data. A summary of these inputs is shown in **Table 1-5**.

Segment	Downstream Zone	Surface Area (acres)	Surface Area (% of total)	Volume (acre-ft)	Average Depth (ft)	Segment Mixing Length (ft)	Interface Width (ft)	
RT7T	None	91 1	100%	882 3	78	n/a ¹	n/a ¹	

Table 1-5 Lake Barrington (RTZT) Lake Hydraulics Data

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

CDM Smith Upper Fox River/Flint Creek Watershed Lake Barrington (RTZT) Watershed and Model Inputs

1.5.2.1.3 Watershed Parameters

Watershed parameters input into the SLAM are associated with flows and pollutant loads entering the lake from the watershed. Watershed sources simulated in the model include storm runoff events, dry weather baseflow, and, if applicable, supplemental water. Flows and loads can either be internally calculated or prescribed by the user. Internally calculated flows and loads are calculated in the model as a combination of wet weather runoff and dry weather baseflow. Runoff is calculated as a function of user defined daily precipitation, runoff coefficients, and total drainage area. Alternatively, monthly flows and nutrient loads entering the lake from the watershed can be prescribed by the user as a daily time-series. For lake models with multiple zones, zone distribution percentages must be specified by the user. These percentages define how much of the total lake nutrient load (calculated or prescribed) enters the lake at a given zone. Estimates of the particulate fractions associated with prescribed total phosphorus concentrations are also required inputs into the model and are derived from site specific total and dissolved phosphorus data, as available.

Watershed inputs to SLAM for the Lake Barrington model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category found in the Upper Fox River/Flint Creek watershed were extracted from the USEPA's PLOAD version 3.0 user's manual (Appendix F). This document provides an extensive list of phosphorus export coefficients for various land uses in several regions of the country compiled from a number of sources in the literature. The export coefficients for each land use are reported in lbs/acre/year, which can then be multiplied by the number of acres of each land use in the Lake Barrington subbasin to provide a median annual phosphorus load into the reservoir. The total phosphorus load into Lake Barrington is estimated to be approximately 69.5 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics is provided in **Table 1-6**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Lake Barrington, there are no point source discharges currently discharging to the lake or to the watershed upgradient of the lake.

No known septic systems exist in the Lake Barrington watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Lake Barrington watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake.

Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

Table 1-6 Lake Barrington Subbasin Areas and Phosphorus Loads

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Lake Barrington	RTZT	281	69.5

1.5.2.1.4 Lake Nutrient Parameters

Lake nutrient parameters support the simulation of lake water column nutrient dynamics and include nutrient uptake kinetic and settling rates and lake water quality initial conditions. Uptake kinetics are defined by first order rate constants, applied to dissolved nutrients only. These rate constants represent the transformation of dissolved nutrient into organic particulate fraction via phytoplankton uptake.

Uptake kinetics and settling rates can be specified as steady annual rates or as monthly-variable rates. Seasonality in rates might represent, for example, changes in phytoplankton uptake with growing season or differences between particulate nutrient composition in summer (phytoplankton-based organic nutrients) vs. winter (sediment-bound runoff load). Due to limited availability of site specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Lake Barrington. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Lake Barrington (0.084 mg/L).

1.5.2.1.5 Sediment Layer Parameters

SLAM allows for user inputs of monthly sediment nutrient fluxes, quantifying the movement of phosphorus from the shallow sediments to the water column or vice versa. Areal flux rates (mg/m²/day) can be entered as positive values for fluxes from sediments to the water column and negative values for exchanges in the opposite direction. Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Lake Barrington. These rates were later adjusted during model calibration to reflect seasonal uptake and resuspension on a monthly average basis.

1.5.2.1.6 SLAM Confirmatory Analysis

Historical water quality data for Lake Barrington were used to help calibrate the model and confirm model calculations. Although the analyses presented below do lend confidence to the modeling, additional lake and tributary water quality data, site-specific sediment characterization, and more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Lake Barrington SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the appropriate monthly internal loading rates were increased. Internal loading rates reflect nutrient recycling

from bottom sediments. Because much of the lake is relatively shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. Furthermore, a review of historical DO levels recorded at depth in the deepest areas of the lake show that 11 of 35 DO measurements collected near the lake bottom (bottom 3 meters) returned DO concentrations of <1.0mg/L, suggesting the potential exists for sediment loading of phosphorus as a result of anoxic conditions near the lake bottom. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. **Table 1-7** compares the observed average in-lake phosphorus to the predicted average in-lake phosphorus during the model calibration period. The SLAM model calculated a reasonably good match between the observed and predicted in-lake phosphorus values, which lends significant support to the predictive ability of this simple model. A printout of the SLAM files is provided in Appendix G of this report.

 Table 1-7 Summary of Model Confirmatory Analysis – Lake Barrington Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Site	Observed Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)	
RTZT	0.084	0.092	9.2%	

1.5.2.2 SLAM Development for Drummond Lake

Drummond Lake is a small, approximately 20-acre reservoir located in Lake County, Illinois and Fremont Township, Illinois. Drummond Lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.2.1 Model Segmentation

The SLAM for Drummond Lake was developed to include one model zone or lake segment (UTI). The sampling location and watershed boundary for Drummond Lake are shown on **Figure 1-8**.

1.5.2.2.2 Lake Hydraulics

The Drummond Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of Drummond Lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown below in **Table 1-8**.

Table 1-8 Drummond Lake (UTI) Lake Hydraulics Data	
--	--

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
UTI	None	20.7	100%	51.8	2.5	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.2.3 Watershed Parameters

Watershed inputs to SLAM for the Drummond Lake model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from

Upper Fox River/Flint Creek Watershed Drummond Lake (UTI) Watershed and Model Inputs USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in each of the lake's subbasins to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Drummond Lake is estimated to be approximately 55 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-9**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Drummond Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

News	Laka Casmant	Cubbesia Area (seres)	Annual Dhaonhamus Load (lba)
Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Drummond Lake	UTI	103	55

No known septic systems exist in the Drummond Lake watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Drummond Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.2.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Drummond Lake. The initial lake water quality condition was input to the model as the average total phosphorus concentration for all available data collected from Drummond Lake (0.186 mg/L).

1.5.2.2.5 Sediment Layer Parameters

SLAM allows for user inputs of monthly sediment nutrient fluxes, quantifying the movement of phosphorus from the shallow sediments to the water column or vice versa. Areal flux rates $(mg/m^2/day)$ can be entered as positive values for fluxes from sediments to the water column and negative values for exchanges in the opposite direction. Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the

SLAM for Drummond Lake. These rates were later adjusted during model calibration to reflect seasonal lake stratification and mixing on a monthly average basis.

1.5.2.2.6 SLAM Confirmatory Analysis

Historical water quality data for Drummond Lake, although limited, were used to help calibrate the model and confirm model calculations. The analyses presented below lend confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Drummond Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. Although calibration tolerances were limited by the small dataset available for this lake (5 samples), a somewhat reasonable match between observed and predicted in-lake phosphorus values was achieved during the calibration period, as shown in **Table 1-10**, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in Appendix G of this report.

 Table 1-10 Summary of Model Confirmatory Analysis – Drummond Lake Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
UTI	0.186	0.191	3.0%

1.5.2.3 SLAM Development for Echo Lake

Echo Lake is an approximately 25-acre private lake in southwestern Lake County. The lake is primarily used for swimming, fishing, and non-motorized boating, and is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.3.1 Model Segmentation

The SLAM for Echo Lake was developed to include one model zone or lake segment (RTZR). The sampling location and watershed boundary for Echo Lake are shown on **Figure 1-9**.

1.5.2.3.2 Lake Hydraulics

The Echo Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Total lake volume by month were input into the respective zone input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volumes were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-11**.

CDM Smith Upper Fox River/Flint Creek Watershed Echo Lake (RTZR) Watershed and Model Inputs

Table 1-11 Echo Lake (RTZR) Lake Hydraulics Data

Segment	Downstream Zone	Surface Area (acres)	Surface Area (% of total)	Volume (acre-ft)	Average Depth (ft)	Segment Mixing Length (ft)	Interface Width (ft)
RTZR	None	24.9	100%	74.7	5.25	n/a¹	n/a¹
1Cognoont Mixin	ag longth and lat	orfo og Width dat	ta innuts annly ar	lute comen	امم اعاده سعماما		

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.3.3 Watershed Parameters

Watershed inputs to SLAM for the Echo Lake model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in each of the lake's subbasins to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Echo Lake is estimated to be approximately 622 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-12**.

Table 1-12 Echo Lake Tributary Subbasin Areas and Phosphorus Loads

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Echo Lake	RTZR	1,225	622

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Echo Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

No known septic systems exist in the Echo Lake watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Echo Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly input to this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.3.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Echo Lake. The initial

lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Echo Lake (0.117 mg/L).

1.5.2.3.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Echo Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.3.6 SLAM Confirmatory Analysis

Historical water quality data for Echo Lake, although limited, were used to help calibrate the model and confirm model calculations. The analysis presented below lend confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Echo Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling and resuspension from bottom sediments. Because the lake is relatively shallow and has relatively high concentrations of suspended sediment; wind, precipitation, and waterbody uses likely result in increased resuspension of sediment. Furthermore, data from the available Lake County Lake report (Lake County 2015) show that DO levels in summer begin to decrease at depths greater than approximately eight feet, so the potential exists for sediment loading of phosphorus as a result of anoxic conditions near the lake bottom in some years. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-13**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

 Table 1-13 Summary of Model Confirmatory Analysis – Echo Lake Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTZR	0.117	0.126	7.2%

1.5.2.4 SLAM Development for Grassy Lake

Grassy Lake is an approximately 40-acre lake located near North Barrington in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.4.1 Model Segmentation

The SLAM for Grassy Lake was developed to include one model zone or lake segment (VTI). The sampling location and watershed boundary for Grassy Lake are shown on **Figure 1-10**.

Upper Fox River/Flint Creek Watershed Grassy Lake (VTI) Watershed and Model Inputs

1.5.2.4.2 Lake Hydraulics

The Grassy Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-14**.

TADIE 1-14 Grassy Lake (VTI) Lake Hydraulics Data

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
VTI	None	40.8	100%	169.4	4.2	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.4.3 Watershed Parameters

Watershed inputs to SLAM for the Grassy Lake model were developed using a combination of prescribed flows and loads and calibrated SLAM modeling outputs from models developed for two impaired lakes within Grassy Lake's watershed: Honey Lake and Echo Lake. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**. The flows were scaled using Grassy Lake's subbasin area less the watershed areas flowing to the two upstream lakes. The modeled daily outflows from calibrated SLAM models developed for Honey Lake and Echo Lake were added to the flows calculated via the area ratio method to develop the total daily inflow into Grassy Lake.

Phosphorus loads from the contributing watershed were estimated based on SLAM model outputs for Echo Lake and Honey Lake in combination with land use data and the median annual export coefficients for each land use within Grassy Lake's subbasin. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in each of the lake's subbasins to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff directly into Grassy Lake is estimated to be approximately 1,415 lbs/year based on flow and land use characteristics. An additional average annual load of 740 lbs/year of TP enters the watershed via outflows from Honey Lake and Echo Lake. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. Modeled daily TP concentrations from the calibrated SLAM models developed for Honey and Echo Lakes were multiplied by the modeled daily outflows from each of these lakes to establish daily TP load contributions from each lake. The modeled daily loads from the upstream lake models were then added to the daily overland TP concentrations developed using runoff coefficients to estimate the total daily TP load into Grassy Lake. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-15**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input

average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Grassy Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Grassy Lake Subbasin	VTI	4,287	1,415
Honey Lake ¹	RTZU	1,178	380
Echo Lake ¹	RTZR	1,225	360
Total Grassy Lake Load		6,690	2,155

Table 1-15 Grassy Lake Contributing Subbasin Areas and Phosphorus Loads

¹Phosphorus loads shown are modeled outputs from contributing lake SLAM models and reflect phosphorus loads exiting each lake at the outlet rather than loads from runoff in the contributing lake's watershed.

No known septic systems exist in the Grassy Lake watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Grassy Lake watershed were available. Due to the lack of available data and the relatively small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly input to this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.4.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Grassy Lake. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Grassy Lake (0.160 mg/L).

1.5.2.4.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Grassy Lake. These rates were later adjusted during model calibration to reflect resuspension of nutrients using a monthly average basis.

1.5.2.4.6 SLAM Confirmatory Analysis

Historical water quality data for Grassy Lake were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Grassy Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment.

Furthermore, a review of historical DO levels recorded at depths near the lake bottom suggests the potential for sediment loading of phosphorus resulting from potentially anoxic conditions near the lake bottom. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-16**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Table 1-16 Summary of Model Confirmatory Analysis – Grassy Lake Average Total Phosphorus
Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
VTI	0.160	0.157	-2.0%

1.5.2.5 SLAM Development for Honey Lake

Honey Lake is a 66-acre lake located in southwestern Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.5.1 Model Segmentation

The SLAM for Honey Lake was developed to include one model zone or lake segment (RTZU). The sampling location and watershed boundary for Honey Lake are shown on **Figure 1-11**.

1.5.2.5.2 Lake Hydraulics

The Honey Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined using GIS software. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-17**.

Table 1-17 Honey Lake (RTZU) Lake Hydraulics Data

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
RTZU	None	65.5	100%	469.8	7.2	n/a ¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.5.3 Watershed Parameters

Watershed inputs to SLAM for the Honey Lake model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land

Upper Fox River/Flint Creek Watershed Honey Lake (RTZU) Watershed and Model Inputs

use type in each of the lake's subbasins to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Honey Lake is estimated to be approximately 378 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-18**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Honey Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Table 1-18 Honey Lake Tributa	ry Subbasin Areas and Phosphorus L	oads
-------------------------------	------------------------------------	------

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Honey Lake	RTZU	1,178	378.1

No known septic systems exist in the Honey Lake watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Honey Lake watershed were available. Due to the lack of available data and the small size of the lake in relation to it's watershed, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly input to this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.5.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Honey Lake. The initial lake water quality condition was input to the model as the average total phosphorus concentration for all available data collected from Honey Lake (0.315 mg/L).

1.5.2.5.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Honey Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.5.6 SLAM Confirmatory Analysis

Historical water quality data for Honey Lake were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Honey Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the

SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. Furthermore, data from the available Lake County Lake report (Lake County 2015) show that DO levels were less than 1 mg/L during all months of the 2015 sampling season (May – September), suggesting the potential for sediment loading of phosphorus resulting from anoxic conditions near the lake bottom. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-19**, a reasonably good match between observed and predicted in-lake phosphorus values during the calibration period was achieved, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

 Table 1-19 Summary of Model Confirmatory Analysis – Honey Lake Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTZU	0.315	0.304	-3.5%

1.5.2.6 SLAM Development for Island Lake

Island Lake is an 85-acre reservoir located in Lake and McHenry counties in Illinois. The lake is dominated by a residential shoreline and is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.6.1 Model Segmentation

Although three distinct water quality sampling locations exist in Island Lake (RTZI-1, RTZI-2, RTZI-3), sample data were limited to five or fewer samples collected during a single season (2009) at stations RTZI-2 and RTZI-3, limiting the ability to calibrate a multi-year model run across each station. A significantly greater temporal distribution of sample data was available for station RTZI-1, which also corresponds to the deepest part of the lake typically used in single-point assessments. To better incorporate the existing dataset, the SLAM for Island Lake was developed as a single segment or model zone that included data inputs for each of the available sampling locations (RTZI). The sampling locations and watershed boundary for Island Lake are shown on **Figure 1-12**.

1.5.2.6.2 Lake Hydraulics

The Island Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-20**.

CDM Smith Upper Fox River/Flint Creek Watershed Island Lake (RTZI) Watershed and Model Inputs

Table 1-20 Island Lake (RTZI) Lake Hydraulics Data

Segment	Downstream Zone	Surface Area (acres)	Surface Area (% of total)	Volume (acre-ft)	Average Depth (ft)	Segment Mixing Length (ft)	Interface Width (ft)
RTZI	None	84.8	100%	443.3	5.3	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.6.3 Watershed Parameters

Watershed inputs to SLAM for the Island Lake model were developed using prescribed flows and loads in combination with calibrated SLAM modeling outputs from models developed for two impaired lakes within Island Lake's watershed: Lake Napa Suwe and Woodland Lake. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**. These flows were scaled using Island Lake's subbasin area less the watershed area flowing to the two upstream lakes. The modeled daily outflows from calibrated SLAM models developed for Lake Napa Suwe and Woodland Lake were added to the flows calculated via the area ratio method to develop the total daily inflow into Island Lake.

Phosphorus loads from the contributing watershed were estimated based on SLAM model outputs for Echo Lake and Honey Lake in combination with land use data and the median annual export coefficients for each land use within Island Lake's discrete subbasin. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff directly into Island Lake is estimated to be approximately 2,546 lbs/year based on flow and land use characteristics. An additional average annual load of 303 lbs/year of TP enters the watershed via outflows from Lake Napa Suwe and Woodland Lake. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. Modeled daily TP concentrations from the calibrated SLAM models developed for upstream lakes were multiplied by the modeled daily outflows from each of these lakes to establish daily TP load contributions from each lake. The modeled daily loads from the upstream lake models were then added to the daily overland TP concentrations developed using runoff coefficients to estimate the total daily TP load into Island Lake. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table** 1-21.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Island Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

	0	•	
Tributary Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Island Lake Subbasin	RTZI	4,814	2,546
Lake Napa Suwe ¹	STO	1,130	294
Woodland Lake ¹	STV	60	8.9
Total Island Lake Loading		6,004	2,849

Table	1-21 Island	Lake Contrik	outing Subba	sin Areas and	Phosphorus	Loads

¹ Phosphorus loads shown are modeled outputs from contributing lake SLAM models and reflect phosphorus loads exiting each lake at the outlet rather than loads from runoff in the contributing lake's watershed.

Developing the SLAM using prescribed watershed inflows allows for the user to include additional sources of phosphorus loads such as waterfowl and septic system discharges in the model as watershed inputs, as required. No known septic systems exist in the periphery of Island Lake, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Island Lake watershed were available. Due to the lack of available data and the small size of the lake in relation to it's watershed, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly input to this model. However, waterfowl and other wildlife use in the watershed are implicit to the runoff coefficients developed for land uses.

1.5.2.6.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Island Lake. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Island Lake (0.119 mg/L).

1.5.2.6.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Island Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.6.6 SLAM Confirmatory Analysis

Historical water quality data for Island Lake were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Island Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of

expected flux as defined in the available literature. As can be seen in **Table 1-22**, a reasonably good match between observed and predicted in-lake phosphorus values during the calibration period was achieved, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

 Table 1-22 Summary of Model Confirmatory Analysis – Island Lake Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTZI	0.119	0.125	4.6%

1.5.2.7 SLAM Development for Lake Fairview

Lake Fairview is a 20.5-acre reservoir located near the village of Wauconda in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.7.1 Model Segmentation

The SLAM for Lake Fairview was developed to include one model zone or lake segment (STK). The sampling location and watershed boundary for Lake Fairview are shown on **Figure 1-13**.

1.5.2.7.2 Lake Hydraulics

The Lake Fairview SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-23**.

Table 1-23 Lake Fairview (STK) Lake Hydraulics Data

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
STK	None	20.5	100%	102.4	5.0	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.7.3 Watershed Parameters

Watershed inputs to SLAM for the Lake Fairview model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in each of the lake's subbasins to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Lake Fairview is

Upper Fox River/Flint Creek Watershed Lake Fariveiw (STK) Watershed and Model Inputs

estimated to be approximately 8.6 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-24**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Lake Fairview, there are no point sources discharging to the lake or to the watershed upstream of the lake.

	Table 1-24 Lake Fail New Tributary Subbasin Aleas and Phosphorus Loads					
Name Lake Segment		Subbasin Area (acres)	Annual Phosphorus Load (lbs)			
	Lake Fairview	STK	50	8.6		

Table 1-24 Lake Fairview Tributary Subbasin Areas and Phosphorus Loads

No known septic systems exist in the Lake Fairview watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Lake Fairview watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.7.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Lake Fairview. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Lake Fairview (0.087 mg/L).

1.5.2.7.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Lake Fairview. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.7.6 SLAM Confirmatory Analysis

Historical water quality data for Lake Fairview were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Lake Fairview SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently over-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were

increased. Internal loading rates reflect nutrient resuspension from bottom sediments. Because the lake is shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-25**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Table 1-25 Summary of Model Confirmatory Analysis – Lake Fairview Average Total Phosphorus Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
STK	0.087	0.089	3.4%

1.5.2.8 SLAM Development for Lake Louise

Lake Louise is a 39-acre private lake located in the Village of Barrington in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.8.1 Model Segmentation

The SLAM for Lake Louise was developed to include one model zone or lake segment (VTZJ). The sampling location and watershed boundary for Lake Louise are shown on **Figure 1-14**.

1.5.2.8.2 Lake Hydraulics

The Lake Louise SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-26**.

Table 1-26 Lake Louise (VTZJ) Lake Hydraulics Data

Segment	Downstream	Surface	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	Area (acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
VTZJ	None	39.2	100%	157.2	4.6	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.8.3 Watershed Parameters

Watershed inputs to SLAM for the Lake Louise model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in each of the lake's subbasins to provide a median annual phosphorus load into the

CDM Smith Upper Fox River/Flint Creek Watershed Lake Louise (VTZI) Watershed and Model Inputs overall lake and to each segment. The total phosphorus load from runoff into Lake Louise is estimated to be approximately 500 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-27**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Lake Louise, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)			
Lake Louise	VTZJ	1,618	485			

Table 1-27 Lake Louise Tributary Subbasin Areas and Phosphorus Loads

No known septic systems exist in the periphery of Lake Louise, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Lake Louise or nearby watersheds were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.8.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Lake Louise. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Lake Louise (0.180 mg/L).

1.5.2.8.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Lake Louise. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.8.6 SLAM Confirmatory Analysis

Historical water quality data for Lake Louise were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Lake Louise SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently over-predicted the concentrations when compared to actual water quality

data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient resuspension from bottom sediments. Because the lake is shallow and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-28**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Table 1-28 Summary of Model Confirmatory Analysis – Lake Louise Average Total Phosphorus Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
VTZJ	0.180	0.186	3.3%

1.5.2.9 SLAM Development for Lake Napa Suwe

Lake Napa Suwe is a 60.6-acre reservoir located in southwestern Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.9.1 Model Segmentation

The SLAM for the Lake Napa Suwe system was developed to include two input model zones or lake segments corresponding with the two primary sampling stations in the lake system (Inflow and Outflow) for which there were sufficient water quality data for model setup and calibration. The water quality monitoring stations and segment boundaries for Lake Napa Suwe are shown on **Figure 1-15**. Although the model was setup with discrete inputs for two separate zones, the lake's adherence to water quality standards is assessed on a lake-wide basis and the TMDL calculations and load reductions requirements are presented as such in Section 2.

1.5.2.9.2 Lake Hydraulics

The Lake Napa Suwe SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-29**.

Segment	Downstream Zone	Surface Area (acres)	Surface Area (% of total)	Volume (acre-ft)	Average Depth (ft)	Segment Mixing Length (ft)	Interface Width (ft)
Zone 1: Inflow	Outflow	33.6	43.8%	47.0	1.4	1,740	581
Zone 2: Outflow	None	43.1	56.2%	60.3	1.4	n/a¹	n/a¹
Lake Total		76.7	100%	107.4	1.4		

Table 1-29 Lake Napa Suwe (STO) Lake Hydraulics Data

¹Segment Mixing Length and Interface Width data inputs are not applied to the most downstream segment in segmented lake models.

CDM Smith Upper Fox River/Flint Creek Watershed Lake Napa Suwe (STO) Watershed and Model Inputs

1.5.2.9.3 Watershed Parameters

Watershed inputs to SLAM for the Lake Napa Suwe model were developed using a combination of prescribed flows and loads and calibrated SLAM modeling outputs from a model developed for Drummond Lake, which is an upstream tributary to the Zone 1 subbasin of the Grassy Lake watershed two impaired lakes within Grassy Lake's watershed. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, IL using the watershed area ratio method as described in **Section 1.5.1.1**. The flows were scaled using Lake Napa Suwe's subbasin area less the watershed initially flowing to Drummond Lake. The modeled daily outflows from the calibrated SLAM models developed for Drummond Lake were added to the flows calculated via the area ratio method to develop the total daily inflow into Lake Napa Suwe.

Phosphorus loads from the contributing watershed were estimated based on SLAM model outputs for Drummond Lake as well as land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff directly to Lake Napa Suwe is estimated to be approximately 351 lbs/year based on flow and land use characteristics. An additional average annual load of 29 lbs/year of TP enters the watershed via outflows from Drummond Lake. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. Modeled daily TP concentrations from the calibrated SLAM model developed for Drummond Lake were multiplied by the modeled daily outflows from each of these lakes to establish its daily TP load contributions. The modeled daily loads from the upstream lake model were then added to the daily overland TP concentrations developed using runoff coefficients to estimate the total daily TP load into Lake Napa Suwe. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in Table 1-30.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Lake Napa Suwe, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)
Zone 1 Overland Flow to Napa Suwe	Inflow	765	272
Zone 2 Overland Flow to Napa Suwe	Outflow	267	79
Drummond Lake ¹	UTI	103	29
Total Napa Suwe Load		1,135	380

¹ Phosphorus loads shown are modeled outputs from contributing lake SLAM models and reflect phosphorus loads exiting lake at the outlet rather than loads from runoff in the contributing lake's watershed.

No known septic systems exist in the periphery of Lake Napa Suwe, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Lake Napa Suwe watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.9.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Lake Napa Suwe. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Island Lake (0.165 mg/L).

1.5.2.9.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Lake Napa Suwe. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.9.6 SLAM Confirmatory Analysis

Historical water quality data for Lake Napa Suwe were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Lake Napa Suwe SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is very shallow (maximum depth of 3.5 feet) and has relatively high concentrations of suspended sediment; wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-31**, a reasonably good match between observed and predicted in-lake phosphorus values during the calibration period was achieved, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
Zone 1: Inflow	0.199	0.193	-2.7%
Zone 2: Outflow	0.213	0.209	-1.7%
Lake Average	0.206	0.201	-2.2%

 Table 1-31 Summary of Model Confirmatory Analysis – Lake Napa Suwe Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

1.5.2.10 SLAM Development for Slocum Lake

Slocum Lake is a 217-acre natural lake located in unincorporated Wauconda Township in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.10.1 Model Segmentation

The SLAM for Slocum Lake was developed to include one model zone or lake segment (RTP). The sampling location and watershed boundary for Slocum Lake are shown on **Figure 1-16**.

1.5.2.10.2 Lake Hydraulics

The Slocum Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-32**.

Table 1-32 Slocum Lake (RTP) Lake Hydraulics Data

Segment	Downstream	Surface	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	Area (acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
RTP	None	216.9	100%	817.6	3.8	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.10.3 Watershed Parameters

Watershed inputs to SLAM for the Slocum Lake model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Slocum Lake is estimated to be approximately 2,412 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated

CDM Smith Upper Fox River/Flint Creek Watershed Slocum Lake (RTP) Watershed and Model Inputs phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-33**.

Name Lake Segment		Subbasin Area (acres)	Annual Phosphorus Load (lbs)			
Slocum Lake	RTP	5,515	2,412			

Table 1-33 Slocum Lake Tributary Subbasin Areas and Phosphorus Loads

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Slocum Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Developing the SLAM using prescribed watershed inflows allows for the user to include additional sources of phosphorus loads such as waterfowl and septic system discharges in the model as watershed inputs, as required. No known septic systems exist in the periphery of Slocum Lake, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Slocum Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.10.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Slocum Lake. The initial lake water quality condition was input to the model as the average total phosphorus concentration for all available data collected from Slocum Lake (0.167 mg/L).

1.5.2.10.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Slocum Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.10.6 SLAM Confirmatory Analysis

Historical water quality data for Slocum Lake were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Slocum Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the

lake is relatively shallow (maximum depth of 7.3 feet) and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-34**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Table 1-34 Summary of Model Confirmatory Analysis – Slocum Lake Average Total Phosphorus
Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTP	0.167	0.163	-2.8%

1.5.2.11 SLAM Development for Timber Lake (South)

Timber Lake (South) is a 32.4-acre lake located in unincorporated Cuba and Wauconda Townships in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.11.1 Model Segmentation

The SLAM for Timber Lake (South) was developed to include one model zone or lake segment (RTZQ). The sampling location and watershed boundary for Timber Lake (South) are shown on **Figure 1-17.**

1.5.2.11.2 Lake Hydraulics

The Timber Lake (South) SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-35**.

Table 1-35 Timber Lake (South) (RTZQ) Lake Hydraulics Data

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
RTZQ	None	32.4	100%	244.0	7.6	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.11.3 Watershed Parameters

Watershed inputs to SLAM for the Timber Lake (South) model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land

Upper Fox River/Flint Creek Watershed South Timber Lake (RTZQ) Watershed and Model Inputs use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Timber Lake (South) is estimated to be approximately 482 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-36**.

Table 1-56 Timber Lake (South) Thoulary Subbasin Areas and Phosphorus Loads					
Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)		
Timber Lake (South)	RTZQ	1,237	470		

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Timber Lake (South), there are no point sources discharging to the lake or to the watershed upstream of the lake.

No known septic systems exist in the periphery of Timber Lake (South), so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Timber Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.11.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Timber Lake (South). The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Timber Lake (South) (0.126 mg/L).

1.5.2.11.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Timber Lake (South). These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.11.6 SLAM Confirmatory Analysis

Historical water quality data for Timber Lake (South) were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Timber Lake (South) SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently over-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow (maximum depth of 7.6 feet) and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-37**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, which lends support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

 Table 1-37 Summary of Model Confirmatory Analysis – Timber Lake (South) Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTZQ	0.126	0.130	3.1%

1.5.2.12 SLAM Development for Tower Lake

Tower Lake is a 69.2-acre reservoir located in Lake County, Illinois. The lake is currently listed as impaired by total phosphorus with a TMDL target of 0.05 mg/L.

1.5.2.12.1 Model Segmentation

The SLAM for Tower Lake was developed to include one model zone or lake segment (RTZF). The sampling location and watershed boundary for Tower Lake are shown on **Figure 1-18**.

1.5.2.12.2 Lake Hydraulics

The Tower Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-38**.

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
RTZF	None	69.2	100%	233.6	4.5	n/a¹	n/a¹

Table 1-38 Tower Lake (RTZF) Lake Hydraulics Data

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

CDM Smith Upper Fox River/Flint Creek Watershed Tower Lake (RTZF) Watershed and Model Inputs

1.5.2.12.3 Watershed Parameters

Watershed inputs to SLAM for the Tower Lake model were developed using prescribed flows and loads in combination with calibrated SLAM modeling outputs from models developed for three impaired lakes within Tower Lake's watershed: Lake Fairview, Timber Lake (South) and Lake Barrington. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**. The flows were scaled using Tower Lake's subbasin area not including the watersheds flowing directly to the three impaired lakes upstream. The modeled daily outflows from calibrated SLAM models developed for the upstream lakes were added to the flows calculated via the area ratio method to develop the total daily inflow into Tower Lake.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use in combination with SLAM model outputs from the three upstream lakes. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff flowing directly into Tower Lake is estimated to be approximately 412 lbs/year based on flow and land use characteristics. An additional average annual load of 334 lbs/year of TP enters the watershed via outflows from Lake Fairview, Timber Lake (South) and Lake Barrington. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. Modeled daily TP concentrations from the calibrated SLAM models developed for the upstream impaired lakes were multiplied by the modeled daily outflows from each of these lakes to establish daily TP load contributions from each lake. The modeled daily loads from the upstream lake models were then added to the daily overland TP concentrations developed using runoff coefficients to estimate the total daily TP load into Tower Lake. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-39**.

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Tower Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)				
Tower Lake subbasin	RTZF	1,645	412				
Lake Fairview ¹	STK	50	5.0				
Timber Lake (South) ¹	RTZQ	1,237	296				
Lake Barrington ¹	RTZT	281	33				
Total Tower Lake		3,213	746				

¹Phosphorus loads shown are modeled outputs from contributing lake SLAM models and reflect phosphorus loads exiting each lake at the outlet rather than loads from runoff in the contributing lake's watershed.

No known septic systems exist in the periphery of Tower Lake, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Timber Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.12.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Tower Lake. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Tower Lake (0.079 mg/L).

1.5.2.12.5 Sediment Layer Parameters

Due to lack of site-specific sediment flux data, sediment nutrient flux rates were initially set to zero during the development of the SLAM for Tower Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.12.6 SLAM Confirmatory Analysis

Historical water quality data for Tower Lake were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, site-specific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Tower Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently over-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow (maximum depth of 7.5 feet) and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round. Furthermore, data from the available Lake County Lake report (Lake County 2015) show that DO levels have been measured to be <2.0 mg/L near the lake bottom, suggesting the potential for sediment loading of phosphorus as a result of anoxic conditions near the lake bottom. This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-40**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, which lends support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

Table 1-40 Summary of Model Confirmatory Analysis – Tower Lake Average Total Phosphorus

 Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
RTZF	0.079	0.077	-2.5%

1.5.2.13 SLAM Development for Woodland (Highland) Lake

Woodland (Highland) Lake is a 7.7-acre private lake located in unincorporated Wauconda Township in Lake County, Illinois. The lake is currently listed as impaired by both total phosphorus and DO. A well-established link exists between excess phosphorus, increased algal and aquatic plant (macrophyte) productivity, and decreased DO concentrations in lakes and reservoirs. As a result, reductions in total phosphorus needed to meet the water quality standard in Woodland Lake will likely result in reductions in nuisance algae and aquatic macrophyte growth, and will mitigate the impairment caused by low DO concentrations. Therefore, the impairment for DO in Woodland Lake will be addressed through the total phosphorus TMDL developed using SLAM, as discussed in the following section. The TMDL target for total phosphorus is 0.05 mg/L.

1.5.2.13.1 Model Segmentation

The SLAM for Woodland (Highland) Lake was developed to include one model zone or lake segment (STV). The sampling location and watershed boundary for Woodland (Highland) Lake are shown on **Figure 1-19**.

1.5.2.13.2 Lake Hydraulics

The Woodland (Highland) Lake SLAM was developed using prescribed rather than calculated lake hydraulics. Hydraulic parameters were specified for the entire lake system. Total lake volume by month were input into the input tabs. The surface area, volume, and depth of the lake were estimated on an annual basis as there is no evidence to support modeling water elevation fluctuation over the course of a year. Segment lengths, interface widths, and surface areas were determined in GIS. Lake depth and volume were estimated from available sampling and bathymetric data. A summary of these inputs is shown in **Table 1-41**.

Table 1-41 Woodland (Highland) Lake (STV) Lake Hydraulics Data

Segment	Downstream	Surface Area	Surface Area	Volume	Average	Segment Mixing	Interface
	Zone	(acres)	(% of total)	(acre-ft)	Depth (ft)	Length (ft)	Width (ft)
STV	None	7.7	100%	28.9	3.7	n/a¹	n/a¹

¹Segment Mixing Length and Interface Width data inputs apply only to segmented lake models.

1.5.2.13.3 Watershed Parameters

Watershed inputs to SLAM for the Woodland (Highland) Lake model were developed using prescribed flows and loads. Daily flows into the reservoir were estimated by scaling the available gauge data from USGS gauge 05527950 Mill Creek at Old Mill Creek, Illinois using the watershed area ratio method as described in **Section 1.5.1.1**.

Phosphorus loads from the contributing watershed were estimated based on land use data and the median annual export coefficients for each land use. Export coefficients for each land use category were extracted from the Appendix USEPA's PLOAD version 3.0 user's manual (Appendix F). The export coefficients for each land use were multiplied by the number of acres of each land

Upper Fox River/Flint Creek Watershed Woodland (Highland) Lake (STV) Watershed and Model Inputs use type in the lake's subbasin to provide a median annual phosphorus load into the overall lake and to each segment. The total phosphorus load from runoff into Woodland (Highland) Lake is estimated to be approximately 20 lbs/year based on flow and land use characteristics. The annual total phosphorus load from overland runoff was then scaled to the daily flow estimates to estimate the daily phosphorus load into the reservoir as a function of flow. The subbasin area and estimated phosphorus load as a function of land use characteristics in each lake segment's overland subbasin and the relative percent of the total load is provided in **Table 1-42**.

able 1-42 woodiand (fighland) take modulary Subbasin Areas and Phosphorus toads					
Name	Lake Segment	Subbasin Area (acres)	Annual Phosphorus Load (lbs)		
Woodland (Highland) Lake	STV	60	20		

Table 1-42 Woodland (Highland) Lake Tributary	Subbasin Areas and Phosphorus Loads
---	-------------------------------------

Phosphorus loads from point source discharges can be explicitly included as supplemental water in the watershed inputs to the SLAM. The supplemental water input allows the user to input average monthly discharge and monthly average phosphorus concentrations in the discharge along with the fraction of the load as particulate phosphorus. In the case of Woodland (Highland) Lake, there are no point sources discharging to the lake or to the watershed upstream of the lake.

No known septic systems exist in the Woodland (Highland) Lake watershed, so estimates of septic system loading were not included. Although waterfowl are a known contributor to phosphorus loads to lakes in the region, no estimates of waterfowl populations in the Woodland (Highland) Lake watershed were available. Due to the small size of the lake, waterfowl populations on a waterfowl-year basis were assumed to be minimal and to result in a negligible (<1%) phosphorus load into the lake. Therefore, total phosphorus loads from waterfowl use are not explicitly entered into this model. However, waterfowl and other wildlife use in the watershed are accounted for implicitly by runoff coefficients developed for land uses.

1.5.2.13.4 Lake Nutrient Parameters

Due to limited availability of site-specific data, the nutrient uptake and settling rates were set to model-default values derived from literature for the SLAM developed for Woodland (Highland) Lake. The initial lake water quality condition was entered into the model as the average total phosphorus concentration for all available data collected from Woodland (Highland) Lake (0.091 mg/L).

1.5.2.13.5 Sediment Layer Parameters

Sediment nutrient flux rates were initially set to zero during the development of the SLAM for Woodland (Highland) Lake. These rates were later adjusted on a monthly average basis during model calibration to reflect resuspension of nutrients.

1.5.2.13.6 SLAM Confirmatory Analysis

Historical water quality data for Woodland (Highland) Lake, although limited, were used to help calibrate the model and confirm model calculations. The analysis presented below lends confidence to the modeling; however, additional lake and tributary water quality data, sitespecific sediment characterization, as well as more precise land use and flow data could potentially contribute to a more thorough calibration of the model.

The Woodland (Highland) Lake SLAM was initially simulated assuming default phosphorus kinetic parameters (assimilation and decay) and no internal phosphorus loading. When using these loadings, the SLAM consistently under-predicted the concentrations when compared to actual water quality data. To achieve a better match with actual water quality data, the internal loading rates were increased. Internal loading rates reflect nutrient recycling from bottom sediments. Because the lake is relatively shallow (maximum depth of 7.5 feet) and has relatively high concentrations of suspended sediment, wind, precipitation, and waterbody uses likely result in increased resuspension of sediment year-round This lends confidence to the potential for internal loading at rates well within the range of expected flux as defined in the available literature. As can be seen in **Table 1-43**, a reasonably good match between observed and predicted in-lake phosphorus values was achieved during the calibration period, lending support to the predictive ability of this simple model. A printout of the SLAM files is provided in **Appendix G** of this report.

 Table 1-43 Summary of Model Confirmatory Analysis – Woodland (Highland) Lake Average Total

 Phosphorus Concentrations (mg/L) During Model Calibration Period

Segment	Observed Surface Concentration (mg/L)	Predicted Concentration (mg/L)	Percent Difference (%)
STV	0.091	0.086	-5.1%

1.5.3 Spreadsheet Analyses for Lake Impairments Caused by Fecal Coliform

As discussed in Section 5.2.3 of the Stage 1 report, the available fecal coliform data confirm that three of the lakes in the Fox River/Flint Creek Watershed are impaired by fecal coliform (Lake Barrington [RTZT], Honey Lake [RTZU], and Tower Lake [RTZF]), based on the 200 cfu/100ml weekly average standard. Spreadsheet calculations were performed for the three lakes to determine the reductions in fecal coliform loading into each lake required to meet the standard. There are no active NPDES discharge sources in the Lake Barrington, Honey Lake, or Tower Lake subbasins. Spreadsheet inputs therefore included the target value, watershed flow estimates, the relative proportion of the lake watershed made up by each subbasin, measured in-lake fecal coliform concentrations to calculate the current daily load of fecal coliform into each lake (lbs/day), the target load (lbs/day), and the percent reduction needed in order to meet the TMDL target.

1.5.4 Spreadsheet Analyses for Lake Impairments Caused by TSS

Spreadsheet calculations were performed for the 12 TSS-impaired lakes to determine the reductions in TSS loading into each lake required to meet the watershed-specific target value established by Illinois EPA of 11.3 mg/L. Spreadsheet inputs included the target value, watershed flow estimates, the relative proportion of the lake watershed made up by each subbasin, and measured in-lake TSS concentrations to calculate the current daily load of TSS into each lake (lbs/day), the target load (lbs/day), and the percent reduction needed in order to meet the LRS target.

Section 2

Total Maximum Daily Loads for the Upper Fox River/Flint Creek Watershed

2.1 TMDL Endpoints for the Upper Fox River/Flint Creek Watershed

The TMDL endpoints and LRS target values for impairments in the Upper Fox River/Flint Creek watershed are summarized in **Table 2-1**. For all parameters except DO, impairments occur when concentrations are greater than the TMDL endpoint or LRS target value. The DO TMDL endpoint is based on a minimum concentration water quality standard. The TMDL endpoints for fecal coliform and DO vary seasonally while all other endpoints are consistent throughout the year. All of these endpoints, except for the endpoints established for fecal coliform, total phosphorus in lakes, and sedimentation/siltation are based on protection of aquatic life in the impaired segments/lakes in the Upper Fox River/Flint Creek watershed. The TMDL endpoint for fecal coliform is based on protection of the primary body contact recreational use. The endpoints for total phosphorus in lakes and sedimentation/siltation are based on protection are based on protection of the aesthetic quality designated use.

Parameters with numeric water quality standards are assessed via TMDLs and the TMDL endpoints directly correlate to the lowest applicable water quality standard established for a given parameter. Parameters without numeric water quality standards were assigned a watershed-specific LRS target value by Illinois EPA. The LRS targets are based on instream data from all stream segments within the HUC-10 basin of the watershed, as well as nearby stream segments or lakes in neighboring HUC-10 basins. Load reduction targets were calculated by Illinois EPA using data from stream segments whose most current assessment shows full support for aquatic life and data that has passed quality assurance and quality checks within Illinois EPA and are in accordance with state and federal laws. These target values are intended to serve as planning tools for overall water quality improvement strategies in the watershed.

Waterbody Name		Assessment	
(Segment ID)	Impairment	Туре	TMDL Endpoint or Target Value
	Fecal Coliform	TMDL	200 cfu/100 mL
	Chlarida	Recommend	500 mg/l
Fox Pivor DT 22	Chioride	Delisting	SOO HIg/L
FOX RIVEL D1-22	Coppor	Recommend	18 6 ug/l
	Copper	Delisting	10.0 µg/L
	Sedimentation/Siltation	LRS	7.0 mg/L as NVSS
	Phosphorus	TMDL	0.05 mg/L
Lake Barrington (RTZT)	Fecal coliform	TMDL	200 cfu/100 mL
	TSS	LRS	11.3 mg/L
Drummond Lako (UTI)	Phosphorus	TMDL	0.05 mg/L
Drummonu Lake (UTI)	TSS	LRS	11.3 mg/L

Table 2 1 TMDI Fad	nainte fau luchaine	Cometitus ante in the l	Immon Fox Divon	/Elimt Creal ()A/atarahad
Table Z-1 LIVIDL End	points for impaired	i Constituents in the C	Joder Fox River	/Fiint Creek watersned

Waterbody Name		Assessment			
(Segment ID)	Impairment	Туре	TMDL Endpoint or Target Value		
Echo Lako (DT7D)	Phosphorus	TMDL	0.05 mg/L		
ECHO Lake (KTZK)	TSS	LRS	11.3 mg/L		
Grassy Lake (V/TI)	Phosphorus	TMDL	0.05 mg/L		
Glassy Lake (VII)	TSS	LRS	11.3 mg/L		
	Phosphorus	TMDL	0.05 mg/L		
Holley Lake (K120)	Fecal coliform	TMDL	200 cfu/100 mL		
Island Lake (PT71)	Phosphorus	TMDL	0.05 mg/L		
ISIdilu Lake (RTZI)	TSS	LRS	11.3 mg/L		
Laka Faimiaw (CTK)	Phosphorus	TMDL	0.05 mg/L		
Lake Fairview (STK)	TSS	LRS	11.3 mg/L		
Laka Nana Guura (CTO)	Phosphorus	TMDL	0.05 mg/L		
Lake Napa Suwe (STO)	TSS	LRS	11.3 mg/L		
	Phosphorus	TMDL	0.05 mg/L		
Lake Louise (VTZJ)	TSS	LRS	11.3 mg/L		
	Phosphorus	TMDL	0.05 mg/L		
Slocum Lake (RTP)	TSS	LRS	11.3 mg/L		
Timber Lake (DTZO)	Phosphorus	TMDL	0.05 mg/L		
Timber Lake (RTZQ)	TSS	LRS	11.3 mg/L		
	Phosphorus	TMDL	0.05 mg/L		
Tower Lake (RTZF)	TSS	LRS	11.3 mg/L		
	Fecal coliform	TMDL	200 cfu/100 mL		
	Phosphorus	TMDL	0.05 mg/L		
Woodland (Highland)	Dissolved Owger ¹	No TMDL	5.0 mg/L minimum (March -July)		
Lake (STV)	Dissolved Oxygen.	Developed ¹	3.5 mg/L minimum (August-February)		
	TSS	LRS	11.3 mg/L		

¹DO is directly related to excess nutrients and will be addressed through the total phosphorus TMDL.

2.2 Pollutant Sources and Linkages

Potential pollutant sources for impaired lakes and streams in the Upper Fox River/Flint Creek watershed include both point and nonpoint sources. Load duration curves were developed for the copper, fecal coliform, and chloride TMDLs, as well as for the sedimentation/siltation LRS in the impaired stream segment (DT-22). Load duration curves are useful in that they provide a link between historical sampling values and hydraulic condition. Spreadsheet calculations were also developed for the fecal coliform TMDLs in the three impaired lakes (Lake Barrington, Honey Lake, and Tower Lake). **Table 2-2** shows the example source area/hydrologic condition consideration developed by USEPA. Pollutant sources for TSS in lakes are assumed to be similar to those identified for stream segments impaired by these parameters.

Table 2-2 Example Source Area/Hydrologic Condition Considerations (USEPA 2007)

	Duration Curve Zone					
Contributing Source Area	High Flow	Moist	Mid-Range	Dry	Low Flow	
Point Source				М	Н	
Onsite Wastewater System			Н	М		
Riparian Areas		Н	Н	Н		
Stormwater: Impervious Areas		Н	Н	Н		
Combined sewer overflows	Н	Н	Н			
Stormwater: Upland	Н	Н	М			
Bank Erosion	Н	М				

Note: potential relative importance of source area to contribute loads under given hydrologic conditions (H: High, M: Medium)

Other pollutant sources and their linkages to the impaired lakes were established through the SLAM efforts as discussed in **Section 1**. Modeling indicated that loads of total phosphorus originate from both internal and external sources. Overall the primary potential sources of nutrients in the impaired lake watersheds may include point sources (NPDES and stormwater discharges), nonpoint sources (overland runoff from parks, forests, and developed areas), and internal loading from lake sediments. Nutrients bound in eroded soils and plant materials are introduced to the waterbodies through runoff from precipitation events. Once in the waterbodies, nutrients are introduced to the water column and/or nutrient rich soils and plant materials settle to the bottom perpetuating the internal cycling of nutrients.

Further pollutant source discussion is provided throughout this section and implementation activities to reduce loading from the potential sources are outlined in **Section 3**.

2.3 TMDL Allocation

The TMDLs for impaired segments in the Upper Fox River/Flint Creek watershed are addressed using the following equation:

$\mathsf{TMDL} = \mathsf{LC} = \mathsf{\Sigma}\mathsf{WLA} + \mathsf{\Sigma}\mathsf{LA} + \mathsf{MOS} + \mathsf{RC}$

where:

- LC = Loading capacity the maximum amount of pollutant loading a water body can receive without violating water quality standards
 - WLA = Waste load allocation the portion of the TMDL allocated to existing or future point sources
 - LA = Load allocation the portion of the TMDL allocated to existing or future nonpoint sources and natural background
 - MOS = Margin of safety an accounting of uncertainty about the relationship between pollutant loads and receiving water quality
 - RC = Reserve capacity the portion of the load explicitly set aside for future population growth and additional development in the watershed

Each of these elements will be discussed in this section as well as consideration of seasonal variation in the TMDL calculation.

2.3.1 Fecal Coliform TMDL

Fox River segment DT-22 is listed for impairment of the primary contact recreational use caused by fecal coliform. A load duration curve was developed (see **Section 1**) to determine load reductions needed to meet the instream water quality standards under varying flow scenarios.

2.3.1.1 Loading Capacity

The LC is the maximum amount of fecal coliform that Fox River segment DT-22 can receive and still maintain

Table 2-3: Fecal Coliform Loading
Capacity for Fox River DT-22

Estimated Mean Daily Flow (cfs)	Load Capacity (mil col/day)
1	4,894
5	24,466
10	48,932
50	244,663
100	489,332
500	2,446,689
1,000	4,893,434
5.000	24,467,455

compliance with the water quality standards. The allowable fecal coliform loads that can be generated in the watershed and still maintain the geometric mean standard of 200 cfu/100 mL were determined with the methodology discussed in Section 1. The fecal coliform LC according to flow is presented in **Table 2-3**.

2.3.1.2 Seasonal Variation

Consideration of seasonality is inherent in the load duration analysis. Because the load duration analysis represents the range of expected stream flows, the TMDL has been calculated to meet the standard during all flow conditions. In addition, seasonality is addressed because the TMDL has been calculated to address loading only when the seasonal standard is applicable (May through October).

The critical period for fecal coliform is the primary contact recreation season which is May through October each year. There is no one critical flow condition during the recreation season. The fecal coliform standard must be met under all flow scenarios and standard exceedances have occurred during several of flow scenarios. By using the load duration curve method, all of these "critical conditions" are accounted for in the loading allocations.

2.3.1.3 Margin of Safety

The MOS can be implicit (incorporated into the TMDL analysis through conservative assumptions) or explicit (expressed in the TMDL as a portion of the loadings) or a combination of both. The MOS for the Fox River DT-22 TMDL is implicit as the analysis used the more conservative 200 cfu/100 mL standard and did not consider die-off of bacteria which is likely occurring in the system but is unquantified.

In addition, the use of the DMF in place of the more common DAF at higher flow conditions for each point source facility in the WLA calculations serves as a conservative measure in the TMDL calculations. This methodology essentially allows for each facility to use the entire treatment and discharge capacity available while adhering to the assigned WLA.

2.3.1.4 Waste Load Allocation

WLAs for fecal coliform TMDLs are applied to individually permitted facilities, CSOs, and MS4s that exist discharge directly to segment DT-22 or to tributaries upstream of DT-22 within the Upper Fox River/Flint Creek watershed, as described below. No CSO discharges exist within the DT-22 subbasin.

Individual NPDES permitted facilities

Thirteen individually NPDES permitted discharges are present within the Fox River DT-22 subbasin, eleven of which have the potential to discharge fecal coliform-containing effluent (**Figure 2-1**). Details on each NPDES permit are provided in **Table 2-4**. Several of these facilities currently have an existing permitted effluent limit for fecal coliform bacteria of 400 cfu/100ml as a daily maximum value and the IAWC-Terra Cotta STP (IL0038202) has applied for and received a year-round disinfection exemption, which allows a facility to discharge wastewater without disinfection but the facility must comply with the geometric mean fecal coliform water quality standard of 200 cfu/100 ml at the end of the exempted reach as determined by Illinois EPA. In all cases, the most stringent instream fecal coliform water quality standard (200 cfu/100 ml as a

Upper Fox River/Flint Creek Watershed Fox River (DT-22) Subbasin- Individually Permitted NPDES Facilities

geometric mean) and each facilities' DAF values were used to set the WLAs for low and moderate flow levels.

As a means of including additional capacity in the TMDL calculation, each facility's DMF was used to calculate the WLAs during the highest 50% of in-stream flow conditions while the facility's DAF was used to calculate WLA at lower stream flow levels (see discussion in **Section 2.3.1.5**). The use of the DMF in place of the more common DAF at higher flow conditions for each point source facility in the WLA calculations serves as an additional conservative measure in the TMDL calculations. This methodology essentially allows for each facility to use the entire treatment and discharge capacity available while still remaining within the WLA.

The DAF and DMFs were multiplied by the facility's permit limit for fecal coliform to establish the WLA for that facility, shown in **Table 2-4**. WLAs from point source discharges are applied to each discharge point for the segment receiving the discharge or the nearest impaired segment downstream of the discharge. WLAs are not calculated for additional impaired segments downstream of the receiving segment, as the segment nearest the discharge will mathematically have the least assimilative capacity, and the calculation of WLAs for this segment will be protective of all downstream segments.

NPDES Permit Number	Facility	DAF (MGD)	WLA- DAF (mil. col/Day)	DMF (MGD)	WLA-DMF (mil. col/Day)
IL0001716	Rohm & Haas Chemical, LLC	2.463	n/a¹	n/a	n/a¹
IL0020109	Wauconda Village WWTF	1.9/2.42	18,172	5.693/7.93 ²	60,043
IL0027286	Mount Saint Joseph Home STP	0.0125	95	0.025	189
IL0031933	Northern Moraine WW Rec Dist WWTP	2	15,143	5	37,858
IL0038202	IAWC-Terra Cotta STP ¹	0.1/1.02	7,572	0.25/3.0 ²	22,715
IL0053457	City of Crystal Lake WWTP #3	1.7	12,872	5	37,858
IL0065480	Snap-On Tools Co	0.009	68	n/a	68
IL0070874	Port Barrington Shores STP	0.012	91	0.0504	382
IL0072851	Mathews Company	0.0039	n/a¹	n/a	n/a¹
IL0074969	Johnsburg STP, Village Of	0.5	3,786	1.62	12,266
IL0075973	Oak Creek Townhomes WWTF	0.0137	104	0.0528	400
IL0077836	Wonder Lake Water Reclamation Facility	1.0/2.0 ³	15,143	3.0/6.0 ³	45,430
IL0079553	Huntsman International LLC	0.3	n/a¹	n/a	n/a ¹

Table 2-4 WLAs for Fecal Coliform from Permitted Discharges in the Fox River DT-22 Subwatershed

¹ Facility without reasonable potential to discharge fecal coliform

² Existing plant/new plant – WLAs calculated with new/proposed flows

³ Phase 1/Phase 2 of plant expansion – WLAs calculated with Phase 2 flows

Note that the permitted effluent limit for fecal coliform for several of the facilities in this watershed is currently based on the 400 cfu/100ml daily maximum standard (not to be exceeded by more than 10% of samples collected in a 30-day period), which is not the most conservative water quality standard applicable to these stream segments. The most stringent applicable standard, and the one used as a TMDL endpoint for this watershed is currently the 200 cfu/100ml monthly geometric mean standard.

<u>MS4 Discharges</u>

MS4s represent runoff from municipal areas with separate stormwater sewer systems. MS4s are regulated discharges and therefore, are allocated through WLAs rather than LAs. WLAs for MS4s are calculated by first determining the total area within a municipality's boundaries that lies within the target watershed using GIS analyses and geographic data for municipal boundaries from the U.S. Census Department (2013).

The proportion of total MS4 area to total watershed area was then calculated for each subwatershed. This proportion was then used to migrate loads from previously calculated LAs for overland runoff to WLAs for MS4 areas in each flow category. The most stringent applicable standard of 200 cfu/100ml as a monthly geometric mean, was used to calculate fecal coliform WLAs for MS4s in this watershed. This process effectively transfers MS4 load allocations for overland runoff from non-regulated sources described as LAs to the WLA for regulated sources of contaminants. As MS4 allocations are tied to overland runoff in urban areas, they are therefore related to higher flow conditions in the stream. As a result, the WLAs for MS4s are only applied to the upper 50% of flow categories (mid-range to high flows) for each segment. The total MS4 load allocations for fecal coliform that are applied to the proportion of each municipality within the impaired reach's subbasin are shown for each applicable flow category in **Table 2-5**.

												Low
			High		Moist		Mid-Ra	nge		Dry		Flow
		Area in										90 –
		Basin	0 100/	40 200/	20 200/	30 -	40 500/	50-	60-	70-	80-	100
NPDES ID	iviunicipality	(acres)	0-10%	10-20%	20 - 30%	40%	40 - 50%	60%	70%	80%	90%	%
ILR400281	Antioch	3,768	143,784	81,066	59,052	42,854	33,149	-	-	-	-	-
ILR400310	Cary	352	13,446	7,581	5,522	4,007	3,100	-	-	-	-	-
ILR400179	Crystal Lake	2,892	110,340	62,210	45,317	32,886	25,438	-	-	-	-	-
ILR400339	Fox Lake	6,175	235,617	132,842	96,769	70,224	54,320	-	-	-	-	-
ILR400202	Grayslake	497	18,948	10,683	7,782	5,647	4,368	-	-	-	-	-
ILR400205	Hainesville	1,118	42,659	24,052	17,520	12,714	9,835	-	-	-	-	-
	Hawthorn											
ILR400209	Woods	828	31,593	17,812	12,975	9,416	7,284	-	-	-	-	-
ILR400493	IDOT	227	8,668	4,887	3,560	2,583	1,998	-	-	-	-	-
ILR400632	Island Lake	2,301	87,803	49,504	36,061	26,169	20,243	-	-	-	-	-
	Lake											
ILR400216	Barrington	1,552	59,217	33,387	24,321	17,649	13,652	-	-	-	-	-
ILR400517	Lake County	59	2,245	1,266	922	669	518	-	-	-	-	-
ILR400369	Lake Villa	4,225	161,230	90,902	66,218	48,053	37,171	-	-	-	-	-
ILR400371	Lakemoor	3,352	127,903	72,112	52,530	38,121	29,487	-	-	-	-	-
ILR400276	Lindenhurst	2	91	52	38	27	21	-	-	-	-	-
	McCullom											
ILR400225	Lake	241	9,191	5,182	3,775	2,739	2,119	-	-	-	-	-
ILR400385	McHenry	9,620	367,088	206,965	150,764	109,408	84,630	-	-	-	-	-
	McHenry											
	County Div.											
ILR400264	of Trans.	85	3,258	1,837	1,338	971	751	-	-	-	-	-
ILR400395	Mundelein	466	17,778	10,023	7,301	5,299	4,099	-	-	-	-	-
	North											
ILR400228	Barrington	114	4,353	2,454	1,788	1,297	1,004	-	-	-	-	-
	Oakwood		20.762			0.460						
ILR400512	Hills	806	30,763	17,344	12,634	9,169	7,092	-	-	-	-	-
11 0400510	Port	025	21 405	17 751	12 021	0.204	7 250					
ILK400519	ваттіпдтоп	825	51,485	1/,/51	12,931	9,384	1,259	-	-	-	-	-

Table 2-5 Fecal Coliform WLA (mil col/Day) for MS4 Areas in Fox River Segment DT-22

			High		Moist		Mid-Ra	nge		Dry		Low Flow
NPDES ID	Municipality	Area in Basin (acres)	0 - 10%	10 - 20%	20 - 30%	30 - 40%	40 - 50%	50– 60%	60– 70%	70- 80%	80- 90%	90 - 100 %
ILR400439	Round Lake Beach	2,880	109,874	61,948	45,126	32,747	25,331	-	-	-	-	-
ILR400241	Round Lake Heights	390	14,889	8,395	6,115	4,438	3,433	-	-	-	-	-
ILR400242	Round Lake Park	1,431	54,608	30,788	22,428	16,276	12,590	-	-	-	-	-
ILR400243	Round Lake	3,634	138,661	78,177	56,948	41,327	31,968	-	-	-	-	-
ILR400520	Spring Grove	5,650	215,575	121,542	88,537	64,250	49,700	-	-	-	-	-
ILR400249	Tower Lakes	661	25,226	14,223	10,360	7,518	5,816	-	-	-	-	-
ILR400657	Volo	2,584	98,583	55,582	40,488	29,382	22,728	-	-	-	-	-
ILR400501	Wauconda	3,669	140,006	78,936	57,501	41,728	32,278	-	-	-	-	-
ILR400503	Wonder Lake	3,800	145,006	81,755	59,554	43,218	33,430	-	-	-	-	-
ILR400499	Woodstock	5,258	200,642	113,123	82,404	59,800	46,257	-	-	-	-	-

2.3.1.5 Reserve Capacity

A portion of the fecal coliform TMDL's LC was set as a RC to allow for future population growth and development. In the case of the Fox River DT-22 TMDL, each of the potentially contributing facilities currently operate at average discharge rates well below their respective design flows. All TMDL calculations included planned future design flows in the WLA calculations for each facility to account for possible increases in point source discharges as populations in the area grow over time. Per USEPA guidance, outlined in the NPDES permits, the use of the DMF in place of the more common DAF at higher flow conditions for each point source facility in the WLA calculations serves as a conservative measure in the TMDL calculations. This methodology essentially allows for each facility to use the entire treatment and discharge capacity available while still remaining within the WLA.

In addition, each of the facilities with disinfection exemptions will be required to reapply for their chlorination exemption prior to permit renewals. Expansion of treatment operations as a result of increased development in the area will require further review of disinfection exemptions and provide the opportunity to implement disinfection requirements should they be necessary to meet in stream TMDL targets. The likely reduction in fecal coliform waste loads effectively provides additional reserve capacity should population growth increase in the watershed.

2.3.1.6 Load Allocation and TMDL Summary

Table 2-6 shows a summary of the fecal coliform TMDL for Fox River segment DT-22. The WLA was calculated using the appropriate design flow for each facility and the 200 cfu/100 mL water quality standard.

Zone	Flow Exceedance Range (%)	LC (mil col/day)	LA (mil col/day)	WLA (mil col/day)	MOS	Actual Load ¹ (mil col/day)	Percent Reduction Needed (%)
High	0 - 10	15,499,866	11,082,138	2,867,741	1,549,987	121,377,401	87%
Moist	10 - 20	8,844,162	6,248,155	1,711,590	884,416	no data	no data
WOISt	20 - 30	6,508,054	4,551,459	1,305,789	650,805	18,392,022	65%

Table 2-6 Fecal Coliform TMDL for Fox River Segment DT-22

	30 - 40	4,789,031	3,302,947	1,007,181	478,903	812,008	0%
Mid Dange	40 - 50	3,598,938	2,554,932	684,112	359,894	no data	no data
wild-Kalige	50 - 60	2,928,960	2,563,019	73,045	292,896	111,400,261	97%
	60 - 70	2,404,438	2,090,948	73,045	240,444	487,058	0%
Dry	70 - 80	1,888,731	1,626,812	73,045	188,873	586,664	0%
	80 - 90	1,439,140	1,222,181	73,045	143,914	125,854	0%
Low Flow	90 - 100	738,308	591,432	73,045	73,831	761,347	3%

¹ Actual Load was calculated using the 90th percentile of observed concentrations in a given flow range (USEPA 2007)

Exceedances of the fecal coliform standard occurred across three of the five possible flow categories. The 90th percentile of the values across a given flow range were used in the actual load calculations and the resulting percentage of necessary load reduction by flow category range from 0% to 97%. In general, greater percent reductions are needed in the higher flow categories suggesting that fecal coliform loads in this waterbody are largely a response to high runoff conditions. Recommendations for reducing in-stream fecal coliform concentrations on these segments are discussed in **Section 3** of this report.

2.3.2 Total Phosphorus TMDL for Lakes

2.3.2.1 Loading Capacity

TMDLs were developed for the 13 phosphorus-impaired lakes within the Upper Fox River/Flint Creek watershed to determine the pounds of total phosphorus that can be assimilated by each lake per day while still meeting the applicable water quality standard. The lowest applicable water quality standard and TMDL target for total phosphorus is 0.05 mg/L. The allowable phosphorus loads that can be generated in the watershed and still maintain water quality standards were determined using the SLAMs discussed in **Section 1**.

To calculate the LC, the current total phosphorus load into each lake was first calculated in the model using values from the historical data. The current calculated loads from internal and external sources were then iteratively reduced in the model until the water quality standards were met by the 90th percentile of all projected daily concentrations at each sampling station within a lake. The SLAM calculates daily concentrations of total phosphorus for each modeled segment based on a depth-integrated average concentration while lakes are assessed for impairment of total phosphorus based only on the concentrations reported for the surface of the lake. As surface and epilimnetic concentrations are typically lower than the hypolimnetic and depth-integrated average concentration with standards assessed at the surface, and will therefore be protective of all designated uses of the impaired waterbody. The total allowable loads of total phosphorus into Upper Fox River/Flint Creek watershed lakes, calculated through SLAM, are shown in **Table 2-7**.

2.3.2.2 Seasonal Variation

A season is represented by changes in weather; for example, a season can be classified as warm or cold as well as wet or dry. Seasonal variation is accounted for in the total phosphorus TMDLs by developing the model and performing all calculations of load on an annual basis. Modeling was performed for a 16-year period (2000-2015) for each lake and takes into account the seasonal effects each lake will undergo during a given year. Since the pollutant source can be expected to contribute loadings in different quantities during different time periods (e.g., seasonal changes in precipitation result in different runoff characteristics at different times of year), the loadings for this TMDL are focused on average annual loadings converted to daily loads rather than specifying different

Lake in the Upper Fox River/Flint Creek Watershed							
Waterbody	Segment	Total Phosphorus Loading Capacity (lbs/day)					
Lake Barrington	RTZT	0.656					
Drummond Lake	UTI	0.124					
Echo Lake	RTZR	0.582					
Grassy Lake	VTI	1.497					
Honey Lake	RTZU	0.654					
Island Lake	RTZI	2.297					
Lake Fairview	STK	1.127					
Lake Napa Suwe	STO	0.415					
Lake Louise	VTZJ	0.392					
Slocum Lake	RTP	2.660					
Lake Louise	VTZJ	0.390					
Timber Lake (South)	RTZQ	0.550					
Slocum Lake	RTP	2.665					
Timber Lake (South)	RTZQ	0.548					
Tower Lake	RTZF	1.121					
Woodland (Highland) Lake	STV	0.038					

Table 2-7 Estimated Phosphorus Loading Capacities

for Each Segment of Each Phosphorus-Impaired

loadings by season. Each lake will each experience critical conditions pertaining to phosphorus concentrations every year in mid to late summer based on the growing season. Because the models use daily time-steps over a multi-year period for TMDL development, the critical conditions for each waterbody are accounted for within the analysis.

2.3.2.3 Margin of Safety

The MOS can be implicit (incorporated into the TMDL analysis through conservative assumptions), explicit (expressed in the TMDL as a portion of the loadings), or a combination of both. The MOS for the lake TMDLs are both implicit and explicit. An explicit MOS of 10% was included to account for the lack of site-specific data available within the lake watersheds.

In addition to the explicit MOS of 10%, the analyses completed for these waterbodies were conservative as a result of the default coefficients and values used in each SLAM, which were developed to be conservative in nature in the absence of site-specific information. Default model values, such as dispersion rates, are based on scientific data accumulated from a large survey of lakes. Wherever site-specific data are not available, default model rates are used which are based on error analysis calculations. SLAM and the default values incorporated within the model provide a conservative range of where the predictions could fall and provide confidence in the predicted values.

2.3.2.4 Waste Load Allocation

WLAs for phosphorus TMDLs are applied to individually permitted facilities and MS4s that exist in the Upper Fox River/Flint Creek watershed, as described below. No CSO discharges exist within the watersheds of any of the impaired lakes.

Individual NPDES permitted facilities

Within the Upper Fox River/Flint Creek subbasin, there are seven NPDES permitted facilities which have permit limits for phosphorus, and three additional facilities which are only required to monitor (no specified effluent concentration limits). The cumulative effect of the point sources on total phosphorus loading within the greater watershed can be significant and warrants the development of WLAs in the TMDL calculations for waters receiving point source effluent. However, only one of the impaired lakes (Grassy Lake) in the Upper Fox River/Flint Creek watershed currently receives discharge from NPDES permitted facilities with reasonable potential to discharge total phosphorus. Facility names, flow rates, and WLAs for the two permitted point sources within the Grassy Lake watershed are detailed in **Table 2-8**.

Where available, the total phosphorus effluent limit from each facility's permit is typically used as the input concentration for modeling. However, none of the permitted facilities with potential to discharge phosphorus to impaired lakes in this watershed currently have effluent limits for total phosphorus. Following a thorough review of similar NPDES Permits, Discharge Monitoring Reports for facilities with total phosphorus (TP) effluent limits and "Monitoring Only" requirements (see Appendix H), and using best professional judgement, each facility was assigned an estimated average phosphorus concentration in the discharge based on the facility type and treatment processes employed. The Mount Saint Joseph Home-STP (IL0027286) uses an Imhoff tank and sand filtration treatment in the current NPDES permit and was assigned an estimated average total phosphorus concentration of 5.0 mg/L. North Barrington Elementary School STP (IL0024716) uses septic tanks and recirculating sand filtration in its treatment process and was assigned average total phosphorus concentrations of 7.0 mg/L. These values were at the upper range of estimated concentrations for these types of facilities and were used with the intent that current permits will not require nutrient removal technologies to be implemented at this time. Future plant expansions and new facilities may be subject to applicable water quality standards or technologically achievable Water Quality Based Effluent Limits (WQBELs).

Flow estimates for both facilities were based on each facility's DAF. The estimated flow and total phosphorus concentrations for each point source were used to calculate WLAs for each facility. These values are summed to provide an estimate of the total WLA for total phosphorus in the impacted subbasin. At this time, no changes to the current NPDES permits with regards to phosphorus limits are anticipated, but the inclusion of total phosphorus monitoring requirements in future permits is recommended. Future monitoring of total phosphorus concentrations in effluent from each of these facilities would provide greater certainty to relative impact of point sources on total phosphorus concentrations in the Upper Fox River/Flint Creek watershed.

NPDES Permit Number	Permit Name	Sub- watershed	Estimated Total Phosphorus Concentration (mg/L)	DAF (MGD)	WLA-DAF ¹ (lbs/day)
IL0024716	North Barrington Elementary School STP	Grassy Lake	7.0 ¹	0.005	0.292
IL0027286	Mount Saint Joseph Home-STP	Grassy Lake	5.0 ¹	0.0125	0.521
				Total WLA	0.813

Table 2-8 WLAs for Total Phosphorus Loads

¹ Facility does not have permit limits for total phosphorus, but may have potential to discharge phosphorus in effluent. Estimated discharge concentrations derived using data for comparable facilities with similar treatment processes.

<u>MS4 Discharges</u>

WLAs for MS4s in lakes are calculated in a similar way as those calculated for impaired streams segments. The total area within a municipality's boundaries that lies within the target lake's watershed was determined using GIS analyses and geographic data for municipal boundaries from the U.S. Census Department (2013). None of the impaired lakes' watersheds are serviced by combined sewer systems, so the total municipal area within the watershed serves as an approximation of the total MS4 area in the watershed.

The proportion of total MS4 area to total watershed area was then calculated for each lake's subwatershed. This proportion was used to migrate loads from previously calculated LAs for overland runoff to WLAs for MS4 areas in each flow category. This process effectively transfers MS4 load allocations for overland runoff from non-regulated sources described as LAs to the WLA for regulated sources of contaminants. The total MS4 load allocations for phosphorus that are applied to the proportion of each municipality within each impaired lake's subbasin are shown in **Tables 2-9** through **2-19**. There are no MS4s in the Drummond Lake or Lake Fairview subbasins.

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400216	Lake Barrington	278	99.7%	0.169
ILR400228	North Barrington	0.03	0.01%	0.00002
ILR400493	IDOT	0.69	0.25%	0.0004
ILR400517	Lake County	0.17	0.06%	0.0001
Total MS4		279	100%	0.169

Table 2-9 Allocation Summary for MS4s in the Lake Barrington Watershed

|--|

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400370	Lake Zurich	1,116	98.9%	0.405
ILR400493	IDOT	0.03	0.003%	0.00001
ILR400517	Lake County	12	1.1%	0.004
Total MS4		1,128	100%	0.41

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	861	15%	0.043
ILR400216	Lake Barrington	262	5%	0.013
ILR400370	Lake Zurich	2,040	35%	0.103
ILR400228	North Barrington	2,602	45%	0.131
ILR400517	Lake County	40	0.7%	0.002
ILR400493	IDOT	11	0.2%	0.001
Total MS4		5,817	100%	0.294

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400370	Lake Zurich	265	27%	0.073
ILR400228	North Barrington	690	71%	0.189
ILR400493	IDOT	10	1.1%	0.003
Total MS4		966	100%	0.262

Table 2-12 Allocation Summary for MS4s in the Honey Lake Watershed

Table 2-13 Allocation Summary for MS4s in the Island Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400632	Island Lake	623	27%	0.18
ILR400371	Lakemoor	0.5	0%	0.0001
ILR400657	Volo	354	15%	0.10
ILR400501	Wauconda	1,288	56%	0.37
ILR400493	IDOT	15	0.7%	0.004
ILR400517	Lake County	23	1.0%	0.007
ILR400264	McHenry County Div. of Trans.	0.08	0.003%	0.00002
Total MS4		2,304	100%	0.649

Table 2-14 Allocation Summary for MS4s in the Lake Napa Suwe Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400501	Wauconda	452	98.8%	0.096
ILR400517	Lake County	5.4	1.2%	0.001
Total MS4		457	100%	0.097

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400285	Barrington	978	77%	0.143
ILR400323	Deer Park	157	12%	0.023
ILR400359	Inverness	125	10%	0.018
ILR400517	Lake County	4.0	0.3%	0.001
ILR400485	Cook County Hwy Dept.	0.8	0.1%	0.000
ILR400493	IDOT	11	0.8%	0.002
Total MS4		1,274	100%	0.186

Table 2-16 Allocation Summary for MS4s in the Slocum Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	0.2	0.01%	0.00006
ILR400632	Island Lake	293	12.83%	0.093
ILR400519	Port Barrington	24	1.06%	0.008
ILR400501	Wauconda	1,933	84.65%	0.616
ILR400517	Lake County	7.3	0.32%	0.002

ILR400264	McHenry County Div. of Trans.	0.05	0.00%	0.00002
ILR400493 IDOT		26	1.13%	0.008
Total MS4		2,284	100%	0.728

Table 2-17 Allocation Summar	y for MS4s in the Timber Lake Watershed
------------------------------	---

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	422	84%	0.12
ILR400228	North Barrington	72	14%	0.020
ILR400517	Lake County	3.3	0.7%	0.0009
ILR400493	IDOT	8.1	1.6%	0.0023
Total MS4		505	100%	0.141

Table 2-18 Allocation Summary for MS4s in the Tower Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400209	Hawthorn Woods	422	27%	0.109
ILR400216	Lake Barrington	543	35%	0.140
ILR400228	North Barrington	114	7%	0.029
ILR400249	Tower Lakes	483	31%	0.124
ILR400501	Wauconda	3.3	0.2%	0.0008
Total MS4		1,565	100%	0.403

Table 2-19 Allocation Summar	y for MS4s in the Woodland	(Highland) Lake Watershed
------------------------------	----------------------------	---------------------------

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Total Phosphorus Allocation (lbs/day)
ILR400632	Island Lake	10.9	100%	0.0032
Total MS4		10.9	100%	0.0032

2.3.2.5 Reserve Capacity

A portion of a TMDL's LC may be set as a RC to allow for future population growth and development potentially leading to increased pollutant loads in the future. In the case of these TMDLs for total phosphorus in lakes, an explicit RC was not included in the TMDL calculations due to the lack of POTWs or other point sources in the watershed that may be expected to increase discharge as a result of projected population growth in the area. Flow estimates used to develop the WLAs for each point source and for estimating nonpoint source runoff concentrations were conservative and allow for implicit RC should population growth become a factor in the future.

2.3.2.6 Load Allocation and TMDL Summary

Summaries of the total phosphorus TMDLs developed for each of the phosphorus-impaired lakes are provided in **Tables 2-20** through **2-32**. Percent reductions presented under these scenarios assume no imminent change in current NPDES permit limits or other factors that would impact current waste loads in each sub-watershed.

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.466	-	0.419	0.047	1.503	69%
RTZT	External	0.190	0.170	0.001	0.019	0.190	0%
	Total	0.656	0.170	0.420	0.066	1.694	61%

Table 2-20 Total Phosphorus TMDL Summary for Lake Barrington

Table 2-21 Total Phosphorus TMDL Summary for Drummond Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.026	-	0.023	0.003	0.183	86%
UTI	External	0.098	-	0.088	0.010	0.151	35%
	Total	0.124	-	0.111	0.013	0.334	63%

Table 2-22 Total Phosphorus TMDL Summary for Echo Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
RTZR	Internal	0.070	-	0.063	0.007	0.201	65%
	External	0.511	0.414	0.046	0.051	1.704	70%
	Total	0.581	0.414	0.109	0.058	1.905	70%

Table 2-23 Total Phosphorus TMDL Summary for Grassy Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.198	-	0.178	0.020	0.824	76%
VTI	External	1.299	1.107	0.062	0.130	5.904	78%
	Total	1.497	1.107	0.240	0.150	6.728	78%

Table 2-24 Total Phosphorus TMDL Summary for Honey Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.291	-	0.262	0.029	3.236	91%
RTZU	External	0.363	0.268	0.059	0.036	1.036	65%
	Total	0.654	0.268	0.321	0.065	4.272	85%

Table 2-25 Total Phosphorus TMDL Summary for Island Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.345	-	0.311	0.035	1.150	70%
RTZI	External	1.951	0.671	1.085	0.195	7.806	75%
	Total	2.296	0.671	1.395	0.230	8.956	74%

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.105	-	0.094	0.011	0.251	58%
STK	External	0.021	-	0.019	0.002	0.024	10%
	Total	0.126	-	0.113	0.013	0.275	54%

Table 2-26 Total Phosphorus TMDL Summary for Lake Fairview

Table 2-27 Total Phosphorus TMDL Summary for Lake Napa Suwe

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
STO	Internal	0.143	-	0.129	0.014	0.763	81%
	External	0.271	0.098	0.146	0.027	1.041	74%
	Total	0.414	0.098	0.275	0.041	1.804	77%

Table 2-28 Total Phosphorus TMDL Summary for Lake Louise

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
VTZJ	Internal	0.126	-	0.113	0.013	0.699	82%
	External	0.266	0.188	0.051	0.027	1.330	80%
	Total	0.392	0.188	0.164	0.040	2.029	81%

Table 2-29 Total Phosphorus TMDL Summary for Slocum Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.673	-	0.606	0.067	2.691	75%
RTP	External	1.983	0.738	1.046	0.199	6.609	70%
	Total	2.656	0.738	1.652	0.266	9.300	71%

Table 2-30 Total Phosphorus TMDL Summary for Timber Lake (South)

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.149	0.000	0.134	0.015	0.550	73%
RTZQ	External	0.399	0.144	0.215	0.040	1.288	69%
	Total	0.548	0.144	0.349	0.055	1.838	70%

Table 2-31 Total Phosphorus TMDL Summary for Tower Lake

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.201	0.000	0.181	0.020	0.478	58%
RTZF	External	0.920	0.403	0.425	0.092	2.045	55%
	Total	1.121	0.403	0.606	0.112	2.523	56%

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.019	0.000	0.017	0.002	0.038	50%
STV	External	0.019	0.003	0.014	0.002	0.056	65%
	Total	0.038	0.003	0.031	0.004	0.093	59%

Table 2-32 Total Phosphorus TMDL Summary for Woodland (Highland) Lake

2.3.3 Fecal Coliform TMDL in Lakes

Lake Barrington, Honey Lake, and Tower Lake are listed for impairment of primary contact recreational use caused by fecal coliform. Spreadsheet calculations were developed (see **Section 1**) to determine load reductions needed to meet the water quality standards.

2.3.3.1 Loading Capacity

LCs are the maximum amounts of fecal coliform that Lake Barrington, Honey Lake, and Tower Lake can receive and still maintain compliance with the water quality standards. The allowable fecal coliform loads that can be generated in the watershed and still maintain the geometric mean standard of 200 cfu/100mL were determined with the methodology discussed in **Section 1**. The fecal coliform LCs are presented in **Table 2-33**.

2.3.3.2 Seasonal Variation

Consideration of seasonality is inherent in the spreadsheet analysis approach used to address fecal coliform in lakes. Specifically, seasonality is addressed because the TMDL has been calculated to address loading only when the seasonal standard is applicable (May through October).

Table 2-33 Fecal Coliform Loading Capacity for Lake Barrington, Honey Lake, and Tower Lake

Water Body	Load Capacity (mil col/day)
Lake Barrington	1,986
Honey Lake	8,315
Tower Lake	42,548

2.3.3.3 Margin of Safety

The MOS can be implicit (incorporated into the TMDL analysis through conservative assumptions) or explicit (expressed in the TMDL as a portion of the loadings) or a combination of both. The MOS for the lake TMDLs is both implicit and explicit. The MOS is implicit as the analysis used the more conservative 200 cfu/100mL standard and did not consider die-off of bacteria which is likely occurring in the system but unquantified. In addition, an explicit MOS of 10% of the LC was applied to each analysis to account for the lack of, or limited nature of, any site-specific data available within the watershed. Most of the uncertainty is associated with the estimated flows in the assessed segment which were based on extrapolating flows from a surrogate USGS gage.

2.3.3.4 Waste Load Allocation

WLAs for these fecal coliform TMDLs are applied to individually permitted facilities and MS4s that exist in each impaired lake's watershed, as described below. No CSO discharges exist within the watersheds of any of the impaired lakes.

Individual NPDES permitted facilities

There are no NPDES permitted facilities in the Lake Barrington, Honey Lake, or Tower Lake watersheds with reasonable potential to discharge bacteria into any of the impaired lakes. Therefore, WLAs were not calculated.

<u>MS4 Discharges</u>

Fecal coliform WLAs for MS4s in lakes are calculated in a similar way as those calculated for total phosphorus WLAs in lakes. The total area within a municipality's boundaries that lies within the target lake's watershed was determined using GIS analyses and geographic data for municipal boundaries from the U.S. Census Department (2013). None of the impaired lakes' watersheds are serviced by combined sewer systems, so the total municipal area within the watershed serves as an approximation of the total MS4 area in the watershed.

The proportion of total MS4 area to total watershed area was then calculated for each lake's subwatershed. This proportion was used to migrate loads from previously calculated LAs for overland runoff to WLAs for MS4 areas in each flow category. This process effectively transfers MS4 load allocations for overland runoff from non-regulated sources described as LAs to the WLA for regulated sources of contaminants. The total MS4 load allocations for fecal coliform that are applied to the proportion of each municipality within each impaired lake's subbasin are shown in **Tables 2-34** through **2-36**.

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400216	Lake Barrington	278	99.7%	1,764
ILR400228	North Barrington	0.03	0.01%	0.19
ILR400493	IDOT	0.69	0.25%	4.38
ILR400517	Lake County	0.17	0.06%	1.08
Total MS4		279	100%	0.169

Table 2-34 Fecal Coliform Allocation Summar	y for MS4s in the Lake Barrington Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400370	Lake Zurich	265	27%	1,667
ILR400228	North Barrington	690	72%	4,340
ILR400493	IDOT	10	1.0%	63
Total MS4		965	100%	6,069

Table 2-36 Allocation Summary for MS4s in the Tower Lake Watershed

NPDES ID	Source	Municipal Area in Subbasin (acres)	Percent of Total Municipal Area in Subbasin	Fecal Coliform MS4 Allocation (mil col/day)
ILR400209	Hawthorn Woods	422	27%	2,681
ILR400216	Lake Barrington	543	35%	3,449
ILR400228	North Barrington	114	7.3%	725
ILR400249	Tower Lakes	483	31%	3,069
ILR400501	Wauconda	3.3	0.2%	21
Total MS4		1,565	100%	9,945

2.3.3.5 Reserve Capacity

A portion of a TMDL's loading capacity may be set as a RC to allow for future population growth and development potentially leading to increased pollutant loads in the future. In the case of these TMDLs for fecal coliform in Lake Barrington, Honey Lake, and Tower Lake, an explicit RC was not included in the TMDL calculations due to the lack of POTWs or other point sources in the lake's watersheds that may be expected to increase discharge as a result of projected population growth in the area. Increases in future non-point loads of fecal coliform are also not anticipated.

2.3.3.6 Load Allocation and TMDL Summary

Tables 2-37, **2-38**, and **2-39** show summaries of the fecal coliform TMDLs for Lake Barrington, Honey Lake, and Tower Lake, respectively. Recommendations for reducing lake fecal coliform concentrations in all three lakes are discussed in **Section 3** of this report.

Table 2-37 Fecal Coliform TMDL for Lake Barrington

Location	LC (mil col/day)	LA (mil col/day)	WLA (mil col/day)	MOS	Current Load ¹ (mil col/day)	Percent Reduction Needed (%)
RTZT	1,986	15	1,772	199	5,582	64%

¹ Actual Load was calculated using the 90th percentile of observed concentrations (EPA 2007)

Table 2-38 Fecal Coliform TMDL for Honey Lake

Location	LC (mil col/day)	LA (mil col/day)	WLA (mil col/day)	MOS	Current Load ¹ (mil col/day)	Percent Reduction Needed (%)
RTZU	8,315	1,351	6,132	831	52,299	84%

¹ Actual Load was calculated using the 90th percentile of observed concentrations (EPA 2007)

Table 2-39 Fecal Coliform TMDL for Tower Lake

Location	LC (mil col/day)	LA (mil col/day)	WLA (mil col/day)	MOS	Current Load ¹ (mil col/day)	Percent Reduction Needed (%)
RTZF	42,548	28,348	9,945	4,255	121,261	65%

¹ Actual Load was calculated using the 90th percentile of observed concentrations (EPA 2007)

2.4 LRS Allocation

Illinois EPA began including LRSs in TMDL watershed projects in 2012 for pollutants that do not currently have numeric water quality standards. Developing a- LRS involves determining the loading capacity and load reduction that is needed in order for the water body to meet "Full Use Support" for its designated uses. The load capacity is not divided into WLA, LA, or MOS, these are represented by one number as a target concentration for load reduction within each unique watershed. The LRS provides guidance (with no regulatory requirements) for voluntary nonpoint source reduction efforts by implementing agricultural and urban stormwater BMPs.

The LRS targets are based on data from all stream segments within the HUC-10 basins of the watershed, as well as stream segments or lakes which closely border the watershed in neighboring HUC-10 basins, in order to best represent the land use, hydrologic, and geologic conditions unique to the watershed. Load reduction targets were calculated by Illinois EPA using data from stream segments whose most current assessment shows full support for aquatic life and data that has passed quality assurance and quality checks within Illinois EPA and are in accordance with state and federal laws. The target values for the Fox River/Flint Creek watershed were used to develop target LCs for each impairment. The target LCs were then compared to

current actual loads to develop percent reductions needed to meet the target value, as discussed in the following sections. The information provided by the development of these LRSs is intended to serve as a guide for future implementation activities to improve water quality throughout the Upper Fox River/Flint Creek watershed.

2.4.1 Sedimentation/Siltation LRS: Fox River Segment DT-22

Fox River segment DT-22 is listed for impairment of the aquatic life use caused by sedimentation/siltation. As no numeric water quality standard exists for sedimentation/siltation in streams in Illinois, a numeric target of 7.0 mg/L of NVSS was developed by Illinois EPA for use in assessing sedimentation/siltation impairments. A load duration curve was developed (see **Section 1**) to determine NVSS load reductions needed to meet the instream water quality target under a full range of flow scenarios.

NVSS is a measurement of the non-volatile suspended solids that inhibits natural light from penetrating the surface water column. Excessive NVSS within the water column can negatively impact fish and macroinvertebrates within the ecosystem. Excess NVSS may create turbid conditions within the water column and may increase the costs of treating surface waters used for drinking water or other industrial purposes (e.g., food processing). Excessive sediment can reduce spawning and rearing areas for certain fish species. Excess suspended sediment or solids can clog the gills of fish, stress certain sensitive species by abrading their tissue, and thus reduce fish health. When in suspension, sediment can limit visibility and light penetration which may impair foraging and predation activities by certain species.

2.4.1.1 Target Loading Capacity

The LC is the maximum NVSS load the impaired waters can receive and still meet the LRS target concentrations for sedimentation/siltation in this watershed. The allowable loads that may be generated in the watershed were determined using a range of estimated flow conditions and the numeric LRS targets of 7.0 mg/L of NVSS for sedimentation and siltation impairments, as discussed in **Section 1**. The NVSS loading capacities as a function of flow are presented in **Table 2-40**.

Table 2-40 NVSS Loading Capacity in Fox River DT-22

Estimated Mean Daily Flow (cfs)	Sedimentation and Siltation Target LC (lbs/day of NVSS)
1	38
10	377
50	1,887
100	3,773
500	18,867
1,000	37,734
10,000	377,340

2.4.1.2 Percent Reduction and LRS Summary for Sedimentation/Siltation in Fox River Segment DT-22

Table 2-41 summarizes the LRS and percent reductions from current conditions needed to meet the sedimentation/siltation targets under various flow conditions in Fox River segment DT-22. Measurements of instream NVSS concentrations have been collected in the Fox River DT-22 during each flow condition category presented in the table. NVSS loads in this reach exceed the LRS target value across a full range of flow conditions, with the exception of mid-range flows (40-50 percentile). Overall load reductions of 33 to 74 percent are needed to meet the instream target. The greatest reductions in NVSS loads in this segment are required at the lowest flows.

Zone	Flow Exceedance Range (%)	Target Loading Capacity (Ibs/day of NVSS)	Current Load ¹ (lbs/day of NVSS)	Percent Reduction Needed (%)
High	0 - 10	115,437	441,772	74%
	10 - 20	75,672	135,303	44%
Moist	20 - 30	54,940	152,116	64%
	30 - 40	41,345	90,176	54%
Mid Pango	40 - 50	33,562	14,570	0%
Wild-Kalige	50 - 60	26,425	77,437	66%
	60 - 70	22,041	44,220	50%
Dry	70 - 80	18,200	27,019	33%
	80 - 90	14,088	38,707	64%
Low Flow	90 - 100	7,001	27,435	74%

Table 2-41 LRS Targets for Sedimentation/Siltation in Fox River DT-22

2.4.2 LRS for TSS in Lakes

Twelve of the 13 lakes in the Upper Fox River/Flint Creek watershed are listed for impairment of the aesthetic quality use caused by TSS. Because no numeric water quality standard exists for TSS in lakes in Illinois, a watershed-specific target value of 11.3 mg/L of TSS was developed by Illinois EPA to aid in assessment of these impairments. Determination of the reduction in TSS loads needed to meet the water quality target was performed using a simplified spreadsheet calculation approach.

Excessive TSS in lakes can negatively impact fish and macroinvertebrates within the ecosystem. Excess sediment and organic material may create turbid conditions within the water column and may increase the costs of treating surface waters used for drinking water or other industrial purposes (e.g., food processing). The potential addition of fine organic materials may lead to nuisance algal blooms that may prevent a lake from supporting aquatic life, aesthetic, and recreation uses. Algal decomposition depletes oxygen levels which may further stresses benthic macroinvertebrates and fish.

The spreadsheet approach incorporates the available TSS data for each segment of each impaired lake with estimates of the average daily overland and tributary flow from each sub-watershed to produce an estimate of the current average daily TSS load into each lake segment. The current load is then compared to the maximum daily load possible without exceeding the watershed-specific TSS target concentration value, to calculate the overall percent reduction in daily TSS load into each segment of the lake necessary to meet the target value.

A summary of percent reductions in TSS necessary to meet the target value in each lake is presented in **Tables 2-42** through **2-53**. Among lakes that are in exceedance of the target value within the watershed, percent reductions of between 13% and 79% are required. Neither Lake Fairview nor Lake Napa Suwe are in exceedance of the target value, and therefore do not require a reduction of TSS will not be given a TSS LRS.

Future data collection is necessary to support assessment of these impairments. However, due to the close relationship between nonpoint source loads of total phosphorus and TSS, measures

discussed in **Section 3** of this report to address total phosphorus impairment in the watershed will be directly applicable to reduction of TSS loads to the lakes as well.

Table 2-42 LRS Summary for TSS in Lake Barrington

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
RTZT	11.3	13.0	0.4	24	27	13%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-43 LRS Summary for TSS in Drummond Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
UTI	11.3	94.8	0.14	8.68	73	88%

¹Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-44 LRS Summary for TSS in Echo Lake

Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
11.3	22.8	1.7	106	213	50%
	Target Concentration (mg/L) 11.3	TargetExistingConcentrationConcentration1(mg/L)(mg/L)11.322.8	TargetExistingAverage OverlandConcentration1Concentration1and Tributary(mg/L)(mg/L)Flow (cfs)11.322.81.7	TargetExistingAverage OverlandTarget LoadingConcentrationConcentration1and TributaryCapacity(mg/L)(mg/L)Flow (cfs)(lbs/day)11.322.81.7106	Target Concentration (mg/L)Existing Concentration1Average Overland and Tributary Flow (cfs)Target Loading Capacity (lbs/day)Current Load1 (lbs/day)11.322.81.7106213

¹Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-45 LRS Summary for TSS in Grassy Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
VTI	11.3	30.8	9.5	579	1,576	63%

¹Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-46 LRS Summary for TSS in Island Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (lbs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
RTZI	11.3	24.0	8.3	508	1,079	53%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-47 LRS Summary for TSS in Lake Fairview

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
STK	11.3	9.1	0.1	4	3	0%

¹Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-48 LRS Summary for TSS in Lake Napa Suwe

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (Ibs/day)	Percent Reduction Needed (%)
STO	11.3	9.1	0.1	4	3	0%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-49 LRS Summary for TSS in Lake Louise

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
VTZJ	11.3	51.0	2.2	136	616	78%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-50 LRS Summary for TSS in Slocum Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
RTP	11.3	55.0	7.6	465	2,266	79%

¹Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-51 LRS Summary for TSS in Timber Lake (South)

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
RTZQ	11.3	23.5	1.7	106	220	52%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-52 LRS Summary for TSS in Tower Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
RTZF	11.3	32.6	4.5	271	782	65%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Table 2-53 LRS Summary for TSS in Woodland (Highland) Lake

Location	Target Concentration (mg/L)	Existing Concentration ¹ (mg/L)	Average Overland and Tributary Flow (cfs)	Target Loading Capacity (Ibs/day)	Current Load ¹ (lbs/day)	Percent Reduction Needed (%)
STV	11.3	25.0	0.1	5	11	55%

¹ Existing Concentration was calculated using the 90th percentile of observed TSS concentrations in a given location (USEPA 2007)

Section 3

Implementation Plan for the Upper Fox River/Flint Creek Watershed

3.1 Implementation Overview

The goal of this watershed plan is to identify BMPs to be implemented in the Upper Fox River/Flint Creek watershed that will provide reasonable assurance that impaired waters in the watershed will meet water quality criteria developed to ensure waterbodies are able to support their designated uses.

The USEPA has identified nine minimum elements that a watershed plan for impaired waters is required to include. A watershed plan is expected to:

- 1. Identify causes and sources of pollution which will need to be controlled to achieve pollutant load reduction requirements estimated within the watershed plan (see Section 2.2).
- 2. Estimate pollutant load reductions expected as a result of implementation of the management measures described in #3 below (see Section 2.3).
- 3. Describe the nonpoint source management measures that will need to be implemented in order to achieve the load reduction estimates and identify the critical areas where measures need to be implemented for maximum effectiveness (see Section 3.3).
- 4. Identify the potential sources that will drive implementation of the prescribed management measures needed for project success; then determine the technical assistance needed for implementation and quantify its associated costs (see Section 3.10).
- 5. Include a public information/education component designed to change social behavior; then identify the indicators of the success of this component (see Section 3.9).
- 6. Develop an implementation schedule for the plan (see Section 3.12).
- 7. Develop a description of interim, measurable milestones; then identify what a successful milestone looks like (see Section 3.12.1).
- 8. Identify indicators that can be used to determine whether pollutant loading reductions are being achieved over time (see Section 3.12.3).
- 9. Include monitoring components required to evaluate the effectiveness of the implementation efforts over time (see Section 3.12.2).

Element 1 has been addressed in Sections 1 and 2 of this report. The remaining elements are addressed in the following section as denoted for each item above. Additional and more detailed information on implementation actions in the watershed can be found in a number of existing watershed-based plans already developed for portions of the Upper Fox River/Flint Creek subbasin, as shown in Figure 3-1:

- 9 Lakes Watershed-Based Plan (Chicago Metropolitan Agency for Planning's [CMAP] 2014)
- Boone-Dutch Creek Watershed Plan (CMAP 2016)
- Silver Creek and Sleepy Hollow Creek Watershed Action Plan (CMAP 2011)

The Chicago Metropolitan Agency for Planning's (CMAP) *9 Lakes Watershed-Based Plan* (CMAP 2014) details specific actions required to reduce pollutant and nutrient loading to a large portion of the Upper Fox River/Flint Creek subbasin, including nine of the 13 lakes addressed in this report (Island, Woodland, Napa Suwe, Drummond, Slocum, Tower, Fairview, Timber, and Barrington). The plan was initially developed to provide recommendations for achieving TMDLs in the watershed and to work with stakeholders to develop recommendations to help restore the water quality of the nine lakes and associated streams within the watershed. The complete text of the *9 Lakes Watershed-Based Plan* and associated documentation can be found at the Fox River Ecosystem Partnership's website: <u>http://foxriverecosystem.org/9Lakes.htm</u>.

The Boone-Dutch Creek Watershed Plan and the Silver Creek and Sleepy Hollow Creek Watershed Action Plan cover large portions of the Upper Fox River/Flint Creek subbasin immediately upstream of the Fox River (DT-22) and can be viewed as being directly applicable to addressing implementation efforts for impairments in that segment. The Boone-Dutch Creek Watershed Plan includes approximately 29,000 acres of the watershed near Boone and Dutch Creek which drain to the Fox River approximately three miles upstream of the start of segment DT-22.

The *Silver Creek and Sleepy Hollow Creek Watershed Action Plan* includes approximately 7,000 acres of watershed just west of, and draining directly to, the impaired segment of the Fox River (DT-22). This plan can be accessed at: <u>http://mcdef.org/what-we-do/water-resources-protection-committee/silversleepy-hollow-creeks</u>.

The information presented in the following sections is intended to summarize implementation actions that may be utilized in the Upper Fox River/Flint Creek subbasin to improve water quality and reduce the number and degree of impairments in the watershed. More detailed information on potential actions as well as details on specific projects within the watershed can be found in the watershed-based plans described above. Additional information on lake assessments and watershed recommendations can be found in the lake reports developed by the Lake County Health Department's Ecological Services Division (https://www.lakecountyil.gov/2400/Lake-Reports). Updates on the progress of the watershed-based planning in the area as well as updates on specific projects implemented based on the existing plans will be included in this report as they become available.

Upper Fox River/Flint Creek Watershed Areas Covered by Existing Watershed Plans

3.2 Adaptive Management

An adaptive management or phased approach is recommended for the implementation of management practices designed to meet the TMDLs and LRSs developed for the Upper Fox River/Flint Creek watershed. Adaptive Management is a process for continually improving management policies and practices by learning from the in-progress results of the operational programs. Because it is driven by real-world results, adaptive management complies with the USEPA guidelines described above in **Section 3.1**. Some of the defining characteristics of adaptive management include:

- Acknowledgement of uncertainty about what policy or practice is "best" for the particular management issue
- Thoughtful selection of the policies or practices to be applied to each management issue during the assessment and design stages
- Careful implementation of a plan of action designed to identify the critical knowledge needed but not available during the adaptive management phase, and to establish the missing information
- Monitoring of key response indicators
- Analysis of the management outcomes in consideration of the original objectives and incorporation of the results into future decisions (British Columbia Ministry of Forests 2000).

Implementation actions, point source controls, management measures, and/or BMPs are used to control the generation or distribution of pollutants within a watershed. BMPs are either structural; such as wetlands, filtration basins, or filter strips; or managerial, such as land use management, effective street sweeping programs, lawn fertilizer restrictions, public outreach and education, and in-lake management measures. Both structural and managerial BMPs require effective management to be successful in reducing pollutant loading to water resources (Osmond et al. 1995).

It is typically most effective to install a combination of point source controls and BMPs or a BMP system. A BMP system is a combination of two or more individual BMPs that are used to control pollutants from a single critical source. If the watershed has more than one identified pollutant, but the transport mechanism is the same, then a BMP system that establishes controls for the transport mechanism can be employed (Osmond et al. 1995).

To assist in development of an adaptive management program; implementation actions, management measures, available assistance programs, and recommended continued monitoring are all discussed throughout the remainder of this section. The point source contributions are addressed through the NPDES permitting program. Permit limits will be reviewed upon each permits' renewal process. The nonpoint source BMPs are entirely voluntary based on the landowner's preference.

3.3 BMP Recommendations for Reducing Sedimentation/Siltation in Fox River Segment DT-22

Sedimentation/siltation load reductions are needed for the DT-22 impaired stream segment in order to meet the watershed-specific LRS target value. Percent reduction needs for DT-22 are discussed in **Section 2.4.1**. Section 2.3 of the Stage 1 report (AECOM 2010) indicated that approximately 40 percent of the Upper Fox River/Flint Creek watershed consists of developed or urbanized land while 37 percent is classified as agricultural land. Land use around the DT-22 impaired stream segment is primarily urban with limited amounts of wetland and forested areas. The agricultural areas present within the DT-22 watershed are generally not immediately adjacent to the impaired stream segment (see Figure 6-1 of the Stage 1 report).

Nonpoint source runoff from urban areas, decreased infiltration associated with the prevalence of impervious surfaces, and increased overland flow are the main contributors to high sediment loads in the impaired stream segment. Most modern developments route runoff from impervious surfaces directly into storm sewers or paved channels, which effectively convey the pollutants, including sediments and suspended solids, into receiving water bodies with little to no opportunity for infiltration or filtering. The storm sewers and lined channels then convey the runoff water downstream at a much faster rate than would normally occur in a natural, non-urbanized, setting. The increased flow rate leads to several issues including stream channel erosion and/or downcutting of the channel, both of which contribute to sedimentation/siltation and suspended solid loads. Alterations to natural storage and conveyance functions (i.e., stream channel modification) can also result in increased flow velocities and volumes subsequently causing stream channel erosion and increased flooding.

In addition to flow and conveyance concerns, building and road construction activity in and adjacent to waterbodies and wetlands create both short-term and long-term effects on water quality. Although erosion on construction sites often affects only a relatively small acreage of land in a watershed, it can be a major source of sediment because the potential for erosion on highly disturbed land is commonly 100 times greater than on agricultural land (Brady and Weil 1999). As a means of monitoring construction practices and encouraging the use of BMPs and storm water pollution prevention plans (SWPPs), the Illinois EPA requires an ILR10 general NPDES permit for construction stormwater. These permits were for construction activity that resulted in a total land disturbance of 5 acres or more (or less than 5 acres if they were part of a "larger common plan of development or sale" with a planned land disturbance of 5 acres or greater). The minimum project size requiring a permit has now been reduced to 1 acre under Phase II. The primary short-term effect of building and road construction activity is erosion in the denuded areas, those lacking vegetation, with potential deposition of sediment in nearby waterbodies. The long-term effects of urban development upon waterbodies and wetlands primarily results in the elimination of vegetation and other natural materials. The typical consequences of these alterations include reduced shading and a resultant increase in water temperature, reduced capacity for pollutant filtering, and increased stream instability and erosion.

Given these factors, nonpoint source controls designed to control erosion sources and/or to reduce TSS/NVSS and sedimentation/siltation in streams and lakes also provide a secondary benefit of reducing other contaminants, such as total phosphorus, that may be entering

waterways via erosive processes. The BMPs discussed below are applicable to TSS and/or sedimentation/siltation impairments within the listed watershed.

- Filter strips
- Field Borders
- Conservation Tillage Practices
- Contour Farming
- Conservation Crop Rotation
- Stripcropping
- Conservation Cover
- Cover Crop
- Terracing
- Critical Area Planting
- Urban Reforestation/Riparian Buffer Restoration
- Wetlands
- Stormwater Retention Basins (dry and wet ponds)
- Vegetated Swales
- Grassed Waterways
- Permeable Pavement
- Sand Filters
- Compost Blankets, Filter Berms, and Filter Socks
- Stormwater Reduction Techniques
- Bio-Retention Cells
- Streambank Stabilization and Erosion Control
- Street Sweeping

Filter Strips: Filter strips, applicable to both rural and urban settings, are vegetated areas of land, planted along waterways, used to intercept runoff before it can enter a waterbody. The vegetation in the filter strip slows and filters runoff, thereby serving as a control to reduce both pollutant loads from runoff and sedimentation to the impaired waterbody. Filter strips also provide bank stabilization, thereby decreasing erosion and re-sedimentation. Grass filter strips have been

shown to remove as much as 65 percent of sediment and 75 percent of total phosphorus loads from runoff (USEPA 2003).

The Natural Resources Conservation Service (NRCS) Illinois Urban Manual, Practice Standard 835 indicates that in urban areas the minimum length of a filter strip should be determined by the drainage area being treated and the width of the filter strip. The minimum filter strip length should be 5 feet, except on construction sites, where the minimum length should be 25 feet. The width of the filter strip, or the dimension perpendicular to the flow path, determines the required length. The wider the filter strip is, the shorter the required length of the filter strip; and the width should be near the same width as the impervious area being treated (NRCS 1999).

Alternatively, the NRCS Conservation Practice Standard (CPS) 393 describes filter strip requirements on agricultural land, based on land slope. The requirements are designed to achieve a minimum flow through time of 15 to 30 minutes at a one-half inch depth. **Table 3-1** provides a summary of the guidance for filter strip width, or flow length, as a function of slope, on agricultural land (NRCS 2003).

Percent Slope	0.5%	1.0%	2.0%	3.0%	4.0%	5.0% or greater
Minimum (feet)	36	54	72	90	108	117
Maximum (feet)	72	108	144	180	216	234

Table 3-1 Filter Strip Flow Lengths Based on Land Slope

GIS land use data were used to provide an estimate of acreage within the Upper Fox River/Flint Creek watershed where filter strips could be installed. In conjunction with the available land use, topography, and soil information discussed in the Stage 1 report (AECOM 2010), mapping software was used to identify potential buffer areas for the impaired stream segment and its major tributaries to an appropriate and reasonable width, described in **Table 3-1** above, to determine the total area found in the subbasin. Due to the diversity of soil types and slopes found throughout the watershed, the appropriate minimum buffer widths estimated in GIS were based on the average slope of land along the impaired segment's major tributaries. These average slopes were then used to calculate approximate buffer distances based on the Illinois Urban Manual guidance using a best-fit equation to interpolate between the slope percentages to buffer width relationships provided in the AISWCD and NRCS guidance.

Not all land use types within the buffer areas are candidates for conversion to buffer strips. Existing forests and wetlands already function as filter strips or riparian buffers and conversion of developed residential or commercial lands is often infeasible. Because one of the primary land uses within the buffer zones is urban, the greatest benefit to water quality may be installation of filter strips where there are semi-developed pervious land areas, e.g., parks or open areas within the stream buffers, in addition to installation of filter strips in areas within the buffers associated with agricultural land uses. Therefore, GIS software was used to calculate the approximate acreage of agricultural and developed open space lands within the appropriate buffer area for each impaired stream segment and its tributaries. These calculated buffer areas and acreages of convertible land within the buffer distances for the impaired stream segment and its tributaries are provided in **Table 3-2**. These data represent an approximation of the maximum acreage of

land potentially available for conversion to filter strips. More detailed assessment of a given property is necessary to determine the exact size and extent of convertible lands likely to provide the greatest benefit to instream water quality following conversion to filter strips.

The average slope in areas adjacent to DT-22 and its tributaries is approximately 6.4%, resulting in a maximum recommended buffer length of 234 feet used in calculations. There are approximately 5,755 total acres in the 234-ft buffer of impaired stream segment DT-22 and its tributaries within the Upper Fox River/Flint Creek watershed, an estimated 1,545 acres of which are agricultural or developed open space lands where filter strips could potentially be installed to improve water quality. Landowners or managers should be encouraged to evaluate their land adjacent to the impaired stream and its tributaries to determine the practicality of installing or extending filter strips to achieve effective flow lengths as described in the Illinois Urban Manual guidance provided in **Table 3-1**. Note that the land area estimates only include buffers of major tributaries to segment DT-22 that are within the Upper Fox River/Flint Creek watershed and are downstream of other waterbodies impaired for TSS and/or sedimentation siltation (i.e. Island Lake). Additional tributaries to DT-22 exist above the Upper Fox River/Flint Creek watershed and above Island Lake. BMPs and load reduction strategies have been, or will be, developed for these tributaries within the TMDL documents developed for the impaired waterbodies upstream of DT-22 (Upper Fox River/Chain O'Lakes TMDL). A figure depicting the lands suitable for conversion to filter strips in this watershed is provided in **Figure 3-2**.

		Stream Reach		
Attribute	Units	Fox River (DT-22)	Major Tributaries	Total for Subbasin
Average Slope Adjacent to Streams	%	4.1%	6.8%	6.4%
Minimum Filter Strip Flow Length	Feet	108	117	117
Maximum Filter Strip Flow Length	Feet	216	234	234
Minimum Area in Buffer	Acres	584	2,561	3,145
Maximum Area in Buffer	Acres	1,026	4,725	5,751
Minimum Convertible Land in Buffer	Acres	33	715	748
Maximum Convertible Land in Buffer	Acres	70	1,475	1,545

Table 3-2 Calculated Buffer Areas and Acreages of Convertible Land for DT-22 and its Major Tributaries

Field Borders: A field border is a strip of permanent vegetation established at the edge or around the perimeter of a field to reduce erosion from wind and water, and to protect soil and water quality. This practice applies to cropland and grazing lands, which are often farmed to the extent possible, sometimes even into adjacent road ditches and to creek banks. Leaving a field border will reduce erosion and transportation of sediment, including contaminant-impacted materials, to nearby environmentally sensitive areas.

CDM Smith Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips
As a minimum, field borders should be located along the edge(s) of fields where runoff enters or leaves the field. The minimum width should be 30 feet; wider if necessary to meet the resource needs. When determining the border width, consideration should be given to factors such as equipment turning, parking, loading/unloading, grain harvest operations, and other related activities. For example, field borders planned to be used for turn strips should be at least twice as wide as the widest equipment to be used. Border widths should also comply with all applicable state and local manure and chemical application setbacks. The field border shall not be used as a hay yard or machinery parking lot for any extended period of time, especially if doing so will damage or impair the function of the field border. When crossing the border, sprayers should be shut off and tillage equipment raised to avoid damage to the borders.

The field border should be established using permanent stiff-stemmed, upright grasses; grass/legumes; forbs; and/or shrubs to trap wind- or water-borne soil particles. These plants should be appropriately adapted to the soil and climate, have the physical characteristics necessary to control wind and water erosion to tolerable levels in the field border area, be tolerant to sediment deposition and the chemicals planned for application in the crop field, be tolerant to equipment traffic, and shall not include any state-listed noxious plants. For water quality purposes in particular (adsorbed, dissolved, and suspended contaminants), the field border should have a vegetation stem density/retardance of moderate to high (i.e., equivalent to a good stand of wheat). Field border establishment should be timed so that the soil will be adequately protected during the critical erosion period(s). Seedbed preparation, seeding rates, dates, depths, fertility requirements, and planting methods will be consistent with approved local criteria and site conditions.

Applicable maintenance should be performed as needed to ensure the borders continue to function properly, including removal of state-listed noxious weeds and excess accumulated sediment. Overland flow entering the border should be primarily sheet flow; areas of concentrated flow should be dispersed as part of the maintenance activities so as not to circumvent the border. Any area damaged by animals, chemicals, tillage, or equipment traffic should be repaired as soon as possible. Use of contour buffer, no-till, or other conservation practices on adjacent upland areas will help to reduce surface runoff and excessive sedimentation of field borders.

If this BMP is selected for use by a landowner, a separate plan should be prepared for each area that will use this practice. Additional guidance and minimum plan elements are discussed in CPS 386 (NRCS 2016c).

Conservation Tillage Practices: Conservation tillage practices could help reduce nutrient and sediment loads into the impaired stream segments by reducing erosion of soils. Conservation tillage practices are no-till and reduced-till. No-till is the practice of limiting soil disturbance in order to manage the amount, orientation, and distribution of crop and plant residue on the soil surface year-round (NRCS 2016a). Reduced-till is managing the amount, orientation, and distribution of crop and other plant residue on the soil surface year-round while limiting the soil-disturbing activities used to grow and harvest crops in systems where the field surface is tilled prior to planting (NRCS 2016b).

The no-till practice consists only of an in-row soil tillage operation during the planting activities and a seed row/furrow closing device. No full-width tillage is performed from the time of harvest or termination of one cash crop to the time of harvest/termination of the next cash crop in the rotation, regardless of the depth of the tillage operation. Limited tillage is allowed to close or level ruts from harvesting equipment; however, no more than 25 percent of the field may be tilled for this purpose.

As noted above, the reduced-till practice consists of managing plant residue on the soil surface while limiting soil-disturbing activities. The practice includes tillage methods commonly referred to as mulch tillage or conservation tillage, where the entire soil surface is disturbed by tillage operations such as chisel plowing, field cultivating, tandem disking, or vertical tillage. It also includes tillage/planting systems with few tillage operations (e.g., ridge till), but which do not meet the criteria for the no-till practice.

In both the no-till and reduced-till practices, removal of residue from the row area prior to or as part of the planting operation is acceptable. In the no-till practice, however, the disturbed portion of the row width should not exceed one third of the crop row width. In either practice, none of the residue should be burned. To reduce erosion to the targeted level, the current approved water and/or wind erosion prediction technology should be used to determine the amount of randomly distributed surface residue needed, the period of the year the residue needs to be present in the field, and the amount of surface soil disturbance allowed. All residues shall be uniformly distributed over the entire field. Residue should not be shredded after harvest because shredding makes it susceptible to movement by wind or water, and areas where the shredded residue accumulates may interfere with planting of the next crop.

If the no-till BMP is selected for use by a landowner, a separate plan should be prepared for each area that will use this practice. Additional guidance and minimum plan elements are discussed in the CPS 329 (NRCS 2016a). If the reduced-till BMP is selected for use by a landowner, a separate plan should be prepared for each area that will use this practice, and additional guidance and minimum plan elements are discussed in CPS 345 (NRCS 2016b).

Conservation tillage practices can remove up to 45 percent of the phosphorus from runoff and approximately 75 percent of the sediment. Additionally, studies have found around 93 percent less erosion occurred from no-till acreage compared to acreage subject to moldboard plowing (USEPA 2003).

Contour Farming: Contour farming is the practice of aligning ridges, furrows, and roughness formed by tillage, planting, and other operations to alter the velocity and/or direction of water flow to or around the hillslope. Use of this practice results in reduced erosion; reduced transport of sediment, other solids, and the contaminants attached to them; and reduced transport of contaminants found in solution runoff (i.e., excess nutrients and pesticides) by increasing water infiltration. Contour farming applies on sloping land where crops are grown.

Criteria which apply to this practice are minimum and maximum row grades, minimum ridge heights, and stable outlets to receive surface flow. The practice standard (NRCS 2007) provides more information; however, in general, crop rows should have sufficient grade to ensure that runoff water does not pond and cause unacceptable crop damage. The maximum row grade

should not exceed one-half of the up-and-down hill slope percent used for conservation planning, or 2 percent; see the standard for exceptions. During the period of the rotation that soil is most vulnerable to erosion, the minimum ridge height is 2 inches when row spacing is greater than 10 inches, and 1 inch for close-grown crops such as small grains (row spacing less than 10 inches). Additionally, for close-grown crops, the spacing between plants within the row shall not be greater than 2 inches. The minimum ridge height criteria are not required when the no-till practice (NRCS 2016a) is employed and at least 50 percent surface residue cover is present between the rows after planting.

Farming operations should begin on the contour baselines/markers and proceed both up and down the slope in a pattern parallel to any contour baselines/markers or terraces, diversions, or contour buffer strip boundaries where these practices are also present, until the patterns meet, and provided the applicable row grade criteria are met. Where field operations begin to converge between two non-parallel contour baselines, a correction area should be established that is permanently in sod or established to an annual close-grown crop. Sod turn strips should also be established where contour row curvature becomes too sharp to keep machinery aligned with rows during field operations, on sharp ridge points, or other odd areas as needed. Where terraces, diversions, or contour buffer strips are not present, contour markers should be retained on grades that, when followed during establishment of each crop, will maintain crop rows at designed grades. Contour markers may be field boundaries, a crop row left untilled near or on an original contour baseline or other readily identifiable, continuous, lasting marker. If a marker is lost, a contour baseline should be re-established, within the applicable criteria, prior to seedbed preparation for the next crop (NRCS 2007).

When using contour farming, a separate plan should be prepared for each field that will use this practice.

Conservation Crop Rotation: Conservation crop rotation is a planned sequence of at least two different crops grown on the same ground over a period of time (i.e., the rotation cycle), and applies to all cropland where at least one annually-planted crop is included in the crop rotation. This practice can reduce sheet, rill, and wind erosion, as well as reduce water quality degradation due to excess nutrients. For the purposes of the practice, a cover crop is considered a different crop. Where applicable, suitable crop substitutions may be planted when the planned crop cannot be planted due to weather, soil conditions, or other local situations. Acceptable substitutes are crops having similar properties that will accomplish the purpose of the original crop.

For reducing sheet, rill, and wind erosion, the crops, a tillage system, and cropping sequences should be selected that will produce sufficient and timely quantities of biomass or crop residue, which will reduce erosion to the planned soil loss objective, as calculated using current approved erosion prediction technology. Selection of high-residue producing crops and varieties, use of cover crops, and adjustment of plant density and row spacing can enhance production of the kind, amount, and distribution of residue needed, especially when used in combination with CPSs for Residue and Tillage Management (NRCS 2016a and NRCS 2016b). Crop damage by wind erosion can be reduced by selecting crops tolerant to abrasion from windblown soil or high wind velocity. Alternatively, if crops sensitive to wind erosion damage are grown, the potential for plant damage

can be reduced by crop residue management, field windbreaks, herbaceous wind barriers, intercropping, or other methods of wind erosion control.

To recover excess nutrients from the soil profile in order to reduce water quality degradation, crops with the following qualities should be used: quick germination and root system formation, a rooting depth sufficient to reach the nutrients not removed by the previous crop, and nutrient requirements that readily utilize the excess nutrients. In addition, including perennial or annual legume crops in the rotation can help provide nitrogen for the non-legume crops, especially in fields where manure applications are restricted by high or excessive soil phosphorus or potassium levels.

When using conservation crop rotation, a separate plan should be prepared for each field or treatment unit that will use this practice. Additional guidance and minimum plan elements are discussed in CPS 328 (NRCS 2014a).

Stripcropping: Stripcropping is the practice of growing planned rotations of erosion-resistant and erosion-susceptible crops or fallow in a systematic arrangement of approximately equal strips (two or more) across a field. This practice reduces sheet, rill, and wind erosion, as well as the transport of sediment and other water- and wind-borne contaminants. Stripcropping can be applicable on steeper slopes but is less effective on slopes exceeding 12 percent. The practice has the greatest impact where cropped or fallow strips having less than 10 percent cover are alternated with close grown and/or grass/legume strips or crop strips with 75 percent or greater surface cover. Stripcropping is not well suited to rolling topography and does not apply to situations where the widths of alternating strips cannot be made generally equal.

Vegetation in a stripcropping arrangement consists of crops and/or forages grown in a planned rotation. No two adjacent strips should be in an erosion-susceptible condition at the same time during the year, although two adjacent strips may be in erosion-resistant cover at the same time. Erosion-resistant strips should be crops or crop residues that provide the needed protective cover during those periods when erosion is expected to occur. Acceptable protective cover is tolerant of the anticipated depth of sediment deposition and includes a growing crop, including grasses, legumes, or grass-legume mixtures, standing stubble, residue with enough surface cover to provide protection, or surface roughness sufficient to provide protection. When the erosion-resistant strip is in permanent vegetation, the species established should either be tolerant to herbicides used on the cropped strips or protected from damage by herbicides used on the cropped strips.

All tillage and planting operations will follow an established strip line. Strip boundaries should run parallel to each other and follow as close to the contour as practical. Strip widths should be determined using currently approved erosion prediction technologies, but should not exceed 50 percent of the slope length used for erosion prediction, or 150 feet, whichever is less. Strips susceptible to erosion should be alternated down the slope with strips of erosion-resistant cover.

When using stripcropping, a separate plan should be prepared for each field that will use this practice. Additional guidance and minimum plan elements are discussed in CPS 585 (NRCS 2008), including arrangement and vegetative condition of strips, minimum and maximum row grades, minimum ridge height, critical slope length, headlands and end rows, and establishment of stable

outlets to control runoff. Sediment accumulations along strip edges should be smoothed or removed and re-distributed over the field as necessary to maintain practice effectiveness. When headlands are in permanent cover, they should be renovated as needed to keep ground cover above 65 percent. No-till renovation of headlands is recommended, but in any case, should only include the immediate seedbed preparation and reseeding to a sod-forming crop with or without a nurse crop. Full headland width should be maintained to allow turning of farm implements at the end of a tilled strip to double back on the same strip.

Conservation Cover: Conservation cover is the practice of establishing and maintaining permanent vegetative cover in order to: reduce sheet, rill, and wind erosion and sedimentation; and reduce ground and surface water quality degradation by nutrients, and surface water quality degradation by sediment. This practice applies on all lands needing permanent herbaceous vegetative cover and can be applied on only a portion of a field; however, it does not apply to plantings for forage production or to critical area plantings.

When using conservation cover, the amount of plant biomass and cover needed to reduce wind and water erosion to the planned soil loss objective should be calculated using the current approved wind and/or water erosion prediction technology. The selected plant species should be suitable for the planned purpose, as well as adapted to the soil, ecological, and climatic conditions of the area. Planting dates, planting methods, and care in handling and planting of the seed or planting stock shall ensure that planted materials have an acceptable rate of survival. No-till seeding methods are preferred where erosion concerns are present. Periodic removal of some products such as high value trees, medicinal herbs, nuts, and fruits is permitted provided the conservation purpose is not compromised by the loss of vegetation or harvesting disturbance.

When using conservation cover, a separate plan should be prepared for each field that will use this practice. Additional guidance and minimum plan elements are discussed in CPS 327 (NRCS 2010a), including seeding periods; seed quality; seedbed preparation and seeding; use of temporary and/or nurse crops (if necessary); native species; seed mixtures; soil testing; fertilizer, lime, and pesticide requirements; weed and companion crop control; and maintenance of the vegetative cover. Mowing after the establishment period (except for noxious weed control) shall be done prior to April 15 or after August 1 to protect nesting wildlife. Exceptions can be made to allow mowing, burning, and/or chemical treatments, when necessary, to maintain the health and diversity of the plant community.

Cover Crop: A cover crop consists of grasses, legumes, and forbs planted for seasonal vegetative cover. This practice can help reduce wind and water erosion, as well as reduce water quality degradation by utilizing excessive soil nutrients. Cover crops may either be established between successive production crops, or companion-planted or relay-planted into production crops. Species and planting dates should be selected that will not compete with the production crop yield or harvest. Cover crops should not be harvested for seed, nor should the residue be burned.

As discussed in CPS 340 (NRCS 2011), plant species, seeding rates, seeding dates, and seeding depths should be determined using the Illinois Cover Crop Selection Tool (<u>http://mccc.msu.edu/selector-tool/</u>). Cover crops should be selected based on having the physical characteristics necessary to provide adequate erosion protection, their ability to effectively utilize the nutrients of concern, and their ability to produce higher volumes of organic

material and root mass in order to maintain or increase soil organic matter. Use of deep-rooted species will help maximize nutrient recovery. The cover crop should be established as soon as practical prior to or after harvest of the production crop, and terminated as late as practical to maximize plant biomass production and nutrient uptake, while allowing time to prepare the field for the next production crop.

When using a cover crop, a separate plan should be prepared for each field that will use this practice. Additional guidance and minimum plan elements are discussed in CPS 340 (NRCS 2011). The cover crop should be evaluated periodically to determine if the cover crop is meeting the planned purpose. If not, changes to the crop species, management, or technology should be implemented.

Terracing: Terracing is a soil conservation practice that can prevent runoff of precipitation falling on high gradient lands from causing serious erosion. Terraces may consist of an earthen embankment, a channel, or a combination of ridges and channels constructed across the slope. They can be narrow based (grass on both sides), grass backed, or farmable (no grass), and have an outlet to convey runoff water to a point where it will not cause damage. Terraces reduce both the volume and velocity of water moving across the soil surface, which greatly reduces soil erosion. Terracing reduces peak discharge rates by temporarily storing runoff and allowing the associated sediment and other contaminants to settle out behind the terrace ridge rather than directly entering a receiving stream. Terrace systems have been shown to remove as much as 85 percent of sediment and 70 percent of total phosphorus from runoff (USEPA 2003). See CPS 600 (NRCS 2010c) for additional guidance, including information on spacing, alignment, capacity, cross-sections, channel grades, and outlets.

If this BMP is selected for use by a landowner, a separate plan should be prepared for each area that will use this practice. Minimum elements for each plan are discussed in CPS 600 (NRCS 2010c). The terraces should be inspected periodically and repaired as needed, including maintaining terrace ridge heights, channel profiles, terrace cross-sections, and outlet elevations. Accumulated sediment should be removed regularly to maintain terrace capacity and grade. For terraces where vegetation is specified, seasonal mowing, control of trees and brush, reseeding, and fertilizing should be completed, as needed.

Critical Area Planting: Critical area planting is the establishment of permanent vegetation on sites that have or are expected to have high erosion rates, and/or on sites that have physical, chemical, or biological conditions that prevent the establishment of vegetation using normal practices. This practice can be used to stabilize a variety of areas, including areas with existing or expected high rates of soil erosion by wind or water; riparian areas; sand dunes; stream and channel banks; and pond, lake, and other shorelines. In addition, critical area planting applies to highly disturbed areas such as active or abandoned mined lands; urban restoration sites; construction areas; conservation practice construction sites; areas needing stabilization before or after natural disasters such as floods, hurricanes, tornados and wildfires; and other areas degraded by human activities or natural events. Use of the area should be managed as long as necessary to stabilize the site and achieve the intended purpose.

To use this practice, a site investigation should be conducted to identify any physical, chemical, or biological conditions that could affect the successful establishment of vegetation. Plant species

should then be selected based on any identified factors and should have the capacity to achieve adequate density and vigor within an appropriate period to stabilize the site sufficiently to permit suited uses with ordinary management activities. The amount of plant biomass and cover needed to reduce wind and water erosion to the planned soil loss objective should be determined using the current approved wind and/or water erosion prediction technology. Seeding or planting should be done at a time, and in a manner, that best ensures establishment and growth of the selected species. See CPS 342 (NRCS 2010b) for additional guidance on this and other considerations.

When using a critical area planting, a separate plan should be prepared for each treatment unit that will use this practice. Additional guidance and minimum plan elements are discussed in NRCS CPS 342 (NRCS 2010b), including species selection, seeding, restoring degraded areas such as gullies and deep rills, amending the soil if needed to ameliorate or eliminate physical or chemical conditions that inhibit plant establishment and growth, and shaping stream/channel banks and pond/lake shorelines so they are stable and allow for the establishment and maintenance of desired vegetation. Planted areas should be protected from damage by farm equipment, vehicular traffic, and livestock. Inspections should be performed on a regular basis, and reseeding or replanting, fertilization, pest control, and repair of damaged or scoured areas performed as needed to ensure that this practice continues to function as intended throughout its expected life.

Urban Reforestation/Riparian Buffer Restoration: Riparian buffers are applicable to both rural and urban settings. Urban reforestation is the practice of planning and planting large areas of trees to increase the urban canopy and decrease impervious area. Riparian buffers are vegetated areas of land used to intercept runoff before it can enter a waterbody. The buffers slow and filter runoff. thereby serving as controls to reduce both pollutant loads from runoff and sedimentation to the impaired waterbody. Maintaining and/or restoring riparian buffers with trees helps to filter pollutants out of runoff from roads, parking lots, and other paved areas. The trees provide shade to moderate soil and stream temperatures. Additionally, the rooting systems of the vegetation serve as reinforcements in streambank soils, which help to hold streambank material in place and minimize erosion. Due to the increase in stormwater runoff volume and peak rates of runoff associated with urban development, stream channels are subject to greater erosional forces during stormflow events. Preserving natural vegetation along stream channels, therefore, minimizes the potential for water quality and habitat degradation due to streambank erosion, as well as that additional pollutant or sediment load entering the stream.

Converting land adjacent to streams for the creation of riparian buffers will provide stream bank stabilization, stream shading, and nutrient uptake and trapping from adjacent areas. Minimum buffer widths of 25 feet are required for water quality benefits and phosphorus removal rates of approximately 25 to 30 percent for 30-foot-wide buffers and 70 to 80 percent for 60- to 90-foot-wide buffers have been reported (USEPA 2003). Riparian corridors can typically treat a maximum of 300 feet of adjacent land before runoff forms small channels that short circuit treatment. Land use data for the Upper Fox River/Flint Creek watershed were clipped to 25 feet buffer zones created around the impaired stream segments. Existing grassland, forest, and agricultural areas within the minimum 25-foot buffer zones are shown in **Table 3-3** for all major tributaries to Fox River Segment DT-22 in the subbasin. Landowners should assess parcels adjacent to the stream

106.1

56.2

channel(s) and maintain or improve existing riparian areas or potentially convert cultivated lands.

		Area in 25 ft	Grassland in 25 ft	Forest in 25 ft	Agricultural Land in	
Stream Name	Segment ID	Buffer (Acres)	Buffer (Acres)	Buffer (Acres)	25 ft Buffer (Acres)	

41.7

 Table 3-3 Total Area and Area of Grassland, Forest, and Agricultural Land Within 25-Foot Buffer; Fox

 River Segment DT-22 and Major Tributaries.

650.4

Implementation of an urban reforestation/riparian buffer restoration program requires a coordinated effort and sites should be prioritized for best results. For guidance on agricultural land, the Illinois NRCS Practice Standard Code 391: Riparian Forest Buffer (2003) should be used, while guidance on urban land should be informed by the Illinois NRCS Urban Manual Practice Standard Code 995: Vegetative Streambank Stabilization (1994).

Wetlands: The use of wetlands as a structural control is applicable to sediment and nutrient reduction from both agricultural land and urbanization in the Upper Fox River/Flint Creek watershed. Wetlands serve as an important buffer between terrestrial activities and aqueous environments, even in urban settings. Existing wetlands should be maintained and additional wetlands could be constructed to treat loads from runoff at select locations where more focused runoff occurs and land use allows, e.g. at the downstream end of a drainage channel. Wetlands are effective BMPs for phosphorus and sediment control because they filter sediment and slow overland flow, thereby reducing soil erosion (NRCS 2014c).

A properly designed and functioning wetland can provide very efficient treatment of pollutants. Design of wetland systems is critical to the sustainable functionality of the system and should consider soils in the proposed location, hydraulic retention time, and space requirements. In general, soils classified as hydric are most suitable for wetland construction. The current extent of soils classified as hydric by the NRCS, as well as the current extent of existing U.S. Fish and Wildlife classified wetlands in the portion of the Fox River segment DT-22 subbasin within the Upper Fox River/Flint Creek watershed, are shown in **Figure 3-3**. Areas near waterways that are not currently classified as wetlands but have hydric soils present are typically strong candidates for potential wetland construction. Existing wetland areas may also be candidates for reconstruction or enhancement to improve their nutrient uptake capacity, and may be a less expensive option, in some instances, than the creation of new wetlands. These data layers are developed on a large-scale and onsite soil investigation, and wetland construction.

Constructed wetlands, which comprise the second or third stage of a nonpoint source treatment system, can be very effective at improving water quality. Studies have shown that artificial wetlands designed and constructed specifically to remove pollutants from surface water runoff have removal rates of greater than 90 percent for suspended solids, up to 90 percent for total phosphorus, 20 to 80 percent of orthophosphate, and 10 to75 percent for nitrogen species (Johnson, Evans, and Bass 1996; Moore 1993; USEPA 2003; Kovosic et al. 2000). Although the removal rate for phosphorus is low in long-term studies, the rate can be improved if sheet flow is maintained to the wetland and vegetation and substrate are monitored to ensure the wetland is

Fox River

DT-22

CDM Smith Upper Fox River/Flint Creek Watershed Fox River Segment DT-22 Existing Wetlands and Hydric Soils operating optimally. Sediment or vegetation removal may be necessary if the wetland removal efficiency is lessened over time (USEPA 2003).

Stormwater Retention Basins (Dry and/or Wet Ponds): Control basins and ponds ("dry" or "wet") may be used for flood control and treatment of stormwater. Both systems function to settle suspended sediments and other solids typically present in stormwater runoff.

Stormwater ponds are also called retention ponds or "wet" ponds and they hold back water similar to water behind a dam. The pond has a permanent pool of water that fluctuates in response to precipitation and runoff from the contributing areas. Maintaining a pool means discouraging resuspension and keeping deposited sediments at the bottom of the holding area. USEPA's 1993 Nationwide Urban Runoff Program indicated that up to two-thirds of the sediment, nutrients, and trace metals could be removed via sedimentation within 24 hours, while two weeks are required to remove a significant amount of phosphorus. A wet detention basin must receive and retain enough water from rain, runoff, and groundwater to maintain a permanent pool in the deeper areas of the basin. Most sources recommend a minimum drainage area of 10 to 25 acres to sustain a constant inflow. Wet detention basins should be sized to treat the water quality volume and detain and release the 100-year event. The permeability of hydrologic soil groups "C" and "D" is suitable for a wet basin without modification. The side slopes of a wet detention basin should be no steeper than 5:1 above the normal water level (DuPage County 2008).

Dry ponds, which may also be referred to as extended detention basins, detention ponds, and/or extended detention ponds, are basins whose outlets are designed to detain the stormwater runoff from a water quality "storm" for some minimum duration (e.g., 24 hours), which allows sediment particles and associated pollutants to settle out. Unlike wet ponds, dry extended detention ponds do not have a permanent pool. However, dry extended detention ponds are often designed with small pools at the inlet and outlet of the pond, and can also be used to provide flood control by including additional detention storage above the extended detention level.

Although the Fox River segment DT-22 watershed is highly urbanized, both wet and dry ponds can be very useful stormwater retrofits with two primary applications as a retrofit design. In many communities, detention basins have been designed for flood control in the past. It is possible to modify these basins to incorporate features that encourage water quality control, and/or channel protection, such as conversion into vegetated basins, which slows the flow of stormwater, filters and traps common runoff pollutants, and promotes soil saturation and groundwater recharge. It is also possible to construct new dry extended detention ponds in open areas of a watershed to capture existing drainage, or create them above a road crossing or culvert.

In general, dry extended detention ponds should be used at sites with a minimum drainage area of 10 acres. On smaller sites, it may be difficult to provide channel or water quality control because the orifice diameter at the outlet becomes very small, and is thus prone to clogging. In addition, it is generally more cost-effective to control larger drainage areas due to the economies of scale in pond construction. Dry ponds can be used on sites with slopes up to about 15 percent, although the local slope needs to be relatively flat to maintain reasonably flat side slopes. While there is no minimum slope requirement, enough elevation drop is needed from the pond inlet to

the pond outlet to ensure that flow can move through the system (Stormwater Manager's Resource Center 2016).

Vegetated Swales: Vegetated swales are an effective infiltration-based technique in an urban setting. These swales use an open channel designed to attenuate runoff. As runoff or stormwater discharge enters these channels, it is slowed by the vegetation; this subsequently reduces sediment suspension, promotes filtration through soil, and increases infiltration into groundwater. Pollutants are removed by settling, infiltration into soil, and by biological uptake of nutrients. They also increase the time of retention within the watershed, further reducing peak flow rates. Vegetated swales, therefore, provide the benefits of reducing peak flows and increasing pollutant removal, at low capital cost. Swales are particularly well suited for highways, roads, and parking lots because the channel designs are straight and can be easily incorporated into design schemes (Koski and Kinzelman 2010). Swales are not practicable in areas with flat grades, steep grades, or in wet or poorly drained soils, but are an excellent choice for many urban areas given the low land area requirements compared to many alternatives.

The swales can be used as a standalone option or as a conveyance mechanism to channel runoff to other retentive BMPs. Benefits of this BMP come from reductions in runoff volume and removal of nutrients, sediments, and heavy metals [TSS (86%), total phosphorous (34%), soluble phosphorous (38%), total nitrogen (84%), carbon (69%), and moderate reductions of heavy metals (cadmium 42%, copper 51%, lead 67%, and zinc 71%)] (Schueler and Holland 2000b).

Grassed Waterways: A grassed waterway is a shaped or graded channel, established with suitable vegetation, used to convey surface water at a non-erosive velocity by way of a broad and shallow cross-section to a stable outlet. The vegetative cover within the waterway reduces peak discharge and protects the channel surface from rill and gully erosion. Waterways are often constructed in naturally-occurring depressions where the water collects and flows to an outlet, but they can be constructed in any area where added water conveyance capacity and vegetative protection are needed to prevent erosion resulting from concentrated surface flow. In addition to reducing erosion, grassed waterways can positively affect water quality through uptake of other pollutants attached to soils, such as nutrients. Criteria for constructing grassed waterways are discussed in CPS 412 (NRCS 2014b), including capacity, stability, width, depth, side slopes, drainage and outlets, and establishment of vegetation.

When using a grassed waterway, a separate plan should be prepared for each treatment unit that will use this practice that describes how the practice requirements will be applied to the particular area. Additional guidance and minimum plan elements are discussed in CPS 342 (NRCS 2010b), The NRCS recommends these maintenance measures for grassed waterways:

- Plant a good quality NRCS-approved seed mixture. Fertilization of the vegetation should not be necessary unless the waterway is proven to lack proper nutrients. Avoid spraying herbicides in or adjacent to the waterway. Mowing or periodic grazing of the vegetation may be appropriate to maintain waterway capacity and reduce sediment deposition. Noxious weeds should be controlled.
- Inspect the area frequently for eroding areas, places needing reseeding, and damage caused by machinery, herbicides, or livestock. Repair all areas as needed; e.g., minor rills or gullies

may be repaired by reshaping and reseeding. Outlets should also be maintained to prevent gullies from forming. This may include reshaping and reseeding the outlet, or repairing components of structural outlets.

- Maintain the width of the grass area when tilling and planting adjacent fields. If possible, bring row crop patterns up to (but not into) the waterway nearly on the contour. Do not plant end rows along the side of the waterway. Do not use the waterway as a turn area because this can result in damage to the vegetation.
- Avoid driving up and down, or crossing, grassed waterways, especially during wet conditions. This can damage the vegetation and the ruts caused by tire tracks can lead to gullies.
- When crossing grassed waterways, lift tillage equipment off of the waterway and turn off chemical application equipment.

Pervious and Porous Pavement: Permeable pavement can be used in place of standard paving materials for construction of parking lots, alleys, driveways, low traffic roadways, boat ramps, paths and sidewalks, and community spaces. Permeable pavement helps to remove waterborne pollutants from stormwater runoff by allowing some proportion of the stormwater to filter through material to the underlying soil. The pavement traps some particulate bound pollutants, but most of the runoff and pollutants are discharged to the groundwater, as there is usually little organic-rich soil beneath permeable pavements that trap the pollutants, as in most other infiltration devices.

Permeable pavement is constructed of a porous asphalt or bituminous concrete surface, with a 2.5 to 4-inch thickness, that is placed over a highly permeable layer of crushed stone or gravel, 24 inches thick. A filter fabric can be placed beneath the gravel or stone layer to prevent movement of fines into the deeper layers, although many installations show clogging of the filter fabric, and most recent designs use rock filters and not filter fabrics. Runoff from the stone and gravel layers then infiltrates into the soil. If the infiltration rate is slow, perforated underdrain pipes can be placed in the stone layer to convey the water back to a surface waterway. The primary advantage of permeable pavement is that it can be put to dual use, reducing land use requirements. But, permeable pavements are not as durable as conventional pavements, and generally have much lower vehicle load limits. Also, they are costlier than conventional pavements (Pitt and Narayanan 2016). The Illinois Urban Manual Standard Practice Code 890: Pervious and Porous Pavements states that, in general, pervious and porous pavement could be implemented in parking lots, in alleys, on low traffic roadways, on paths and sidewalks, in fire lanes, and in community spaces that do not receive excessive traffic (NRCS 2013). While some impervious surface data does exist for the watershed, a detailed parcel-by-parcel assessment is needed in order to identify the specific makeup of impervious surface and the potential to replace it.

Sand Filters. Sand filters are also an infiltration-based technique that can be used for both sediment/TSS and pollutants. Water enters a settling basin to remove heavier sediments and is then directed to filter media composed of sand or an appropriate organic material. Sand filters are a good option for highly urban areas because they occupy little space, tend to be easier to retro-fit compared to other BMPs, and have few design restrictions. However, these types of

structures can be high maintenance and costly to construct (USEPA 2006). Sand filters do not add anything to an environment aesthetically but can be buried underground, thereby increasing their ability to be installed in highly urbanized settings. Sand filters can effectively remove a large range of pollutants, including the following: fecal coliform from 51% to over excess of 99% (Schueler and Holland 2000a; Clary et al. 2008), TSS at an average of 87% (Schueler and Holland, 2000b), total phosphorus at around 59%, and carbon at about 67%.

Compost Blankets, Filter Berms, and Filter Socks: Compost blankets, compost filter berms, and compost filter socks are BMPs employed to reduce surface runoff, particularly addressing the reduction of sediments and other suspended solids.

- Compost blanket: This is a layer of loosely applied composted material placed on soil in a disturbed area to reduce stormwater runoff and erosion. The material fills in small rills and voids to limit channelized flow, provides a more permeable surface to facilitate stormwater infiltration, and promotes revegetation. Seeds can be mixed into the compost before it is applied. Applying a compost blanket works well as a stormwater BMP because it a) retains a large volume of water, which aids in establishing vegetation growth within the blanket, b) acts as a cushion to absorb the impact energy of rainfall, which reduces erosion, c) stimulates microbial activity that increases the decomposition of organic matter, which increases nutrient availability and improves the soil structure, d) provides a suitable microclimate with the available nutrients for seed germination and plant growth, and e) removes pollutants such as heavy metals, nitrogen, phosphorus, fuels, grease, and oil from stormwater runoff, thus improving downstream water quality (USEPA 1998).
- Compost filter berm: A compost filter berm is a dike of compost or a compost product that
 is placed perpendicular to runoff to control erosion in disturbed areas and retain sediment.
 Compost berms can be placed at regular intervals to help reduce the formation of rill and
 gully erosion when a compost blanket is stabilizing a slope.
- Compost filter sock: A compost filter sock is a three-dimensional tubular sediment control and stormwater runoff filtration device typically used for perimeter control of sediment and soluble pollutants (such as phosphorus and petroleum hydrocarbons). They are effective when installed perpendicular to sheet or low concentrated flow. Compost filter socks trap sediment and soluble pollutants by filtering runoff water as it passes through the matrix of the sock and by allowing water to temporarily pond behind the sock, allowing deposition of suspended solids. Applications include: site perimeters; above and below disturbed areas subject to sheet runoff, inter-rill, and rill erosion; above and below exposed and erodible slopes; along the toe of stream and channel banks; around area drains or inlets located in a 'sump'; and on or around areas where trenching of silt fence is difficult or impossible, such as on compacted soils, frozen or paved ground, or around sensitive trees where trenching of silt fence is not beneficial for tree survival or may unnecessarily disturb established vegetation.

Stormwater Reduction Techniques: Reducing the amount of stormwater entering receiving waterbodies via overland flow can help reduce the amount of sediment and pollutants concurrently carried into the waterbodies. Stormwater reduction techniques which may be implemented in urban settings include the following:

- Rain barrels: These are designed to catch water from downspouts and store it for nonpotable uses such as gardening.
- Rain gardens: These are a type of bio-retention cell (which are described below)
- Green roofs: These are an engineering technique that uses vegetation on rooftops to reduce runoff, which in turn reduces the transport of sediment. In urban areas, green roofs can represent a large surface area, and may help retain as much as 87% of rainfall.

Bio-retention cells: Bio-retention cells, or rain gardens, are a low impact development technique in which vegetation and infiltration are used to hold and treat stormwater at the source of discharge. Properly used, bio-retention cells can reduce runoff volumes, increase groundwater recharge, increase evapotranspiration, provide a lag time for discharged runoff, and reduce pollutants entering ground and surface waters (Hunt et al. 2008). The cells were initially designed to handle the runoff from smaller sites, between one and three acres, but can be modified to fit inside a variety of sites.

Bio-retention cells are designed to decrease the volume of effluent, as well as improve water quality through filtration, infiltration, adsorption, and bio-transformations. Typical designs consist of sloped grass buffer strips, which convey water into an infiltration basin. The infiltration basin consists of a layer of highly permeable media, such as sand, which is covered by a layer of planting soil and mulch. The mulch layer is planted with fauna such as earthworms to keep soil pores open, increase transpiration, and potentially uptake pollutants. Depending on the soil infiltration rate of the site, an underlying drain can be added to remove excess water from the media. In bench studies of simulated bio-retention cells, fecal coliform reduction rates have been observed from 54% to 99.8%, with an average decrease of 91.6% (Rusciano and Obropte 2007); copper, lead, and zinc were removed in excess of 95%, and total phosphorus was removed at approximately 80% (Koski and Kinzelman 2010).

Streambank Stabilization/Erosion Control: Soil erosion is the process of moving soil particles or sediment by flowing water or wind. Eroding soil transports pollutants that can potentially degrade water quality. Three available approaches to potentially decrease nonpoint TSS, sedimentation/siltation, and/or pollutant source loads in an urban setting, as well as helping to stabilize eroding banks, include the following:

- Stone Toe Protection: Non-erodible materials are used to protect the eroding banks of a stream. Meandering bends found in the watershed could potentially be stabilized by placing the hard armor only on the toe of the bank. Stone toe protection is most commonly implemented "using stone quarry stone that is sized to resist movement and is placed on the lower one third of the bank in a windrow fashion (Kinney 2005)."
- Rock Riffle Grade Control: Naturally stable stream systems typically have an alternating riffle-pool sequence that helps to dissipate stream energy. Riffle rock grade control places loose rock grade control structures at locations where natural riffles would occur to create and enhance the riffle-pool flow sequence of stable streams. By installing riffle rock in an incised channel, the riffles will raise the water surface elevation resulting in lower effective

bank heights, which increases the bank stability by reducing the tractive force on the banks (Kinney 2005).

 Rock chutes: Rock chutes are rip rap lined water conveyance structures used to move water down a slope in a non-erosive manner. The main purpose of a rock chute is to reduce channel flow velocity by dissipating energy and to provide a stable grade at the outlet to prevent erosion.

The extent of streambank erosion within and upstream of the Fox River DT-22 impaired segment is unknown. Further investigation is recommended to determine the extent that erosion control measures could help in managing TSS and/or sedimentation/siltation loads in the reaches.

Street Sweeping: Street sweeping is the practice of passing over an impervious surface, usually a street or a parking lot, with a vacuum or a rotating brush for the purpose of collecting and disposing of accumulated debris, litter, sand, and sediments. Street sweeping is widely practiced by urban and suburban governments for litter and dust control. In addition, many commercial establishments utilize street sweeping for aesthetic purposes. In total, over 1,100 linear miles of roads exist within the Upper Fox River/Flint Creek watershed that could potentially benefit from enhanced street sweeping operations.

For street sweeping to have a beneficial effect on water quality in urban areas, a schedule of frequent sweeping must be established. There are several types of street sweepers, some of which are more effective than others at removing certain types of nonpoint source pollution. Some examples of street sweeping devices include mechanical sweepers, vacuum assisted mechanical sweepers, regenerative cleaners, industrial type vacuum sweepers, hand sweepers, and street flushers, although vacuuming is ideal so that sediment will not simply be redeposited within the same land area. The physical removal of particulates and attached fine pollutant particles from the street surface will lessen the pollutant load transferred to receiving waters.

Studies have shown that there are certain times when street sweeping is very effective in improving water quality. In areas with defined wet and dry seasons, sweeping prior to the wet season is likely to be beneficial, and is highly effective at reducing chloride loads to streams. Other times when sweeping is beneficial are following snow melt and heavy leaf fall (Northern Virginia 1997). The current extent of street sweeping in the watershed, type of equipment used, and program schedules are currently unknown. Each local jurisdiction in the watershed should be encouraged to review their existing program and make adjustments, as needed, to include pollutant removal and water quality improvements program goals.

3.4 BMP Recommendations for Reducing TSS in Lakes

Twelve of the 13 lakes in the Upper Fox River/Flint Creek watershed are listed for impairment of the aesthetic quality use caused by TSS. However, as indicated in **Section 2.4.2**, only 10 of the 12 lakes require TSS load reductions in order to meet the watershed-specific LRS target value. Lakes needing TSS reductions include the following:

Waterbody Name	Segment ID	% Reduction Required
Lake Barrington	RTZT	13%
Drummond Lake	UTI	88%
Echo Lake	RTZR	50%
Grassy Lake	VTI	63%
Island Lake	RTZI	53%
Lake Louise	VTZJ	78%
Slocum Lake	RTP	79%
Timber Lake (South)	RTZQ	52%
Tower Lake	RTZF	65%
Woodland (Highland) Lake	STV	55%

Section 2.4.2 indicates that among lakes in exceedance of the target value, percent reductions of between 13% and 88% are required. Neither Lake Fairview nor Lake Napa Suwe are in exceedance of the target value, and therefore do not require a reduction of TSS.

As indicated in Figure 6-1 of the Stage 1 report (AECOM 2010), land use around these impaired lakes is primarily urban with limited amounts of wetland and forested areas. Section 2.3 of the Stage 1 report indicates that 37% of the overall impaired watershed is agricultural, while Figure 6-1 shows that the majority of the agricultural land is not adjacent to the impaired lakes.

Nonpoint source controls designed to reduce erosion and overland flow are expected to reduce TSS in lakes, as well as provide a secondary benefit of reducing other contaminants, such as total phosphorus, that may be entering waterways via erosive processes. The BMPs discussed in **Section 3.3** are, therefore, also applicable to TSS impairments within the lakes.

Stormwater retention basins, sand filtration basins, and **bio-retention cells** could be constructed at the upstream ends of select lakes, or at a location of more concentrated inflow to the selected lake. **Filter strips**; **riparian buffers**; **vegetated swales**; **permeable pavement**; **compost blankets, berms, and socks**; and **stormwater reduction techniques** may also be employed in select areas to help control overland flow and the associated transport of sediment and pollutants.

For the **filter strips**, potential tributary and shoreline buffer areas were calculated using average slopes in the subbasin, as described in **Section 3.3**. As most of the lakes are in lees urban areas, and as a conservative measure, the NRCS Conservation Practice Standard (CPS) 393 filter strip sizing methodology was used to develop approximate maximum filter strip and buffer areas. The average slopes, appropriate filter strip flow lengths, and calculated areas within the buffer distances for each waterbody are provided in **Table 3-5**. The table also shows estimated acres of open land surrounding each lake and its tributaries where filter strips could potentially be installed. However, the applicability of implementation will vary with each parcel and landowners or managers should be encouraged to evaluate their land adjacent to impaired lakes to determine the practicality of installing or extending filter strips to achieve effective flow lengths as previously described. Figures depicting the buffered areas and open lands suitable for conversion to filter strips in each lake's subbasin are provided in **Figures 3-4** through **3-8**.

Table 3-5 Average Slopes, Filter Strip Flow Length, Total Buffer Area, and Area of Land Within BuffersPotentially Suitable for Conversion to Filter Strips, by Lake

Waterbody Name	Segment ID	Average Slope (%)	Filter Strip Flow Length (feet)	Total Area in Buffer (Acres)	Potentially Convertible Land in Buffer (Acres)
Drummond Lake	UTI	7.2	234	41.7	20.8
Echo Lake	RTZR	12.7	234	46.9	4.1
Grassy Lake	VTI	9.0	234	488.5	174.3
Honey Lake ¹	RTZU	8.9	234	71.7	95.3
Island Lake	RTZI	7.2	234	513.9	140.3
Lake Barrington	RTZT	12.6	234	136.8	5.4
Lake Fairview ¹	STK	10.5	234	40.9	3.5
Lake Louise	VTZJ	6.0	234	134.8	21.0
Lake Napa Suwe ¹	STO	7.3	234	144.0	79.4
Slocum Lake	RTP	6.1	234	587.6	82.5
Timber Lake (South)	RTZQ	12.9	234	114.2	34.8
Tower Lake	RTZF	9.2	234	215.2	35.4
Woodland (Highland) Lake	STV	5.9	234	21.6	7.5

¹ Honey Lake is not impaired for TSS, and Lakes Fairview and Napa Suwe do not require TSS reductions; however, areas are included in the table for the phosphorus impairments discussed in **Section 3.5**.

Upper Fox River/Flint Creek Watershed Drummond Lake (UTI), Lake Napa Suwe (STO), Woodland Lake (STV), and Island Lake (RTZI) Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips CDM Smi

Upper Fox River/Flint Creek Watershed Grassy Lake (VTI), Honey Lake (RTZU), and Echo Lake (RTZR) Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips

Figure 3-5

Upper Fox River/Flint Creek Watershed Lake Barrington (RTZT), Lake Fairview (STK), Tower Lake (RTZF), and Timber Lake (RTZQ) Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips

Upper Fox River/Flint Creek Watershed Lake Louise (VTZI) Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips

Figure 3-7

Upper Fox River/Flint Creek Watershed Slocum Lake (RTP)

Buffer Areas and Lands Potentially Suitable for Conversion to Filter Strips

For the **riparian buffers**, potential tributary and shoreline buffer areas were estimated as described in **Section 3.3** and are shown in **Table 3-6**. Landowners or managers should be encouraged to assess parcels adjacent to impaired lakes and maintain or improve existing riparian areas, or potentially convert semi-developed lands.

Stream Name	Segment ID	Area in 25 ft Buffer (Acres)	Grassland in 25 ft Buffer (Acres)	Forest in 25 ft Buffer (Acres)	Agricultural Land in 25 ft Buffer (Acres)
Drummond Lake	UTI	7.3	0.5	0.1	0.5
Echo Lake	RTZR	8.2	-	0.4	-
Grassy Lake	VTI	60.6	-	10.9	-
Honey Lake ¹	RTZU	17.3	-	0.5	-
Island Lake	RTZI	63.1	6.6	12.2	2.5
Lake Barrington	RTZT	16.4	-	0.6	-
Lake Fairview ¹	STK	4.4	-	1.0	-
Lake Louise	J	16.9	-	0.5	-
Lake Napa Suwe ¹	STO	23.0	1.2	2.6	-
Slocum Lake	RTP	65.0	0.2	12.6	1.0
Timber Lake (South)	RTZQ	14.6	-	3.7	0.8
Tower Lake	RTZF	29.9	-	3.3	-
Woodland (Highland) Lake	STV	14.8	-	-	-

able 3-6 Total Area and Area of Grassland, Forest, and Agricultural Land Within 25-Foot Buffer و	of
mpaired Lakes	

¹ Honey Lake is not impaired for TSS, and Lakes Fairview and Napa Suwe do not require TSS reductions; however, areas are included in the table for the phosphorus impairment discussed in **Section 3.5**.

Wetlands could potentially be constructed at one or more of the lakes where higher inflow rates are observed. The use of wetlands as structural controls was discussed in **Section 3.3**. For each of the lakes, hydric soils with potential for wetland construction are shown, along with existing wetlands, to indicate potential areas where wetlands may be installed for each lake's subbasin in **Figures 3-9** through **3-13**. Areas near waterways not currently classified as wetlands but which have hydric soils present are typically strong candidates for potential wetland construction. Existing wetland areas may also be candidates for reconstruction or enhancement to improve their nutrient uptake capacity. These data layers are developed on a large-scale and onsite soil investigation and site-specific assessment, and wetland construction and to help prioritize areas for enhancement or restoration.

Upper Fox River/Flint Creek Watershed Drummond Lake (UTI), Lake Napa Suwe (STO), Woodland Lake (STV), and Island Lake (RTZI) Existing Wetlands and Hydric Soils

Upper Fox River/Flint Creek Watershed Grassy Lake (VTI), Honey Lake (RTZU), and Echo Lake (RTZR) Existing Wetlands and Hydric Soils

Upper Fox River/Flint Creek Watershed Lake Barrington (RTZT), Lake Fairview (STK), Tower Lake (RTZF), and Timber Lake (RTZQ) Existing Wetlands and Hydric Soils

Upper Fox River/Flint Creek Watershed Lake Louise (VTZI) Existing Wetlands and Hydric Soils

Upper Fox River/Flint Creek Watershed Slocum Lake (RTP) Existing Wetlands and Hydric Soils

Shoreline stabilization/erosion control techniques could be used along the shoreline in select areas of each lake to deflect energy from water movement and minimize erosion. Techniques include engineered structures, such as buried revetments, seawalls, and rip rap zones. The selected structures should be placed where higher inflow rates are observed and/or where erosion caused by wave action and other factors is observed. For example, Section 6.5 of the Stage 1 report indicates that at the time of report preparation, the shoreline of Island Lake was comprised of 60% seawall and 29% rip rap (AECOM 2010).

- Buried revetments: These are passive, sloped, engineering structures designed to deflect energy associated with water movement and reduce erosion. The revetments are populated with native vegetation, which can also reduce the transport of sediment associated pollutants via the control of shoreline soil erosion resulting from stormwater runoff.
- A seawall is a form of shoreline defense constructed where the sea or lake, and associated coastal processes, impact directly upon the landforms of the coast. The purpose of a seawall is to protect areas of human habitation, conservation, and leisure activities from the action of tides and waves. Because a seawall is a static feature, it will conflict with the dynamic nature of the coast and impede the exchange of sediment between land and the waterbody.

The extent of bank erosion surrounding each lake is regularly assessed by the Lake County Health Department and is presented in the Lake Summary Reports developed for each waterbody (available online at: <u>http://www.lakecountyil.gov/2400/Lake-Reports</u>). A summary of the most recent bank erosion assessment for each waterbody is presented in **Table 3-7**. Further investigation is recommended to determine the extent that erosion control measures could help manage TSS loads in the waterbodies and lakes classified with severe shoreline erosion should be prioritized for implementation, with the most severe areas targeted first.

	Assessment	nt Percent of Shoreline Exhibiting Erosio			
Lake	Year	Slight	Moderate	Severe	Total
Lake Barrington	2015	25%	6%	0%	31%
Drummond Lake	2009	9%	36%	40%	85%
Echo Lake	2015	18%	25%	7%	50%
Lake Fairview	2013	17%	20%	8%	45%
Grassy Lake	2008	23%	29%	4%	56%
Honey Lake	2015	12%	5%	0%	17%
Island Lake	2013	7%	5%	4%	16%
Lake Louise	2015	12%	2%	0%	14%
Lake Napa Suwe	2013	11%	8%	2%	21%
Slocum Lake	2013	12%	4%	0%	16%
Timber Lake	2013	39%	16%	6%	61%
Tower Lake	2013	22%	16%	6%	44%
Woodland Lake	2013	20%	10%	0%	30%

Table 3-7	Summary	of Shoreline	Erosion	Classifications
-----------	---------	--------------	---------	-----------------

¹ Assessments per the most recent Lake County Health Department Lake Summary Report for each waterbody (available online at: http://www.lakecountyil.gov/2400/Lake-Reports)

3.5 BMP Recommendations for Reducing Total Phosphorus in All Lakes and Increasing DO in Woodland (Highland) Lake

All 13 lakes in the Upper Fox River/Flint Creek watershed are listed for impairment by total phosphorus. Woodland (Highland) Lake is also listed for impairment caused by low DO. Phosphorus is a nutrient critical to healthy ecosystems at low concentrations; however, over enrichment of phosphorus can result in aquatic ecosystem degradation when nitrogen is also available in sufficient quantities. Nutrient enrichment can result in rapid algal growth as available nutrients and carbon dioxide are consumed. This response can alter pH, decrease DO (which is critical to other aquatic biota), alter the diurnal DO pattern, and even create anoxic conditions. In addition, nutrient enrichment can reduce water clarity and light penetration and is aesthetically displeasing. Oxygen levels must be considered when evaluating BMPs for phosphorus because phosphorus is released from sediment at higher rates under anoxic conditions, and increased water temperature and photosynthesis decrease DO levels, which creates anoxic conditions.

Inputs of phosphorus originate from both point and nonpoint sources. Most of the phosphorus discharged by point sources is soluble. Phosphorus from point sources also typically has a continuous impact and is human in origin; for example, effluents from municipal sewage treatment plants and permitted industrial discharges. Phosphorus from nonpoint sources is generally insoluble or particulate. Most of this phosphorus is bound tightly to soil particles and enters streams from erosion. The impact from phosphorus discharged by nonpoint sources is typically intermittent and is most often associated with stormwater runoff. Sedimentation can impact the physical attributes of the stream and act as a transport mechanism for phosphorus.

Internal cycling of phosphorus from lake sediments is also a significant contributor to impairments in each of these lakes. Low DO near the lake bottom during periods of thermal stratification, if present, is generally addressed by focusing on organic loads that consume oxygen through decomposition, as well as nutrient loads that can cause algal growth, which can also deplete DO. Sufficient reductions in nutrient loads to the Woodland (Highland) Lake are also expected to alleviate the DO issue.

Phosphorus loads in all 13 lakes originate from internal and external sources. Possible external sources of total phosphorus include municipal point sources, lawn and garden fertilization, run off, and littoral/shore area modifications. To achieve a reduction of total phosphorus for the lakes, management measures must address both internal sources and loading associated with urban runoff.

Internal and external load reductions needed for each of the phosphorus-impaired lakes is listed below in **Table 3-8** and is further discussed in **Tables 2-20** through **2-32** in **Section 2**.

Waterbody Name	Segment ID	Internal P Load Reduct	hosphorus ion Required	External Phosphorus Load Reduction Required		
		Lbs/Day	Percent	Lbs/Day	Percent	
Lake Barrington	RTZT	1.04	69%	0.00	0%	
Drummond Lake	UTI	0.16	86%	0.05	35%	

 Table 3-8 TMDL Percent Reduction Summary for each Phosphorus-Impaired Lake in the Upper Fox

 River/Flint Creek Watershed

Echo Lake	RTZR	0.13	65%	1.19	70%
Grassy Lake	VTI	0.63	76%	5.10	78%
Honey Lake	RTZU	2.94	91%	0.67	85%
Island Lake	RTZI	0.81	70%	5.85	75%
Lake Fairview	STK	0.15	58%	0.002	10%
Lake Napa Suwe	STO	0.62	81%	0.77	74%
Lake Louise	VTZJ	0.57	82%	1.06	80%
Slocum Lake	RTP	2.02	75%	4.63	70%
Timber Lake (South)	RTZQ	0.40	73%	0.89	69%
Tower Lake	RTZF	0.28	58%	1.12	55%
Woodland (Highland) Lake	STV	0.02	50%	0.05	65%

3.5.1 Point Sources of Phosphorus

As discussed in **Section 2.3.2.4**, there are seven NPDES permitted facilities which have permit limits for phosphorus, and three additional facilities which are only required to monitor (no specified effluent concentration limits). However, only one of the impaired lakes (Grassy Lake) in the Upper Fox River/Flint Creek watershed currently receives discharge from NPDES permitted facilities with reasonable potential to discharge total phosphorus (IL0024716 North Barrington Elementary School and IL0027286 Mount Saint Joseph Home STP). The total phosphorus WLA for these facilities is estimated to be 0.813 lbs/day (see Table 2-8) which represents approximately 54% of the LC for this waterbody.

During the next NPDES permit renewal process, all minor domestic wastewater dischargers in the watershed that currently do not monitor for total phosphorus (TP) will be required to monitor for TP in the interim and develop an action plan to reduce TP discharge in the effluent. In addition, the reissued NPDES Permit for minor dischargers (wastewater treatment plants with design average flow less than (\leq) 1.0 MGD) may include the following requirements or Special Conditions:

I. Develop a phosphorus discharge optimization plan.

In developing the plan, the Permittee shall evaluate a range of measures for reducing phosphorus discharges from the treatment plant, including possible source reduction measures, operational improvements, and minor facility modifications that will optimize reductions in phosphorus discharges from the wastewater treatment facility. The Permittee's evaluation shall include, but not be limited to, an evaluation of the following optimization measures:

A. <u>WWTF influent reduction measures</u>.

- 1. Evaluate the phosphorus reduction potential of users.
- 2. Determine which sources have the greatest opportunity for reducing phosphorus (i.e., industrial, commercial, institutional, municipal and others).

- **a**. Determine whether known sources (i.e., restaurant and food preparation) can adopt phosphorus minimization and water conservation plans.
- **b.** Evaluate implementation of local limits on influent sources of excessive phosphorus.

B. <u>WWTF effluent reduction measures</u>.

- 1. Reduce phosphorus discharges by optimizing existing treatment processes.
- II. Feasibility study

A. NPDES Permits with phosphorus limit in current NPDES Permit.

1. The Permittee must conduct a feasibility study to reduce monthly phosphorus levels below 1 mg/L in the effluent. At a minimum, the study must provide the method, timeframe, and costs associated with in achieving phosphorus reductions in the effluent. The Operations and Maintenance (O&M) costs for each of the method considered must be provided in the feasibility study.

B. NPDES Permits without phosphorus limit in current NPDES Permit.

- 1. The Permittee must conduct a feasibility study to reduce phosphorus levels in the effluent. At a minimum, the study must provide the method, timeframe, and costs associated with in achieving phosphorus reductions in the effluent. The Operations and Maintenance (O&M) costs for each of the method considered must be provided in the feasibility study.
- III. Illinois EPA also recommends creation of a Watershed Workgroup to collaborate with other stakeholders in the watershed and determine the most cost-effective implementation plans for best management practices to address total phosphorus removal\reduction measures in the watershed to the extent feasible.

A number of municipalities and townships within the Upper Fox River/Flint Creek watershed have MS4s. Total phosphorus and fecal coliform WLAs for the MS4 areas are discussed in **Section 2.3.2.4** and **2.3.3.4** respectively; BMPs for the MS4 areas are discussed, along with non-MS4 stormwater and urban runoff in the following section. No CSO discharges exist within the watersheds of any of the impaired lakes.

3.5.2 Nonpoint Sources of Phosphorus and Oxygen-Demanding Materials

Potential nonpoint sources of phosphorus include non-MS4 urban stormwater, and runoff from undeveloped and park lands. Potential nonpoint sources for oxygen-demanding materials include nutrient loss (associated with urban and rural land uses), bank erosion, and elevated water temperatures. BMPs that could be used for treatment of these nonpoint sources are similar to those discussed in **Section 3.3**, with the addition of in-lake management measures and phosphorus-based lawn fertilizer restrictions. Nutrient management is also included as a BMP

for phosphorus in agricultural areas; however, as noted above and indicated in Section 2.3 of the Stage 1 report, approximately 40 percent of the Upper Fox River/Flint Creek watershed consists of developed or urbanized land, while 37 percent is classified as agricultural land (AECOM 2010); therefore, this BMP will have limited applicability.

Wetlands, stormwater retention basins, sand filtration basins, and bio-retention cells could be constructed at the upstream ends of select lakes or at a location of more concentrated inflow to the selected lake. The use of these structural controls was generally discussed in Section 3.3 and in lake-specific areas in Section 3.4. Filter strips, riparian buffers, vegetated swales, and stormwater reduction techniques may also be employed in select areas to help control overland flow and the associated transport of sediment and pollutants. Potential filter strip and riparian buffer areas for phosphorus control are the same as those for sediment/TSS control, as discussed in Section 3.4.

In-Lake Phosphorus Loading: Modeling described in **Section 2** determined that internal loading of phosphorus is likely a significant contributor to overall watershed loads. A reduction of phosphorus from in-lake cycling through in-lake management strategies is necessary for attainment of the TMDL load allocations. Internal phosphorus loading can occur when the water above the sediments becomes anoxic, causing the release of phosphorus from the sediment in a form which is available for plant uptake. The addition of bioavailable phosphorus in the water column stimulates more plant growth and die-off, which may perpetuate or create anoxic conditions and enhance the subsequent release of phosphorus into the water. Internal phosphorus loading can also occur in shallow lakes through release from sediments by the physical mixing and reintroduction of sediments into the water column as a result of wave action, winds, boating activity, and other means.

For lakes experiencing high rates of phosphorus input from bottom sediments, several management measures are available to control internal loading. Three BMP options for the control of internal loading include the installation of an aerator, the addition of aluminum, and dredging.

- Aeration involves an aerator air-release that can be positioned at a selected depth, or at multiple depths, to increase oxygen transfer efficiencies in the water column and reduce internal loading by establishing aerobic conditions at the sediment-water interface. Installation of an aeration device will also directly contribute to the alleviation of DO issues present in Woodland (Highland) Lake (Clean-Flo 2016).
- Phosphorus inactivation by aluminum addition (specifically aluminum sulfate or alum) to lakes is the most widely-used technique to control internal phosphorus loading. Alum forms a polymer that binds phosphorus and organic matter. The aluminum hydroxide-phosphate complex (commonly called alum floc) is insoluble and settles to the bottom, carrying suspended and colloidal particles with it. Once on the sediment surface, alum floc inhibits phosphate diffusion from the sediment to the water (Cooke et al.1993).
- Phosphorus release from the sediment is greatest from recently deposited layers. Dredging approximately one meter of recently deposited phosphorus-rich sediment can remove approximately 80 to 90 percent of the internally loaded phosphorus without the addition of

potentially toxic compounds to the reservoir. Dredging may also contribute to reductions in internal phosphorus loading by increasing the depth of large portions of the waterbody, reducing the degree of reintroduction of sediments into the water column through physical mixing. However, dredging is more costly than other management options (NRCS 2005).

Phosphorus-Based Lawn Fertilizer Restrictions: Runoff from urban areas may include phosphorus-based fertilizers applied to residential lawns, golf courses, and other surfaces. If used too close to a receiving waterbody, phosphorus present in stormwater runoff will enter the waterbody. In Lake County, nine municipalities and several lake associations have passed ordinances which do not allow residents to use lawn fertilizer containing phosphorus. In addition, Illinois has a statute in place which governs the use of phosphorus-based fertilizers for commercial applicators in urban areas: Lawn Care Products Application and Notice Act (415 ILCS 65). This act includes the following prohibitions for phosphorus-based fertilizers (see act for limited exceptions):

- They shall not be applied to lawns unless it can be demonstrated by soil test that the lawn is lacking in phosphorus when compared against the standard established by the University of Illinois; see the act for exceptions
- They shall not be applied to impervious surfaces
- They shall not be applied within 3 feet of any waterbody if a spray, drop, or rotary spreader is used. If other equipment is used, the fertilizer may not be applied within 15 feet of a water body.
- They shall not be applied when the ground is frozen or saturated
- Appropriate lawn markers for the application event and notifications to potentially affected adjacent properties are required

In addition to enforcement of the above rules, BMPs should include education of the general public about the statute and other lawn care management guidance, as outlined in the Nutrient Management Practices for Illinois Lawn Care Professionals (2015),. Those who maintain their own lawns can apply the same rules and principles to mitigate their impact on phosphorus runoff. Public outreach will increase awareness and educate the general public about simple measures they can take, such as applying fertilizer when the forecast is rain-free or purchasing phosphorus-free fertilizers.

Private Septic System Inspection and Maintenance Program: It is unclear to what extent businesses, residences, and other structures in the various townships are served by septic vs. municipal sewer systems. Section 6 of the Stage 1 report (AECOM 2010) indicated the six following lakes as potentially impacted by septic systems: Drummond Lake (Section 6.2), Lake Napa Suwe (Section 6.3), Slocum Lake (Section 6.6), Tower Lake (Section 6.9), Lake Barrington (Section 6.10), and Honey Lake (Section 6.13). However, the current status of potential septic systems in service at properties within these subbasins is not known as this information is not routinely tracked on the State or County level.

Failing or leaking septic systems can be a source of phosphorus pollution. A program that actively manages functioning system and addresses non-functioning systems could be implemented to reduce the potential phosphorus loads from septic system in the watershed. The USEPA has developed guidance for managing septic systems, which includes assessing the functionality of systems, public health, and environmental risks (USEPA 2005). It also introduces procedures for selecting and implementing a management plan.

As indicated in Section 2.3 of the Stage 1 report, approximately 40 percent of the Upper Fox River/Flint Creek watershed consists of developed or urbanized land. Most businesses, residences, and other structures in the developed areas are expected to be served by a municipal sewer district; however, many households in rural areas of Illinois, as well as in some smaller townships that are not connected to municipal sewers make use of onsite sewage disposal systems, or septic systems. The degree of nutrient removal in these systems is limited by soils and system upkeep and maintenance.

To reduce the discharge of excessive amounts of contaminants from a faulty septic system, a scheduled maintenance plan that includes regular pumping and maintenance of the septic system should be followed. The majority of failures originate from excessive suspended solids, nutrients, and BOD loading to the septic system. Reduction of solids entering the tank can be achieved by limiting the use of garbage disposals.

Septic system management practices can extend the life, and maintain the efficiency, of a septic system. Water conservation practices, such as limiting daily water use or suing low flow toilets and faucets, are the most effective methods to maintain a properly functioning septic system. Additionally, septic systems should not be sued for disposal of solids, such as cigarette butts, cat litter, cotton swabs, coffee grounds, disposable diapers, etc. Physical damage to the drain field can be prevented by:

- Maintaining a vegetative cover over the drain field to prevent erosion
- Avoiding construction over the system
- Protecting the area down slope of the system from excavation
- Landscape the area to divert surface flow away from the drain field (Johnson 1998)

The cost of each management measure is highly variable and site-specific data on septic systems and management practices do not exist for the watershed; therefore, homeowners with septic systems should contact their county health department for septic system management costs.

Current protocols for addressing failing septic systems should adhere to the Illinois Private Sewage Disposal Licensing Act and Code "to prevent the transmission of disease organisms, environmental contamination and nuisances resulting from improper handling, storage, transportation and disposal from private sewage disposal systems." Any new, replaced, or renovated system must be installed by a licensed contractor or the homeowner and permitted through the county health department. The department must receive both an application for permit and the appropriate fee from the contractor/homeowners. Once reviewed and approved,

a permit is issued, and an inspection of the system is conducted during and after construction. The county health department also investigates private sewage disposal system complaints.

A long-range solution to failing septic systems is connection to a municipal sanitary sewer system. Connection to a sanitary sewer line would reduce existing phosphorus sources by replacing failing septic systems with municipal treatment and will allow communities to develop without further contribution of pollutants to impaired waterbodies. Costs for the installation are generally paid over a period of several years (average of 20 years) and help to avoid forcing homeowners to shoulder the entire initial cost of installing a new septic system. In addition, costs are sometimes shared between the community and the utility responsible for treating the wastewater generated from replacing the septic tanks. The planning process is involved and requires participation from townships, cities, counties, businesses, and citizens.

Agriculture Nutrient Management: As noted above and indicated in Section 2.3 of the Stage 1 report, approximately 37 percent of the Upper Fox River/Flint Creek watershed is classified as agricultural land. The approximate area and proportion of land in each subbasin designated as having an agricultural land use is provided in **Table 3-9**. Nutrient management programs for these areas could result in reduced nutrient loads to the phosphorus-impaired lakes in the watershed. Crop management of nitrogen and phosphorus originating in the agricultural portions of the watershed can be accomplished through Nutrient Management Plans (NMPs) that focus on increasing the efficiency with which applied nutrients are used by crops, thereby reducing the amount available to be transported to both surface water and groundwater.

Subbasin	Agriculture Acres	Total Acres	Percent Agriculture
Lake Barrington	-	281	0%
Drummond Lake	60	103	57.6%
Echo Lake	16	1,225	1.3%
Fairview Lake	-	50	0%
Grassy Lake	448	6,691	6.7%
Honey Lake	-	1,178	0%
Island Lake	2,040	6,004	34.0%
Lake Louise	-	1,618	0%
Lake Napa Suwe	261	1,130	23.1%
Slocum Lake	683	5,515	12.4%
Timber Lake	266	1,237	21.5%
Tower Lake	307	3,213	9.5%
Woodland Lake	-	60	0%
Fox River (DT-22)	23,648	108,305	21.8%

T-1-1- 2 0	A	1			
1 able 3-9	Agricultural	Land Us	e by im	ipaired	Suppasin.

The overall goal of nutrient reduction from agriculture should be to increase the efficiency of nutrient use by balancing nutrient inputs in feed and fertilizer with outputs in crops and animal produce, as well as to manage the concentration of nutrients in the soil. The four "Rs" of nutrient management are applying the right fertilizer source at the right rate at the right time and in the

right place. It is not unusual for crops in fields or portions of fields to show nutrient deficiencies during periods of the growing season, even where an adequate NMP is followed. The fact that nutrients are applied does not necessarily mean they are available. Plants obtain most of their nutrients and water from the soil through their root system. Any factor that restricts root growth and activity has the potential to restrict nutrient availability and result in increased nutrient runoff.

Reducing nutrient loss in agricultural runoff may be brought about by source and transport control measures, such as filter strips or grassed waterways. The NMPs account for all inputs and outputs of nutrients to determine reductions. NMPs typically include the following measures:

- A review of aerial photography and soil maps
- Recommendation for regular soil testing Traditionally, soil testing has been used to decide how much lime and fertilizer to apply to a field. With increased emphasis on precision agriculture, economics, and the environment, soil tests have become a logical tool to determine areas where adequate or excessive fertilization has taken place. Additionally, they can be used to monitor nutrient buildup in soils due to past fertility practices and aid in determining maintenance fertilization requirements. Appropriate soil sampling and analysis techniques are described in the Illinois Agronomy Handbook (<u>http://extension.cropsciences.illinois.edu/handbook/</u>).
- A review of current and/or planned crop rotation practices
- Establishment of yield goals and associated nutrient application rates Matching nutrient applications to crop needs will minimize the potential for excessive buildup of phosphorus soil tests and reallocate phosphorus sources to fields or areas where they can produce agronomic benefits.
- Development of nutrient budgets with planned application rates (which may be variable), application methods, and timing and form of nutrient application
- Identification of sensitive areas and restrictions on application when land is snow covered, frozen, or saturated

Phosphorus is listed as a potential cause of impairment in many areas of the Upper Fox River/Flint Creek watershed. Regional differences in phosphorus-supplying power are shown in Figure 8-4 of the Illinois Agronomy Handbook

(http://extension.cropsciences.illinois.edu/handbook/). The differences were broadly defined primarily based on variability in parent material, degree of weathering, native vegetation, and natural drainages. For example, soils developed under forest cover appear to have more available subsoil phosphorus than those developed under grass. In the Upper Fox River/Flint Creek watershed in northeastern Illinois, soils are generally considered to have low phosphorus-supplying power; therefore, buildup and maintenance of phosphorus levels are sometimes needed in this area. Application amounts should be determined by periodic soil testing; however, excessively high-phosphorus soil test levels should not be maintained.

While soil test procedures were designed to predict where phosphorus was needed, not to predict environmental problems, the likelihood of phosphorus loss increases with high-phosphorus test levels. Environmental decisions regarding phosphorus applications should include such factors as distance from a significant lake or stream, infiltration rate, slope, and residue cover. One possible problem with using soil test values to predict environmental problems centers around determining the appropriate in sample depth for predicting nutritional needs. Another potential problem is variability in soil test levels within fields in relation to the dominant runoff and sediment-producing zones. Several fertilizer placement recommendations are described in the Illinois Agronomy Handbook. However, given the propensity of phosphorus to bind tightly to soil particles and subsequently enter streams through erosion, the deep fertilizer placement technique may be most appropriate in phosphorus impaired areas such as the Upper Fox River/Flint Creek watershed. Under the deep placement technique, the fertilizer is placed 4 to 8 inches deep into the soil rather than being spread near the surface.

3.6 BMP Recommendations for Reducing Fecal Coliform in Fox River Segment DT-22

The TMDL analysis performed for fecal coliform bacteria in Fox River segment DT-22 shows that exceedances have occurred across three of the five possible flow categories. The exceedances included high, moist, and dry flows (**Section 2.3.1.6**) although in general, greater percent reductions are needed in the higher flow categories. Elevated fecal coliform concentrations reported during higher flow conditions are likely a result of stormwater runoff and re-suspension of instream fecal material. Elevated fecal coliform concentrations occurring under low flow conditions may be a result of pets and wildlife, illicit sewer connections, and/or groundwater inputs.

3.6.1 NPDES Permitted Point Sources of Fecal Coliform

Section 2.3.1.4 includes discussion on NPDES permitted sources of fecal coliform for Fox River segment DT-22. As indicated in that discussion, eleven of the of the thirteen permitted facilities in the DT-22 subbasin have potential to discharge fecal coliform-containing effluent. Facilities with potential to discharge elevated concentrations of fecal coliform directly to segment DT-22 or to direct tributaries of segment DT-22 of Flint Creek assigned a WLA for this TMDL. WLAs for these facilities are shown in **Table 2-4**.

Sewage from treatment plants treating domestic and/or municipal waste without disinfection processes contains fecal coliform. In the DT-22 subbasin, one facility, IAWC-Terra Cotta STP (IL0038202), has applied for and received a Seasonal Disinfection Exemption and is required to disinfect the wastewater during the recreational season (May-October) to comply with the geometric mean fecal coliform water quality standard of 200 cfu/100 mL at the closest point downstream where recreational use could occur in the receiving water, or where the water flows into a fecal coliform impaired segment. As discussed in **Section 2.3.1.4** and above, the IAWC-Terra Cotta STP is required to monitor fecal coliform in discharge and downstream and if it is found to discharge into a segment whose recreational use is impaired by fecal coliform, the facility's year-round disinfection exemption may be revoked through future NPDES permitting actions. In addition, several facilities in the watershed currently have discharge limits based on the 400 cfu/100ml daily maximum standard, which is not the most conservative water quality

standard applicable to these stream segments. Future permit actions should include revising the effluent limits to align with the most stringent applicable standard, and the one used as a TMDL endpoint for this watershed, of 200 cfu/100ml as a monthly geometric mean. WLAs assigned to each facility in this subbasin have been calculated using the 200 cfu/100ml monthly geometric mean standard and meeting these WLAs may result in modest reductions in fecal coliform concentrations in DT-22 moving forward.

No CSO discharges exist within the DT-22 watershed; however, a number of municipalities and townships within the Upper Fox River/Flint Creek watershed have MS4s. WLAs for the MS4 dischargers were calculated based on municipality boundaries, available information obtained from the MWRD, and the proportion of total MS4 area to total watershed area as discussed in **Section 2.3.1.4**. The total MS4 load allocations for fecal coliform applied to the proportion of each municipality within each impaired reach's subbasin are shown for each applicable flow category in **Table 2-5**.

Municipalities covered by MS4s are encouraged to review their stormwater plans to ensure that effective BMPs are being used within their systems. Additionally, municipalities should perform assessment and monitoring to find, fix, and prevent illicit discharges. Illicit discharges may be defined as a storm drain that has measurable flow during dry weather containing pollutants and/or pathogens. A storm-drain with measurable flow but containing no pollutants is simply considered a discharge. Illicit discharges are frequently caused when the sewage disposal system interacts with the storm drain system. Each illicit discharge has a unique frequency, composition, and mode of entry in the storm drain system. Illicit discharges of other pollutants are produced from specific source areas and operations known as "generating sites." Knowledge about these generating sites can be helpful to locate and prevent non-sewage illicit discharges. Depending on the regulatory status of specific "generating sites," education, enforcement, and other pollution prevention techniques can be used to manage this class of illicit discharges.

The highest priority in most illicit discharge monitoring programs is to find any continuous and intermittent sewage discharges to the storm drain system. A variety of monitoring techniques can be used to find the problem areas and then trace the problems back up the stream or pipe to identify the ultimate generating site or connection. Monitoring can sometimes pick up other types of illicit discharge that occur on a continuous or intermittent basis (e.g., wash water and liquid wastes). Monitoring techniques that can be used to find, fix, and prevent illicit discharges include:

- Outfall reconnaissance inventory, including documenting outfall locations and GPS coordinates, as well as investigating them for dry weather flow.
- Indicator monitoring at stormwater outfalls and in-stream. This would include collecting samples for fecal coliform analysis.
- Tracking discharges to their source. If detected, the fecal samples can be sourced to find out if it's animal or human. If it's human the pipes/conveyances can be tracked back to find a cross-connection and eliminate it.

Once sewage discharges or other connections are discovered, they can be fixed, repaired or eliminated through several different mechanisms. Communities should establish targeted

education programs along with legal authority to promote timely corrections. A combination of rewards and penalties should be available to deal with the diversity of potential dischargers.

Transitory discharges from generating sites can be minimized through pollution prevention practices and well-executed spill management and response plans. These plans should be frequently practiced by local emergency response agencies and/or trained workers at generating sites.

3.6.2 Nonpoint Sources of Fecal Coliform

Several management options have been identified to help reduce fecal coliform counts in the DT-22 impaired segment of Fox River. These management options focus on the most likely sources of fecal coliform within the basin, such as domestic pets and overland stormwater runoff. Waterfowl may contribute to fecal coliform loads in the stream segment. No estimates of waterfowl populations in the subbasin are available; however, waterfowl populations directly contributing to segment DT-22 of the Fox River likely account for some portion of the fecal coliform load into the stream segment. Additional data collection regarding waterfowl populations within the watershed is recommended.

As indicated in the Stage 1 report, inputs to the DT-22 segment also include upstream Fox River sources, as well as the following lakes: Barrington, Drummond, Fairview, Napa Suwe, Slocum, Timber, Tower, and Woodland (Highland). Both Lake Barrington and Tower Lake are impaired for fecal coliform, therefore, addressing the fecal coliform impairment in Lake Barrington, further discussed in **Section 3.7**, will aid in reducing fecal coliform counts in DT-22. BMPs for fecal coliform include the following, many of which were originally discussed in **Section 3.3**.

Sand filtration basins, stormwater retention ponds, and bio-retention cells could be constructed near discharge areas to Fox River. Filter strips and riparian buffers may also be employed in select areas to help control overland flow and the associated transport of sediment and pollutants. Potential filter strip areas for fecal coliform control are the same as those for sediment/TSS control, as discussed in Section 3.3 (Table 3-2). Similarly, potential riparian buffer areas for phosphorus control are the same as those for sediment/TSS control, as discussed in Section 3.3 (Table 3-3).

Domestic pet waste: Approximately 321,000 people resided in the Upper Fox River/Flint Creek watershed in 2000 (Section 2.5 of the Stage 1 report [AECOM 2010]). The central portion of the watershed, along the DT-22 impaired segment, was projected to experience the most growth (near 7,000 percent). Information on the number of people with pets is not available; however, there are still likely several thousand domestic pets within the watershed.

Education of pet owners on the potential impacts of pet waste to streams and lakes should occur periodically. Public meetings; mass mailings; and radio, newspaper, and TV announcements can all be used to remind and inform owners of their responsibility to pick up after their pets.

3.7 BMP Recommendations for Reducing Fecal Coliform in Lake Barrington, Honey Lake, and Tower Lake

The TMDL analyses performed for fecal coliform bacteria in the impaired lakes were discussed in **Section 2.3.3**, along with percent reductions needed for each of the lakes. Elevated fecal coliform concentrations may be a result of stormwater runoff, re-suspension of in-lake fecal material, wildlife and pets, and/or groundwater inputs.

3.7.1 NPDES Permitted Point Sources of Fecal Coliform

There are no known NPDES permitted facilities in the Lake Barrington Honey Lake, or Tower Lake subwatersheds; however, each subwatershed contains several MS4 discharges from which WLAs were calculated, as shown is **Section 2.3.3.4**. BMPs for MS4 dischargers are covered in the non-point source discussion below.

3.7.2 Nonpoint Sources of Fecal Coliform

Several management options have been identified to help reduce fecal coliform counts in Lake Barrington, Honey Lake, and Tower Lake. These management options focus on the most likely sources of fecal coliform within the subbasins, such as wildlife and domestic pets, overland stormwater runoff, and, to a limited extent, livestock and agricultural runoff. BMPs for fecal coliform include the following, many of which were originally discussed in **Section 3.3**:

Sand filtration basins, stormwater retention ponds, and bio-retention cells could be constructed near discharge areas to each of the lakes. Filter strips and riparian buffers may also be employed in select areas to help control overland flow and the associated transport of sediment and pollutants. Potential filter strip areas for fecal coliform control are the same as those for sediment/TSS control, as discussed in Section 3.4 (Table 3-4). Similarly, potential riparian buffer areas for fecal coliform control are the same as those for sediment/TSS control, as discussed in Section 3.4 (Table 3-5).

Domestic pet waste: Information on the number of people with pets is not available; however, there are still likely several hundred domestic pets within the watershed. As noted in **Section 3.6.2**, education of pet owners on the potential impacts of pet waste to streams and lakes should occur periodically. Public meetings; mass mailings; and radio, newspaper, and TV announcements can all be used to remind and inform owners of their responsibility to pick up after their pets.

Private Septic System Inspection and Maintenance Program: Failing or leaking septic systems can be significant sources of fecal coliform pollution. A program that actively manages functioning systems and addresses non-functioning systems was discussed in **Section 3.5.2**. AS indicated in Section 6 of the Stage 1 report (AECOM 2010), Lake Barrington, Honey Lake, and Tower Lake were all described as potentially being impacted by septic systems; however, it is unclear what portion of residences in the area are currently connected to municipal sewers vs. septic systems.

Waterfowl waste: **Sections 1.5.2.1.3**, **1.5.2.5.3**, and **1.5.2.12.3** indicate that, while numeric estimates of waterfowl use in the watershed are not available, based on best estimates from studies performed in other areas, several pounds per year of waterfowl and wildlife fecal

contributions are expected to impact each of the lakes. Waterfowl are an issue for phosphorus and fecal coliform loading at lakes and slow-moving streams. Acoustic devices and other repellants can be used to stress nuisance waterfowl so they avoid congregating in select areas.

3.8 Cost Estimates of BMPs

Cost/payment rate estimates for a number of suggested BMPs are provided in the following sections. For some BMPs, "average" costs are not available due to design considerations such as size, construction materials, and site-specific conditions. Information for **Sections 3.8.1** through **3.8.5** was obtained from the Illinois EQIP "Payment Scenario Descriptions" document located at: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=nrcseprd1328235.

3.8.1 Filter Strips and Riparian Buffers

Several types of filter strip practices are available, including areas for native herbaceous vegetation with or without fertility measures required and areas of introduced species, also with or without fertility measures required. Filter strip implementation that includes seedbed preparation and native seed application ranges from \$520/acre to \$639/acre depending on the type used, with an average cost of approximately \$594/acre.

Riparian buffers consisting of bare-root shrubs cost approximately \$1.10 to \$1.65 each while direct seeding of trees and/or shrubs costs approximately \$741/acre. The direct seeding scenario includes a planting rate of approximately 3,000 to 4,800 seeds per acre, as well as the foregone income for the land taken out of crop production. Land preparation, including removing undesirable vegetation and improving site conditions, is estimated at \$38/acre. For cases where an herbaceous cover is preferable, such as native grass or certain species of forbs and/or shrubs, costs average \$642/acre.

3.8.2 Nutrient Management Plan – NRCS

Less than half of the Upper Fox River/Flint Creek watershed is comprised of agricultural land; however, areas where agricultural land does exist may benefit from NMPs. Costs for nutrient management range from \$13/acre (basic) to \$45/acre (enhanced nutrient management with deep placement [at least 4 inches below surface] of manure and/or phosphorus fertilizer). The cost for developing an NMP ranges from \$1,741 to \$2,902 per plan, depending on the acreage to be managed under the plan and assuming that a comprehensive NMP is not required. NMP preparation includes soil testing, manure analysis, scaled maps, and site-specific recommendations for fertilizer management.

3.8.3 Nutrient Management Plan – IDA and Illinois EPA

The costs associated with development of an NMP co-sponsored by the Illinois Department of Agriculture (IDA) and the Illinois EPA is estimated at \$10/acre paid to the producer and \$3/acre for the third-party vendor who develops the plan. There is a 200-acre cap per producer. The total plan development cost is estimated at \$13/acre.

3.8.4 Wetlands

The price to establish a wetland is very site specific and depends on factors such as size and type of vegetation used. Examples of costs associated with constructed wetlands include excavation costs, vegetation removal, and revegetation costs. Costs for wetlands created on flat mineral uplands, where surface runoff may be intercepted and ponded by excavation, range from \$3,186 (no embankment) to \$3,680 (with embankment). Some areas may favor a wetland setting which just needs to be enhanced or restored. In an area of natural depression fed by surface runoff, enhancement/restoration is approximately \$2,557/acre. Enhancing or restoring a wetland on a floodplain site that has existing levees and/or ditches may consist of regrading or shaping the land, potentially including levee removal, for \$1,167/acre. Constructed wetlands to reduce the pollution potential of runoff and wastewater average \$7,725/acre where natural regeneration of wetland plants will be a major contributor to the working vegetation, and \$10,286/acre where wetland vegetation in the pool area is planted at a denser grid (3-foot by 3-foot or closer). As needed, embankments, water control and grade stabilization structures, and filter strips should be added.

3.8.5 Bank Stabilization/Erosion Controls

Streambank stabilization and erosion control measures will vary greatly in cost and cover a variety of techniques. Costs may be as low as \$37.55/cubic yard for full bank armor on the streambank, including earthwork; rip rap, in which loose stone is used for bank stability; and/or geotextile, which are permeable fabrics that help reinforce streambanks. Alternatively, costs may be as high as \$52.50/linear foot for bank protection using peaked stone toes, which are stones placed to secure the lower portion of a streambank; stream barbs, which are rock sills projecting out from a streambank, meant to redirect flow away from an eroding bank; and/or bendway weirs, which are low level rock dikes that are angled upstream, altering the stream's secondary currents and controlling excessive channel deepening (NRCS 2016d).

Alternatively, turf reinforcement mats (TRMs) may be used to reinforce vegetation and protect soil from erosion. TRMs are protective reinforced materials formed into a non-degradable mat, and may be appropriate where vegetation alone will not sustain long-term erosion protection, and where other options may be limited due to landscape features such as mowing, which may be prominent in the Upper Fox River/Flint Creek watershed (AISWCD 2013). Implementation of TRMs may cost approximately \$0.60/square foot, or up to \$26,136/acre (NRCS 2016d), and can be as little as one-third the cost of rip rap (Pack 2008). Prices vary greatly and are dependent upon the steepness of the slope that is being treated, and the vegetation and anchor types being used, which are dependent upon the expected velocities that the TRMs will be expected to withstand (Propex 2007).

3.8.6 Conservation Cover

Conservation cover may be implemented and may range in price from \$583.66/acre to \$1,243.89/acre. Conservation cover involves the establishment of permanent vegetation cover, and costs are dependent on the type of vegetation, whether or not organic seed is used, and the ecosystem type into which the vegetation is being introduced (NRCS 2016d).

3.8.7 Vegetated Swales

Vegetated swales vary in size and may include checks, depending upon the slope of the area in question. Costs range from \$2,569/acre for a vegetated swale with a top width of less than 35 feet and no checks, to \$4,015/acre for a vegetated swale with a top width greater than 55 feet and with checks (NRCS 2016d).

3.8.8 Green Roofs

Green roofs are relatively new technology in the United States and costs are estimated to average between \$15/square foot to \$20/square foot. These cost estimates are for all use types; i.e., high density residential, commercial, and industrial (Urban Design Tools 2016).

3.8.9 Bio-retention Cells

Bio-retention cells, otherwise known as rain gardens, range in cost depending upon the permeability of the soil and the vegetation types used within the cell. Where highly permeable soils are present, costs range from \$1.50 to \$3.00/square foot. Where soils are less permeable, costs may range from \$4.00 to \$6.00/square foot (Penn State Extension 2016).

3.8.10 Septic System Maintenance

Septic tanks are designed to accumulate sludge in the bottom portion of the tank while allowing water to pass into the drain field. If the tank is not pumped out regularly, the sludge can accumulate and eventually become deep enough to allow for flow into the drain field. Pumping the tank every three to five years prolongs the life of the system by protecting the drain field from solid material that may cause clogs and system back-ups. In addition, septic systems should not be connected to field tile lines.

The cost to pump a typical septic tank ranges from \$250 to \$350 depending on how many gallons are pumped out and the disposal fee for the area. If a system is pumped once every three to five years, this expense averages out to less than \$100 per year.

The cost of developing and maintain a watershed-wide database of the onsite wastewater treatment systems in the Upper Fox River/Chain O'Lakes watershed depends on the number of systems that need to be inspected and the means by which the systems are inventoried. Education of home and business owners that use onsite wastewater treatment systems should occur periodically. Public meetings; mass mailing; and radio, newspaper, and TV announcements can all be used to remind and inform owners of their responsibility to maintain their systems. The costs associated with education and inspection programs will vary depending on the level of effort required to communicate the importance of proper maintenance and the number of systems in the area. It is currently unknown how many septic systems are present within the watershed. Potential number of households which may be served by septic systems discussed in **Sections 3.5.2**.

3.9 Information and Education

Public education and participation is a key factor for TMDL and watershed plan implementation. Increased public awareness can increase implementation of BMPs. The Lake County Health Department and Stormwater Management Commission, CMAP, the Fox River Ecosystem

Partnership, the Flint Creek Watershed Partnership, and other entities involved in watershed planning in the area currently provide informational materials and conduct multiple public meetings each year. Public involvement in these meetings is encouraged, as they include discussions about the watershed, IEPA's NPDES Stormwater program, and stormwater management activities. Education will lead to small incremental improvements, and individual adoption of BMPs can be achieved at a much lower cost compared to the large-scale BMPs identified above. Outreach and education efforts should focus on activities that support the watershed plan goals, including:

- Biological and water quality monitoring
- Lake and stream management
- Encouraging native landscaping, including buffers along lakeshores and streambanks
- Buffer strips
- Reducing the use of lawn chemicals, such as pesticides and phosphorus-based fertilizers
- Nutrient management
- Water conservation
- Green infrastructure
- Soil testing

Additional recommended activities to support public outreach and education include:

- Websites and social media to publicize meetings, upcoming events, and links to resources
- E-mail updates
- Brochures with information on household pollutant reduction and fertilizer use
- Educational signs to educate viewers on water quality issues, purpose of BMPs, and environmental stewardship
- Public service announcements
- Informational meetings on State and Federal cost share programs

3.10 Project Funding

Cost-share programs at the state and federal level are available to municipalities, landowners, homeowners, and farmers in the watershed to help offset costs of implementing many of the BMPs recommended in this plan. Some of these programs are discussed below.

3.10.1 Available County-Level Programs for Nonpoint Sources

3.10.1.1 Watershed Management Board (WMB) Cost-Share Grant Program

The WMB funding is run by the Lake County Stormwater Management Commission and is split between the four major watersheds in the county: Des Plaines River, Lake Michigan, North Branch Chicago River, and Fox River. The WMB grant program is open to WMB members, which include municipalities, drainage districts, county board districts, townships, homeowner associations, park districts, and non-profit groups.

The WMB cost-share grant program helps fund local stormwater projects, with the highest funding priority going to flood damage prevention and mitigation. However, water quality improvement and natural resource restoration projects are also considered. There is a 50/50 cost-share requirement, which can be in the form of funds, in-kind services, or both (https://www.lakecountyil.gov/3635/Watershed-Management-Board-WMB).

3.10.2 Available State-Level Programs for Nonpoint Sources

The following paragraphs describe a few state-level programs designed to encourage landowners to implement resource-conserving practices for water quality and erosion control purposes. Municipalities should aim to incorporate the recommendations of this plan into their annual budgets and comprehensive improvement plans. In general, the majority of funds should come from local efforts; however, the Illinois EPA does offer grants to control nonpoint source pollution in the state. These grants are available to local governments, as well as to other organizations for the purpose of protecting water quality. Projects must address water quality issues relating directly to nonpoint source pollution, and funds can be used to develop, update, and implement watershed management plans. This includes the development of information and education programs, as well as the installation of BMPs.

3.10.2.1 The Conservation Fund

The Conservation Fund, an environmental non-profit, provides low-interest land conservation loans for a variety of conservation projects. Under this fund, land in the Upper Fox River/Flint Creek watershed could be converted to green space, providing land for potential wetlands, filter strips, and riparian buffers, and thereby improving water quality (<u>https://www.conservationfund.org/</u>).

3.10.2.2 Illinois Department of Agriculture Nutrient Management Plan Project

The IDA sponsors a cropland NMP project in watersheds that have developed or are developing TMDLs. This voluntary project supplies incentive payments to producers to have NMPs developed and implemented. Additionally, watersheds that have sediment or phosphorus identified as a cause for impairment (as is the case in this watershed), are eligible for cost-share assistance in implementing traditional erosion control practices through the NMP project.

3.10.2.3 Streambank Stabilization and Restoration Program

The Streambank Stabilization and Restoration Program (SSRP) was established to address problems associated with streambank erosion, such as loss or damage to valuable farmland, wildlife habitat, and roads; stream capacity reduction through sediment deposition; and degraded water quality, fish, and wildlife habitat. The primary goals of the SSRP are to develop and

demonstrate vegetative, stone structure, and other low-cost bio-engineering techniques for stabilizing streambanks, and to encourage the adoption of low-cost streambank stabilization practices by making available financial incentives, technical assistance, and educational information to landowners with critically eroding streambanks. A cost share of 75 percent is available for approved project components, such as willow post installation, bendway weirs, rock riffles, stream barbs/rock, vanes, lunker structures, gabion baskets, and stone toe protection techniques. There is no limit on the total program payment for cost-share projects that a landowner can receive in a fiscal year. However, maximum cost per foot of bank treated is used to cap the payment assistance on a per foot basis and maintain the program's objectives of funding low-cost techniques (IDA 2000). All project proposals must be sponsored and submitted by the local Soil and Water Conservation District (SWCD) (https://www.iira.org/rdrg/partners-for-conservation-streambank-stabilization-and-restoration-program-ssrp/).

3.10.2.4 Clean Water Act Section 319 Grants

Section 319 was added to the Clean Water Act (CWA) to establish a national program to address nonpoint sources of water pollution. Through this program, each state is allocated Section 319 funds on an annual basis according to a national allocation formula based on the total annual appropriation for the Section 319 grant program. The total award consists of two categories of funding: incremental funds and base funds. A state is eligible to receive USEPA 319(b) grants upon the USEPA's approval of the state's Nonpoint Source Assessment Report and Nonpoint Source Management Program. States may reallocate funds through sub-awards (e.g., contracts, sub-grants) to both public and private entities, including local governments, tribal authorities, cities, counties, regional development centers, local school systems, colleges and universities, local nonprofit organizations, state agencies, federal agencies, watershed groups, for-profit groups, and individuals.

USEPA designates incremental funds, a \$163-million award in 2016, for the restoration of impaired water through the development and implementation of watershed-based plans and TMDLs for impaired waters. Base funds, funds other than incremental funds, are used to provide staffing and support to manage and implement the state Nonpoint Source Management Program. Section 319 funding can be used to implement activities which improve water quality, such as filter strips, streambank stabilization, etc. (USEPA 2003).

Illinois EPA receives federal funds through Section 319(h) of the CWA to help implement Illinois' Nonpoint Source Pollution Management Program. The purpose of the program is to work cooperatively with local units of government and other organizations toward the mutual goal of protecting the quality of water in Illinois by controlling nonpoint source pollution. The program emphasizes funding for implementing cost-effective corrective and preventative BMPs on a watershed scale; funding is also available for BMPs on a non-watershed scale and the development of information/education nonpoint source pollution control programs.

The maximum Federal funding available is 60 percent of the total cost, with the remaining 40 percent coming from local match. The program period is two years unless otherwise approved. This is a reimbursement program.

Section 319(h) funds are awarded for the purpose of implementing approved nonpoint source management projects. The funding will be directed toward activities that result in the

implementation of appropriate BMPs for the control of nonpoint source pollution or to enhance the public's awareness of nonpoint source pollution. Applications are accepted June 1 through August 1 (<u>https://www.epa.gov/nps/319-grant-program-states-and-territories</u>).

3.10.3 Available Federal-Level Programs for Nonpoint Sources

There are several voluntary conservation programs established by various federal agencies that encourage landowners to implement resource-conserving practices for water quality and erosion control purposes. Federal-level programs are discussed in the following paragraphs.

3.10.3.1 Wetland Program Development Grants

The USEPA provides wetland program development grants to assist state, tribal, and local government agencies, as well as interstate/intertribal entities, in building programs to protect, manage, and restore wetlands (USEPA 2016) (<u>https://www.epa.gov/wetlands/wetland-program-development-grants</u>).

3.10.3.2 Rivers, Trails, and Conservation Assistance

The National Park Service (NPS) provides financial assistance for the development of natural resource conservation programs, aimed at designing trails and parks, improving access to rivers, protecting special places, and creating recreation opportunities. Applicants may include state and local agencies, tribes, nonprofit organizations, or citizen groups (NPS 2016) (<u>https://www.nps.gov/orgs/rtca/index.htm</u>).

3.10.3.3 Conservation Reserve Program

The Conservation Reserve Program (CRP) may apply to the approximately 37 percent of the Upper Fox River/Flint Creek watershed that is agricultural. The CRP is a voluntary program, administered through the Farm Service Agency (FSA), which encourages landowners to agree to remove environmentally sensitive land from agricultural production and plant long-term resource-conserving cover to improve water quality, prevent soil erosion, and reduce loss of wildlife habitat. The program was initially established in the Food & Security Act of 1985 and is the largest private-lands conservation program in the United States.

Participants can enroll in CRP in two ways and the duration of the contracts under CRP range from 10 to 15 years. The first enrollment method is through a competitive process known as the CRP General Sign-up. These are announced on a periodic basis by the Secretary of Agriculture but do not occur on any fixed schedule. The second enrollment method is through CRP Continuous Sign-up, which is offered on a continuous basis. Continuous sign-up provides management flexibility to farmers and ranchers to implement certain high-priority conservation practices on eligible land. All enrollment offers are processed through the local FSA office.

Certain conditions must be met in order for land to be eligible for CRP enrollment. These conditions include the following:

1. The farmer applying for enrollment must have owned or operated the land for at least 12 months prior to the previous CRP sign-up period (except in cases of a change in ownership due to the previous owner's death, foreclosure, or land purchase by the new owner without the sole intention of placing it in the CRP).

- 2. Cropland that is planted or considered planted to an agricultural commodity for four of the six most recent crop years (including field margins) and must be physically and legally capable of being planted in a normal manner to an agricultural commodity.
- 3. Certain marginal pastureland suitable for use as any of the following conservation practices: buffer for wildlife habitat, wetlands buffer or restoration, filter strips, riparian buffer, grass waterway, shelter belt, living snow fence, contour grass strip, salt tolerant vegetation, or shallow water area for wildlife.

In addition to the eligible land requirements, cropland must meet one of the following criteria:

- Have a weighted average erosion index of 8 or higher
- Be expiring CRP acreage
- Be located in a national or state CRP conservation priority area.

The FSA bases rental rates on the relative productivity of soils within each county and the average dryland cash rent or cash-rent equivalent. The maximum rental rate for each offer is calculated in advance of enrollment. Producers may offer land at the maximum rate or at a lower rental rate to increase likelihood of offer acceptance. In addition, the FSA provides cost-share assistance for up to 50 percent of the participant's costs in establishing approved conservation practices (https://www.fsa.usda.gov/programs-and-services/conservation-programs/conservation-reserve-program/index). CRP annual rental payments may include an additional amount up to \$2 per acre per year as an incentive to perform certain maintenance obligations (up to \$7 for certain continuous sign-up practice).

Finally, the FSA offers additional financial incentives for certain continuous sign-up practices. Signing Incentive Payment is a one-time incentive payment of \$10/acre for each acre enrolled for each full year of the contract. Eligible practices include field windbreaks; grassed waterways; shelter belts; living snow fences; filter strips; riparian buffers; marginal pastureland wildlife and wetland buffers; bottom timber establishment; field borders; longleaf pine establishment; duck nesting habitat; SAFE buffers, wetlands, trees, longleaf pine, and grass; pollinator habitat; and several wetlands practices. The Performance Incentive Payment is a one-time incentive payment made to participants who enroll land in CRP to be devoted to all continuous sign up practices except establishment of permanent vegetative cover on terraces, wetland restoration (including non-floodplain), bottomland timber establishment, and duck nesting habitat.

The maximum annual non-cost share payment that an eligible "person" can receive under the CRP is \$50,000 per fiscal year. This is a separate payment limitation applying only to CRP non-cost share payment.

The current extent of land enrolled in CRP within the Upper Fox River/Flint Creek watershed is unknown.

3.10.3.4 Conservation Stewardship Program

The Conservation Stewardship Program (CSP) may apply to the approximately 37 percent of the Upper Fox River/Flint Creek watershed that is agricultural. The CSP helps agricultural producers

maintain and improve their existing conservation systems and adopt additional conservation activities to address priority resources concerns. Participants earn CSP payments for conservation performance—the higher the performance, the higher the payment.

Through CSP, participants take additional steps to improve resource conditions including soil quality, water quality and quantity, air quality, habitat quality, and energy. CSP provides two types of payments through 5-year contracts: annual payments for installing new conservation activities and maintaining existing practices; and supplemental payments for adopting a resource-conserving crop rotation. Producers may be able to renew a contract if they have successfully fulfilled the initial contract and agree to achieve additional conservation objectives. Payments are made soon as practical after October 1 of each fiscal year for contract activities installed and maintained in the previous year. In fiscal year 2016, NRCS made \$150 million available for producers through the CSP.

Eligible lands include private and Tribal agricultural lands, cropland, grassland, pastureland, rangeland and non-industrial private forest land. CSP is available to all producers, regardless of operation size or type of crops produced, in all 50 states, the District of Columbia, and the Caribbean and Pacific Island areas. Applicants may include individuals, legal entities, joint operations, or Indian tribes that meet the stewardship threshold for at least two priority resource concerns when they apply. They must also agree to meet or exceed the stewardship threshold for at least one additional priority resource concern by the end of the contract. Producers must have effective control of the land for the term of the proposed contract, which include all eligible land in the agricultural operation. Some additional restrictions and program requirements may apply and interested applicants should contact the local NRCS office for more information (https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/financial/csp/).

3.10.3.5 Agricultural Conservation Easement Program

ACEP provides financial and technical assistance to help conserve agricultural lands and wetlands and their related benefits. The Agricultural Land Easements component of ACEP has limited applicability to the Upper Fox River/Flint Creek watershed but may apply in the approximately 37% of the watershed that is agricultural. However, under the Agricultural Land Easements component, NRCS helps American Indian tribes, state and local governments, and nongovernmental organizations protect working agricultural lands and limit non-agricultural uses of the land. Land protected by agricultural land easements provides additional public benefits, including environmental quality, historic preservation, wildlife habitat, and protection of open space. Under the Wetlands Reserve Easements component, NRCS helps to restore, protect, and enhance enrolled wetlands. Wetland Reserve Easements provide habitat for fish and wildlife, including threatened and endangered species, improve water quality by filtering sediments and chemicals, reduce flooding, recharge groundwater, protect biological diversity and provide opportunities for educational, scientific and limited recreational activities.

Agricultural Land Easements: NRCS provides financial assistance to eligible partners to purchase Agricultural Land Easements that protect the agricultural use and conservation values of eligible land. In the case of working farms, the program helps farmers and ranchers keep their land in agriculture. The program also protects grazing uses and related conservation values by conserving grassland, including rangeland, pastureland and shrubland. Land eligible for

agricultural easements includes cropland, rangeland, grassland, pastureland and non-industrial private forest land. NRCS will prioritize applications that protect agricultural uses and related conservation values of the land and those that maximize the protection of contiguous acres devoted to agricultural use.

To enroll land through agricultural land easements, NRCS enters into cooperative agreements with eligible partners. Each easement is required to have an agricultural land easement plan that promotes the long-term viability of the land. Under the Agricultural Land component, NRCS may contribute up to 50 percent of the fair market value of the agricultural land easement. Where NRCS determines that grasslands of special environmental significance will be protected, NRCS may contribute up to 75 percent of the fair market value of the agricultural land easement.

Wetland Reserve Easements: NRCS also provides technical and financial assistance to restore, protect, and enhance wetlands through the purchase of a wetland reserve easement. These agreements include the right for NRCS to develop and implement a wetland reserve restoration easement plan to restore, protect, and enhance the wetland's functions and values. Land eligible for wetland reserve easements includes farmed or converted wetland that can be successfully and cost-effectively restored. NRCS will prioritize applications based on the easement's potential for protecting and enhancing habitat for migratory birds and other wildlife. For acreage owned by an Indian tribe, there is an additional enrollment option of a 30-year contract. Through the wetland reserve enrollment options, NRCS may enroll eligible land through one of the following:

- Permanent Easements These are conservation easements in perpetuity. NRCS pays 100
 percent of the easement value for the purchase of the easement. Additionally, NRCS pays
 between 75 to 100 percent of the restoration costs.
- 30-year Easements These expire after 30 years. Under 30-year easements, NRCS pays 50 to 75 percent of the easement value for the purchase of the easement. Additionally, NRCS pays between 50 to 75 percent of the restoration costs.
- Term Easements Term easements are easements made for the maximum duration allowed under applicable State laws. NRCS pays 50 to 75 percent of the easement value for the purchase of the term easement. Additionally, NRCS pays between 50 to 75 percent of the restoration costs.
- 30-year Contracts 30-year contracts are only available to enroll acreage owned by Indian tribes, and program payment rates are commensurate with 30-year easements.

For wetland reserve easements, NRCS pays all costs associated with recording the easement in the local land records office, including recording fees, charges for abstracts, survey and appraisal fees, and title insurance.

Wetland Reserve Enhancement Partnership – The 2014 Farm Bill replaced the Wetland Reserve Enhancement Program with the Wetland Reserve Enhancement Partnership (WREP) as an enrollment option under ACEP. WREP continues to be a voluntary program through which NRCS signs agreements with eligible partners to leverage resources to carry out high priority wetland protection, restoration, and enhancement and to improve wildlife habitat.

- Partner benefits through WREP agreements include:
 - Wetland restoration and protection in critical areas
 - Ability to cost-share restoration or enhancement beyond NRCS requirements through leveraging
 - Able to participate in the management or monitoring of selected project locations
 - Ability to use innovative restoration methods and practices

In 2016, NRCS made \$15 million in financial and technical assistance available to help eligible conservation partners leverage local resources to voluntarily protect, restore, and enhance critical wetlands on private and tribal agricultural land nationwide. The funding is provided through the WREP, a special enrollment option under the Agricultural Conservation Easement Program. Proposals were due to the local NRCS offices by May 16, 2016; however, landowners should check with the NRCS to see about applying in future years. To enroll land eligible partners may submit proposals to the local NRCS office

(https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/programs/easements/acep/).

3.10.3.6 Environmental Quality Incentive Program

EQIP is a voluntary program that provides financial and technical assistance to agricultural producers to plan and implement conservation practices that improve soil, water, plant, animal, air, and related natural resources on agricultural land and non-industrial private forestland. Through EQIP, the NRCS develops contracts with agricultural producers to implement conservation practices to address environmental natural resource problems. Persons engaged in livestock or agricultural production and owners of non-industrial private forestland are eligible for the program. Eligible land includes cropland, rangeland, pastureland, private non-industrial forestland, and other farm or ranch lands. Eligible applicants must, at a minimum, meet the following criteria; additional program requirements may apply:

- Be agricultural producer (person, legal entity, or joint operation who has an interest in the agricultural operation, or who is engaged in agricultural production or forestry management).
- Control or own eligible land.
- Comply with adjusted gross income for less than \$900,000. Note: Federally recognized Native American Indian Tribes or Alaska Native corporations are exempt from the adjusted gross income payment limitations.
- Be in compliance with the highly erodible land and wetland conservation requirements.
- Develop an NRCS EQIP plan of operations that addresses at least one natural resource concern

Persons interested in entering into a cost-share agreement with the NRCS for EQIP assistance may file an application at any time; however, each state may establish deadlines for one or more

application periods in which to consider eligible applications for funding. Applications submitted after the deadlines will be evaluated and considered for funding during later funding opportunities.

As part of the program, a Conservation Activity Plan can be developed for producers to address a specific natural resource concern on their agricultural operation. Each plan is developed by a certified Technical Service Provider, who is selected by the EQIP participant. Technical assistance payments for Technical Service Providers do not count against the financial assistance aggregate payment limitation or the contract financial assistance payment limitation. The plan becomes the basis of the EQIP contract between NRCS and the participant, and the contracts can be up to 10 years in duration. Financial assistance payments are made to eligible producers once conservation practices are completed according to NRCS requirements. Payment rates are set for each fiscal year and are attached to the EQIP contract when it is approved.

Historically underserved producers (limited resource farmers/ranchers, beginning farmers/ranchers, socially disadvantaged producers, Indian Tribes, and veteran farmer or ranchers) who self-certify on Form NRCS-CPA-1200, Conservation Program Application are eligible for a higher practice payment rate to support implementation of contracted conservation practices and activities. Historically underserved producers may also be issued advance payments up to 50 percent of the established payment rate to go toward purchasing materials or contracting services to begin installation of approved conservation practices. Self-certified socially disadvantaged farmer/rancher, beginning farmer/rancher, and veteran farmer/rancher producers may elect to be evaluated in special EQIP funding pools. More information can be obtained from the local NRCS office.

EQIP provides payments up to 75 percent of the incurred costs and 100 percent estimated income foregone of certain conservation practices and activities. Payments received by producers through EQIP contracts after February 7, 2014 may not exceed \$450,000 for all EQIP contracts entered into during the period from 2014 to 2018. Payment limitations for organic production may not exceed an aggregate \$20,000 per fiscal year or \$80,000 during any 6-year period for installing conservation practices.

Conservation practices eligible for EQIP funding which are recommended BMPs for this watershed TMDL include filter strips, riparian buffers, vegetated swales (grass waterways), streambank/shoreline protection, and wetland restoration. More information regarding state and local EQIP implementation can be found at:

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=nrcsepr d1328235.

3.10.4 Local Program Contact Information

The FSA administers the CRP. NRCS administers the ACEP, CSP, and EQIP. Local contact information for counties containing some portion of the Upper Fox River/Flint Creek watershed are listed in the **Table 3-10** below.

County	Address	Phone
Cook County	2358 Hassell Rd, Suite B Hoffman Estates, IL 60169	(630) 584-8240
Lake County	1648 S Eastwood Dr Woodstock, IL 60098	(815) 338-0099
McHenry County	1648 S Eastwood Dr Woodstock, IL 60098	(815) 338-0099

Table 3-10 Local SWCD and NRCS Contact Information

3.11 Planning Level Cost Estimates for Implementation Measures

Cost estimates for different implementation measures are presented in **Table 3-11**. The column labeled "Program" or "Sponsor" lists the financial assistance program or sponsor available for various BMPs (as discussed in **Section 3.9**). Illinois EPA 319 Grants are applicable to all of the practices.

ВМР	Units	Installation Cost	Program ¹	Sponsor(s)
Filter strip (seeded)	per ac	\$520 - \$639, avg \$594	CRP, CPP	FSA, IDA
Riparian buffer – bare-root shrubs	each	\$1.10 - \$1.65		
– forested	per ac	\$741		
 herbaceous cover 	per ac	\$642		FSA, IDA
 – land preparation 	per ac	\$38		
Nutrient management	per ac	\$13 - \$35	EQIP	NRCS
Nutrient management plan – federal	per ac	\$1,741 - \$2,902	EQIP	NRCS
– state	per plan	\$13	NMP Project	IDA, Illinois EPA
Bank stabilization	per ac	\$27 - \$52/ft		
 weirs/rock riffles 	each	\$2,448 - \$6,305		
– TRMs	per SF	\$0.60		
 – conservation cover 	per ac	\$583.66 - \$1,243.89	SSRP	IDA
 stream barb/bendway weir with longitudinal peaked stone toe 	per ft	\$27.27 - \$52.50		
– bank armor	per CY	\$37.55		
Vegetated swales	per ac	\$2,569 - \$4,015		
– <35 ft top width	per ac	\$2,569		
– <35 ft top width, with checks	per ac	\$3,284	CPP,	
– 35-55 ft top width	per ac	\$2,709	FSA	
– 35-55 ft top width, with checks	per ac	\$3,516		NICS
– >55 ft top width	per ac	\$3,253		
– >55 ft top width, with checks	per ac	\$4,015		
Conservation tillage			EQIP	NRCS, IDA
– no-till/strip-till	per ac	\$133.33		

Table 3-11 Cost Estimates of Various BMP Measures

ВМР	Units	Installation Cost	Program ¹	Sponsor(s)
Contour farming	per ac	\$6.06	EQIP	NRCS
Cover Crops	per ac	\$66.67	EQIP	NRCS
Wetland – enhancement/restoration	per ac	\$1,167 - \$3,680		NDCC
– constructed	per ac	\$7,725 - \$10,286	ACEP	NRCS
Green roofs	per SF	\$15 - \$20		
Bio-retention cell – high permeability soils	per SF	\$1.50 - \$3.00		
– low permeability soils	per SF	\$4.00 - \$6.00		

¹ Programs in addition to Illinois EPA 319 Grants, for which all of the listed BMPs are eligible.

ac = acre ft = foot CY = cubic yard

SF = square foot

3.12 Milestones and Monitoring

3.12.1 Interim Measurable Milestones and Schedule

Successful plan implementation relies on establishing and tracking milestones to measure progress. **Table 3-12** below identifies these milestones and a schedule for meeting each milestone. Stakeholders should evaluate milestone progress on an annual basis and implement adaptive management to modify management measures, milestones, and schedule as necessary. More detailed information regarding interim measurable milestones can be found in each of the existing watershed based plans and can provide insight into the measures and milestones generally targeted on short-term (approximately 1-2 years), mid-term (2-5 years), and long-term bases (10 years or more).

Implementation of the management actions outlined in this section should occur in phases, often over the course of several years, with effectiveness assessments made as improvements are completed. The process of obtaining funding and developing and implementing projects designed to improve water quality, can take months or years to complete and once in place, improvements in water quality as a result of BMPs may not be detectable for several years. Continued monitoring and reevaluation of the implementation measures during this time will allow for more expedient adjustment to BMP implementation measures that may result in earlier attainment of water quality targets.

Monitoring of water quality within the Upper Fox River/Flint Creek watershed, to evaluate the effectiveness of established BMPs, will depend upon Lake County Health Department (LCHD) Lakes Management Unit and the Volunteer Lake Monitoring Program (VLMP). The LCHD Lakes Management Unit runs a lake monitoring program in which samples are collected every five years and analyzed for total phosphorus and dissolved oxygen. The VLMP is a group of local stakeholders that collects water quality data on a three-year cycle, and tracks changes and trends in phosphorus concentrations. With this community involvement, along with the efforts of the IEPA, the effectiveness of BMPs within this watershed can be measured, and steps can be taken to ensure that the implementation milestones of this plan are met.

Milestones	Description	Estimated Schedule
Funding	Develop grant applications	Short term: 2 years
Implement Short-term Projects	Identify and implement short-term pilot projects that can be completed (i.e. willing landowners and available funding) Mid-term: 2-5 years	
Monitoring	Implement monitoring plan	Continuous: 1-20 years
Annual Stakeholder meetings	Stakeholders will convene at once a year to gauge progress and discuss evolving needs and planned activities	Annually
Implement Larger Projects	Identify and implement larger projects. These projects are more likely to have multiple funding sources and stakeholders.	Mid- to Long-Term: 5-10 years
Education and outreach	Prepare and implement and education and outreach plan. Conduct at least two public meetings annually.	continuous

Table 3-12 Implementation Milestones

3.12.2 Monitoring Plan

The purpose of the monitoring plan for the Upper Fox River/Flint Creek watershed is to assess the overall implementation of management actions outlined in this section. This can be accomplished by conducting the monitoring programs designed to:

- Track implementation of BMPs in the watershed by quantifying executed BMPs, such as linear feet of bank stabilization, acres of porous pavement, number of restored wetlands, etc.
- Estimate effectiveness of BMPs by monitoring pollutant-load reductions downgradient of BMPs.
- Further monitor point source discharges in the watershed throughout the duration of the permit to ensure the facilities remain in compliance.
- Continued monitoring of impaired lakes, stream segments, and tributaries by Illinois EPA, Lake County Health Department, and/or other entities.
- Monitoring of storm-based high flow events by IEPA or volunteer organizations.
- Low flow monitoring of total phosphorus, DO, TSS, and fecal coliform in impaired streams and lakes

Tracking the implementation of management measures can be used to:

- Determine the extent to which management measures and practices have been implemented compared to action needed to meet the TMDL endpoints
- Establish a baseline from which decisions can be made regarding the need for additional incentives for implementation efforts
- Measure the extent of voluntary implementation efforts

- Support work-load and costing analysis for assistance or regulatory programs
- Determine the extent to which management measures are properly maintained and operated

Estimating the effectiveness of the BMPs implemented in the watershed could be completed by monitoring before and after the BMP is incorporated into the watershed. Additional monitoring could be conducted on specific structural systems such as a sediment control basin. Inflow and outflow measurements could be conducted to determine site-specific removal efficiency.

Illinois EPA conducts Intensive Basin Surveys every 5 years. Additionally, select ambient sites are monitored nine times a year. Continuation of this state monitoring program will assess lake and stream water quality as improvements in the watershed are completed. This data will also be used to assess whether water quality standards in the impaired segments are being attained.

3.12.3 Success Criteria

Measuring the plan's success depends largely on tracking the milestones outlined above. Implementing BMPs should equate to improved water quality and attainment of designated uses and water quality standards. Monitoring pollutant-load reductions will be the primary success criteria. Key components include:

- Securing funding for priority projects within 5 years
- Meeting the identified milestones
- Meeting 25-50% of target reductions within 10 years
- Meeting 100% of target reductions within 20 years
- Utilizing adaptive management to ensure best practices
- Delisting of the impaired waterbodies

Section 4

Public Participation

4.1 Upper Fox River/Flint Creek Watershed Public Participation Summary

Public knowledge, acceptance, and follow-through are necessary to implement a plan to meet recommended TMDLs and LRSs. It is important to involve the public as early in the process as possible to achieve maximum cooperation and counter concerns as to the purpose of the process and the regulatory authority to implement any recommendations.

Illinois EPA, along with ENSR/AECOM, held a Stage 1 public meeting for the Upper Fox River/Flint Creek Watershed at the University Center of Lake County, in Grayslake, Illinois on August 25, 2009. Comments received through the public meeting process are included in Appendix F of the Stage 1 Report.

An additional public meeting was held by Illinois EPA and CDM Smith to present the Stage 3 TMDL results and implementation plan on May 14, 2019 at the Fox Waterway Agency's facility in Fox Lake, Illinois. A responsiveness summary addressing comments received through the Stage 3 public meeting and public notice process is included in **Appendix H** of this report. This page intentionally left blank.

Section 5

References

- AECOM. 2010. Upper Fox River/Flint Creek Watershed TMDL Stage 1 Report. March. Available at: <u>https://www2.illinois.gov/epa/Documents/epa.state.il.us/water/tmdl/report/upper-fox-flint-creek/stage-one-final.pdf</u>.
- Association of Illinois Soil and Water Conservation Districts (AISWCD). 2013. Illinois Urban Manual: Field manual for inspection of erosion and sediment control best management practices. Retrieved from: <u>http://www.aiswcd.org/wp-</u> <u>content/uploads/2013/11/IUM_FM_2013_WEBSITE_hyperlinks.pdf</u>.
- British Columbia Ministry of Forests. 1999. Definitions of Adaptive Management: Working definition for the BC Forest Service AM Initiative. Retrieved from <u>ftp://ftp.for.gov.bc.ca/HFP/external/!publish/Web/AMHOME/Amdefs.htm</u>.
- Brady, N.C., and R.R. Weil. 1999. The Nature and Properties of Soils. 12th ed. Prentice Hall. Upper Saddle River, NJ.
- Chesapeake Bay Program. 2006. Best Management Practices for Sediment Control and Water Clarity Enhancement. <u>http://www.chesapeakebay.net/content/publications/cbp_13369.pdf</u>
- Chicago Metropolitan Agency for Planning (CMAP). 2011. Silver Creek and Sleepy Hollow Creek Watershed Action Plan. Retrieved from: <u>http://mcdef.org/what-we-do/water-resources-protection-committee/silversleepy-hollow-creeks</u>
- CMAP. 2014. 9 Lakes Watershed-Based Plan. Retrieved from: http://foxriverecosystem.org/9Lakes.htm
- CMAP. 2016. Boone-Dutch Creek Watershed Plan. Retrieved from: http://www.foxriverecosystem.org/Boone-Dutch/Docs/BDCWatshdPlanFINALMarch2016.pdf
- Clary, J., Jones, J., Urbonas, B., Quigley, M., Strecker, E., & Wagner, T. 2008. Can Stormwater BMPs Remove Bacteria? New Findings from the International Stormwater BMP Database. Stormwater Magazine May, 1 -14.
- Clean-Flo. 2016. Hypolimnetic Aeration. Retrieved from <u>http://www.clean-flo.com/aerator-system/hypolimnetic-aeration/</u>.
- Cooke, G.D., E.B. Welch, S.A. Peterson, and P.R. Newroth. 1993. Restoration and Management of Lakes and Reservoirs. Lewis Publishers, Boca Raton, FL. 548 pp.
- DuPage County Stormwater Management Committee. 2008. Water Quality Best Management Practices Technical Guidance. <u>https://www.dupageco.org/EDP/Stormwater_Permits/Docs/18448/.</u>
- DuPage River Salt Creek Workgroup (DRSCW). 2007. Chloride Usage Education and Reduction Program Study. CDM. Retrieved from

http://www.epa.state.il.us/water/tmdl/implementation/dupage-river/drscw-chloridestudy-phase2.pdf.

- Fay, L., Akin, M., Shi, X., and Veneziano, D. 2013. Revised Chapter 8, Winter Operations and Salt, Sand and Chemical Management, of the Final Report on NCHRP 25-25(04). Western Transportation Institute: Montana State University.
- Hunt, W. F., Smith, J. T., Jadlocki, S. J., Hathaway, J. M., & Eubanks, P. R. 2008. Pollutant Removal and Peak Flow Mitigation by a Bioretention Cell in Urban Charlotte, N.C. Journal of Environmental Engineering 134(5).403-408.
- Illinois Department of Agriculture (IDA). 2000. Information on Streambank Stabilization and Restoration Program. Retrieved from <u>http://www.iira.org/rdrg/partners-for-conservation-streambank-stabilization-and-restoration-program-ssrp/</u>.
- Illinois Environmental Protection Agency (IEPA). 2016. Integrated Water Quality Report and 303d Lists. Retrieved from <u>https://www2.illinois.gov/epa/Documents/iepa/water-quality/watershed-management/tmdls/2016/303-d-list/iwq-report-surface-water.pdf</u>.
- Illinois Nutrient Research and Education Council (NREC). 2015. Nutrient Management Practices for Illinois Lawn Care Professionals. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiJjPW1n OvoAhVFKKwKHYotAUAQFjAAegQIAxAB&url=https%3A%2F%2Fillinoisnrec.org%2Fwpcontent%2Fuploads%2Fbsk-pdfmanager%2FTurf Fertilizer BMP_Guide_2015 (ISU and UI) 67.pdf&usg=A0vVaw2L2POKWNSCSI NuM_mnL099.
- Johnson, R., R. Evans, and K. Bass. 1996. Constructed Wetlands Demonstration Project for NPS Pollution Control. North Carolina Department of Natural Resources: Division of Water Quality.
- Kinney, W. 2005. STREAMS (Stream Technical Resource Evaluation and Management Service): *Watershed Evaluation Evergreen Lake*. May.
- Koski, Adrian and Kinzelman, Julie. 2010. A Review of Best Management Practices Benefiting Great Lakes Recreational Waters: Current Success Stories and Future Innovations. International Joint Commission.
- Kovosic, D.A., M.B. David, L.E. Gentry, K.M. Starks, and R.A. Cooke. 2000. Effectiveness of constructed wetlands in reducing N and P export from agricultural tile drainage. J. Environmental Quality. 29:1262-1274.
- Lake County Health Department (Lake County). 2015. 2015 Echo Lake Summary Report. Ecological Services Unit. Retrieved from: <u>https://www.lakecountyil.gov/2400/Lake-Reports</u>
- Lake County. 2015. 2015 Honey Lake Summary Report. Ecological Services Unit. Retrieved from: <u>https://www.lakecountyil.gov/2400/Lake-Reports</u>
- Lake County. 2015. 2015 Tower Lake Summary Report. Ecological Services Unit. Retrieved from: <u>https://www.lakecountyil.gov/2400/Lake-Reports</u>

- Lake County, Illinois Public Works. Our Sanitary Sewer Systems: Service Area Maps Sanitary Sewer Systems. Retrieved from <u>https://www.lakecountyil.gov/295/Our-Sanitary-Sewer-Systems</u>. Accessed July 27, 2016.
- LRRB (Minnesota Local Road Research Board). 2012. Minnesota Snow and Ice Control: Field Handbook for Snowplow Operators, Second Revision. Retrieved from: <u>http://www.lrrb.org/media/reports/200501REV.pdf</u>.
- Moore, J.A. 1993. Using Constructed Wetlands to Improve Water Quality. Oregon State University Extension Service, EC1408: June. <u>https://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/14258/ec1408.pdf?seq</u> <u>uence=3</u>.
- National Park Service (NPS). 2016. Rivers, Trails, and Conservation Assistance Program. Retrieved from <u>https://www.nps.gov/orgs/rtca/index.htm</u>.
- Natural Resources Conservation Service (NRCS), Illinois. 1994. Vegetative Streambank Stabilization. Retrieved from <u>http://www.aiswcd.org/wp-</u> content/uploads/2016/12/995-Vegetative-Streambank-Stabilization.pdf.
- NRCS. 1999. Filter Strip, Code 835. Retrieved from <u>http://www.aiswcd.org/wp-content/uploads/2013/06/835-Filter-Strip.pdf</u>.
- NRCS. 2003a. Filter Strip, Code 393. Retrieved from https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=nrcs144p 2 027146
- NRCS. 2003b. Riparian Forest Buffer, Code 391. Retrieved from https://www.nrcs.usda.gov/Internet/FSE DOCUMENTS/nrcs143 014881.pdf.
- NRCS. 2005. Western Lake Erie Basin Water Resources Protection Plan: Ohio, Indiana and Michigan. Retrieved from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs144p2_029098.pdf.
- NRCS. 2007. Conservation Practice Standard Code 330: Contour Farming. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026017.pdf.
- NRCS. 2008. Conservation Practice Standard Code 585: Stripcropping. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026280.pdf.
- NRCS. 2010a. Conservation Practice Standard Code 327: Conservation Cover. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026014.pdf.
- NRCS. 2010b. Conservation Practice Standard Code 342: Critical Area Planting. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026475.pdf.
- NRCS. 2010c. Conservation Practice Standard Code 600: Terrace. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046935.pdf.
- NRCS. 2011. Conservation Practice Standard Code 340: Cover Crop. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1046845.pdf.

NRCS. 2013. Pervious and Porous Pavement, Code 890. Retrieved from
http://www.aiswcd.org/wp-content/uploads/2016/06/890-Pourous-and-Permeable-
Pavements.pdf.

NRCS. 2014a. Conservation Practice Standard Code 328: Conservation Crop Rotation. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1263479.pdf.

NRCS. 2014b. Conservation Practice Standard Code 412: Grassed Waterway. Retrieved from

- https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_026051.pdf.
- NRCS. 2014c. Restoring America's Wetlands: A Private Lands Conservation Success Story. United States Department of Agriculture. Retrieved from <u>http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1045079.pdf</u>. Accessed May 31, 2016.
- NRCS. 2016a. Conservation Practice Standard 329: Residue and Tillage Management, No Till. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1249901.pdf.
- NRCS 2016b. Conservation Practice Standard 345: Residue and Tillage Management, Reduced Till. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1251402.pdf.
- NRCS 2016c. Conservation Practice Standard 386: Field Border. Retrieved from https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1241318.pdf.
- NRCS. 2016d. Environmental Quality Incentives Program: Payment Scenario Descriptions. Retrieved from <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/programs/financial/?cid=n</u> <u>rcseprd1328235</u>.
- Northern Virginia Planning District Commission. 1997. Nonstructural Urban BMP Handbook A Guide to Nonpoint Source Pollution Prevention and Control through Nonstructural Measures. <u>https://www.novaregion.org/DocumentCenter/Home/View/1676</u>
- Osmond, D.L., J. Spooner, and D.E. Line. 1995. Systems of Best Management Practices for Controlling Agricultural Nonpoint Source Pollution: The Rural Clean Water Program Experience. North Carolina State University Water Quality Control Group. Retrieved from http://www.water.ncsu.edu/watershedss/info/brochures/six.html.
- Pack, Jill. 2008. High Performing Turf Reinforcement Mats Provide Stormwater Control in Large Drainage Channel. International Erosion Control Association.
- Penn State Extension. 2016. Rain Gardens (BioRetention Cells) a Stormwater BMP. Pennsylvania State University. F-263. Retrieved from <u>http://extension.psu.edu/natural-resources/water/watershed-education/stormwater/rain-gardens-bioretention-cells-a-stormwater-bmp</u>.
- Pitt, Robert and Narayanan, Aryvan. University of Alabama. 2016. Costs of Urban Stormwater Control Practices.

Propex. 2007. Landlok Turf Reinforcement Mats. Retrieved from http://www.geosolutionsinc.com/pdfs/Landlok-TRM-Products-Brochure.pdf.

- Rusciano, G. M., & Obropta, C. 2007. Bioretention Column Study: Fecal Coliform and Total Suspended Solids Reductions. American Society of Agricultural and Biological Engineers 50(4), 1261-1269.
- Salt Institute. 2015. Salt Storage Handbook: Safe and sustainable salt storage. Retrieved from https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjL 4H4n uvoAhUJ16wKHYnsCJkQFjAAegQIBRAB&url=https%3A%2F%2Fwww.dwclonch.com%2Fwpcontent%2Fuploads%2F2020%2F01%2FSalt-Storage-Handbook-2015.pdf&usg=A0vVaw2131jxz9Gz7cfmjsv4VqL1
- Scherer, Nancy M., Harry L. Gibbons, Kevin B. Stoops & Martin Muller. 1995. Phosphorus Loading of an Urban Lake by Bird Droppings, Lake and Reservoir Management, 11:4, 317-327, DOI: 10.1080/07438149509354213. Retrieved from http://www.tandfonline.com/doi/pdf/10.1080/07438149509354213.
- Schueler, T. and Holland, H. (Eds.). 2000a. Microbes and Urban Water Sheds: Ways to Kill 'Em, Article 67. In The Practise of Watershed Protection 3 (1) (pp. 566-574). Ellicott City, MD: Center for Watershed Protection.
- Schueler, T. and Holland, H. (Eds.). 2000b. Comparative Pollutant Removal Capability of Stormwater Treatment Practises, Article 64. In The Practise of Watershed Protection 2(4) (pp. 515-520). Ellicott City, MD: Center for Watershed Protection.
- Stormwater Manager's Resource Center. 2016. Assorted BMP Fact Sheets. <u>http://www.stormwatercenter.net/.</u>
- TAC (Transportation Association of Canada). 2005. Salt SMART: Spreading, Management, Application Rates and Timing. Ottawa, Ontario. Retrieved from <u>http://www.putevisrbije.rs/images/pdf/strategija/prirucnikodrzavanjeeng.pdf</u>.
- TAC (Transportation Association of Canada). 2013. Synthesis of Best Practices Road Salt Management: Salt management plans. Retrieved from <u>http://www.tac-atc.ca/sites/tac-atc.ca/files/site/doc/resources/roadsalt-1.pdf</u>.
- The Conservation Fund. 2016. Land Conservation Loans. Retrieved from https://www.conservationfund.org/our-work/conservation-loans
- Urban Design Tools. 2016. Green Roofs: Costs. Retrieved from <u>http://www.lid-stormwater.net/greenroofs_cost.htm</u>.
- U.S. Census Department. 2013.
- USDA (United States Department of Agriculture). 2016. Retrieved from https://www.fsa.usda.gov/programs-and-services/conservation-programs/index
- USEPA (U.S. Environmental Protection Agency). 1998. An Analysis of Composting as an Environmental Remediation Technology, EPA 530-R-98-008. Washington, DC: U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response.

- USEPA. 2001. PLOAD version 3.0: An ArcView GIS Tool to Calculate Nonpoint Sources of Pollution in Watershed and Stormwater Projects.
- USEPA. 2003. National Management Measures to Control Nonpoint Source Pollution from Agriculture. Office of Water. EPA 841-B-03-004. Retrieved from <u>https://www.epa.gov/nps/national-management-measures-control-nonpoint-source-pollution-agriculture</u>.
- USEPA 2005. Handbook for Managing Onsite and Clustered (Decentralized) Wastewater Treatment Systems: An Introduction to Management Tools and Information for Implementing EPA's Management Guidelines. EPA 832-B-05-001. [Washington, D.C.]: Office of Water. Retrieved from <u>https://www.epa.gov/sites/production/files/2015-06/documents/onsite_handbook.pdf</u>.
- USEPA. 2006. Sand and Organic Filters. May 24. Retrieved March 5, 2010, from National Pollutant Discharge Elimination System.
- USEPA. 2007. An Approach for Using Load Duration Curves in the Development of TMDLs. EPA 841-B-07-006. [Washington, D.C.]: Office of Wetlands, Oceans and Watersheds. Retrieved from <u>https://www.epa.gov/sites/production/files/2015-</u>07/documents/2007_08_23_tmdl_duration_curve_guide_aug2007.pdf.
- USEPA. 2016. Wetland Program Development Grants. Website updated June 1, 2016. <u>https://www.epa.gov/wetlands/wetland-program-development-grants</u>.
- Walker, William W. Jr., Ph.D. 1996. BATHTUB Version 6.1: Simplified techniques for eutrophication assessment and prediction: User manual. Environmental Laboratory, USAE Waterways Experiment Station. Vicksburg, Mississippi. Report W-96-2.
- Zipper, C.; Skousen, J.; Jage, C. 2011. Passive Treatment of Acid-Mine Drainage. Virginia Cooperative Extension Publication 460-133.

Appendix A Stage 1 TMDL Report

Upper Fox River/Flint Creek Watershed TMDL Final Stage 1 Report

AECOM March 2010 Document No.: 60133219-106

AECOM

Contents

1.0	Intro	oduction	1-1
	1.1	Definition of a Total Maximum Daily Load (TMDL)	
	1.2	Targeted Waterbodies for TMDL Development	1-3
2.0	Wat	ershed Characterization	
	2.1	Watershed Location	2-1
	2.2	Topography	2-1
	2.3	Land use	
	2.4	Soils	
	2.5	Population	
	2.6	Climate and Precipitation	2-14
	2.7	Hydrology	
3.0	Pub	lic Participation and Involvement	
4.0	Арр	licable Water Quality Standards and TMDL Targets	
	4.1	Illinois Pollution Control Board	
	4.2	Designated Uses	4-1
	4.3	Assessing Designated Use Attainment	
	4.4	Applicable Illinois Water Quality Standards	
	4.5	TMDL Targets	
5.0	Wat	er Quality Analysis	
	5.1	Monitoring Programs	
	5.2	Water Quality Data	5-1
		5.2.1 Dissolved Oxygen	
		5.2.2 pH	
		5.2.3 Fecal Collform	
		5.2.4 Total Phosphorus	
6.0	Imp	aired Segments and Potential Sources	6-1
	6.1	Fox River DT-23	
	6.2	Drummond Lake	
	6.3	Lake Napa Suwe	
	6.4	Woodland Lake	

	6.5	Island Lake	6-7
	6.6	Slocum	6-8
	6.7	Timber Lake South	6-8
	6.8	Lake Fairview	6-9
	6.9	Tower Lake	6-10
	6.10	Lake Barrington	6-11
	6.11	Fox River DT-22	6-12
	6.12	Echo Lake	6-13
	6.13	Honey Lake	6-14
	6.14	Grassy Lake	6-15
	6.15	Louise Lake	6-15
7.0	TMD	DL Approach and Next Stages	7-1
	7.1	Recommended Modeling Approach for Dissolved Oxygen and pH	7-1
	7.2	Recommended Modeling Approach for Fecal Coliform	7-2
	7.3	Recommended Modeling Approach for Total Phosphorus	7-3 7-3
	7.4	Stages 2 & 3	7-5
8.0	Refe	erences	8-1

List of Tables

Table 1-1: Illinois 2008 Integrated Report 303(d) and Assessment Report Information for Upper Fox River Watershed, Excluding the Chain of Lakes 1-5
Table 1-2: Waterbodies targeted for TMDL development in the Upper Fox River/Flint Creek Watershed 1-6
Table 2-1: Population and Projections for the Impaired Portion of the Upper Fox River/Flint Creek Watershed
Table 4-1: Illinois Designated Uses and Assessment Levels
Table 4-2: Applicable Water Quality Standards for the Upper Fox River/Flint Creek Watershed 4-5
Table 4-3: Guidelines for Assessing Primary Contact Use in Illinois Streams and Inland Lakes 4-7
Table 4-4: Guidelines for Identifying Potential Causes of Impairment of Primary Contact (Swimming) Use in Illinois Streams and Inland Lakes 4-8
Table 4-5: TMDL Targets for Impaired Waterbodies in the Upper Fox River/Flint Creek Watershed 4-9
Table 5-1: Upper Fox River/Flint Creek Surface Total Phosphorus Samples by Year
Table 5-2: Upper Fox River/Flint Creek Surface Total Phosphorus Concentration Summary

List of Figures

Figure 2-1: Fox River Watershed 2-2	
Figure 2-2: Upper Fox River/Flint Creek Impaired Watershed Map 2-3	
Figure 2-3: Upper Fox River/Flint Creek Impaired Watershed Digital Elevation Model (DEM) 2-4	
Figure 2-4: Land Use in the Impaired Portion of the Upper Fox River/Flint Creek Watershed	
Figure 2-5: SSURGO Drainage Class in the Impaired Portion of the Upper Fox River/Flint Creek Watershed2-8	}
Figure 2-6: SSURGO Hydrologic Group in the Impaired Portion of the Upper Fox River/Flint Creek Watershed	
Figure 2-7: SSURGO K-Factor in the Impaired Portion of the Upper Fox River/Flint Creek Watershed 2-10	
Figure 2-8: Population Projection in the Impaired Portion of the Upper Fox River/Flint Creek Watershed 2-12	
Figure 2-9: Mean Monthly Precipitation in Elgin, IL (1911-2007) 2-14	
Figure 2-10: Upper Fox River/Flint Creek Watershed USGS Gage Stations	
Figure 2-11: Mean Daily Flow Duration Curve for the Fox River at Johnsburg, IL (USGS 05548500) 1997-1999	
Figure 2-12: Mean Monthly Flow for Fox River at Johnsburg, IL (USGS 05548500) 1997-1999 2-17	
Figure 5-1: Upper Fox River/Flint Creek Water Quality Sample Locations	
Figure 5-2: Fox River Impaired Segments DT-22 and DT-23 Dissolved Oxygen 1964-2008 5-4	
Figure 5-3: Woodland Lake Temperature Dissolved Oxygen Profiles 2004	
Figure 5-4: Fecal Coliform Impaired Segment Data 5-6	
Figure 5-5: E. coli Impaired Segment Data 5-7	
Figure 5-6: Average Surface Phosphorus Concentrations by Date for Impaired Lakes (1972-2007) 5-10	
Figure 6-1: Impaired Segment Watershed Land Use 6-2	
Figure 6-2: Active NPDES Dischargers in the Impaired Portion of the Upper Fox River/Flint Creek Watershed	

List of Appendices

- Appendix A Sub-Watershed Maps
- Appendix B Water Quality Data
- Appendix C Land Use Tables
- Appendix D NPDES Detailed Information
- Appendix E Time-Series Plots
- Appendix F Responsiveness Summary

Executive Summary

As required by Section 303(d) of the Clean Water Act (CWA), the Illinois Environmental Protection Agency (Illinois EPA) is required to identify and list all state waters that fail to meet water quality standards and designated uses. This list is referred to as the 303(d) list and is revisited every two years to either remove those waters that have attained their designated uses, or to include additional waters not previously deemed impaired. Waterbodies included on the 303(d) list require Total Maximum Daily Load (TMDL) development.

A TMDL is an estimation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards. It assesses contributing point and nonpoint sources to identify pollutant reductions necessary to attain water quality standards. A TMDL identifies the potential source of impairment and provides reduction estimates to meet water quality standards. Pollutant reductions are then allocated to contributing sources, thus triggering the need for pollutant controls and increased management responsibilities amongst sources in the watershed.

The Fox River watershed is located in Cook, Grundy, Kane, Kendall, Lake, La Salle, McHenry and Will Counties in far northeastern Illinois, and extends north into Wisconsin. The Fox River watershed is divided into two portions: the Upper Fox River and Lower Fox River watershed. The Upper Fox River Flint Creek sub-watershed contains 16 impaired segments that are identified for TMDL development. One of which will be delisted in 2010. The waterbody classification applicable to the Upper Fox River/Flint Creek watershed is the General Use classification which includes designated uses such as aquatic life, aesthetic quality, and primary contact recreation uses. The identified impairments include dissolved oxygen (DO), fecal coliform, pH and total phosphorus. The water quality criteria identified for these impairments provide an explicit assessment as to whether or not these waterbodies are in compliance.

Available data used for assessing these waterbodies originated from numerous water quality stations within the Upper Fox River watershed. Data were obtained from both Legacy and modernized US EPA Storage and Retrieval (STORET) databases, Lake County, Fox River Study Group, and Illinois EPA database. Data relevant to impairments were compiled for each impaired waterbody and summary statistics were calculated to further characterize each pollutant.

Various models were recommended for TMDL development, the level of which was primarily based on the complexity of the system and the availability of data. After a careful data review, it is likely that the dissolved oxygen impairment in the lake segment is related to excessive phosphorus concentrations, and therefore a phosphorus TMDL was recommended. The ENSR Lake Response Model (ENSR LRM) was suggested to evaluate total phosphorus loading in all phosphorus impaired segments. A load duration curve was recommended for the preparation of river fecal coliform TMDLs and the Simple Method (loading estimates based on runoff volume and concentrations) was recommended for lake fecal coliform TMDLs. The River and Stream Water Quality Model (QUAL2K) was recommended for DO and pH.

1.0 Introduction

This Stage 1 Total Maximum Daily Load (TMDL) report is presented as partial fulfillment by the Illinois Environmental Protection Agency (Illinois EPA) and the United States Environmental Protection Agency (US EPA) in the development of TMDLs, as part of that state's Clean Water Act (CWA) Section 303(d) compliance. The purpose of the project is to develop TMDLs for 15 impaired waterbodies in the Upper Fox River/Flint Creek watershed in Illinois.

Section 303(d) of the CWA and US EPA's Water Quality Planning Regulations (40 CFR Part 130) require states to develop TMDLs for impaired waterbodies that are not supporting designated uses or meeting water quality standards. A TMDL is a calculation of the maximum amount of pollutants that a waterbody can receive and still meet the water quality standards necessary to protect the designated beneficial use (or uses) for that waterbody. The TMDL process establishes the allowable loadings of pollutants for a waterbody based on the relationship between pollutant sources and water quality conditions, so that states and local communities can establish water quality based controls to reduce pollutants from both point and nonpoint sources and restore and maintain the quality of their water resources.

Water is an essential resource for the inhabitants of the Earth and protecting this resource is the goal for many across the globe. United States policies and regulations, such as the CWA, were created and are implemented to help maintain the quality of our water resources in the United States. The US EPA, via the CWA, charged each state with developing water quality standards (WQS). These WQS are laws or regulations that states authorize to protect and/or enhance water quality, to ensure that a waterbody's designated use (or uses) is (are) not compromised by poor water quality and to protect public health and welfare. In general, WQS consist of three elements:

- The designated beneficial use (e.g., recreation, protection of aquatic life, aesthetic quality, and public and food processing water supply) of a waterbody or segment of a waterbody,
- The water quality criteria necessary to support the designated beneficial use of a waterbody or segment of a waterbody, and
- An anti-degradation policy, so that water quality improvements and waterbodies having higher water quality than minimally required to meet their designated uses are conserved, maintained and protected.

The Illinois Pollution Control Board (IPCB) established its WQS in Title 35: Environmental Protection, Subtitle C: Water Pollution, Chapter 1: Pollution Control Board, Part 302: Water Quality Standards. Every two years Illinois EPA submits the Illinois Integrated Water Quality Report and Section 303(d) List. This report documents surface and groundwater conditions throughout the state. The 303(d) List portion of this report identifies impaired surface water bodies, grouped by watershed, and identifies suspected causes and sources of impairment. These waters are prioritized for TMDL development into high, medium, and low categories based on designated use and pollution severity and are then targeted for TMDL development. Non-pollutant causes of impairment, such as habitat degradation and aquatic algae are not directly addressed by the TMDL, but may be addressed by reducing pollutants which a TMDL is developed. For example, some implementation activities to reduce phosphorus can reduce excessive algae and improve habitat.

A TMDL is a calculation of the maximum load a waterbody can be receive without exceeding water quality standards or result in non attainment of a designated use. A watershed's TMDL report consists of data analysis to quantitatively assess water quality, documentation of waterbodies or segments of waterbodies that are impaired, and identification of potential contributing sources to impairment. Based on these data, the amount and type of load reduction that is needed to bring water quality into compliance is calculated. The
TMDL report provides the scientific basis for states and local communities to establish water quality-based controls to reduce pollutant loads from both point (i.e., wasteload allocations) and non-point sources (i.e., load allocations).

Illinois EPA uses a three-stage approach to develop TMDLs for a watershed:

- **Stage 1** Watershed characterization, historical dataset evaluation, data analysis, methodology selection, data gap identification;
- Stage 2 Data collection to fill in data gaps, if necessary; and
- Stage 3 Model calibration, TMDL scenarios, and implementation plans.

The purpose of Stage 1 is to characterize the watershed background; verify impairments in the listed waterbody by comparing observed data with water quality standards or appropriate targets; evaluate spatial and temporal water quality variation; provide a preliminary assessment of potential sources contributing to impairments; and describe potential TMDL development approaches. If available water quality data collected for the watershed are deemed sufficient by Illinois EPA, Stage 2 may be omitted and Stage 3 will be completed. If sufficient water quality data or supporting information are lacking for an impaired waterbody, then Stage 2 field sampling will be conducted in order to obtain necessary data to complete Stage 3.

This report documents Stage 1 in the Illinois EPA approach for TMDL development. The report is organized into seven main sections. Section 1.0 discusses the definition of TMDLs and targeted impaired waterbodies in the Upper Fox River/Flint Creek watershed, for which TMDLs will be developed. Section 2.0 describes the characteristics of the watershed, and Section 3.0 briefly discusses the process of public participation and involvement. Section 4.0 describes the applicable water quality standards and water quality assessment. Section 5.0 presents the assessment and analysis of available water quality data. Section 6.0 provides a description of each impaired segment's watershed and potential sources. Section 7.0 discusses the methodology selection for the TMDL development, the data gaps, and provides recommendations for additional data collection, if necessary.

1.1 Definition of a Total Maximum Daily Load (TMDL)

According to the 40 CFR Part 130.2, the TMDL (the maximum load a waterbody can be receive without exceeding water quality standards or result in non attainment of a designated use) for a waterbody is equal to the sum of the individual loads from point sources (i.e., wasteload allocations or WLAs), and load allocations (LAs) from nonpoint sources (including natural background conditions). Section 303(d) of the CWA also states that the TMDL must be established at a level necessary to implement the applicable water quality standards with seasonal variations and a margin of safety (MOS) which takes into account any lack of knowledge concerning the relationship between effluent limitations and water quality. In equation form, a TMDL may be expressed as follows:

TMDL = WLA + LA + MOS

Where:

WLA =	Waste Load Allocation (i.e., loadings from point sources);
LA =	Load Allocation (i.e., loadings from nonpoint sources including natural background); and
MOS =	Margin of Safety.

TMDLs can be expressed in terms of either mass per time, toxicity or other appropriate measures [40 CFR, Part 130.2 (i)]. US EPA recommends that all TMDLS and associated LA and WLAs be expressed in terms of daily increments but may include alternative non-daily expression of pollutant loads to facilitate implementation of the applicable water quality standard. Numerous methods have been developed that help account for the

variability of waterbodies and allow for the derivation of a daily load from a non-daily load. Such methods can account for factors such as seasonality, flow, critical conditions, etc. and translate a non-daily load (e.g. annual, monthly, and seasonal) to a daily load. TMDLs also shall take into account the seasonal variability of pollutant loading and hydrology to ensure water quality standards are met in all seasons and during all hydrologic conditions. Though not required by CWA, Illinois EPA requires that an implementation plan be developed for each watershed, which may be used as a guideline for local stakeholders to restore water quality. This implementation plan will include recommendations for implementing best management practices (BMPs), cost estimates, institutional needs to implement BMPs and controls throughout the watershed, and time frame for completion of implementation activities.

The MOS accounts for the lack of knowledge or uncertainty concerning the true relationship between loading and attainment of water quality standards. This uncertainty is often a product of data gaps, either temporally or spatially, in the measurement of water quality. The MOS should be proportional to the anticipated level of uncertainty; the higher the uncertainty, the greater the MOS. The MOS is generally based on a qualitative assessment of the relative amount of uncertainty as a matter of best professional judgment (BPJ). The MOS can be either explicit or implicit. If an explicit MOS is used, a portion of the total allowable loading is allocated to the MOS. If the MOS is implicit, a specific value is not assigned to the MOS, but is already factored in during the TMDL development process. Use of an implicit MOS is appropriate when assumptions used to develop the TMDL are believed to be so conservative that they sufficiently account for the MOS.

1.2 Targeted Waterbodies for TMDL Development

In May 2008, Illinois EPA prepared a draft Illinois Integrated Water Quality Report and Section 303(d) List-2008 (commonly referred to as the 303(d) List) to fulfill the requirement of Section 305(b), 303(d) and 314 of the CWA (Illinois EPA, 2008). Under US EPA's review and approval, the report presents a detailed water quality assessment process and results for streams and lakes in the State of Illinois. The water quality assessments are based on biological, physicochemical, physical habitat, and toxicity data. Each waterbody is assigned one or more designated uses which may include aquatic life, aesthetic quality, indigenous aquatic life (for specific Chicago-area waterbodies), primary contact (swimming), secondary contact (non-swimming recreation), public and food processing water supply, and fish consumption. The degree of support (attainment) of a designated use in a waterbody (or segment) is assessed as Fully Supporting (good), Not Supporting (fair), or Not Supporting (poor). Waters in which at least one applicable use is not fully supported is designated as "impaired." Potential causes and sources of impairment are also identified for these waters. The 303(d) List is prioritized on a watershed basis based on the requirements of 40 CFR Part 130.7(b)(4). Watershed boundaries are based on United States Geological Survey (USGS) ten-digit hydrologic units, to provide the state with the ability to address watershed issues at a manageable level and document improvements to a watershed's health (Illinois EPA, 2008). TMDL development is also conducted on a watershed basis so that the impaired waters upstream of an individual segment may be addressed at the same time.

Table 1-1 presents the 2008 Integrated Report (303(d)) List and Stream Assessment Report impaired segments for the Upper Fox River watershed (excluding the Chain of Lakes subwatershed). The table includes impaired designated uses and potential causes. The segments in bold font are scheduled for TMDL development and are the focus of this report. TMDLs will not be developed for phosphorus impaired lakes with surface area of less than 20 acres since the Illinois phosphorus standard applies only to those lakes where surface acreage is 20 or more acres. Nor will TMDLs be developed for segments impaired by water quality variables that do not have numerical WQS.

Two river segments and 14 lakes are identified as impaired and selected for TMDL development in the Upper Fox River/Flint Creek watershed (Illinois EPA, 2008). One segment listed as a lake (Broberg Marsh) is scheduled to be delisted in 2010. This segment is an emergent wetland and not an open water resource and therefore should not be treated as such. Table 1-1 summarizes these waterbodies, designated uses, and impairments identified by the Illinois EPA. The designated uses for these waterbodies are primarily aquatic life

with some aesthetic quality and primary contact recreation uses. Water quality criteria applicable to these waters are the General Use Water Quality Standards. The identified causes for impairment that have numerical WQS include dissolved oxygen (DO), fecal coliform, pH and total phosphorus. Although there is a numerical standard for DO, DO is considered a non-pollutant by Illinois EPA. The Illinois EPA will ascertain potential causes for low dissolved oxygen using the TMDL process and will develop a TMDL only if the cause is attributable to a pollutant that has a numerical WQS. For example, if a lake suffers from low DO due to excessive algal densities which is related to elevated phosphorus concentrations, the Illinois EPA will develop a phosphorus TMDL for this waterbody. A TMDL will not be developed for pollutants listed as causes of impairment without numeric WQS, such as total suspended solids, sedimentation/siltation, and cause unknown. For these causes, the TMDL implementation plan can potentially address the impairment by reducing TMDL parameters that are associated with this impairment. Waterbodies and water quality variables targeted for TMDL development are listed in Table 1-2.

Table 1-1: Illinois 2008 Integrated Report 303(d) and Assessment Report Information for Upper Fox River Watershed, Excluding the Chain of Lakes							
Water ID	Water Name	Size (Miles/ Acres)	Priority	Designated Use	Potential Cause(s)		
IL_DT-22	Fox R.	7.83	Medium	Aquatic Life Primary Contact Recreation Fish Consumption	 pH, Dissolved Oxygen, Sedimentation/Siltation, Total Suspended Solids Fecal Coliform Polychlorinated biphenyls 		
IL_DT-23	Fox R.	7.61	Medium	Aquatic Life	Dissolved Oxygen, Cause Unknown Polychlorinated binbenyls		
IL_DTRA-W-C1	Fiddle Creek	1.93	Medium	Aquatic Life	Cause Unknown, Dissolved Oxygen, Total Phosphorus, Sedimentation/Siltation		
IL_DTR-W-C3	Slocum Lake Drain	1.08	Medium	Aquatic Life	Total Phosphorus, Sedimentation/Siltation		
IL_DTR-W-D1	Slocum Lake Drain	0.92	Medium	Aquatic Life	Total Phosphorus, Sedimentation/Siltation		
IL DTZS-01	Flint Cr.	10.13	Medium	Aquatic Life	Cause Unknown		
IL_RTP	Slocum Lake	211.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_RTS	Lake Zurich	228.00	Medium	Aesthetic Quality	Total Suspended Solids		
IL RTZD	McCullom Lake	245.00	Medium	Aesthetic Quality	Cause Unknown		
IL_RTZF	Tower Lake	69.00	Medium	Aesthetic Quality Primary Contact Recreation	Total Phosphorus, Total Suspended Solids Fecal Coliform		
IL_RTZI	Island Lake	78.20	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_RTZQ	Timber Lake (South)	33.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_RTZR	Ècho Lake	25.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_RTZT	Lake Barrington	91.00	Medium	Aesthetic Quality Primary Contact Recreation	Total Phosphorus, Total Suspended Solids Fecal Coliform		
IL RTZU	Honey Lake	66.00	Medium	Aesthetic Quality	Total Phosphorus.		
				Primary Contact Recreation	Fecal Coliform		
IL_STK	Lake Fairview	20.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_STN ¹	Broberg Marsh	77.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_STO	Lake Napa Suwe	61.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_STT	Seven Acre Lake	6.50	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
	Woodland (Highland) Lake	7.70	Medium	Aquatic Life Aesthetic Quality	Dissolved Oxygen, Total Phosphorus, Total Suspended Solids Total Phosphorus, Total Suspended Solids		
L IL_SI Y	Heron Pond	7.90	ivieaium	Aestnetic Quality	i otal Phosphorus		

Table 1-1: Illinois 2008 Integrated Report 303(d) and Assessment Report Information for Upper Fox River Watershed, Excluding the Chain of Lakes							
Water ID	Water Name	Size (Miles/ Acres)	Priority	Designated Use	Potential Cause(s)		
IL_UTI	Drummond Lake	21.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_UTP	Columbus Park Lake	7.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_UTS	Lake Lakeland Estates	14.00	Medium	Aesthetic Quality	Total Phosphorus		
IL_UTT	North Tower Lake	7.00	Medium	Aesthetic Quality	Total Phosphorus		
IL_VTI	Grassy Lake	41.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_VTZJ	Lake Louise	38.00	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_VTZY	Taylor Lake	8.30	Medium	Aesthetic Quality	Total Phosphorus, Total Suspended Solids		
IL_WTB	Lochanora	10.30	Medium	Aesthetic Quality	Total Phosphorus		

¹ Broberg Marsh is an emergent wetland, not a lake. It should not have been assessed/listed as such and will be delisted in the 2010 Integrated Water Quality Report.

² Dissolved oxygen does not appear on the 303(d) list because it is not considered a pollutant. However, it does appear on the 305(b) as a cause of impairment,

Those parameters in bold have numeric standards and will have TMDL allocations.

Table 1-2: Waterbodies targeted for TMDL development in the Upper Fox River/Flint Creek Watershed						
		Waterbody size				
Segment ID	Waterbody Name	(acres or miles)	Impairment			
IL_RTZT	Lake Barrington	91	Fecal coliform, Total Phosphorus			
IL_UTI	Drummond Lake	21	Total Phosphorus			
IL_RTZR	Echo Lake	25	Total Phosphorus			
IL_DT-22	Fox R.	7.83	Dissolved oxygen, fecal coliform, pH			
IL_DT-23	Fox R.	7.61	Dissolved oxygen			
IL_VTI	Grassy Lake	41	Total Phosphorus			
IL_RTZU	Honey Lake	66	Fecal coliform, Total Phosphorus			
IL_RTZI	Island Lake	78.2	Total Phosphorus			
IL_STK	Lake Fairview	20	Total Phosphorus			
IL_STO	Lake Napa Suwe	61	Total Phosphorus			
IL_VTZJ	Lake Louise	38	Total Phosphorus			
IL_RTP	Slocum Lake	211	Total Phosphorus			
IL_RTZQ	Timber Lake (South)	33	Total Phosphorus			
IL_RTZF	Tower Lake	69	Fecal coliform, Total Phosphorus			
IL_STV	Woodland (Highland) Lake	7.7	Dissolved oxygen			

Broberg Marsh is an emergent wetland and not a lake. It should not have been assessed/listed as such and will be delisted in the 2010 Integrated Water Quality Report

2.0 Watershed Characterization

As part of the Stage 1 report, relevant geologic and hydrologic characteristics and general information are obtained for the watershed of interest. This section describes the general characteristics of the Upper Fox River watershed including location (Section 2.1), topography (Section 2.2), land use (Section 2.3), soil information (Section 2.4), population (Section 2.5), climate and precipitation (Section 2.6) and hydrology (Section 2.7).

2.1 Watershed Location

A watershed is a geographic area that shares a hydrologic connection - all the water within that area drains to a common waterway. Water movement can be influenced by topography, soil composition and water recharge (i.e. precipitation, snow melt, groundwater) ("What is a Watershed", 2007). Watersheds are important because pollution at the water's source may impact water quality in all downgradient areas including its convergence with a common waterway. Understanding the watershed is an essential step in the TMDL process – an essential tool in maintaining water quality standards within Illinois.

The Fox River watershed spans across two states, Wisconsin and Illinois. The Fox River headwaters are located in Wisconsin. The river flows south into Illinois along the western portion of the Chicago Metropolitan suburban area. The watershed as a whole drains approximately 2,654 square miles (sq mi) with 1,723 sq mi located within Illinois (IDNR 1995) (Figure 2-1). The Fox River flows 115.1 miles from Wisconsin, through several Illinois Counties (Grundy, Kane, Kendall, Lake, La Salle, McHenry and Will) before discharging into the Illinois River at Ottawa.

The Illinois EPA 2008 Integrated Report (303(d)) List and Stream Assessment Report (Illinois EPA, 2008) divides the Fox River watershed into two portions: Upper Fox River watershed (USGS HUC:07120006) and the Lower Fox River watershed (USGS HUC:07120007) (Figure 2-1). The Illinois portion of the Upper Fox River is further divided into five smaller sub-watersheds (10-digit hydrologic unit codes). Three of these sub-watersheds (Nippersink Creek, North Branch Nippersink Creek and Squaw Creek) drain through a hydraulically connected system of lakes, commonly known as the Chain of Lakes, to the Fox River. The remaining two, Flint Creek (HUC: 0712000611) and Poplar Creek (HUC: 0712000612), comprise the southern portion of the Upper Fox River watershed and drain approximately 355 square miles (57%) of the Illinois portion of the Upper Fox River watershed. The impaired segments within the southern portion of the Upper Fox River watershed are within the Flint Creek sub-watershed.

This Upper Fox River/Flint Creek watershed drains 169 square miles in Lake, McHenry and Cook, representing 27% of the Illinois portion of the Upper Fox River watershed. The Upper Fox River/Chain of Lakes watershed drains to the Fox River at the upstream end of the Fox River in the Upper Fox River/Flint Creek watershed, adding an additional 267 square miles to the drainage area within Illinois (total Illinois 436 sq mi). The impaired portion of these subbasins is approximately 401 square miles and is illustrated on Figure 2-2. Figure 2-2 also identifies those waterbodies that are listed for TMDL development in the Upper Fox River/Flint Creek watershed.

2.2 Topography

Topography influences soil types, precipitation, and subsequently watershed hydrology and pollutant loading. For the Upper Fox River/Flint Creek watershed, a USGS 30-meter resolution Digital Elevation Model (DEM) was obtained from the Illinois Natural Resources Geospatial Data Clearinghouse, and two foot topography developed by Lake County from LIDAR imagery to characterize the topography. Figure 2-3 displays elevations in color ramp throughout the watershed.

Figure 2-1: Fox River Watershed

Figure 2-2: Upper Fox River/Flint Creek Impaired Watershed Map

Figure 2-3: Upper Fox River/Flint Creek Impaired Watershed Digital Elevation Model (DEM)

In general, the higher elevations are located in the western portion of the watershed with a gradation to a lower elevation in the west/northwest toward the Upper Fox River and Chain of Lakes. Elevations to the east are also higher than the area surrounding the Fox River and Chain of Lakes, resulting in an overall surface water flow toward the center of the watershed. The percent change of elevation across the Upper Fox River/Flint Creek watershed is approximately 38% and ranges from 1183 feet to 730 feet.

The Fox River flows southward from Wisconsin at 793 feet through the Chain of Lakes and exits the chain at about 732 feet. Water level within the Chain of Lakes is artificially maintained by the dam at McHenry (also known as the Stratton Dam), which was constructed in 1907. Although the dam impounds water, the Chain of Lakes was naturally formed by glaciers. The stream gradient of the Fox River from the start to the terminus of the impaired waterbody watershed is minimal (approximately 1 foot), with the lowest point along the river with an elevation of 730 feet.

2.3 Land use

Land use is as dynamic as the water moving throughout a watershed. It is constantly changing and has a large impact on water quality. Land use data for the impaired portion of Upper Fox River/Flint Creek watershed within Lake County were obtained from Lake County Stormwater Management Commission (SMC). This data set is an update of the 2000 land use inventory data set for the County. The Lake County 2000 land use code definitions have been retained for the most part, but have been modified to identify land uses of special interest to the County and municipalities in 2005.

Land use data for the rest of the watershed were extracted from the 2001 land use inventory provided by the Chicago Metropolitan Agency for Planning (C-MAP). Land use is aggregated to 48 categories, and was created using black and white orthorectified aerial photography that was captured in April 2001. In addition to orthorectified aerial photography for the region, numerous GIS reference layers and several internet resources were used to support the Land Use Inventory. Land use interpretation methods and the consequent classification were conducted using a systematic approach working in thematic waves. The minimum land use classification area size was 1 acre or 2.5 acres (within the City of Chicago 0.5 acre or 1 acre), depending upon the type of land use being classified. Land use categories define homogeneous areas and represent features as they appear on the earth's surface. They are not generalized to any other geography. 2005 land use extents of Lake County were used to remove the exact portion of 2001 land use. The two layers were then merged. Land use codes from each data set were used to define the appropriate description and then combined into the appropriate classes, such as urban, agriculture, forest, water, wetland, barren or exposed lands.

Much of the Upper Fox River/Flint Creek watershed was forested prior to 1840. These forests were clear cut and converted to row crop agriculture. The progression of land use changes from agriculture to residential and urban use has increased with time. Urban land use now dominates in the impaired portion of the Upper Fox River/Flint Creek watershed with 40% of the area classified as urban (Figure 2-4). Agricultural areas (i.e. row crops, grain, grazing, and pasture) still comprise a large portion of the land use (37%), however. Much of the urban land is located in the near the Chain of Lakes and in the southern portion of the watershed. Forested land accounts for only 10% of the land use. Surface water and wetlands each comprise about 7% of the watershed.

It is noted that Chicago Metropolitan Agency for Planning (C-MAP) is finalizing the consolidated land use data for the six northeast Illinois Counties. This data will be used for Stage 3 work once available.

Figure 2-4: Land Use in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

2.4 Soils

Soils data and Geographic Information Systems (GIS) files from the Natural Resources Conservation Service (NRCS) were used to characterize soils in the Upper Fox River/Flint Creek watershed. General soils data and map unit delineations for the country are provided as part of the Soil Survey Geographic (SSURGO) database. Field mapping methods using national standards are used to construct the soil maps in the SSURGO database. Mapping scales generally range from 1:12,000 to 1:63,360; SSURGO is the most detailed level of soil mapping prepared by the NRCS. A map unit is composed of several soil series having similar properties. Identification fields in the GIS coverage can be linked to a database that provides information on chemical and physical soil characteristics. The SSURGO database contains many soil characteristics associated with each map unit.

SSURGO data were analyzed based on drainage class (Figure 2-5), hydrologic group (Figure 2-6) and Kfactor (Figure 2-7), a coefficient of the Universal Soil Loss Equation (USLE). The drainage class, as stated in the SSURGO database is, "The natural drainage condition of the soil [which] refers to the frequency and duration of wet periods" (Soil Survey Staff, "Table Column Descriptions"). Poorly drained soils can be found in areas where there is frequent flooding such as land adjacent to lakes and streams. Excessively drained areas are also present around the lakes and may be natural in nature or due to anthropogenic sources such as construction of residential and paved areas. The western portion in the higher elevation areas are well to excessively drained (Figure 2-5). The eastern portion of the watershed is for the most part, is poorly drained.

Soils that remain saturated or inundated for a sufficient length of time become hydric through a series of chemical, physical, and biological processes. Once a soil takes on hydric characteristics, it retains those characteristics even after the soil is drained. Therefore, hydric soils are the best indicator of what is or once was a wetland (SMC 2007). Wetlands help control flooding by retaining water when it rains and then releasing it slowly back into lakes and streams. The longer a soil is inundated the more likely it is that it will become hydric.

The hydrologic soil group classification identifies soil groups with similar infiltration and runoff characteristics during periods of prolonged wetting. Typically, clay soils that are poorly drained have lower infiltration rates, while well-drained sandy soils have the greatest infiltration rates. The United States Department of Agriculture (USDA) has defined four hydrologic groups (A, B, C, or D) for soils. Type A soil has high infiltration while D soil has very low infiltration rate. Figures 2-6 show the distribution of hydrologic soil groups. Generally, areas to the east have a moderately slow infiltration rate (hydrologic group C). Areas near the lakes contain both slow (hydrologic group D) to moderately high infiltration rates (hydrologic group B). High infiltration rates near the lakes may be anthropogenic in nature. The central and much of the western portion of the watershed is mostly hydrologic group B with a moderately high infiltration rate and corresponds to the well drainage class.

A commonly used soil attribute of interest is the K-factor, a dimensionless coefficient used as a measure of a soil's natural susceptibility to erosion. Factor values range from 0 for water surfaces to 1.00 (although in practice, maximum K-factor values do not generally exceed 0.67). Large K-factor values reflect greater potential soil erodibility.

The compilation of K-factors from the SSURGO data was performed in several steps. Soils are classified in the SSURGO database by map unit symbol. Each map unit symbol is made up of components consisting of several horizons (or layers). The K-factor was determined by selecting the dominant components in the most surficial horizon per each map unit. The distribution of K-factor values in the impaired portion of the Upper Fox River/Flint Creek watershed is shown in Figure 2-7. Areas with the highest K-factor can be found on the western side of the watershed, while the eastern side of the watershed contains moderate to low erosion potential.

Figure 2-5: SSURGO Drainage Class in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

Figure 2-6: SSURGO Hydrologic Group in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

Figure 2-7: SSURGO K-Factor in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

2.5 Population

Circumstances in the Upper Fox River/Flint Creek watershed today are not only the product of the geologic and natural processes that have occurred in the watershed, but also a reflection of human impacts and population growth. Development has changed the watershed's natural drainage system as channelization and dredging have replaced slow moving, shallow streams and wetlands. This alteration has affected the way water runs off of the landscape both in increased volume and velocity, resulting in the potential increase in pollutant transport.

The area surrounding the Chain of Lakes is primarily residential and recreational areas. Land was first developed around the Chain of Lakes for agriculture in the 1840's. Since that time much of the shorelines of the Chain of Lakes have been developed for housing, restaurants, marinas and recreation (Kothandaraman et al., 1977). The Fox River watershed as a whole accounts for nearly 11% of the state of Illinois' population at roughly 1,000,000 individuals (McConkey et al., 2004). Census 2000 data in format of TIGER/Line Shape file were downloaded to analyze the population in the targeted TMDL watershed of this report. Census data were also available for groups of census blocks, but the original census block data were used since it is a finer resolution and, therefore, more precise.

The Upper Fox River/Flint Creek watershed accounts for about 321,000 persons with an average of 1,500 persons per square mile. In comparison, the entire Fox River watershed has about 600 persons per square mile. Census blocks with the highest populations can be found in the central western and northwestern portion part of this watershed near the cities of Round Lake Beach and Woodstock, respectively.

The Illinois Department of Commerce and Economic Opportunity provide population projections by municipality on their website ("Population Projections", 2005). Figure 2-8 depicts the percent population change in the watershed from 2000 to 2030. Table 2-1 provides the most recent census population data and projected population numbers by town. In general, the central portion of the watershed is projected the most growth at an increase by 7000%. The town of Volo with a population of 180 persons in 2000, is projected to grow to 13,686 persons by 2030 – a significant increase at 7500%. Prairie Grove, located west of the Fox River, is project to grow by 1200%. The eastern portion of the watershed will also see growth but not as great as the southwest. Antioch and Lake Villa are proposed to grow by 94-248%, while Round Lake Park is said to increase by 249-377%. This magnitude of growth will result in land use changes and have the potential to impact water quality if these areas are not responsibly developed, utilizing the most effective and innovative technologies to protect the water resources within the Upper Fox River/Flint Creek watershed.

Figure 2-8: Population Projection in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

Upper Fox River/Flint Creek Watershed

Town/Village	2000 Population	2000 Population/Mi ²	Projected 2030 Population	Projected 2030 Population/Mi ²	Area (Mi ²)
Antioch	8788	1209	30594	4208	7.3
Barrington	10168	2159	10429	2214	4.7
Bull Valley	726	126	2435	424	5.7
Cary	15531	2930	22036	4158	5.3
Crystal Lake	38000	2234	44363	2608	17.0
Deer Park	3102	834	3846	1034	3.7
Fox Lake	9178	1013	12589	1390	9.1
Grayslake	18506	1969	24094	2563	9.4
Greenwood	244	154	3289	2082	1.6
Hainesville	2129	1145	4118	2214	1.9
Hawthorn Woods	6002	1057	15951	2808	5.7
Hebron	1038	1504	2074	3006	0.7
Holiday Hills	831	857	1053	1086	1.0
Inverness	6749	1050	7069	1099	6.4
Island Lake	8153	2664	13557	4430	3.1
Johnsburg	5391	828	23024	3537	6.5
Lake Barrington	4757	853	5695	1021	5.6
Lakemoor	2788	614	23055	5078	4.5
Lake Villa	5864	913	16546	2577	6.4
Lake Zurich	18104	2662	20571	3025	6.8
Lindenhurst	12539	3051	19843	4828	4.1
McCullom Lake	1038	3579	1997	6885	0.3
McHenry	21501	1790	48502	4038	12.0
Mundelein	30935	3430	34126	3783	9.0
North Barrington	2918	626	3542	760	4.7
Oakwood Hills	2194	1844	4263	3582	1.2
Prairie Grove	960	202	12076	2542	4.8
Ringwood	471	196	1890	787	2.4
Round Lake	5842	1583	27338	7409	3.7
Round Lake Beach	25859	5041	29900	5828	5.1
Round Lake Heights	1347	2245	2552	4254	0.6
Round Lake Park	6038	1973	9954	3253	3.1
Spring Grove	3880	598	18523	2854	6.5
Tower Lakes	1310	1170	1442	1287	1.1
Volo	180	68	13686	5145	2.7
Wauconda	9448	2197	25653	5966	4.3
Wonder Lake	7463	1077	2715	392	6.9
Woodstock	20151	1923	30522	2912	10.5
Richmond	1091	796	15059	10992	1.4

2.6 Climate and Precipitation

Northeast Illinois has a continental climate, with highly variable weather. The temperatures of continental climates are not buffered by the influence of a large waterbody (like an ocean, inland sea or Great Lake). Areas with continental climates often experience wide temperature fluctuations throughout the year. Summer maximum temperatures are generally in the 80s or low 90s while daily high temperatures in the winter are generally between 20 to 30°F (McConkey, 2004). Temperature and precipitation data were obtained from the Illinois State Climatologist Office website. There are several climate monitoring stations within the Upper Fox River/Flint Creek watershed. One of them is in the city of Elgin, which is located approximately 25 miles southwest of the watershed.

Climate data were analyzed for the city of Elgin between the years of 1911 to 2007 although data were not available for all years. Based on the available data, the mean high summer temperature is 82.2° F and the mean low temperature in winter is 15.7° F. Mean annual high temperatures are about 58° F, while mean annual low temperatures are about 38° F.

The mean monthly precipitation in Elgin from 1911-2007 (data not available all years) can be found in Figure 2-9. Elgin receives most of its precipitation in the spring and summer months, with the greatest precipitation occurring in June at around 4.1 inches. The least precipitation is received in February at around 1.4 inches on average. Annual total precipitation averages about 34.5 inches.

Figure 2-9: Mean Monthly Precipitation in Elgin, IL (1911-2007)

2.7 Hydrology

Understanding how water moves and flows is an important component of understanding a watershed. All parameters discussed in the previous sections (i.e. topography, soils, and precipitation) impact hydrology. Hydrological data are available from the United States Geological Survey website (USGS Water Data for the Nation http://waterdata.usgs.gov/nwis). The USGS maintains stream gages throughout the US which monitor conditions such as gage height, stream flow and precipitation at select locations.

There are five USGS gages within the Upper Fox River/Flint Creek watershed (Figure 2-10). There are also eight USGS gages within the upstream watershed, Upper Fox River/Chain of Lakes. Only one Upper Fox River/Flint Creek watershed gage has stream flow (or discharge) information from the past 10 years (Fox River at Johnsburg, IL). Data for this gage are summarized in Figures 2-11 and 2-12. The Fox River at Johnsburg,

IL gage (05548500) is located approximately 1.6 miles downstream of the Pistakee Lake outlet and captures surface flow from 1,205 square miles. This gage is a Real Time (continuous monitoring) station and contains data from January 1987 to the present day. However, discharge data are only available at this gage from December 1997 to mid August 1999.

Flow data for the period of record (December 1997 to August 1999) were used to establish a flow duration curve. Duration curves are typically generated based on a long term dataset, however only the period of December 1997 to August 1999 was available. This curve shows the percentage of time flows are met or exceeded based on the period of record. Duration curves can be used to determine the percentage of time a given flow is expected to be equaled or exceed. Alternatively the duration curve could be used to determine the flow that is equaled or exceed for some percentage of time. Flow duration curves were developed by ranking flows from highest to lowest and calculating the probability of occurrence (presented as a percentage or duration interval), where zero corresponds to the highest flow. A flow duration curve and mean monthly stream flow graphic for the Fox River at Johnsburg gage are provided in Figures 2-11 and 2-12.

The highest stream flow generally occurs during the spring and early summer, with late summer-early fall experiencing the lowest flows on average (Figure 2-12). Minimum and maximum mean daily stream flow for the Fox River at Johnsburg gage was 239 and 4610 cfs, respectively. The median daily flow is 953 cfs (Figure 2-11), with a mean daily flow of 1193 cfs.

Figure 2-10: Upper Fox River/Flint Creek Watershed USGS Gage Stations

Upper Fox River/Flint Creek Watershed

Figure 2-11: Mean Daily Flow Duration Curve for the Fox River at Johnsburg, IL (USGS 05548500) 1997-1999

Figure 2-12: Mean Monthly Flow for Fox River at Johnsburg, IL (USGS 05548500) 1997-1999

3.0 Public Participation and Involvement

The Illinois EPA is committed to keeping the watershed stakeholders and general public informed and involved throughout the TMDL process. Success for any TMDL implementation plan relies on a knowledgeable public able to aid in the follow-through needed for their watershed to meet the recommended TMDL. It is important to engage the local citizens as early in the process as possible by providing opportunities to learn and process information. This is to ensure that concerns and issues are identified at an early stage, so that they can be addressed and facilitate maximum cooperation in the implementation of the recommended courses of actions identified in the TMDL process. All stakeholders should have access to enough information to allay concerns, gain confidence in the TMDL process and understand the purpose and the regulatory authority that will implement any recommendations.

Illinois EPA, along with ENSR/AECOM, will hold up to two public meetings within the Upper Fox River/Flint Creek watershed throughout the course of TMDL development. The first public meeting for Stage 1 was held at the University Center of Lake County, in Grayslake, Illinois on August 25, 2009. The responsiveness summary for the meeting is included in Appendix F. This section will be updated after the second public meeting has occurred. General information regarding the process of TMDL development in Illinois can be found at http://www.epa.state.il.us/water/tmdl. This link also contains paths to notice of public meetings and other TMDL-related watershed information for the entire state of Illinois.

Background learning about watersheds, watershed management, best management practices and the Clean Water Act (CWA) can be found on the EPA's water website at <u>http://www.epa.gov/watertrain/</u>.

For other reports and studies concerning the Fox River Watershed please visit the Illinois Rivers Decision Support System: Fox River Watershed Investigation website (<u>http://ilrdss.sws.uiuc.edu/fox/</u>). The website contains reports, data and additional links to other sources specifically related to this watershed. Lake County reports can be found at: <u>http://www.lakecountyil.gov/Health/want/LakeReports.htm</u>. This website contains detailed lake reports for lakes sampled by Lake County's Lake Management Unit.

4.0 Applicable Water Quality Standards and TMDL Targets

Water pollution control programs are designed to protect the beneficial uses of the water resources within the state. Each state has the responsibility to set water quality standards that protect these beneficial uses, also called "designated uses." Illinois waters are designated for various uses including aquatic life, wildlife, agricultural use, primary contact (e.g., swimming, water skiing), secondary contact (e.g., boating, fishing), industrial use, drinking water, food-processing water supply and aesthetic quality. Illinois' WQS provide the basis for assessing whether the beneficial uses of the state's waters are being attained.

4.1 Illinois Pollution Control Board

The Illinois Pollution Control Board (IPCB) is responsible for setting WQS to protect designated uses. The federal CWA requires the states to review and update their WQS every three years. Illinois EPA, in conjunction with US EPA, identifies and prioritizes those standards to be developed or revised during the three-year period. The IPCB has established four primary sets (or categories) of narrative and numeric water quality standards for surface waters: general use, public and food processing, secondary contact and indigenous aquatic life, and Lake Michigan basin standards. Each set of standards is intended to help protect various designated uses established for each category.

Illinois EPA is also responsible for developing scientifically based water quality criteria and proposing them to the IPCB for adoption into state rules and regulations. The Illinois WQS are established in the Illinois Administrative Rules Title 35, Environmental Protection; Subtitle C, Water Pollution; Chapter I, Pollution Control Board; Part 302, 303, Water Quality Standards.

Water resource management activities involving interstate waters are also coordinated with various interstate committees and commissions. The Illinois EPA participates in water resource management activities of the Association of State and Interstate Water Pollution Control Administrators, International Joint Commission of the Great Lakes Water Quality Board, Ohio River Valley Water Sanitation Commission, Upper Mississippi River Conservation Committee, Upper Mississippi River Basin Association, Council of Great Lakes Governors, and other interstate committees, and commissions

4.2 Designated Uses

The waters of Illinois are classified by designated uses assessed in 2008 (Table 4-1). Designated uses applicable to the Upper Fox River/Flint Creek watershed include: aesthetic quality, aquatic life, and primary contact recreation. The corresponding water quality standard classification for these designated uses is the General Use classification.

The General Use classification is defined by IPCB as: The General Use standards will protect the state's water for aquatic life, wildlife, agricultural use, secondary contact use and most industrial uses and ensure the aesthetic quality of the state's aquatic environment. Primary contact uses are protected for all General Use waters whose physical configuration permits such use.

Table 4-1: Illinois Designated Uses and Assessment Levels						
Waterbody Name	Designated Use	Assessed?	Assessment Level			
Drummond Lake, Echo Lake,	Aquatic Life	Yes	Fully Supporting			
Grassy Lake, Lake Fairview, Lake Napa Suwe, Lake Louise.	Fish Consumption	No	Not Assessed			
Slocum Lake, Timber Lake,	Primary Contact	No	Not Assessed			
Woodland Lake	Secondary Contact	No	Not Assessed			
	Aesthetic Quality	Yes	Not Supporting			
Lake Barrington, Honey Lake,	Aquatic Life	Yes	Fully Supporting			
Tower Lake	Fish Consumption No		Not Assessed			
	Primary Contact	Yes	Not Supporting			
	Secondary Contact	No	Not Assessed			
	Aesthetic Quality	Yes	Not Supporting			
Island Lake	Aquatic Life	Yes	Fully Supporting			
	Fish Consumption	No	Not Assessed			
	Primary Contact	Yes	Fully Supporting			
	Secondary Contact	Yes	Fully Supporting			
	Aesthetic Quality	Yes	Not Supporting			
Woodland Lake	Aquatic Life	Yes	Not Supporting			
	Fish Consumption	No	Not Assessed			
	Primary Contact	No	Not Assessed			
	Secondary Contact	No	Not Assessed			
	Aesthetic Quality	Yes	Not Supporting			
Fox River (DT-22)	Aquatic Life	Yes	Not Supporting			
	Fish Consumption	Yes	Not Supporting			
	Primary Contact	Yes	Not Supporting			
	Secondary Contact	No	Not Assessed			
	Aesthetic Quality	No	Not Assessed			
Fox River (DT-23)	Aquatic Life	Yes	Not Supporting			
	Fish Consumption	Yes	Not Supporting			
	Primary Contact	Yes	Fully Supporting			
	Secondary Contact	Yes	Fully Supporting			
	Aesthetic Quality	No	Not Assessed			

4.3 Assessing Designated Use Attainment

Designated use attainment is based on waterbody type and applies to aquatic life, fish consumption, primary and secondary contact, and aesthetic quality. The following sections regarding use attainment in Illinois were directly selected and excerpted from Illinois Integrated Water Quality Report and Section 303(d) List (IEPA, 2008):

<u>Aquatic life</u> use assessments in streams are typically based on the interpretation of biological information, physicochemical water data and physical-habitat information from the Intensive Basin Survey, Ambient Water Quality Monitoring Network or Facility-Related Stream Survey programs. The primary biological measures used are the fish Index of Biotic Integrity (fIBI; Karr et al. 1986; Smogor 2000, 2005), the new macroinvertebrate Index of Biotic Integrity (mIBI; Tetra Tech, 2004) and the Macroinvertebrate Biotic Index (MBI; Illinois EPA 1994). Physical-habitat information used in assessments includes quantitative or qualitative measures of stream-bottom composition and qualitative descriptors of channel and riparian conditions. Physicochemical water data used include measures of "conventional" parameters (e.g., dissolved oxygen, pH, and temperature), priority pollutants, non-priority pollutants, and other pollutants (USEPA 2002 and www.epa.gov/waterscience/criteria/wqcriteria.html). In a minority of streams for which biological information is unavailable, <u>aquatic life</u> use assessments are based primarily on physicochemical water data. Physicochemical data (from water and sediment) and habitat information play primary roles in identifying potential causes and sources of <u>aquatic life</u> use impairment.

Assessments of aquatic life use in lakes are based primarily on physical and chemical water quality data collected via the Ambient Lake Monitoring Program, the Illinois Clean Lakes Program, or by non-Illinois EPA persons under an approved quality assurance project plan. The physical and chemical data used for aquatic life use assessments include: Secchi-disk transparency, chlorophyll a, total phosphorus (epilimnetic samples only), nonvolatile suspended solids (epilimnetic samples only), and percent surface area macrophyte coverage. Data are collected a minimum of five times per year (April through October) from one or more established lake sites. Data are considered usable for assessments if meeting the following minimum requirements (Figure C-2): 1) at least four out of seven months (April through October) of data are available; 2) at least two of these months occur during the peak growing season of June through August (this requirement does not apply to NVSS); and 3) usable data are available from at least half of all lake sites within any given lake each month. A whole-lake TSI value is calculated for the median Secchi-disk transparency, median total phosphorus (epilemnetic sample depths only), and median chlorophyll a values. A minimum of two parameterspecific TSI values are required to calculate parameter-specific use support determinations. An assessment is then made based on the parameter-specific use support determinations. The 0.05 mg/L Illinois General Use Water Quality Standard for total phosphorus in lakes (35 III. Adm. Code 302.205) has been incorporated into the weighting criteria used to assign point values for the Aquatic Life Use Index (ALI).

<u>Fish consumption</u> use is associated with all water bodies in the state. The assessment of <u>fish consumption</u> use is based on water body-specific fish-tissue data and also on fish-consumption advisories issued by the Illinois Fish Contaminant Monitoring Program (FCMP). A list of water bodies having advisories can be found in the Illinois Department of Natural Resources' (IDNR) publication **2007 Illinois Fishing Information** (<u>http://dnr.state.il.us/fish/digest/</u>). Fish-consumption advisories are incorporated into the process for assessing <u>fish consumption</u> use as explained below.

The FCMP uses the U.S. Food & Drug Administration's (FDA) Action Levels as criteria for determining the need for advisories, except for polychlorinated biphenyls (PCBs), mercury, and chlordane. For these contaminants the FDA criteria have been replaced by a risk-based process developed in the *Protocol for a Uniform Great Lakes Sport Fish Consumption Advisory* (Anderson et al. 1993, herein after referred to as the Protocol). The Protocol requires the determination of a Health Protection Value (HPV) for a contaminant, which is then used with five meal consumption frequencies (eight ounces of uncooked filet): 1) Unlimited (140 meals/year); 2) One meal/week (52 meals/year); 3) One meal/month (12 meals/year); 4) One meal/two months (six meals/year); and 5) Do not eat (0 meals/year). The level of contaminant in fish is then calculated that will

not result in exceeding the HPV at each meal consumption frequency. The Protocol also assumes a 50% reduction of contaminant levels for organic chemicals (not used for mercury) when recommended cleaning and cooking methods are used. The HPVs, target populations, critical health effects to be protected by the HPVs, and the criteria for PCBs, mercury and chlordane for the various meal frequencies, are listed in Table C-13 (*of the 2008 Integrated Water Quality Report*) as well as the FDA action levels for other contaminants.

According to Illinois water quality standards, "primary contact" means "...any recreational or other water use in which there is prolonged and intimate contact with the water involving considerable risk of ingesting water in quantities sufficient to pose a significant health hazard, such as swimming and water skiing" (35 Ill. Adm. Code 301.355). The assessment of <u>primary contact</u> use is based on fecal coliform bacteria data. The General Use Water Quality Standard for fecal coliform bacteria specifies that during the months of May through October, based on a minimum of five samples taken over not more than a 30-day period, fecal coliform bacteria counts shall not exceed a geometric mean of 200/100 ml, nor shall more than 10 percent of the samples during any 30-day period exceed 400/100 ml (35 Ill. Adm. Code 302.209). This standard protects <u>primary contact</u> use of Illinois waters by humans. Due to limited state resources, fecal coliform bacteria is not normally sampled at a frequency necessary to apply the General Use standard, i.e., at least five times per month during May through October, assessment guidelines are based on application of the standard when sufficient data is available to determine standard exceedances; but, in most cases, attainment of <u>primary contact</u> use is based on a broader methodology intended to assess the likelihood that the General Use standard is being attained.

To assess *primary contact* use, Illinois EPA uses all fecal coliform bacteria from water samples collected in May through October, over the most recent five-year period (i.e., 2002 through 2006 for this report). Based on these water samples, geometric means and individual measurements of fecal coliform bacteria are compared to the concentration thresholds in Tables C-16 and C-17 (*of the 2008 Integrated Water Quality Report*). To apply the guidelines, the geometric mean of fecal coliform bacteria concentration is calculated from the entire set of May through October water samples, across the five years. No more than 10% of all the samples may exceed 400/100 ml for a water body to be considered Fully Supporting.

According to Illinois water quality standards, "secondary contact" means "...any recreational or other water use in which contact with the water is either incidental or accidental and in which the probability of ingesting appreciable quantities of water is minimal, such as fishing, commercial and recreational boating and any limited contact incident to shoreline activity" (35 III. Adm. Code 301.380). Although <u>secondary contact</u> use is associated with all waters of the state, no specific assessment guidelines have been developed to assess <u>secondary contact</u> use because existing water quality standards have no water quality criterion that specifically address this use. However, consistent with the meanings of these two uses, in any water where <u>primary contact</u> use is assessed as Fully Supporting, <u>secondary contact</u> use is also assessed as Fully Supporting. In all other circumstances <u>secondary contact</u> use is not assessed.

Attainment of *public and food processing water supply* use is assessed only in waters in which the use is currently occurring, as evidenced by the presence of an active public-water-supply intake. The assessment of *public and food processing water supply* use is based on conditions in both untreated and treated water (Table C-21). By incorporating data through programs related to both the federal Clean Water Act and the federal Safe Drinking Water Act, Illinois EPA believes that these guidelines provide a comprehensive assessment of *public and food processing water supply* use.

Assessments of *public and food processing water supply* use recognize that characteristics and concentrations of substances in Illinois surface waters can vary and that a single assessment guideline may not protect sufficiently in all situations. Using multiple assessment guidelines helps improve the reliability of these assessments. When applying these assessment guidelines, Illinois EPA also considers the water-quality substance, the level of treatment available for that substance, and the monitoring frequency of that substance in the untreated water.

Assessments of aesthetic quality use are based primarily on physical and chemical water quality data collected by the Illinois EPA through the Ambient Lake Monitoring Program or the Illinois Clean Lakes Program, or by non-Illinois EPA persons under an approved quality assurance project plan. The physical and chemical data used for aesthetic quality use assessments include: Secchi-disk transparency, chlorophyll a, total phosphorus (epilimnetic samples only), nonvolatile suspended solids (epilimnetic samples only), and percent surface area macrophyte coverage. Data are collected a minimum of five times per year (April through October) from one or more established lake sites. Data are considered usable for assessments if meeting the following minimum requirements: 1) At least four out of seven months (April through October) of data are available, 2) At least two of these months occurs during the peak growing season of June through August (this requirement does not apply to NVSS) and 3) Usable data are available from at least half of all lakes sites within any given lake each month. As outlined in Figure C-3 (of the 2008 Integrated Water Quality Report), a whole-lake TSI value is calculated for the median Secchi-disk transparency, median total phosphorus (epilimnetic sample depths only), and median chlorophyll a values. A minimum of two parameter-specific TSI values are required to calculate a parameter-specific use support determination. An assessment is then made based on the parameter specific use support determinations. The 0.05 mg/L Illinois General Use Water Quality Standard for total phosphorus in lakes (35 III. Adm. Code 302.205) has been incorporated into the weighting criteria used to assign point values for the Aesthetic Quality Index (AQI). Table C-25 (of the 2008 Integrated Water Quality *Report*) lists the guidelines for identifying potential causes of *aesthetic guality* use impairment.

4.4 Applicable Illinois Water Quality Standards

To make 303(d) listing determinations for aquatic life uses, Illinois EPA first collects biological data and if these data suggest that impairment to aquatic life exists, then a comparison of available water quality data with WQS occurs. Table 4-2 summarizes the applicable General Use WQS for water quality parameters within the Upper Fox River/Flint Creek watershed.

Table 4-2: Applicable Water Quality Standards for the Upper Fox River/Flint Creek Watershed						
Parameter	Units	Regulatory Statute	General Use Water Quality Standard			
Dissolved Oxygen (above thermocline in thermally stratified waters or entire water column in unstratified waters) ¹	mg/L	Title 35, Subtitle C, Chapter I, Part 302.206	March – July 5.0 instantaneous minimum 6.0 as daily mean averaged over 7 days August – February 3.5 instantaneous minimum 4.0 as daily mean averaged over 7 days 5.5 as daily mean averaged over 30 days			
Fecal Coliform	cfu/100 ml	Title 35, Subtitle C, Chapter I, Part 302.209	May – October 200 geometric mean based on a minimum of 5 samples taken over any 30 day period 400 maximum not to be exceeded in more than 10% of samples taken during any 30 day period			
рН	SU	Title 35, Subtitle C, Chapter I, Part 302.204	6.5 – 9.0 except for natural causes			
Total Phosphorus	mg/L	Title 35, Subtitle C, Chapter I, Part 302.205	Not to exceed 0.05 in any reservoir or lake with a surface area of at least 20 acres or in any stream at the point where it enters any such lake or reservoir			

¹In order for DO to be listed as a cause, the aquatic life use must first be assessed as impaired.

Due to limited state resources, fecal coliform bacteria is not normally sampled at a frequency necessary to apply the General Use standard, i.e., at least five times per month during May through October, and very little data available from others are collected at the required frequency. Therefore, assessment guidelines are based on application of the standard when sufficient data is available to determine standard exceedances; but, in most cases, attainment of *primary contact* use is based on a broader methodology intended to assess the likelihood that the General Use standard is being attained. To assess *primary contact* use, Illinois EPA uses all fecal coliform bacteria from water samples collected in May through October, over the most recent five-year period (i.e., 2002 through 2006). Based on these water samples, geometric means and individual measurements of fecal coliform bacteria are compared to the concentration thresholds provided in Tables C-16 and C-17 (shown below) of the Illinois 2008 Integrated Report 303(d) and Assessment Report. To apply the guidelines, the geometric mean of fecal coliform bacteria concentration is calculated from the entire set of May through October water samples, across the five years. No more than 10% of all the samples may exceed 400/100 ml for a water body to be considered Fully Supporting.

Table 4-3: Guidelines for Assessing Primary Contact Use in Illinois Streams and Inland Lakes					
Degree of Use Support	Guidelines				
Fully Supporting (Good)	No exceedances of the fecal coliform bacteria standard in the last five years and the geometric mean of all fecal coliform bacteria observations \leq 200/100 ml, and \leq 10% o all observations exceed 400/100 ml.				
	One exceedance of the fecal coliform bacteria standard in the last five years (when sufficient data is available to assess the standard)				
Not Supporting (Fair)	$\frac{\text{or}}{\text{The geometric mean of all fecal coliform bacteria observations in the last five years \leq 200/100 \text{ ml}, \text{ and } > 10\% \text{ of all observations in the last five years exceed } 400/100 \text{ ml} \frac{\text{or}}{\text{The geometric mean of all fecal coliform bacteria observations in the last five years}}$				
	>200/100 ml, <u>and <</u> 25% of all observations in the last five years exceed 400/100 ml.				
Net	(when sufficient data is available to assess the standard)				
Supporting	or				
(Poor)	The geometric mean of all fecal coliform bacteria observations in the last five years >200/100 ml, and				
	>25% of all observations in the last five years exceed 400/100 ml				

Table 4-4: Guidelines for Identifying Potential Causes of Impairment of <u>Primary Contact</u> (Swimming) Use in Illinois Streams and Inland Lakes					
Potential Cause	Basis for Identifying Cause - Numeric Standard ¹				
	Geometric mean of at least five fecal coliform bacteria observations collected over not more than 30 days during May through October >200/100 ml or > 10% of all such fecal coliform bacteria observations exceed 400/100 ml				
Fecal Coliform	or				
	Geometric mean of all fecal coliform bacteria observations (minimum of five samples) collected during May through October >200/100 ml or > 10% of all fecal coliform bacteria observation exceed 400/100 ml.				

1. The applicable fecal coliform standard (35 III. Adm. Code, 302, Subpart B, Section 302.209) requires a minimum of five samples in not more than a 30-day period. However, because this number of samples is seldom available in this time frame the criteria are also based on a minimum of five samples over the most recent five-year period.

4.5 TMDL Targets

In order for a water body to be listed as Full Support, it must meet all of its applicable designated uses. Because WQS are designed to protect those designated uses, a pollutant's numeric WQS is therefore used as the target or endpoint for establishing a TMDL. Table 4-2 summarizes the targets that will be used in the TMDL development for the Upper Fox River/Flint Creek watershed.

Table 4-5: TMDL Targets for Impaired Waterbodies in the Upper Fox River/Flint Creek Watershed						
Segment						
ID	Waterbody Name	Impairment	TMDL Target	Units		
IL_RTZT	Barrington	Fecal coliform	≤ 200 geomean	cfu/100 ml		
			\leq 400 <10% samples	cfu/100 ml		
		Total Phosphorus	≤ 0.05	mg/L		
IL_UTI	Drummond Lake	Total Phosphorus	≤ 0.05	mg/L		
IL_RTZR	Echo	Total Phosphorus	≤ 0.05	mg/L		
IL_DT-22	Fox R.	Dissolved oxygen	See Table 4-2			
		Fecal coliform	≤ 200 geomean	cfu/100 ml		
			\leq 400 < 10% samples	cfu/100 ml		
		рН	6.5 – 9.0	SU		
IL_DT-23	Fox R.	Dissolved oxygen	See Table 4-2			
IL_VTI	Grassy	Total Phosphorus	≤ 0.05	mg/L		
IL_RTZU	Honey	Fecal coliform	≤ 200 geomean	cfu/100 ml		
			\leq 400 <10% samples	cfu/100 ml		
		Total Phosphorus	≤ 0.05	mg/L		
IL_RTZI	Island	Total Phosphorus	≤ 0.05	mg/L		
IL_STK	Lake Fairview	Total Phosphorus	≤ 0.05	mg/L		
IL_STO	Lake Napa Suwe	Total Phosphorus	≤ 0.05	mg/L		
IL_VTZJ	Louise	Total Phosphorus	≤ 0.05	mg/L		
IL_RTP	Slocum	Total Phosphorus	≤ 0.05	mg/L		
IL_RTZQ	Timber Lake (South)	Total Phosphorus	≤ 0.05	mg/L		
IL_RTZF	Tower	Fecal coliform	≤ 200 geomean	cfu/100 ml		
			≤ 400 <10% samples	cfu/100 ml		
		Total Phosphorus	≤ 0.05	mg/L		
IL_STV	Woodland (Highland)	Dissolved oxygen	See Table 4-2			

5.0 Water Quality Analysis

This section discusses the pollutants of concern for the Upper Fox River/Flint Creek watershed. The available water quality data were analyzed, assessed, and compared with WQS to verify the impairments of the 15 segments (excluding Broberg Marsh). The water quality conditions in the watershed were evaluated by sampling location and time.

Section 5.1 provides a summary of water quality data for each of the impairment variables. Detailed information for each impaired segment and potential sources of impairment are provided in Section 6.0 of this document.

5.1 Monitoring Programs

Illinois EPA maintains a comprehensive monitoring program designed to accommodate varying waterbody types and designated uses. Their ambient water quality monitoring program consists of 214 stream stations that are samples once every six weeks and are analyzed for at least 55 parameters. For pesticide analyses Illinois EPA founded a pesticide monitoring subnetwork that allows for further screening of toxic organic substances. A facility-related stream survey program was also developed that specifically caters to field studies (macroinvertebrate, water chemistry, stream flow, habitat data) to analyze impacts from municipal and industrial dischargers.

For inland lakes, Illinois EPA also conducts an ambient lake monitoring program that is responsible for the sampling of approximately 50 inland lakes. Another lake program is the Clean Lakes Program which is a two-part program consisting of Phase 1 diagnostic-feasibility studies and Phase 2 implementation projects. Lake sampling conducted through the Clean Lakes Program include water sampling twice per month from April through October and monthly from November through March for a one-year period.

Illinois EPA also operates in conjunction with other agencies to monitor its surface waters. Intensive basin surveys are conducted by both Illinois EPA and the Illinois Department of Natural Resources. The data from these surveys provide much of the data used for aquatic life assessments. The Fish Contaminant Monitoring Program (FCMP) focuses on determining the levels of contaminants in sport fish and also is responsible for issuing fish consumption advisories. The FCMP operates under a Memorandum of Agreement (MOA) that details the responsibilities of those cooperating agencies (Departments of Agriculture, Natural Resources, Nuclear Safety, Public Health, and EPA).

Illinois EPA also administered the Volunteer Lake Monitoring Program (VLMP) in 1981. This program consists of citizen volunteers that are trained on lake ecosystems as well as cost-effective methods of collecting data. VLMP monitoring is conducted twice per month from May through October and typically consists of three monitoring stations per site.

Ambient data are also collected through the Lakes Management Unit (LMU) of Lake County. This program has been monitoring Lake County lakes since the late 1960's. Since 2000, 32 different lakes have been studied per year and data have been collected for various parameters. Detailed reports are written for each lake study and can be found at: http://www.lakecountyil.gov/Health/want/LakeReports.htm.

5.2 Water Quality Data

The Upper Fox River/Flint Creek watershed has 15 impaired segments targeted for TMDL development, 13 of which are lakes and two are river segments. Available data used for assessing these waterbodies originated from over 44 water quality stations within the Upper Fox River/Flint Creek watershed. Figure 5-1 shows the

water quality data stations that contain data relevant to the impaired segments. Individual sub-watershed maps can be found in Appendix A.

Data used for analysis are a combination of both Legacy and modernized US EPA Storage and Retrieval (STORET) databases, Lake County, Fox River Study Group (FRSG), and Illinois EPA database. The compiled database ranges from 1964 through 2008. The completed water quality database is included in Appendix B.

Data relevant to impairments were compiled for each impaired waterbody and summarized. The following parameters are grouped by impairment and discussed in relation to the relevant Illinois numeric WQS. For all assessments, compliance is determined at the surface of a stream or at the one-foot depth from the lake surface. Time-series plots for each waterbody impairment are presented in Appendix E.

5.2.1 Dissolved Oxygen

Two Fox River segments are targeted for TMDL development due to low DO concentrations. DO was measured 618 times in the Fox River segment DT-22 and 500 times in DT-23 between 1964 and 2008. Two stations were sampled along each impaired segment. DO concentrations were below the instantaneous minimum numerical WQS for March – July of 5.0 mg/L three times in DT-22 and twice in DT-23 (Figure 5-2). DO concentrations below the 5.0 mg/L in DT-22 were recorded in April and June 2006 and June 2008. DO samples less than the WQS in DT-23 were recorded in July 1966 and March 2006. No samples in August through February were below the 3.5 mg/L instantaneous WQS.

Woodland Lake is targeted for TMDL development due to low DO concentrations. Low DO was observed in 2004. Based on the temperature and dissolved oxygen profiles in 2004 (Figure 5-3), Woodland Lake does not thermally stratify and therefore the instantaneous WQS would apply to the entire water column. DO dropped below the 3.5 mg/L instantaneous WQS in August at 5' and 6' water depth.

While DO in Fiddle Creek has historically been below standard, no TMDL will be developed. The Wauconda WWTP, which eventually flows into Slocum Lake, is currently undergoing a WWTP expansion that should address the low DO values observed in the lake. The upgraded facility will eventually expand its daily average discharge to 2.4 MGD with a design capacity of 7.93 MGD. Stringent DO provisions will be included in future permits and part of the design specifications for the new plant will include post-treatment aeration. As such, no TMDL will be required as the new treatment should be able to bring Fiddle Creek back into compliance.

Low dissolved oxygen is likely related to eutrophication which may be caused by point and/or non-point sources. Eutrophication is an environmental phenomenon that occurs when waterbody hypoxia or anoxia is induced from excessive nutrient inputs. In some waterbodies, particularly lakes, estuaries, or even low-flow streams, nutrients can stimulate algal blooms, which can lead to oxygen consumption when the dead plant material decomposes. The decomposing plant material is a source of Biochemical Oxygen Demand (BOD). As the decay sinks to the bottom of the waterbody, the sum of all biological and chemical processes can likewise further consume oxygen, and this process is known as Sediment Oxygen Demand (SOD).

Non-point sources of nutrients include urban and agricultural runoff. Point sources of nutrients are generally wastewater treatment facilities. All active NPDES point sources discharging within each impaired segment's watershed are described in Section 6.0 (and summarized in Appendix D). A general description of non-point sources is also provided in Section 6.0.

Figure 5-1: Upper Fox River/Flint Creek Water Quality Sample Locations

Figure 5-2: Fox River Impaired Segments DT-22 and DT-23 Dissolved Oxygen 1964-2008

Note: In the box plot, the horizontal lines represent minimum, first quartile, median, third quartile, and maximum of data

Figure 5-3: Woodland Lake Temperature Dissolved Oxygen Profiles 2004

5.2.2 pH

The Fox River segment DT-22 is targeted for a TMDL due to elevated pH. The WQS for pH is between 6.5 and 9.0 standard units (SU). pH was measured in this segment of the Fox River 657 times from 1964 through 2008. Values ranged from 6.5 to 9.7 SU and observations exceeding 9.0 SU were measured on six occasions: October 1983, March, May and June 1995, and March and October 2003, and represents <1% of the total samples analyzed.

5.2.3 Fecal Coliform

The Fox River (IL_DT-22), Barrington Lake, Honey Lake and Tower Lake are targeted for TMDL development due to excessive fecal coliform numbers. The distribution of fecal coliform for each impaired segment in the Upper Fox River/Flint Creek watershed is presented in Figure 5-4 and is compared to the WQS. The WQS for fecal coliform is a 200 cfu/100ml geometric mean based on a minimum of five samples collected over any 30 day period or a 400 cfu/100ml maximum not to be exceeded in more than 10% of samples collected during any 30 day period.

Figure 5-4 displays fecal coliform data within impaired segments during the WQS compliance period (May – October). Data for the Fox River segment DT-22 includes 191 samples from 1999 through 2008. Twenty three percent of the samples (44) exceeded the 200 cfu/100 ml WQS. Values ranged from 0 to 4900 cfu/100 ml. Fecal coliform was measured in Barrington, Honey and Tower Lakes during 2001. Sixteen samples were collected in Barrington and Tower Lakes, two samples were collected per lake on three occasions in May, two in June and July and once in August. Values in Barrington Lake ranged from 10 to 890 cfu/100 ml. Four of the samples (25%) exceeded the 200 cfu/100 ml WQS. Values in Tower Lake ranged from 10 to 820 cfu/100 ml. Five samples (31%) contained concentrations above the 200 cfu/100 ml WQS. Exceedances in Barrington and Tower Lakes occurred in May and June. Twenty two samples were collected in Honey Lake, two samples per day twice in May, June and July and five times in August. Values ranged from 10 to 1700 cfu/100 ml, with ten samples (45%) exceeding the 200 cfu/100 ml WQS. Exceedances occurred in July and August. The geometric mean of July and August samples was 441 cfu/100 ml, above the WQS.

E. coli, another pathogen indicator species, was also sampled within Barrington, Honey and Tower Lakes during May through August in 2002 - 2007. Although Illinois does not have a numerical standard for *E. coli*, the US EPA document "Ambient Water Quality Criteria for Bacteria – 1986" states a freshwater bathing criteria of a geometric mean from five samples within a 30 day period not exceed 126 cfu/100 ml (US EPA 1986). During this period 102, 108 and 98 samples were collected in Barrington, Honey and Tower Lakes respectively. Samples were collected twice per day up to three times per month. Eleven percent of the Barrington Lake, 24% of Honey Lake and 7% of the Tower Lake samples exceeded the *E. coli* level of 126 cfu/100 ml, but none met the geomean criteria. *E. coli* data for these impaired segments are presented in Figure 5-5.

Sources of bacteria in the Upper Fox River/Flint Creek watershed are likely storm water related. These potential sources may include failing systems, combined sewer overflows (CSO), sanitary sewer overflows (SSO), sewer pipes connected to storm drains, recreational activities, wildlife including birds along with domestic pets and animals and direct overland storm water runoff. Note that bacteria from wildlife is generally considered a natural condition unless some form of human inducement, such as feeding, is causing congregation of wild birds or animals. But this source is often difficult to separate from others. All active NPDES point sources discharging within each impaired segment's watershed are described in Section 6.0.

Figure 5-4: Fecal Coliform Impaired Segment Data

Figure 5-5: E. coli Impaired Segment Data

5.2.4 Total Phosphorus

Compliance with the TP WQS for this report is based on samples collected at three feet or less from the water surface. A three foot depth maximum was used due to a lack of data at the one foot depth for many of the impaired lake segments. The WQS for total phosphorus is a maximum concentration of 0.05 mg/L and is applicable only to lakes with a surface area of 20 acres or greater. Twelve lake segments in the Upper Fox River/Flint Creek watershed are targeted for TP TMDL development.

A database was created for this TMDL analysis and includes 258 total phosphorus samples collected between May 1973 and August 2007 from the 12 impaired segments. Many of the lakes contained data from multiple depths and multiple stations on any given day. To summarize in-lake TP concentrations for the 12 segments, surface water samples (samples collected at water depths less than or equal to three feet) were averaged by date across the lake; 139 individual samples collected at \leq 3ft (Table 5-1) were averaged to yield 125 data points. A majority of the samples were collected prior to 2005. A summary of the averaged data (125 points) are presented in Table 5-2 and graphically represented as box and whiskers plots in Figure 5-6. Overall 81% of the average TP concentrations were equal to or exceeded the 0.05 mg/L WQS.

Elevated phosphorus concentrations are likely the result of point and non-point sources. Non-point sources of nutrients within the Upper Fox River/Flint Creek watershed include urban and agricultural runoff. Point sources of nutrients are generally from waste water treatment facilities. All active NPDES point sources discharging within each impaired segment's watershed are described in Section 6.0.

Table 5-1: Upper Fox River/Flint Creek Surface Total Phosphorus Samples by Year						
Lake Name	Total Number of Samples	Number of Stations	Available Data			
Barrington	12	1	2001			
Drummond	5	1	2002			
Echo	10	1	2000			
Grassy	7	1	2000			
Honey	10	1	2001			
Island	13	1	1989, 2003			
Lake Fairview	9	1	2000			
Napa Suwe	5	2	2002			
Louise	12	1	2003			
Slocum	18	3	1973, 1977, 2005			
Timber South	10	2	1989, 2000			
Tower	14	1	2001			
Tota	125	16				

Table 5-2: Upper Fox River/Flint Creek Surface Total Phosphorus Concentration Summary								
Lake Name	Number of Samples	Number of Averaged Data Points	Minimum (mg/L)	Maximum (mg/L)	Average (mg/L)	Median (mg/L)	# ≥ WQS (0.05 mg/L)	% Exceed WQS (0.05 mg/L)
Barrington	12	12	0.01	0.18	0.10	0.12	8	67
Drummond	5	5	0.11	0.20	0.15	0.15	5	100
Echo	10	10	0.04	0.15	0.09	0.08	8	80
Grassy	8	7	0.07	0.33	0.20	0.17	7	100
Honey	10	10	0.03	0.20	0.06	0.04	3	30
Island	14	13	0.05	0.16	0.11	0.11	13	100
Lake Fairview	9	9	0.02	0.09	0.07	0.07	8	89
Napa Suwe	10	5	0.15	0.32	0.22	0.21	5	100
Louise	17	12	0.04	0.31	0.15	0.14	11	92
Slocum	18	18	0.11	1.33	0.29	0.19	18	100
Timber South	10	10	0.04	0.21	0.09	0.06	6	60
Tower	16	14	0.02	0.16	0.07	0.06	9	64
Total	139	125	0.01	1.33			101	81

Surface data include samples collected at or less than 3' from the surface. Data were averaged across the lake (i.e., includes multiple stations when available) by date including all depths at or below 3' from the surface.

Figure 5-6: Average Surface Phosphorus Concentrations by Date for Impaired Lakes (1972-2007).

Upper Fox River/Flint Creek Watershed

6.0 Impaired Segments and Potential Sources

This section provides a brief description of each impaired segment within the Upper Fox River/Flint Creek watershed. Much of the information provided in this section was obtained from the Lake County Health Department (LCHD) Environmental Health Services Lakes Management Unit (LMU) and from the Fox Chain of Lakes Investigation and Water Quality Management Plan (Kothandaraman et al., 1977). The LCHD has been collecting water quality data from lakes since the 1960's. Detailed lake reports have been developed for a number of lakes in the County. For those lakes not covered by LCHD reports, the 1977 study and information provided in the Illinois Integrated Water Quality Report and Section 303(D) List – 2008, were used to characterize the listed segments. Since most of these segments are hydraulically connected, they are discussed in an upstream to downstream order. The LCHD's detailed lake reports can be found in the following website: http://wwww.lakecountyil.gov/Health/want/LakeReports.htm.

Segment subwatersheds were delineated using ArcMap software based on LCHD, Lake County Stormwater Management Commission (SMC) information and topographic maps (two foot surveys). Land use within each segment subwatershed is based on data provided by Lake County from 2005 land use where available. In areas where 2005 data were not available, 2001 data provided by the Chicago Metropolitan Agency for Plan were used. A majority of the segment watersheds were covered under the Lake County 2005 data. Small portions of some watersheds utilized 2001 data. Figure 6-1 provides a land use map with each impaired segment's watershed boundary. The watershed areas described below do not include the area of the lake itself. Individual subwatershed maps can be found in Appendix A and a summary of all land use, including subwatershed and contributing watersheds, can be found in Appendix C.

Lakes with high watershed-to-lake area ratios have a large portion of the hydrologic budget stemming from surface water flow. Water quality in these lakes is highly dependent on in-flow water quality. In-lake water quality typically declines with increasing watershed-to-lake ratios. Lakes with watershed-to-lake ratios <10:1 are less likely to have eutrophication problems. These ratios have been calculated for all the lake segments and are discussed below.

In addition, the water quality condition of a water body is related to the level of development or urbanization in its watershed. The more developed an area is, the higher the percentage of impervious surface. The Center of Watershed Protection published a document entitled "*Impacts of Impervious Cover on Aquatic Systems*" (2003) which summarizes two dozen studies documenting a strong relationship between impervious cover and stream water quality in first, second, and third order streams. They concluded that stream quality declines with increased impervious cover such that drainage areas containing >10% impervious cover were impacted and areas with >25% were impaired (CWP 2003).

Impervious cover (IC) was estimated for each watershed by using the land use data for each segment and multiplying this area by the estimated impervious percentage based on the land use category. The estimated IC percentage was derived from the Center of Watershed Protection's study of the Chesapeake Bay Watershed (CWP 2001). The average of the low and high IC percentage from the Chesapeake Bay study was used for all residential land use since the land use data for the Upper Fox River/Flint Creek is not divided into residential use by density (i.e., low and high).

Active NPDES point sources in the impaired portion of Upper Fox River/Flint Creek watershed are listed and mapped on Figure 6-2. These data were derived from both the publically available Better Assessment Science Integrating Point & Nonpoint Sources (BASINS) program and the inventory of active NPDES dischargers provided by IL EPA. If a point source discharges upstream of an impaired segment, this point source is listed as a potential source within the segment description. Specific information regarding each discharger is provided in Appendix D.

Figure 6-1: Impaired Segment Watershed Land Use

Figure 6-2: Active NPDES Dischargers in the Impaired Portion of the Upper Fox River/Flint Creek Watershed

When discussing surface water total phosphorus concentrations in the paragraphs below, the average of surface concentration from all stations and at water depths \leq 3' on a given sampling date were calculated before determining statistics unless otherwise noted. For example, the minimum value is the minimum average of all in-lake stations sampled on a given day at depths \leq 3'. These data are presented in Section 5 in Table 5-2 and illustrated on Figure 5-6.

6.1 Fox River DT-23

The Fox River segment DT-23 extends from the Pistakee Lake to just downstream of the USGS gage (05549000) in Ferndale near Moraine Hills State Park (Figure 2-2, Appendix A). This segment is approximately 7.6 miles and drains 318 square miles within Illinois, including the Chain of Lakes watershed (267 sq mi). The Illinois portion of the drainage area to DT-23 is predominately used for row crop, grain or grazing (38%) and residential (18%). Impervious cover in this portion of the Fox River watershed is estimated at 11%, the threshold where water quality impacts are expected.

This portion of the Fox River is impaired due to low DO (Appendix E). Potential sources of low DO in this segment include impacts from hydrostructure flow regulation/modification and dam or impoundment (2008 Integrated Report). Nutrient enrichment also serves as a potential source of DO deficits as it is the driving force behind eutrophication. The role of nutrients, if any, will be further investigated in the Stage 3 report. There are several NPDES discharges that contribute to the inorganic and organic load to the river that oxidize and consume oxygen which may contribute to low DO conditions (Figure 6-2). The contribution from these facilities to low DO will be investigated during Stage 3 TMDL development.

6.2 Drummond Lake

Drummond Lake is located in the central eastern portion of the Upper Fox River/Flint Creek watershed (Figure 2-2, Appendix A). It is a small shallow artificially created lake with 20.7 surface acres. It is owned by the Lake County Forest Preserve District (LCFPD). Maximum and mean water depths are 5.0 and 2.2 feet respectively (LCHD 2003). Drummond Lake drains to the south to Lake Napa Suwe. Use of this waterbody is limited to fishing along the banks of the lake.

The watershed encompasses 66 acres resulting in a watershed-to-lake ratio of 3:1. Much of the watershed is classified as Open Space (96%), however the LMU 2002 Summary Report of Drummond Lake (LCHD 2003) suggests that this area is primarily used for agriculture by the Lake County Forest Preserve District. The shoreline of Drummond Lake remains undeveloped and consists of buffer (75%) wetland (10%) and shrub (15%). However, erosion is still a concern with 77% of the shoreline area showing evidence of erosion. Drummond Lake watershed is only 6% impervious.

The LMU 2002 Summary Report of Drummond Lake (LCHD 2003) notes that Drummond Lake does not thermally stratify and DO concentrations are poor. DO concentrations were above the WQS for the 2002 sampling period except at 4' in July, when DO was just below 5.0 mg/L (4.8 mg/L). Although the lake meets the WQS a majority of the time, the LMU considers Drummond Lake DO poor because summertime values are around or slightly above 5.0 mg/L.

Drummond Lake is listed as impaired due to excessive phosphorus concentrations. Water quality data for Drummond Lake is limited to the 2002 study conducted by the LMU. Concentrations of TP ranged from 0.11 to 0.20 mg/L, with an average of 0.15 mg/L (Table 5-2, Figure 5-6, Appendix E). All five samples collected contained concentrations above WQS.

The lake experiences severe summer algal blooms (LCHD 2003) and as a result, poor water clarity. The average Secchi disk transparency in 2002 was only 9.7 inches. Low clarity is related to high total suspended solids (TSS) and algal biomass. The average TSS concentration in 2002 was 52 mg/L and reached a high of 93 mg/L. Sixty two percent of the TSS is attributed to inorganic particles (soils/clays) while 38% is organic (algae) (LCHD 2003). The suspected source of poor DO is also due to severe blooms of planktonic algae.

Blooms have been reported as thick as an inch (LCHD 2003). These algal blooms consume oxygen during decomposition and respiration.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Drummond Lake is dominated by intense algal growth and therefore rooted aquatic plant growth is limited. Less than 10% of the lake sediment surface contained plants and consists of three nuisance plant species: Eurasian watermilfoil (*Myriophyllum spicatum*), coontail (*Ceratophyllum demersum*) and curly leaf pondweed (*Potamogeton crispus*). The lack of light from algae and soil particles is likely limiting rooted plant growth. The lake also supports carp. Carp disturb bottom sediments during rooting and foraging which increases TSS and nutrients while decreasing water clarity.

Sources of phosphorus include internal recycling from sediments (resuspension) and decomposition of organic matter. Potential external sources of phosphorus include stormwater runoff from agricultural areas, fertilizers, failing septic systems, geese feces, and erosion (LCHD 2003). Internal sources are suspected to contribute the largest load during the summer (LCHD 2003). There are no NPDES dischargers located within the Drummond Lake watershed.

6.3 Lake Napa Suwe

Lake Napa Suwe is located in the central eastern portion of the Upper Fox River/Flint Creek watershed (Figure 2-2) near the Village of Wauconda. It is a small shallow slough with 60.6 surface acres. It is privately owned by the residents and developers (LCHD 2003). Maximum and mean water depths are 5.0 and 2.5 feet respectively (LCHD 2003). Lake Napa Suwe drains to the northwest via an outlet structure to Mutton Creek, which drains through Island Lake and eventually into the Fox River.

Lake Napa Suwe receives water from Drummond Lake, its watershed and the surrounding area (1069 acres). The watershed-to-lake area ratio is 18.1 suggesting that water quality in the lake is highly dependent on the quality of incoming water. The majority of the watershed area is residential (28%) or open space (26%). Fifteen percent of the watershed is impervious cover, a level at which impacts are expected.

Two locations within Lake Napa Suwe were sampled by the LMU in 2002 (LCHD 2003). The station located near the outfall was considered the most representative of in-lake conditions (Site 2). The LMU 2002 Summary Report of Lake Napa Suwe (LCHD 2003) notes that Lake Napa Suwe does not thermally stratify but DO concentrations are poor. DO concentrations were below the 5.0 mg/L WQS in June and July 2003, with a value as low as 3.4 mg/L just below the surface. DO concentrations in September were below the 3.5 mg/L WQS, with a value of 3.1 mg/L just below the surface. The DO concentration at 1' below the surface in September was only 2.1 mg/L. The suspected source of poor DO is severe planktonic algal blooms (LCHD 2003). These algal blooms consume oxygen during decomposition and respiration. In addition, this sampling location does not experience much wind mixing as it is more sheltered than the southern sampling station near the inlet. DO concentrations at the inlet station (Site 1) were above the WQS except near the bottom (3') in July (4.8 mg/L).

Lake Napa Suwe is listed as impaired due to excessive phosphorus concentrations (Appendix E). Water quality data for Lake Napa Suwe is limited to the 2002 study conducted by the LMU. Surface concentrations of TP ranged from 0.13 to 0.37 mg/L, with an average of 0.23 mg/L at the outlet station; concentrations at the inlet station were comparable (0.17 - 0.027 mg/L, average 0.20 mg/L) All samples collected contained concentrations above WQS.

The lake experiences severe summer algal blooms (LCHD 2003) and as a result, poor water clarity. The average Secchi disk transparency in 2002 was only 9.7 inches. Low clarity is related to high suspended solids and algal biomass. The average TSS concentration in 2002 was 60 mg/L and reached a high of 122 mg/L. Seventy one percent of the TSS is attributed to inorganic particles (soils/clays) while 29% is organic (algae) (LCHD 2003).

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Lake Napa Suwe is dominated by intense algal growth and therefore rooted aquatic plant growth is limited. Only 10% of the lake sediment surface contained plants. Of the plants that were present, the nuisance species Eurasian watermilfoil and coontail were the most abundant. The lack of light from algae and soil particles as well as unsuitable substrate is likely limiting rooted plant growth. The lake also supports an extensive carp population. Carp disturb bottom sediments during rooting and foraging which increases TSS and nutrients while decreasing water clarity as well as causing a direct disturbance.

Sources of phosphorus include internal recycling from sediments (resuspension) and decomposition of organic matter. Potential external sources of phosphorus include stormwater runoff from agricultural areas (6% of total land use), fertilizers, failing septic systems, geese feces, and erosion (LCHD 2003). Stormwater is suspected as the major external source of phosphorus, but peak in-lake concentrations of TP did not correlate with rainfall (LCHD 2003). Therefore internal sources are suspected to contribute the largest load during the summer. There are no NPDES dischargers located within the Lake Napa Suwe watershed.

6.4 Woodland Lake

Woodland Lake, also known as Highland Lake, is located in unincorporated Wauconda Township. This small lake (7.7 acres) is privately owned by 11 homeowners on the lake. The maximum and mean depth of Woodland Lake is estimated as 7.5 and 3.8 feet respectively (LCHD 2005). Woodlake drains to the northeast from the outlet at the southeast end of the lake via a small ditch. Water within the ditch enters Mutton Creek and passes through Island Lake prior to discharging into the Fox River.

Woodland Lake receives water from two inlets, two residential area culverts and a small creek draining a detention pond. The watershed area is 52 acres resulting in a watershed-to-lake area ratio of 7:1. The majority of the watershed is residential land use (71%). Twenty-five percent of the watershed is impervious, a level expected to result in water quality impairment. The majority of the shoreline is developed and consists of buffer (35%), lawn (25%) and rip rap (24%) (LCHD 2005).

Woodland Lake is listed as impaired due to low DO. Available DO data are limited to the 2004 LMU investigation. DO concentrations in 2004 were below the 3.5 mg/L WQS in August near the bottom (1.1 mg/L at 6'). All other values were above the WQS (Figure 5-3, Appendix E). The LMU 2004 Summary Report of Woodland Lake (LCHD 2005) states the Woodland Lake is polymictic (multiple stratification and mixing during the year) and that weak stratification was present in 2004. It is typical in lakes that undergo stratification to have low DO concentration near the sediment water interface due to sediment oxygen demand. It is likely that the sediment oxygen demand in Woodland Lake is high, especially during periods of low water circulation.

Total phosphorus concentrations in Woodland Lake are higher than the 0.05 mg/L WQS, but this WQS does not apply to Woodland Lake since it is less than 20 surface acres. TP in 2004 ranged from 0.08 to 0.13 mg/L and averaged 0.10 mg/L. It is likely that high sediment and water TP has resulted in increased primary productivity (algal and rooted plant biomass). Decomposition of organic material and respiration by plants reduces water column DO and is the likely source of the low DO observed in Woodland Lake.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. The LMU report indicated that aquatic plants reached excessive densities until recently, but the 2004 Woodland Lake survey encountered only three aquatic plant species (LCHD 2005). The invasive species, curly leaf pondweed was identified during the survey. The lake has shifted from a rooted plant dominated system to a planktonic algae dominated lake. It is suspected that stocking of carp initiated this shift. The lake also has low water clarity (1.7' on average) and high total suspended solids (21 mg/L), a majority of which is attributed to inorganic particles (78%). Woodland Lake is routinely treated with an algaecide to control algal blooms.

Sources of phosphorus include internal recycling from sediments (resuspension) and decomposition of organic matter. External sources of phosphorus include stormwater runoff from fertilized lawns (LCHD 2005). There are no NPDES dischargers located within the Woodland Lake watershed.

6.5 Island Lake

Island Lake is located in the central portion of the Upper Fox River/Flint Creek watershed (Figure 2-2) in the Village of Island Lake. It is a small shallow slough with 78.2 surface acres (83.8 acres according to LCHD 2004). The lake was artificially created by damming a former gravel pit. The lake is managed by the Village of Island Lake Management Committee (LCHD 2004). Maximum and mean water depths are 9.8 and 5.3 feet respectively (LCHD 2004). Island Lake drains to Cotton Creek to the southwest eventually draining into the Fox River.

Island Lake receives water from three other impaired lakes and their watersheds: Woodland Lake, Lake Napa Suwe, and Drummond Lake. The total watershed area of Island Lake is 5,949 acres resulting in a watershed-to-lake area ratio of 76:1. The majority of the watershed area is used for row crops, grain or grazing (23%) with almost equal distribution of wetland (16%), open space (15%) and residential (15%) area. Twelve percent of the watershed is impervious cover, a level at which impacts are expected. In addition 99.6% of the shoreline is developed, with 60% comprised of seawall and 29% rip rap (LCHD 2004).

The LMU 2003 Summary Report of Island Lake (LCHD 2004) notes that this lake does not thermally stratify because of its shallow morphometry. Surface water concentrations of DO were above the WQS. However concentrations near the bottom (8') in June and July 2003 were below 2.0 mg/L (Appendix E).

Island Lake is listed as impaired due to excessive TP concentrations. Water quality data for Island Lake were collected in 1989, 1998 and 2003 (Appendix B). Surface water TP concentrations for this time period ranged from 0.05 to 0.16 mg/L, with an average of 0.11 mg/L (Table 5-2, Figure 5-6). All the averaged surface samples were above the 0.05 mg/L WQS. In 2003, the average surface concentration was 0.10 mg/L and ranged from 0.05 - 0.16 mg/L. The highest TP concentration occurred in September and corresponded to lower rainfall and decreased water level (LCHD 2004). Bottom concentrations were similar (average = 0.10 mg/L).

The lake experiences summer algal blooms and as a result, poor water clarity. The average Secchi disk transparency in 2003 was 3.0 feet, with a minimum value of 1.3 ft in September. Low clarity is related to high suspended solids and algal biomass. The average surface TSS concentration in 2003 was 16 mg/L. Sixty eight percent of the TSS is attributed to inorganic particles (soils/clays) while 32% is organic (algae) (LCHD 2004).

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. A quantitative survey of aquatic plants was not conducted within Island Lake, but it is expected that 36-90% of the lake area could support rooted plant growth based on light availability. However, given that the lake experiences severe algal blooms and extensive plant community is not expected. Of the few plants observed, sago pondweed (*Potamogeton pectinatus*) and Eurasian watermilfoil were dominant.

Sources of phosphorus include internal recycling from sediments (resuspension) and decomposition of organic matter. External sources of phosphorus include stormwater runoff, geese and poor water quality from Napa Suwe (LCHD 2004). Stormwater runoff potentially contributes phosphorus to surface waters via agriculture, including row crops, grain, and grazing (22% land use) and residential lawns (15% land use). There are no NPDES dischargers located within the Island Lake watershed.

6.6 Slocum

Slocum Lake is located in the central portion of the Upper Fox River/Flint Creek watershed (Figure 2-2) in the unincorporated Wauconda Township. It is a naturally formed glacial pothole slough with 211 surface acres. The lake is privately owned and access is restricted to ownership associations and homeowners on the lake. Maximum and mean water depths are 7.3 and 5.1 feet respectively (LCHD 2005). Slocum Lake drains to the south via an outlet structure eventually draining into the Fox River.

Slocum Lake receives water from Bangs Lake Drain to the east and the surrounding area (5310 acres). The watershed-to-lake area ratio is 25.1 suggesting that water quality in the lake is highly dependent on the quality of incoming water. The majority of the watershed area is open space (26%) and residential (25%). The majority of the shoreline is developed (67%) with 36% exhibiting some level of erosion. Seventeen percent of the watershed is impervious cover, a level at which impacts are expected.

The LMU 2005 Summary Report of Slocum Lake (LCHD 2005) notes that this lake does not thermally stratify because of its shallow morphometry. Slocum Lake is well oxygenated with DO concentrations above 5.0 mg/L at all depths in 2005, except at the bottom depth (6') in mid August when DO was 4.9 mg/L.

Slocum Lake is listed as impaired due to excessive TP concentrations. Total phosphorus data for Slocum Lake are available for 1973, 1995, 2001 and 2005 from Legacy Storet and Lake County. Surface water TP concentrations for this time period ranged from 0.11 to 1.33 mg/L, with an average of 0.29 mg/L (Table 5-2, Figure 5-6, Appendix E). All the averaged surface samples were above the 0.05 mg/L WQS. In 2005, the average surface concentration was 0.15 mg/L and ranged from 0.11 - 0.19 mg/L. These phosphorus concentrations are excessive, however severe algal blooms were not noted in the LMU 2005 report.

The lake experiences poor water clarity and suspected causes are algae and suspended sediment. The average Secchi disk transparency in 2005 was one foot. Low clarity is related to high suspended solids and algal biomass. However, severe blooms were not noted in the LMU 2005 report. The average TSS concentration in 2005 was 54 mg/L and reached a high of 77 mg/L. Much of the TSS and low clarity is attributed to resuspension of sediment by carp activity (LCHD 2005).

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Approximately 30% of the Slocum Lake surface area contains rooted aquatic plants. There were only three species observed in Slocum Lake. The nuisance species coontail and Eurasian watermilfoil were dominant. Sago pondweed was also present but in lower densities.

Sources of phosphorus include internal recycling from sediments (resuspension due to carp and wind/wave action) and decomposition of organic matter. Historically the Bangs Lake Drain received water from the Wauconda Wastewater Treatment Plant (WWTP) from the 1900's up until 1997 when the effluent was diverted to Fiddle Creek (LCHD 2005). For 10 years (1986 – 1996), and during excess flow conditions, raw sewage was discharged to the Bangs Lake Drain (LCHD 2002). This historic discharge from the Wauconda WWTP has resulted in phosphorus rich sediment that is often resuspended. This is likely the major source of phosphorus in Slocum Lake. External sources of phosphorus include stormwater runoff from agricultural (5% land use) and residential areas (25% land use) containing fertilizers and sediments (LCHD 2005), failing septic system, illicit connections to the storm sewer system and a nearby horse farm (LCHD 2002) are also potential sources. There are no NPDES dischargers located within the Slocum Lake watershed.

6.7 Timber Lake South

Timber Lake South is located near the Village of Barrington in the unincorporated Cuba and Wauconda Townships (Figure 2-2). Timber Lake South was created in 1949 by dredging a wetland and damming a creek. It has a surface area of approximately 33 acres with a maximum and mean depth of 14 and 7.6 feet respectively (LCHD 2001). The lake is privately owned by 26 residents and the Timber Lake Community

Organization. Timber Lake South drains to the west via a creek to Tower Lake, eventually draining to the Fox River.

Timber Lake South receives water from an unnamed creek to the west and stormwater runoff from the surrounding area. The watershed is approximately 1228 acres resulting in a watershed-to-lake area ratio of 37:1 suggesting that water quality in the lake is highly dependent on the quality of incoming water. The majority of the watershed area is residential (49%) with row crop, grain and grazing comprising 13% of the area. The majority of the shoreline is also developed (97%) and is comprised primarily of buffer (48%) (LCHD 2007). Nineteen percent of the watershed is impervious cover, a level at which impacts are expected.

Timber Lake South was thermally stratified in 2007 from May through September. Epilimion DO concentrations were below 5.0 mg/L. Anoxic conditions (<1.0 mg/L) were recorded in May through September in 2007 (LCHD 2007) at water depth as shallow as nine feet. Although aerators are utilized in Timber Lake South, these systems are undersized for the lake. In addition, these aerators were not operating for a portion of 2007.

Timber Lake South is listed as impaired due to excessive TP concentrations. Water quality data for Timber Lake South were collected in 1989, 2000 and 2007 and are available from Legacy STORET and Lake County. Surface water TP concentrations for this time period ranged from 0.04 to 0.21 mg/L, with an average of 0.09 mg/L (Table 5-2, Figure 5-6, Appendix E). Sixty percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2007, the average surface concentration was 0.06 mg/L and ranged from 0.04 - 0.09 mg/L. Bottom concentrations in 2007 were higher and averaged 0.17 mg/L.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. The estimated aquatic plant density in 2007 was higher than in 2000. This increase in plant density also corresponded with an increase in water clarity and decreased TSS from 2000 (LCHD 2007). Two invasive species were identified, Eurasian watermilfoil and curly leaf pondweed.

Sources of phosphorus include internal recycling from sediments. Sediment sources include flux from nutrient rich sediment under anoxic conditions and resuspension due to carp, wind/wave action and aerators. External sources of phosphorus include stormwater runoff from the highly developed impervious surfaces such as residential and transportation areas (LCHD 2007). Although the watershed is likely a substantial contributor to the TP load, the major source of phosphorus is expected to be internal recycling (LCHD 2007). There are no NPDES dischargers located within the Timber Lake South watershed.

6.8 Lake Fairview

Lake Fairview is located in the Wauconda Townships (Figure 2-2). Lake Fairview is an artificial lake created in 1969 by damming a wetland. The lake is currently privately owned by residents along the lake. It has a surface area of approximately 20.5 acres with a maximum and mean depth of 10.5 and 5.3 feet respectively (LCHD 2001). Lake Fairview drains from the southeast corner via a culvert to Tower Lake, eventually draining to the Fox River.

There are no major creeks or tributaries draining to Lake Fairview. The watershed is small (30 acres) and therefore the watershed-to-lake area ratio is also small 2:1. The majority of the watershed area is residential (40%) with forest, grasslands and vegetation comprising 9% of the area. The majority of the shoreline is developed (75%) and is comprised primarily of buffer (69%) (LCHD 2001). Fifteen percent of the watershed is impervious cover, a level at which impacts are expected.

Lake Fairview did not thermally stratify in 2000 but was stratified in 2007 (LCHD 2001 & 2007). DO concentrations in 2007 fell below 5.0 mg/L in June and July below 4' and in August below 6'. Anoxic conditions (<1.0 mg/L) were recorded in June, July and August 2007 as well. Depth to anoxia varied from 6 to 9' (LCHD 2007).

Lake Fairview is listed as impaired due to excessive TP concentrations. TP data are limited to the two surveys performed by LMU in 2000 and 2007. Surface water TP concentrations for this time period ranged from 0.02 to 0.09 mg/L, with an average of 0.07 mg/L (Table 5-2, Figure 5-6, Appendix E). Eighty nine percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2007, the average surface concentration was 0.06 mg/L and ranged from 0.02 - 0.09 mg/L. Bottom concentrations in 2007 were higher and averaged 0.15 mg/L.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Lake Fairview is not an algal dominated lake, it supports dense aquatic vegetation. Forty one percent of the bottom was covered by plants in 2007. Coontail and curly leaf pondweed dominated the community. It is likely that the dense rooted plant community outgrows algae for resources and is thereby reducing bloom intensity and frequency.

Sources of phosphorus include internal recycling from sediments. Sediment sources include flux from nutrient rich sediment under anoxic conditions and resuspension. External sources of phosphorus include stormwater runoff from the highly developed impervious residential areas. There are no NPDES dischargers located within the Lake Fairview watershed.

6.9 Tower Lake

Tower Lake is located in the southern portion of the Upper Fox River/Flint Creek watershed in the Village of Tower Lakes in Cuba Township (Figure 2-2). It is a small man-made lake with 68.8 surface acres. The lake was originally created in 1923 and further enlarged in 1927 and in the 1940's (LCHD 2002). The lake is privately owned by the Tower Lakes Improvement Association. Throughout its history, Tower Lake has experienced several challenges. The lake has suffered from fish kills and excessive aquatic vegetation, carp and turbidity. Recent issues include algal blooms, low aquatic plant growth and high bacteria concentrations. Much of the water quality problems in Tower Lake are related to its morphometry (LCHD 2002). The lake is shallow, with a maximum depth of 7.5' and a mean depth of 4.5'. Water flows from Tower Lake via a spillway located in the southwest portion of the lake to the Fox River.

The Tower Lake watershed is large (3,148 acres) relative to lake area (46:1). Water enters Tower Lake via the Timber Lake drain, small creeks and stormwater outfalls. The watershed is primarily residential (47%) and as a result has substantial impervious cover (21%). Water quality impacts are typically associated with IC values >10%.

The LMU 2007 Summary Report of Tower Lake (LCHD 2007) notes that Tower Lake does not thermally stratify due to its shallow morphometry and is subject to wind and wave mixing. Surface water DO concentrations remained above 5.0 mg/L for the summer (LCHD 2007). However, anoxia was observed in depths greater than 5' in August.

Tower Lake is listed as impaired due to excessive TP concentrations. Total phosphorus data for Tower Lake are available for 1988, 2001 and 2007 from Lake County. Surface water TP concentrations for this time period ranged from 0.02 to 0.16 mg/L, with an average of 0.07 mg/L (Table 5-2, Figure 5-6, Appendix E). Sixty four percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2007, the average surface concentration was 0.07 mg/L and ranged from 0.03 - 0.10 mg/L.

Historically, the lake suffered from excessive rooted plant densities, but today the lake suffers from algal blooms (LCHD 2007). Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. The shift from rooted plant dominance to algal dominance is suspected to have occurred around the 1970's shortly after the Davlin's pond dam was breached (2002). During this period, the lake experienced an increase in carp population, reduction in plant density, an increase in suspended sediment loading and increase in algal blooms. However, the lake still harbors nuisance aquatic species that are controlled using herbicides. Coontail was the most frequently encountered plant during the

2007 survey (LCHD 2007). Algal blooms have been noted after herbicide treatments following a decline in plant density (LCHD 2007). Algaecide treatments are also used in Tower Lake to control blooms.

Tower Lake is also listed as impaired due to excessive bacteria concentrations. Fecal coliform was measured in Tower Lake during 2001. Sixteen samples were collected from Tower Lake; two samples were collected on three occasions in May, two in June and July and once in August. Values in Tower Lake ranged from 10 to 820 cfu/100 ml (Figure 5-4). Five samples (31%) contained concentrations above the 200 cfu/100 ml WQS. Exceedences occurred in May and June.

E. coli, another pathogen indicator species, was also sampled within Tower Lake during May through August in 2002 through 2007 (Appendix B). Although Illinois does not have a numerical standard for *E. coli*, the US EPA document "Ambient Water Quality Criteria for Bacteria – 1986" states a freshwater bathing criteria of a geometric mean from five samples within a 30 day period not exceed 126 cfu/100 ml (US EPA 1986). During this period 98 samples were collected in Tower Lake. Samples were collected twice per day up to three times per month. Seven percent of the individual Tower Lake samples exceeded the *E. coli* level of 126 cfu/100 ml . These values, however, were individual exceedances and at no time was the geomean standard violated. *E. coli* data for these impaired segments are presented in Figure 5-5.

Sources of phosphorus entering Tower Lake, according to the LMU, include stormwater runoff carrying fertilizers and geese feces into the lake. Although not specifically mentioned in the LMU report, resuspension of nutrient rich sediment are also a potential source of phosphorus as well as pet feces and septic tanks. Sources of bacteria also include stormwater runoff and geese feces. There are no active NPDES discharges in the Tower Lake watershed.

6.10 Lake Barrington

Lake Barrington is located just south of Tower Lake in the unincorporated Cuba Township (Figure 2-2). Lake Barrington is a 91 acre man-made lake formed by damming a depressional area in 1925. Maximum and mean depths are 13.0 and 7.8 feet respectively. The lake is owned by the Lake Barrington Shores Homeowners Association and is used for viewing, non-motorized boating, fishing and golf course irrigation.

The Lake Barrington watershed is small (191 acres) relative to lake area (2:1) and as a result has a long retention time (6.2 years) (LCHD 2007). Lake Barrington receives water from an inlet on Forest Preserve Land and stormwater drainage outlets. The watershed is primarily residential (35%) and open space (20%). The shoreline is primarily developed (74%) and consists mainly of rip rap (73%). Impervious cover is relatively high (16%) above the level where water quality impairments are likely.

The LMU 2007 Summary Report of Lake Barrington (LCHD 2007) notes that Lake Barrington was slightly stratified in August 2007, but is generally well mixed. DO concentrations dropped below 5.0 mg/L in August (below 2') and September (entire water column) 2007. Anoxia was observed in depths greater than 4' in August.

Lake Barrington is listed as impaired due to excessive TP concentrations. Total phosphorus data for Lake Barrington are available for 1989, 2001 and 2007 from Lake County. Surface water TP concentrations for this time period ranged from 0.01 to 0.18 mg/L, with an average of 0.10 mg/L (Table 5-2, Figure 5-6, Appendix E). Sixty seven percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2007, the average surface concentration was 0.07 mg/L and ranged from <0.01 - 0.11 mg/L.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Lake Barrington, however, experiences both partly due to artificial manipulation. In the 1980's, curly leaf pondweed covered the entire bottom surface of Lake Barrington. Herbicide applications and mechanical harvesting began in an attempt to control this species and another invasive - Eurasian watermilfoil. Planting of natives occurred in the 1990's in an attempt to increase native plant density. In 2001,

the control of plants using herbicides had left the lake with low plant densities and algal dominance and low water clarity resulted (LCHD 2002). Desiccation of plants and algae contribute to the lack of oxygen and high phosphorus concentrations within Lake Barrington.

Lake Barrington is also listed as impaired due to excessive bacteria concentrations. Figure 5-4 displays fecal coliform data within impaired segments during the WQS compliance period (May – October). Fecal coliform was measured in Barrington during 2001. Sixteen samples were collected in Lake Barrington; two samples were collected on three occasions in May, two in June and July and once in August. Values in Lake Barrington ranged from 10 to 890 cfu/100 ml. Four of the samples (25%) exceeded the 200 cfu/100 ml WQS. Exceedences occurred in May and June.

E. coli, another pathogen indicator species, was also sampled within Lake Barrington during May through August in 2002 – 2007 (Appendix B). During this period 102 samples were collected in Lake Barrington. Samples were collected twice per day up to three times per month. Eleven percent of individual Lake Barrington samples exceeded the *E. coli* 126 cfu/100 ml EPA criteria. *E. coli* data are presented in Figure 5-5.

Sources of phosphorus entering Lake Barrington include stormwater runoff. Internal sources appear to be the primary source, however. Internal phosphorus loading from nutrient rich sediment during periods of anoxia are highly likely. In addition, the decomposition of plant and algal material following management (herbicides, algaecides and harvesting) add to the internal phosphorus load. Potential sources of bacteria, according to the LMU, include stormwater runoff, geese and duck feces and wind/wave action stirring up beach sediments. Pet feces and malfunctioning septic systems are also suspected of contributing to pathogen impairments. There are no active NPDES discharges in the Lake Barrington watershed.

6.11 Fox River DT-22

The Fox River segment DT-22 is extends from the Colby Point to just upstream of the Flint Creek Fox River confluence (Figure 2-2). This segment is approximately 7.8 miles and drains 387 square miles within Illinois, including the Chain of Lakes watershed (267 sq mi). The Illinois portion of the drainage area to DT-22 is predominately used for row crop, grain and grazing (33%) and residential (20%). Impervious cover in this portion of the Fox River watershed is approximately 12%, a level where water quality impacts are expected.

This portion of the Fox River is impaired due to low DO, fecal coliform and high pH. Violation of the March – July instantaneous DO standard were recorded in April and June 2006 and June 2008 (Figure 5-2). Multiple fecal coliform samples were above the 200 cfu/100 mL WQS in this segment of the Fox River (Figure 5-4). pH values exceeded the 6.5 – 9.0 SU WQS on six occasions out of 657 measurements (<1%).

Potential sources of water quality impairment in this segment include flow and water level manipulation at the McHenry dam located upstream of this segment. According to the 2008 Integrated Report, urban runoff, storm sewers, recreational pollutant source and unknown sources may also contribute to the impairment There are several NPDES discharges that contribute to the inorganic and organic load to the river that oxidize and consume oxygen which may contribute to low DO conditions (Figure 6-2, Appendix E). Two NPDES permittees discharge directly to the Fox River and have the potential for greater impact. These facilities include the Port Barrington Shores Sewage Treatment Plant and the Northern Moraine Wastewater Reclamation District WWTP. The six remaining facilities will likely have a lesser impact due to their distance from the Fox River. These facilities include:

- Mathews Company
- Crystal Lake WWTP #3
- Precision Twist Drill Corporation
- IAWC Terra Cotta STP
- Snap-On Logistics Co. Crystal Lake DC
- Wauconda WWTP

Also included are all sources and NPDES dischargers identified in upstream impaired segments. These segments include:

- Upper Fox River/Chain of Lakes watershed
- Fox River DT-23
- Drummond Lake
- Lake Napa Suwe
- Woodland Lake
- Slocum Lake
- Timber Lake South
- Lake Fairview
- Tower Lake
- Barrington Lake

6.12 Echo Lake

Echo Lake is located in the southeastern portion of the Upper Fox River/Flint Creek watershed northeast of the Village of Lake Zurich (Figure 2-2). The lake is a natural slough that was enhanced by erecting a dam in the 1920's. The majority of the lake is owned by the Echo Lake Improvement Association. The Village of Lake Zurich and the Lake County owns the other two parcels. This 25 acre lake is shallow, with a maximum and mean depth of 10.5 and 5.3 feet respectively. The lake discharges from the north shore into a tributary of Grassy Lake and eventually to Flint Creek and the Fox River.

Water enters Echo Lake from the 1,229 acre watershed via two main inlets. One inlet drains residential areas and is located east of the Echo Lake Improvement Association beach. The second inlet drains from Lake Zurich and passes through other pond and wetland systems prior to entering Echo Lake. The watershed-to-lake area ratio is very high (49:1) and indicates water quality conditions within Echo Lake are highly dependent on incoming water quality. Watershed land use is primarily comprised of residential areas (24%) and water resources (22%). The majority of the shoreline is also developed (88%) and consists mostly of rip rap (24%) (LCHD 2001).

Echo Lake experienced summertime anoxia in 2000 at depths as shallow as 7'. DO concentrations below 5.0 mg/L were recorded at depths below 5'. Low bottom DO promotes the release of phosphorus from anoxic sediment.

Echo Lake is listed as impaired due to excessive TP concentrations. TP data for Echo Lake are available for 1995 and 2000 from Lake County. Surface water TP concentrations for this time period ranged from 0.04 to 0.15 mg/L, with an average of 0.09 mg/L (Table 5-2, Figure 5-6, Appendix E). Eighty percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2000, the average surface concentration was 0.08 mg/L and ranged from 0.05 - 0.13 mg/L. Bottom concentrations were slightly higher and averaged 0.13 mg/L.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Echo Lake, however, experiences both partly due to artificial manipulation. Curly leaf pondweed and coontail dominate the plant community in Echo Lake which covers 95% of the lake bottom. Herbicides are applied in an attempt to control these species. Algaecides are also applied to control nuisance algal growths (LCHD 2001). Desiccation of plants and algae contribute to the lack of oxygen and high phosphorus concentrations within Echo Lake.

Sources of phosphorus entering Echo Lake are stormwater runoff and surface water flow from the two main inlets. Internal sources include phosphorus loading from nutrient rich sediment during periods of anoxia, sediment resuspension and decomposition of plant and algal material following management activities (herbicide & algaecide applications). There are no active NPDES discharges in the Echo Lake watershed.

6.13 Honey Lake

Honey Lake is located in Cuba Township in the south central portion of the Upper Fox River/Flint Creek watershed (Figure 2-2). This 66 acre glacial lake is privately owned by the Biltmore Country Club and private land owners. The Country Club has a beach which is open to Biltmore Country Club members. Honey Lake has a maximum and mean depth of 18+ and 8.8 feet respectively (LCHD 2002). Water leaves Honey Lake via a spillway located on the west side of the lake to a tributary of Grassy Lake.

Honey Lake receives water from a wetland to the north and two main creeks on the east side. The watershed is approximately 1,111 acres which results in a watershed-to-lake area ratio of 17:1. Land use in the watershed is primarily residential (47%). About one half of the Honey Lake shoreline is developed (49%) and much of this area consists of buffer (49%). The relatively high percentage of residential area in the watershed results in a high percentage of IC (21%). This level of IC is just below the threshold where water quality impairments are expected (25%), but within the threshold where impacts are typical.

The LMU 2001 Summary Report of Honey Lake (LCHD 2002) notes that Honey Lake was thermally stratified in 2001. DO concentrations dropped below 5.0 mg/L below 10' in June, 8' in July and September and 12' in August 2001. Anoxia was observed in depths greater than 14' in July and August and 12' in September 2001.

Honey Lake is listed as impaired due to excessive TP concentrations. TP data for Honey Lake are available for 1988, 1998 and 2001 from Lake County. Surface water TP concentrations for this time period ranged from 0.03 to 0.20 mg/L, with an average of 0.06 mg/L (Table 5-2, Figure 5-6, Appendix E). Thirty percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2001, the average surface concentration was 0.07 mg/L and ranged from 0.03 - 0.20 mg/L. Bottom concentrations were much higher and averaged 0.26 mg/L with a range of 0.10 – 0.45 mg/L.

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Honey Lake is primarily rooted plant dominant but does experience periodic algal blooms which may be related to the instability of the thermocline. If the thermocline is disturbed, accumulated phosphorus in the hypolimnion becomes available in the photic zone (area available for photosynthetic activity) where it can be rapidly consumed by algae resulting in a bloom. The Biltmore Country Club treats the beach area with an algaecide during blooms. Rooted plant occupied 57% of the sediment surface area in Honey Lake and it is suspected that this high density of rooted growth is preventing more serious and frequent algal blooms from forming (LCHD 2001). *Chara*, a macro alga, is the dominant submerged plant in Honey Lake. The lake is treated with herbicides to control nuisance aquatic plant growth.

Honey Lake is also listed as impaired due to excessive bacteria concentrations. Figure 5-4 displays fecal coliform data within impaired segments during the WQS compliance period (May – October). Fecal coliform was measured in Honey Lake during 2001. Twenty two samples were collected in Honey Lake, two samples per day twice in May, June and July and five times in August. Values ranged from 10 to 1700 cfu/100 ml, with ten samples (45%) exceeding the 200 cfu/100 ml WQS. Exceedences occurred in July and August. The geometric mean of July and August samples was 441 cfu/100 ml, above the WQS.

E. coli, another pathogen indicator species, was also sampled within Honey Lake during May through August in 2002 – 2007 (Appendix B). During this period 108 samples were collected in Honey Lake. Samples were collected twice per day up to three times per month. Twenty four percent of individual Honey Lake samples exceeded the *E. coli* 126 cfu/100 ml EPA criteria. *E. coli* data are presented in Figure 5-5.

Potential sources of phosphorus entering Honey Lake include stormwater runoff, fertilizers, failing septic systems and erosion. Internal phosphorus loading from nutrient rich sediment during periods of anoxia are highly likely. In addition, the decomposition of plant and algal material following management (herbicides and algaecides) add to the internal phosphorus load. While the LMU only noted geese feces as the source of

bacteria in Honey Lake, pet feces also serves as a likely source. There are no active NPDES discharges in the Honey Lake watershed.

6.14 Grassy Lake

Grassy Lake is a glacial slough located in the southern portion of the Upper Fox River/Flint Creek watershed in (Figure 2-2). It is a lake with 41 surface acres and a mean and maximum depth of 4.3 and 8.5 feet respectively. Water flows from Grassy Lake in the northwest portion of the lake to a tributary of Flint Creek eventually draining into the Fox River.

The Grassy Lake watershed is large (6,643 acres) relative to lake area (162:1). Grassy Lake receives water from two other impaired waterbodies within the watershed, Echo and Honey Lakes via a tributary located on the eastern portion of Grassy Lake. The watershed is primarily residential (40%) and as a result has substantial impervious cover (23%). Water quality impacts are typically associated with IC values >10%.

The LMU 2000 Summary Report of Grassy Lake (LCHD 2001) notes that Grassy Lake weakly stratifies for a short period due to its shallow morphometry and is subject to wind and wave mixing. DO concentrations remained above 5.0 mg/L for most of the summer, with values dropping below 5.0 mg/L at the bottom in May and below 5' in July. Anoxia was not observed at any depth in 2000 (LCHD 2001).

Grassy Lake is listed as impaired due to excessive TP concentrations. TP data for Grassy Lake are available for 1988 and 2000 from Lake County. Surface water TP concentrations for this time period ranged from 0.07 to 0.33 mg/L, with an average of 0.20 mg/L (Table 5-2, Figure 5-6, Appendix E). All averaged surface samples were above the 0.05 mg/L WQS. In 2000, the average surface concentration was 0.20 mg/L and ranged from 0.11 - 0.30 mg/L. The average bottom concentration was the same (0.20 mg/L).

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Grassy Lake has a poor aquatic plant community. The community consists of three species: coontail, curly leaf pondweed and duckweed (*Lemna minor*). In adequate light is the suspected cause of the poor community. Grassy Lake is very turbid from carp behavior and resuspension of sediment due to its shallow morphometry.

Sources of phosphorus entering Grassy Lake include the two other phosphorus impaired lakes and stormwater runoff. The LMU noted that resuspension of sediment due to carp and wind/wave action are likely a significant source (LCHD 2001). There are two active NPDES discharges in the Grassy Lake watershed. These include the North Barrington Elementary School sewer treatment plant and the Mount Saint Joseph Shelter Care Home Sewer Treatment Plant. Depending on the effluent TP load, these facilities have the potential to impact water quality in Grassy Lake.

6.15 Louise Lake

Louise Lake is the southern most impaired waterbody within the Upper Fox River/Flint Creek watershed (Figure 2-2). Louise Lake is a man-made lake created in 1967 during the development of the Fox Point Subdivision in the Village of Barrington. The lake is a 38 acre private lake owned by the Fox Point Homeowners Association. The maximum and mean depths are 10 and 5 feet respectively (LCHD 2004). Flint Creek is the main inlet and enters Louise Lake from the south. Water exits the lake, as Flint Creek, to the northwest draining to the Fox River.

The Louise Lake watershed is large (1582 acres), resulting in a watershed-to-area ratio of 42:1. Land use in the watershed is primarily residential (52%) and open space (24%). Impervious cover is high (20%) and at a level where water quality impacts are expected.

The lake is generally well mixed with no thermal stratification (LCHD 2004). During the 2003 study, the LMU measured surface DO concentrations at the surface above 5.0 mg/L. Anoxic conditions were observed once during this investigation and occurred in August below 5 feet.

Louise Lake is listed as impaired due to excessive TP concentrations. TP data for Louise Lake are available for 1988, 1998 and 2003 from Lake County. Surface water TP concentrations for this time period ranged from 0.04 to 0.31 mg/L, with an average of 0.15 mg/L (Table 5-2, Figure 5-6, Appendix E). Ninety two percent of the averaged surface samples were above the 0.05 mg/L WQS. In 2003, the average surface concentration at the inlet was 0.19 mg/L and ranged from 0.07 - 0.32 mg/L. The average outlet concentration was the same (0.19 mg/L).

Eutrophic lakes are typically algal or rooted plant dominated; rarely does co-dominance exist due to competition for resources. Louise Lake has a poor aquatic plant community and experience severe algal blooms. Although the current plant community is relatively scarce, an herbicide treatment was performed in 1998 when plants were thought to be a nuisance levels. This treatment is believed to have resulted in a shift from a plant dominated system to an algal dominated one (LCHD 2004). Algaecides are now applied several times a year to control algal growths.

Sources of phosphorus entering Louise Lake include surface waters from Flint Creek and stormwater runoff. The LMU noted that resuspension of sediment due to carp and wind/wave action are likely a significant source (LCHD 2001). There are no active NPDES discharges in the Louise Lake watershed.

7.0 TMDL Approach and Next Stages

This chapter discusses the methodology that may be used for the development of TMDLs for the Upper Fox River/Flint Creek watershed. In addition to calculating pollutant loads, a site specific implementation plan will be developed for each TMDL. The implementation plan will provide geographically specific recommendations that will reduce pollutant loads to impaired waters. While a detailed watershed modeling approach can be advantageous, a simpler approach is often able to efficiently meet the requirements of a TMDL and yet still support a TMDL-guided and site-specific implementation plan. The final selection of a methodology will be determined with consultation with the Illinois EPA based on following factors:

- Fundamental requirements of a defensible and approvable TMDL
- Data availability
- Fund availability
- Public acceptance
- Complexity of water body

A simpler approach shall be used as long as it adequately supports the development of a defensible TMDL. If it is deemed that this approach will not suffice, a more sophisticated modeling approach will be recommended for analysis to help better establish a scientific link between the pollutant sources and the water quality indicators for the attainment of designated uses. Methodology for estimating daily loads will depend on available data as well as the selected analysis.

7.1 Recommended Modeling Approach for Dissolved Oxygen and pH

Three segments within the Upper Fox River/Flint Creek watershed are targeted for DO TMDL development. These segments include two Fox River segments and Woodland Lake. Excessive nutrients often result in algal blooms and extensive rooted plant growths which can deplete oxygen and increase pH. The two main ways oxygen depletion occurs related to plant growth, both planktonic and rooted, include decomposition and respiration. Decomposition is the process of breaking down matter. During this process, aerobic bacteria utilize oxygen to convert organic matter into energy and release carbon dioxide. If the rate of decomposition is great enough, this process can result in deleterious oxygen depletion. Oxygen is also used during plant respiration for the conversion of stored sugars into energy. Excessive plant respiration can result in oxygen depletion. DO concentrations in lakes and ponds are typically at their lowest levels just before dawn after an evening of respiration without oxygen generation by photosynthesis.

Woodland Lake experienced excessive rooted plant densities historically, but recently the lake experiences severe algal blooms, either of these conditions can result in oxygen depletion. Given that Woodland Lake contains excessive TP concentrations which are likely related to low DO, a phosphorus TMDL should be prepared using available data (see discussion on TP approach). Additional sampling is not required in order to proceed with this TMDL.

Sources of the lack of DO and elevated pH in the Fox River segments DT-22 and DT-23 have been attributed to urban runoff, storm sewers, other recreational pollutant source and unknown causes. In addition, flow and water level manipulation at the Pistakee Lake dam located upstream of DT-23 and the McHenry dam located upstream of segment DT-22 may be a source for low DO and elevated pH in these segments. Other sources may include eutrophication, as mentioned above, and delete deleterious inputs.

For the Fox River segments, QUAL2K, a spreadsheet model that is based on the fundamental Streeter-Phelps DO sag equation, is recommended for DO TMDL development. QUAL2K is a one-dimensional, steady-state model that can accommodate point and non-point source loading and is capable of modeling DO and pH in

streams and well-mixed lakes. QUAL2K is an updated version of QUAL2E and has been developed using a Microsoft Excel interface. QUAL2K allows for model segmentation, the use of two forms of carbonaceous BOD (both slow and rapid oxidizing forms), and is also capable of accommodating anoxia and sediment – water interactions. While the model is simplistic in nature, it is capable of estimating critical BOD concentrations associated with in-stream DO concentrations of 5 mg/L and pH. In addition, denitrification is modeled as a first-order reaction that becomes pronounced at low oxygen concentrations. The model explicitly simulates attached bottom algae.

7.2 Recommended Modeling Approach for Fecal Coliform

Many states currently use load duration curves for fecal coliform TMDLs for its simplicity and effectiveness. Load duration curves use water quality criteria, ambient concentrations, and observed flows to estimate loading capacities for streams under various flow conditions. The load duration methodology is recommended for the impaired segment along the Fox River DT-22. There are three lake segments also targeted for bacteria TMDLs. These lakes include Tower, Barrington and Honey Lakes. An alternative approach for these lakes is discussed following the load duration methodology.

The first step in load duration process is to obtain an appropriate stream flow record. This is often difficult for streams not monitored by the USGS. There are methods, however, for developing stream flow statistics on ungaged streams. Regional curve numbers and regression equations are typical used in such instances. Alternatively, a gaged reference watershed can be used to obtain a stream flow record.

Flow duration curves are developed from stream flow records spanning multiple decades. The flow duration curve is based on flow frequency which provides a probability of meeting or exceeding a given flow. The duration curve is broken into hydrologic categories where high flows represent a duration interval of 0-10%, moist conditions represent 10-40%, mid-range flows 40-60%, dry conditions 60-90% and low flows 90-100%.

Once the flow duration curve is established, a load duration curve can be generated by multiplying stream flow with the numerical water quality standard and a conversion factor to obtain the load per day for a given stream flow. Individual measurements can be plotted against the load duration curve to evaluate patterns of impairment. Values that fall above the load duration line indicate an exceedance of the daily load and hence, water quality standard. These data can aid in determining whether impairment occurs more frequently in one of the hydrologic categories (wet, moist, mid-range, dry or low).

The MOS for duration curves can be implicit or explicit. Implicit MOS are derived from the inherent assumptions in establishing the water quality target. Explicit MOS include setting the water quality target lower than the WQS or not allocating a portion of the allowable load. The MOS will be determined during modeling and will be further explained in the Stage 3 report. Design discharge flow, permit limits and TMDL targets will be used to calculate a daily load and serve as the WLA. WLAs for NPDES-permitted stormwater discharges, including current and future MS4s, "Urbanized" areas, construction and industrial discharges and SSOs that do not have numerical effluent limitations will be expressed as a percent reduction instead of a numerical target. The NPDES Phase II Stormwater Regulations require all areas defined as "Urbanized" by the US Census obtain a permit for the discharge of stormwater. A map of these MS4 dischargers will be provided in the Stage 3 report. Stormwater discharges are required to meet the percentage reduction or the existing instream standard for the pollutant of concern, whichever is less restrictive. The load allocation (LA) for all non-regulated sources, including non-point sources, will also be expressed as a reduction of the actual load. Sanitary Sewer Overflows (SSOs) will not receive an allocation as they are deemed illicit discharges.

Potential sources of bacteria in Tower, Barrington and Honey Lakes are waterfowl (mainly geese), runoff, and potentially failing septic systems. The Simple Method is the proposed for the development of a pathogen indicator (either fecal coliform or *E. coli*) TMDL. The Simple Method estimates loads based on runoff volume and pollutant concentrations on an areal basis. Impacts associated with direct loadings (failing septic systems and waterfowl) will be made in a similar way. Literature derived loadings per bird and/septic system will be

used to generate direct loads. The MOS, WLA and LA will be determined in a similar manner as with the load duration curve (described above). The critical condition will be defined as the bathing season (May – October). Selection of this critical period will also address seasonality.

7.3 Recommended Modeling Approach for Total Phosphorus

For the 12 segments listed for TMDL development due to excessive phosphorus concentrations an export coefficient model linked to empirical in-lake response models will be used to determine existing loading and load reductions required to these segments into compliance with current WQS. In addition to these segments, a TP TMDL is also recommended Woodland Lake with the objective to bring DO into compliance with WQS.

A listing of phosphorus impaired lakes targeted for TP TMDLs are provided below. For these lakes the ENSR-LRM is proposed.

Barrington	Lake Napa Suwe
Drummond	Louise
Echo	Slocum
Grassy	Timber Lake South
Honey	Tower
Island	Woodland
Lake Fairview	

7.3.1 LLRM

The suggested model, LLRM (lake response model), was developed by AECOM (formerly ENSR) and has been used for more than 35 lake TMDLs. LLRM uses export coefficients for runoff, groundwater and nutrients to estimate loading as a function of land use. Yields will be assigned to each defined parcel (sub-watershed) in the lake watershed. Loading estimates will be adjusted based on proximity to the lake, soils and major Best Management Practices (BMPs) in place. Model yields will be compared to measured data, where available. Export coefficients and attenuation factors will be adjusted such that model loading accurately reflects actual loading based on sample data and measured in-lake concentrations.

Watershed and sub-watershed boundaries have been delineated and watershed land use has been determined using publically available data layers as part of this Stage 1 investigation. LLRM will be set-up on a sub-watershed level using available land use and average annual precipitation. The spreadsheet-based export coefficient model allows the user to select watershed yield coefficients and attenuation factors from a range appropriate in the region. The model also includes direct inputs for atmospheric deposition, septic systems, point sources, waterfowl and internal loading from lake sediments.

The generated load to the lake is processed through five empirical models: Kirchner & Dillon 1975, Vollenweider 1975, Larsen & Mercier 1976, Jones & Bachmann 1976 and Reckhow 1977. These empirical models predict in-lake phosphorus concentrations based on loading and lake characteristics such as mean water depth, volume, inflow, flushing and settling rates. Predicted in-lake phosphorus is compared to measured data. An acceptable agreement between measured and predicted concentrations indicates loading estimates are appropriate for use in the preparation of a TMDL. Adjustments to the loading portion of the model are made when necessary based on best professional judgment to ensure acceptable agreement between measured and predict chlorophyll *a* concentrations and water clarity (Secchi disk transparency). LLRM also includes a statistical evaluation of algal bloom probability.

Once the model has been calibrated to existing conditions, adjustments to the model can be made to determine the load reductions necessary to meet WQS. Different scenarios can be modeled to determine the appropriate BMPs during the implementation plan stage. In some instances, waterbodies are naturally eutrophic and may not achieve numerical WQS LLRM is most effective when calibrated with water quality data

for the target system, but can be used with limited data. While it is a spreadsheet model with inherent limitations on applied algorithms and resultant reliability of predictions, it provides a rational means to link actual water quality data and empirical models in an approach that addresses the whole watershed and lake. LLRM is an easy and efficient method of estimating current loads to lakes as well as providing predictions on lake response under countless loading scenarios.

LLRM, like most simplified lake models, predicts phosphorus concentrations and estimates loading on an average annual basis. As required by the EPA, the TMDL must be expressed on a daily basis. However, there is some flexibility in how the daily loads may be expressed. Several of these options are presented in "Options for Expressing Daily Loads in TMDLs" (US EPA, 2007). For TMDLs based on watershed load and in-lake response models providing predictions on an annual basis, the EPA offers a method for calculating the maximum daily limit based on long-term average and variability. This statistical approach is preferred since long periods of continuous simulation data and extensive flow and loading data are not available. The following expression assumes that loading data are log-normal distributed and is based on a long term average load calculated by the empirical model and an estimation of the variability in loading.

MDL= LTA * $e^{[z\sigma - 0.5\sigma^2]}$

Where: MDL = maximum daily limit LTA = long-term average Z = z-statistic of the probability of occurrence $\sigma^2 = ln(CV^2 + 1)$ CV = coefficient of variation

Data from similar lakes will be used in situations where there are not enough data to determine probability of occurrence or coefficient of variation for the impaired waterbody. The water quality data points from the entire watershed will be used in a statistic analysis to determine z-score and CV.

MOS for phosphorus using this method is implicit. There is substantial uncertainty when introducing concentration inputs to the models that results from the timing of sampling and analytical methods. Similarly, the empirical equations used to predict in-lake phosphorus concentrations, mean and maximum chlorophyll *a*, Secchi disk transparency, and bloom probability also introduce variability into the predictions.

WLA will be determined based on NPDES permit effluent limitations and design flows. WLAs for NPDESpermitted stormwater discharges, including current and future MS4s, "Urbanized" areas, construction and industrial discharges that do not have numerical effluent limitations will be expressed as a reduction. Stormwater discharges are required to meet the existing instream standard for the pollutant of concern. LAs will also be expressed as a load reduction.

Critical conditions for lakes typically occur during the summertime, when the potential (both occurrence and frequency) for nuisance algal blooms are greatest. The loading capacity for total phosphorus is set to achieve desired water quality standards during this critical time period and also provide adequate protection for designated uses throughout the year. The target goal is based on average annual values, which is typically higher than summer time values. Therefore a load allocation based on average concentrations will be sufficiently low to protect designated uses in the critical summer period.

The LLRM derived TMDL takes into account seasonal variations because the allowable annual load is developed to be protective of the most sensitive (i.e., biologically responsive) time of year (summer), when conditions most favor the growth of algae. Maximum annual loads are calculated based on an overall annual average concentration. Summer epilimnetic concentrations are typically lower than the average annual concentration, so it is assumed that loads calculated in this manner will be protective of designated uses in the summer season, It is possible that concentrations of phosphorus will be higher than the annual average during

other seasons, most notably in the spring, but higher phosphorus levels at that time does not compromise uses. The proposed TMDL is expected to protect all designated uses of the impaired waterbody.

7.4 Stages 2 & 3

Effective TMDL development heavily relies on site-specific data. Sufficient flow and water quality data are required for the evaluation of water conditions and for model calibration. In fact, data availability often dictates the modeling approach used for various watersheds. Five types of data are crucial for the Upper Fox River/Flint Creek watershed TMDL development:

- Flow data
- Meteorological data
- Water quality data
- Watershed and water body physical parameters

Source characteristics data

In general, if a water body was sampled in 2005 or later at multiple times, the data is considered adequate to characterize current conditions and support TMDL development. IL EPA and Lake County sampled in 4 lakes in 2008, including Echo, Grassy, Honey and Louise. Additional data will be gathered from Island Lake by the Illinois EPA in 2009. These collected data will be used for Stage 3 TMDL development. In addition, IL EPA stream monitoring unit will collect two sets of five-samples in 30 days for fecal coliform test at Fox River segment DT-22 ambient station in 2009. These data will be used to compare against fecal standards and verify the impairment.

8.0 References

- Center for Watershed Protection. 2001. Impervious Cover and Land Use in the Chesapeake Bay Watershed. U.S. Environmental Protection Agency, Chesapeake Bay Program, Land Growth and Stewardship Subcommittee, Annapolis, MD.
- Center for Watershed Protection. 2003. Impacts of Impervious Cover on Aquatic Systems. Watershed Protection Research Monograph No. 1. Ellicott City, Maryland.
- Chicago Metropolitan Agency for Planning (CMAP). 2001. Land Use Inventory.
- ENSR. 2001. Land Use Coefficient Model developed by Kenneth Wagner, Ph D and presented in the Hop Brook Nutrient Study prepared by ENSR for the Massachusetts Department of Environmental Protection.
- Illinois Department of Commerce and Economic Opportunity. 2005. Population projections to 2030. <u>http://www.commerce.state.il.us/dceo</u>. Illinois Department of Commerce and Economic Activity.
- Illinois Environmental Protection Agency. 2008. Illinois Integrated Water Quality Report and Section 303(d) List 2008. Bureau of Water, Division of Water Protection. Springfield, Illinois.
- Illinois State Climatologist Office. 2009. http://www.isws.illinois.edu/atmos/statecli/.
- Jones, J. and R. Bachmann. 1976. Prediction of Phosphorus and Chlorophyll Levels in Lakes. JWPCF 48:2176-2184.
- Kirchner, W. and P. Dillon. 1975. An Empirical Method of Estimating the Retention of Phosphorus in Lakes. Water Resourc. Res. 11:182-183.
- Kothandaraman, et al. 1977. Fox Chain of Lakes Investigation and Water Quality Management Plan, ISWS COOP-5 NTIS#: PB268125/AS.
- Lake County Health Department. 2009. Detailed Lake Reports. Lake County Health Department, Lakes Management Unit. <u>http://www.lakecountyil.gov/Health/want/LakeReports.htm</u>
- Lake County Stormwater Management Commission. 2005. Land Use Inventory. Lake County Geographic Information System. Planning and Support Services Division.
- Larsen, D. and H. Mercier. 1976. Phosphorus Retention Capacity of Lakes. J. Fish. Res. Bd. Can. 33:1742-1750.
- McConkey, C., et al. 2004. Fox River Watershed Investigation Stratton Dam to the Illinois River: Water Quality Issues and Data Report to the Fox River Study Group, Inc.
- Natural Resources Conservation Service. 2009. Soil Survey Tabular Database (SSURGO). U.S. Department of Agriculture, Natural Resource Conservation Service. <u>http://soildatamart.nrcs.usda.gov/State.aspx</u>
- Reckhow, K. 1977. Phosphorus Models for Lake Management. Ph.D. Dissertation, Harvard University, Cambridge, MA.
- U.S. Census Bureau. 2002. Census 2002 TIGER/Line Files. U.S. Department of Commerce, Geography Division, U.S. Census Bureau.

- U.S. Environmental Protection Agency. 2006. An Approach for Using Load Duration Curves in Developing TMDLs. U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC.
- U.S. Environmental Protection Agency. 2007. Options for Expressing Daily Loads in TMDLs. U.S. Environmental Protection Agency, Office of Wetlands, Oceans and Watersheds. Washington, DC.
- U.S. Environmental Protection Agency. 2009. Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) data. <u>http://www.epa.gov/waterscience/basins/</u>
- U.S. Geological Survey. 2009. Water Data for the Nation. http://waterdata.usgs.gov/nwis.
- Vollenweider, R. 1975. Input-Output Models with Special Reference to the Phosphorus Loading Concept in Limnology. Schweiz. Z. Hydrol. 37:53-62.

Appendix A

Sub-Watershed Maps

Fairview: NPDES Dischargers and Monitoring Stations

NPDES Discharger
Water Quality Monitoring Station
Stream for TMDL Development
IL_DT-22
Lake for TMDL Development

Island: NPDES Dischargers and Monitoring Stations

NPDES Discharger
Water Quality Monitoring Station
Lake for TMDL Development

Appendix B

Water Quality Data (Available upon request)

Appendix C

Land Use Tables

Land Use Summary for All Watersheds Within the Fox River Watershed (Acres)

	Agriculture.	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop. Grain.	Transportation.	Under		
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland	Grand Total
Barrington		4.91	0.07			93.72		56.88			99.02			27.75			282.35
Drummond			0.02			20.94		64.21						2.15			87.32
Echo		47.66	86.34	39.03	101.10	276.73	1.49	181.09	5.86		305.27			157.02	9.55	43.09	1,254.23
Fairview	0.45		4.69			20.32				0.54	19.64			1.95	1.86		49.46
Fox R DT-22	951.26	3,307.68	24,319.03	4,386.05	2,847.29	15,154.78	4,124.49	29,516.98	210.77	554.56	49,932.46	1,888.18	82,428.96	7,577.29	1,910.48	18,728.96	247,866.18
Fox R DT-23	696.06	2,699.35	19,831.99	3,294.00	2,342.94	12,985.55	3,546.20	20,876.54	92.93	342.73	37,038.33	1,221.53	76,499.83	5,777.34	1,493.92	14,542.33	203,308.55
Grassy	28.88	142.31	578.68	47.68	230.40	581.58	11.36	795.99	5.86	34.80	2,693.00	7.98	223.60	732.45	130.15	439.35	6,684.06
Honey	13.03	54.07	116.75		1.81	96.10		69.49		19.33	547.86			113.39	0.90	144.63	1,177.37
Island	114.44	37.72	378.63	211.82	28.69	351.78	64.97	931.00	84.94	113.04	903.62	24.23	1,215.19	439.21	148.62	979.24	6,027.16
Louise		25.62	56.58		33.42	190.12		386.49			844.41	0.30		59.65	11.28	12.31	1,620.19
McHenry	256.71	1,925.86	16,116.67	2,926.33	1,478.42	3,518.21	3,308.87	13,427.00	19.16	0.04	32,802.40	960.32	72,814.17	404.71	651.72	10,963.89	161,580.30
Napa Suwe	10.96	0.50	50.46			167.67		294.11	0.12	1.05	313.57	3.06	56.48	89.49	51.93	90.80	1,130.19
Slocum	51.90	123.65	438.23	133.83	102.35	635.16	14.28	1,456.93	28.82	66.51	1,393.61	7.21	235.15	502.24	12.84	318.23	5,520.95
Timber	27.91	3.34	88.47		0.02	47.57		58.40	3.78	12.65	611.98		164.48	148.26		94.23	1,261.08
Tower	28.45	11.17	289.67		2.04	275.25	16.95	232.70	3.97	13.30	1,483.25	1.57	164.66	363.70	14.81	315.73	3,217.21
Woodland						8.15		0.21			42.48			8.97			59.81
Grand Total	2,180.05	8,383.84	62,356.28	11,038.74	7,168.48	34,423.63	11,088.61	68,348.02	456.20	1,158.56	129,030.89	4,114.38	233,802.52	16,405.59	4,438.05	46,672.79	641,126.40

Land Use Summary for All Watersheds Within the Fox River Watershed (Percent)

Name	Agriculture, Other	Commercial and Services	Forested, Grasslands, Vegetation	Industrial, Warehousing, Wholesale Trade	Institutional	Lakes, Reservoirs, Lagoons	Nurseries, Greenhouses, Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Rivers, Streams, Canals	Row Crop, Grain, Grazing	Transportation, Communication, and Utilities	Under Construction	Wetland
Barrington	<1%	2%	<1%	<1%	<1%	33%	<1%	20%	<1%	<1%	35%	<1%	<1%	10%	<1%	<1%
Drummond	<1%	<1%	<1%	<1%	<1%	24%	<1%	74%	<1%	<1%	<1%	<1%	<1%	2%	<1%	<1%
Echo	<1%	4%	7%	3%	8%	22%	<1%	14%	<1%	<1%	24%	<1%	<1%	13%	1%	3%
Fairview	1%	<1%	9%	<1%	<1%	41%	<1%	<1%	<1%	1%	40%	<1%	<1%	4%	4%	<1%
Fox R DT-22	<1%	1%	10%	2%	1%	6%	2%	12%	<1%	<1%	20%	1%	33%	3%	1%	8%
Fox R DT-23	<1%	1%	10%	2%	1%	6%	2%	10%	<1%	<1%	18%	1%	38%	3%	1%	7%
Grassy	<1%	2%	9%	1%	3%	9%	<1%	12%	<1%	1%	40%	<1%	3%	11%	2%	7%
Honey	1%	5%	10%	<1%	<1%	8%	<1%	6%	<1%	2%	47%	<1%	<1%	10%	<1%	12%
Island	2%	1%	6%	4%	<1%	6%	1%	15%	1%	2%	15%	<1%	20%	7%	2%	16%
Louise	<1%	2%	3%	<1%	2%	12%	<1%	24%	<1%	<1%	52%	<1%	<1%	4%	1%	1%
McHenry	<1%	1%	10%	2%	1%	2%	2%	8%	<1%	<1%	20%	1%	45%	<1%	<1%	7%
Napa Suwe	1%	<1%	4%	<1%	<1%	15%	<1%	26%	<1%	<1%	28%	<1%	5%	8%	5%	8%
Slocum	1%	2%	8%	2%	2%	12%	<1%	26%	1%	1%	25%	<1%	4%	9%	<1%	6%
Timber	2%	<1%	7%	<1%	<1%	4%	<1%	5%	<1%	1%	49%	<1%	13%	12%	<1%	7%
Tower	1%	<1%	9%	<1%	<1%	9%	1%	7%	<1%	<1%	46%	<1%	5%	11%	<1%	10%
Woodland	<1%	<1%	<1%	<1%	<1%	14%	<1%	<1%	<1%	<1%	71%	<1%	<1%	15%	<1%	<1%
Grand Total	<1%	1%	10%	2%	1%	5%	2%	11%	<1%	<1%	20%	1%	37%	2%	1%	7%

Sub-Watershed and Total Watershed Land Use Areas (Acres) for Hydrologically Connected Waterbodies

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Lake Napa Suwe

	A						Number of the second					D:		-	Ha has		
	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under		
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland	Grand Total
Napa Suwe	10.96	0.50	50.46			167.67		294.11	0.12	1.05	313.57	3.06	56.48	89.49	51.93	90.80	1,130.19
Contributing Watersheds																	
(Drummond)			0.02			20.94		64.21						2.15			87.32
Total	10.96	0.50	50.48	0.00	0.00	188.61	0.00	358.31	0.12	1.05	313.57	3.06	56.48	91.64	51.93	90.80	1,217.51

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Island Lake

	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under		
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland	Grand Total
Island	114.44	37.72	378.63	211.82	28.69	351.78	64.97	931.00	84.94	113.04	903.62	24.23	1,215.19	439.21	148.62	979.24	6,027.16
Contributing Watersheds																	
(Napa Suwe, Woodland,																	
Drummond)	10.96	0.50	50.48	0.00	0.00	196.76	0.00	358.53	0.12	1.05	356.04	3.06	56.48	100.61	51.93	90.80	1,277.32
Total	125.39	38.22	429.12	211.82	28.69	548.54	64.97	1,289.53	85.06	114.10	1,259.66	27.29	1,271.67	539.83	200.55	1,070.04	7,304.48

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Tower Lake

	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under		
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland	Grand Total
Tower	28.45	11.17	289.67		2.04	275.25	16.95	232.70	3.97	13.30	1,483.25	1.57	164.66	363.70	14.81	315.73	3,217.21
Contributing Watersheds																	
(Timber, Fairview)	28.36	3.34	93.15	0.00	0.02	67.89	0.00	58.40	3.78	13.19	631.62	0.00	164.48	150.22	1.86	94.23	1,310.54
Total	56.81	14.51	382.82	0.00	2.06	343.14	16.95	291.10	7.75	26.49	2,114.87	1.57	329.14	513.92	16.67	409.96	4,527.76

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Grassy Lake

	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under		
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland	Grand Total
Grassy	28.88	142.31	578.68	47.68	230.40	581.58	11.36	795.99	5.86	34.80	2,693.00	7.98	223.60	732.45	130.15	439.35	6,684.06
Contributing Watersheds																	
(Echo, Honey)	13.03	101.73	203.09	39.03	102.91	372.83	1.49	250.58	5.86	19.33	853.13	0.00	0.00	270.42	10.45	187.72	2,431.60
Total	41.91	244.04	781.77	86.71	333.32	954.41	12.85	1,046.57	11.71	54.13	3,546.13	7.98	223.60	1,002.87	140.60	627.07	9,115.66

Sub-Watershed and Total Watershed Land Use Areas (Percent) for Hydrologically Connected Waterbodies

Sub-Watershed and Total Watershed Land Use Areas (Percent) For Lake Napa Suwe

	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under	
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland
Napa Suwe	1%	<1%	4%	<1%	<1%	15%	<1%	26%	<1%	<1%	28%	<1%	5%	8%	5%	8%
Contributing Watersheds																
(Drummond)	<1%	<1%	<1%	<1%	<1%	24%	<1%	74%	<1%	<1%	<1%	<1%	<1%	2%	<1%	<1%
Total	1%	<1%	4%	<1%	<1%	15%	<1%	29%	<1%	<1%	26%	<1%	5%	8%	4%	7%

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Island Lake

	Aariculture.	Commercial and	Forested, Grasslands,	Industrial. Warehousing.		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation.	Under	
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland
Island	2%	1%	6%	4%	<1%	6%	1%	15%	1%	2%	15%	<1%	20%	7%	2%	16%
Contributing Watersheds (Napa																
Suwe, Woodland)	1%	<1%	4%	<1%	<1%	15%	<1%	25%	<1%	<1%	30%	<1%	5%	8%	4%	8%
Total	2%	1%	6%	3%	<1%	7%	1%	17%	1%	2%	17%	<1%	18%	7%	3%	15%

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Tower Lake

	Agriculture,	Commercial and	Forested, Grasslands,	Industrial, Warehousing,		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop, Grain,	Transportation,	Under	1
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland
Tower	1%	<1%	9%	<1%	<1%	9%	1%	7%	<1%	<1%	46%	<1%	5%	11%	<1%	10%
Contributing Watersheds																
(Timber, Fairview)	2%	<1%	7%	<1%	<1%	5%	<1%	4%	<1%	1%	48%	<1%	13%	11%	<1%	7%
Total	1%	<1%	8%	<1%	<1%	8%	<1%	6%	<1%	1%	47%	<1%	7%	11%	<1%	9%

Sub-Watershed and Total Watershed Land Use Areas (Acres) For Grassy Lake

	Aariculture.	Commercial and	Forested, Grasslands,	Industrial. Warehousing.		Lakes, Reservoirs,	Nurseries, Greenhouses,					Rivers, Streams,	Row Crop. Grain.	Transportation.	Under	
Name	Other	Services	Vegetation	Wholesale Trade	Institutional	Lagoons	Orchards, Tree Farms	Open Space	Other Vacant Land	Pastureland	Residential	Canals	Grazing	Communication, and Utilities	Construction	Wetland
Grassy	<1%	2%	9%	1%	3%	9%	<1%	12%	<1%	1%	40%	<1%	3%	11%	2%	7%
Contributing Watersheds																1
(Echo, Honey)	1%	4%	8%	2%	4%	15%	<1%	10%	<1%	1%	35%	<1%	<1%	11%	<1%	8%
Total	<1%	3%	9%	1%	4%	10%	<1%	11%	<1%	1%	39%	<1%	2%	11%	2%	7%

Appendix D

NPDES Detailed Information

Permit Name	NPDES Number	Name of TMDL	Outfall	Outfall description	DAF (MGD)	DMF (MGD)	Receiving Water	TMDL Segment ID
ROHM AND HAAS CHEMICAL LLC	IL0001716	Upper Fox/Flint Creek	001	Non-contact cooling water, Deionizer Backwash, boiler blowdown, water softener regenerate, fire protection stystem test water, infiltration, storwater runoff, discharge from A01	2.002 (includes A01)	NA	Dutch Creek tributary to Fox River	Fox River DT-23
ROHM AND HAAS CHEMICAL LLC	IL0001716	Upper Fox/Flint Creek	002	Stormwater Runoff	NA	NA	Dutch Creek tributary to Fox River	Fox River DT-23
ROHM AND HAAS CHEMICAL LLC	IL0001716	Upper Fox/Flint Creek	A01	Treated polymer washwater, treated contaminated groundwater	0.353	NA	Internal Outfall	Fox River DT-23
SNAP-ON TOOLS-CRYSTAL LAKE	IL0065480	Upper Fox/Flint Creek	001	Treated Sanitary Waste and Stormwater	Intermittent	NA	Unnamed tributary of Fox River	Fox River DT-22
SNAP-ON TOOLS-CRYSTAL LAKE	IL0065480	Upper Fox/Flint Creek	A01	Treated Sanitary Waste	Intermittent	NA	Unnamed tributary of Fox River	Fox River DT-22
VILLAGE OF WAUCONDA	IL0020109	Upper Fox/Flint Creek	001	STP	1.9 (Existing Plant) 2.4 (Phase 2 Expansion)	5.963 (Existing Plant) 7.93 (Phase 2 Expansion)	Fiddle Creek	Slocum Lake RTP
VILLAGE OF WAUCONDA	IL0020109	Upper Fox/Flint Creek	A01	Excess Flow	NA	NA	Fiddle Creek	Slocum Lake RTP

Permit Name	NPDES Number	Name of TMDL	Outfall	Outfall description	DAF (MGD)	DMF (MGD)	Receiving Water	TMDL Segment ID
CITY OF CRYSTAL LAKE	IL0053457	Upper Fox/Flint Creek	001	STP	1.7	5.0	Unnamed tributary of Sleepy Hollow Creek	Fox River DT-22
VILLAGE OF FOX LAKE- NW REGIONAL WRF	IL0020958	Upper Fox/Flint Creek	001	STP	9.0	22.5	Fox River	Fox River DT-23
IL AMERICAN WATER COMPANY	IL0038202	Upper Fox/Flint Creek	001	STP	0.1	0.25	Sleepy Hollow Creek	Fox River DT-22
VILLAGE OF JOHNSBURG	IL0074969	Upper Fox/Flint Creek	001	STP	0.5	1.62	Dutch Creek	Fox River DT-23
MATHEWS COMPANY-CRYSTAL LAKE	IL0072851	Upper Fox/Flint Creek	001	non-contact cooling water	0.0039	NA	Fox River	Fox River DT-22
CITY OF MCHENRY-CENTRAL WWTP	IL0021067	Upper Fox/Flint Creek	001	STP	3.0	7.5	Fox River	Fox River DT-23
CITY OF MCHENRY-SOUTH WWTP	IL0066257	Upper Fox/Flint Creek	001	STP	1.5	4.2	Fox River	Fox River DT-23
MODINE MANUFACTURING	IL0001279	Upper Fox/Flint Creek	001	Inactive	NA	NA	NA	NA
MODINE MANUFACTURING	IL0001279	Upper Fox/Flint Creek	002	non-contact cooling water, Reverse Osmosis water generation, and Storm Water	NA	NA	Unnamed Tributary to Dutch Creek	Fox River DT-23
MODINE MANUFACTURING	IL0001279	Upper Fox/Flint Creek	003	Storm Water	NA	NA	Unnamed Tributary to Dutch Creek	Fox River DT-23
MOUNT SAINT JOSEPH SHELTER CARE	IL0027286	Upper Fox/Flint Creek	001	STP	0.0125	0.025	Unnamed tributary of Flint Creek	Flint Creek DTZS-01; Fox River DT-06
NORTH BARRINGTON ELEMENTARY SCHOOL	IL0024716	Upper Fox/Flint Creek	001	STP	0.005	0.0125	Unnamed Tributary to Flint Creek	Flint Creek DTZS-01; Fox River DT-06
NORTHERN MORAINE WW REC DIST	IL0031933	Upper Fox/Flint Creek	001	STP	2.0 (Existing Plant) 3.0 (Proposed Plant)	5.0 (Existing Plant) 6.0 (Proposed Plant)	Fox River	Fox River DT-22
PORT BARRINGTON SHORES	IL0070874	Upper Fox/Flint Creek	001	STP	0.012	0.0504	Fox River	Fox River DT-22
PRECISION TWIST DRILL CORP	IL0074276	Upper Fox/Flint Creek	001	Contaminated Groundwater remediation	0.17	NA	Northwest drainage ditch to Squaw Creek	Fox River DT-22
PRECISION TWIST DRILL CORP	IL0074276	Upper Fox/Flint Creek	002	Non-contact cooling water	0.00125	NA	Northwest drainage ditch to Squaw Creek	Fox River DT-22

Appendix E

Time-Series Plots

Fox River (DT-22) – Dissolved Oxygen Time Series 1998 – present

Fox River (DT-22) – pH Time Series 1998 - present

Fox River (DT-22) – Fecal Coliform Time Series 1998 - present

Fox River (DT-23) – Dissolved Oxygen Time Series 1998 - present

Barrington – Fecal Coliform Time Series 1998 - present

Barrington – Total Phosphorus Time Series 1998 - present

Woodland – Dissolved Oxygen Time Series 1998 - present

Honey – Fecal Coliform Time Series 1998 - present

Tower – Fecal Coliform Time Series 1998 - present

Louise – Total Phosphorus Time Series 1998 - present

Slocum – Total Phosphorus Time Series 1998 - present

Timber, Tower, Fairview – Total Phosphorus Time Series 1998 - present

Grassy, Honey, Echo – Total Phosphorus Time Series 1998 - present

Napa Suwe, Island, Drummond – TP Time Series 1998 - present

Appendix F

Responsiveness Summary

Responsiveness Summary

This responsiveness summary responds to substantive questions and comments received during the public comment period from July 20, 2009 through September 24, 2009 postmarked, including those from the August 25, 2009 public meeting discussed below.

What is a TMDL?

A Total Maximum Daily Load (TMDL) is the sum of the allowable amount of a pollutant that a water body can receive from all contributing sources and still meet water quality standards or designated uses. The Upper Fox River-Chain O' Lakes watershed and Upper Fox River-Flint Creek watershed TMDL Stage One reports contain information that will form the basis for calculating TMDLs for impaired water bodies so that they meet their designated uses and water quality standards. The Illinois EPA implements the TMDL program in accordance with Section 303(d) of the federal Clean Water Act and regulations thereunder.

Public Meeting

A public meeting was held at the University Center of Lake County, in Grayslake, Illinois on August 25, 2009. The Illinois EPA provided public notice for both meetings by placing display ads in the *Northwest Herald and Grayslake Review* newspapers on August 6, 2009. This notice gave the date, time, location, and purpose of the meeting. The notice also provided references to obtain additional information about this specific site, the TMDL Program and other related issues. Approximately 87 individuals and organizations were also sent the public notice by first class mail, as well as many organization email lists. The draft TMDL Report was available for review at the Lake County Stormwater Commision office, and also on the Agency's web page at http://www.epa.state.il.us/public-notices/

A public meeting started at 6:00 p.m. on Tuesday, August 25, 2009. It was attended by approximately 39 people and concluded at 8:15 p.m. with the meeting record remaining open until midnight, September 24, 2009.

Questions and Comments

Many comments were received by mail and email. Comments related to typos, misspellings, and issues regarding report formatting are not discussed in this responsiveness summary. Those items have been reviewed and have been taken into account during the development of the final Stage One reports, and the future work in Stage Three. Below are the relevant questions and comments received along with the Illinois EPA response.

Isn't Gray's Lake actually in the Des Plaines River watershed?

<u>Response:</u> According to Lake County Storm Water Commission, while historically part of the Fox River basin, surface flow from Grays Lake is now diverted via a spillway and stormsewer system into the Des Plaines River watershed (Mill Creek). The NRCS watershed coverage used by Illinois EPA in developing the "Illinois Integrated Water Quality Report-2008" and AECOM in producing the draft Upper Fox Stage One reports incorrectly includes Grays Lake in the Fox River watershed. This will be noted in the final Stage One report. However, since a significant amount of effort has already been expended, including collecting additional water quality data from Grays lakes, Illinois EPA will continue on to Stage 3 TMDL development, unless the results of the newly collected data reveals no standard violations, at which time the cause would be considered for delisting. Lake County Stormwater Commission has provided Illinois EPA and AECOM with the correct watershed boundaries, which will be used to update the current Stage One reports and used in the Stage 3 reports.

Is it appropriate to calculate a whole lake TSI based on a median value? (This is probably a larger question for how TSIs are actually calculated and used in 305(b) assessments.)

<u>Response:</u> At Illinois EPA, a parameter-specific TSI is calculated from median total phosphorus (1' depth only), median chlorophyll a, and median NVSS values. We believe that the median value better represents central tendency for these water quality parameters than does an average value. The median is less affected by a single outlier, especially when relatively few data points are available. When available, data from multiple lake sites are used in the calculation of the parameter-specific median value and that is why we refer to the TSI calculated from that median value as a "whole-lake" TSI. The whole lake TSI is used in the assessment guidelines more as an indicator of resource health than as an actual determination of trophic state. Assessments for lakes are made for the lake as a whole waterbody and are not made for lake segments or portions of lakes.

Section 5.2.2 in Chain O'Lakes report: Hidden Lake is targeted for a TMDL due to elevated pH. But, it is stated that "if these impairments are found to be related to TP concentrations than [sp] a TP TMDL should be prepared." However, because Hidden Lake is only listed as 19.0 acres, then would a TP TMDL actually not be required?

<u>Response:</u> As stated in the report, if total phosphorus is found as the limiting factor in causing pH imbalances in the lake due to algal production, then a TMDL will be developed for total phosphorus as a surrogate for pH. Even though the standard does not apply, an appropriate target will be determined as necessary for bringing the pH into compliance with the pH water quality standard.

Fox/Chain Report: pg. 2-5, Line 1: Is there really no change in elevation from the start to the terminus of the watershed?

<u>Response:</u> According to an analysis of topographic maps, that is correct.

Can you explain why Grays Lake (and other similar lakes) needs a TMDL? 8 samples were used in the determination, but only 1 exceeded the water quality standard and both the average and median are less than the water quality standard. Are there any lakes where they exceeded the water quality standard at least once but no TMDL is being developed?

<u>Response:</u> According to the "Illinois Integrated Water Quality Report-2008", Grays Lake is impaired for Aesthetic Quality, with the cause being listed as total phosphorus. The methodology for determining use support for aesthetic quality can be found on pages 98-101 of the "Illinois Integrated Water Quality Report-2008". Once the use, in this case aesthetic quality, is determined to be impaired, potential cause or causes are then listed. If a single sample exceeds a parameter standard or criteria, that parameter is listed as a potential cause of impairment. As mentioned above, additional data was collected this summer and those sample results will be evaluated to determine if the causes of impairment have changed. If no total phosphorus results show violation, then a total phosphorus TMDL will not be developed for Grays Lake.

Since septic tanks are often referenced as potential sources, is there any way of constructing a septic tank service area map or overlay?

<u>Response:</u> Yes. This information will be presented and discussed in the Stage Three implementation plan. Those areas that are served by a sewage collection system will be noted, so those not in that area will be assumed to utilize on-site septic systems. If septic systems are thought to be considered a potential cause of impairment, the implementation plan will give recommendations for mitigating causes associated with this source.

Grays Lake is included in the report for TMDL development. SMC does not object to the development of a TMDL for this water body, but it should be noted that while historically part of the Fox River basin, surface flow from Grays Lake is now diverted via a spillway and stormsewer system into the Des Plaines River watershed (Mill Creek). Therefore, Grays Lake does not presently contribute surface drainage to the Upper Fox River-Chain O' Lakes watershed. SMC recommends that Illinois EPA verify the accuracy of the GraysLake catchment boundary that it will use to develop the Total Phosphorus TMDL. This isparticularly significant because Grays Lake has a relatively small catchment area and the export coefficients derived from land uses appear to be a main driver of loadings in the proposed model (LLRM).

<u>Response:</u> As discussed in previous comments, a TMDL for Grays Lake will be developed pending the results of the 2009 monitoring.

Final mapping for the TMDL reports could be improved for accuracy and legibility. In particular, Figures 2-2 and 2-12 incorrectly identify the locations of Chicago, McHenry, Round Lake Beach, and Grayslake. Figure 2-4 uses point markers to signify the locations of "cities," however, few municipalities are labeled and the geographic scale of the map is probably such that a polygon representing the actual corporate boundaries would be more useful. Additionally, the font size and color schemes used on some of the maps make them difficult to read. SMC also recommends that the GIS shapefiles for the watersheds of the Fox and Des Plaines Rivers be updated to show the present watershed boundary (with Grays Lake included in the Des Plaines watershed). Figure 5-1 does not show monitoring locations for Fox River segment DT-35 or for a number of lakes, although there is apparently existing water quality monitoring data.

<u>Response:</u> Thank you for your comment. Mapping corrections will appear in the final reports.

SMC maintains a rain gauge network with locations in the Fox River watershed at Antioch, Long Lake, Round Lake Park, and Wauconda. While the period of record is not as extensive as the data available from the State Climatologist for Antioch, the data could be of use for model calibration.

<u>Response:</u> Thank you for your comment. Illinois EPA and AECOM will work with SMC in identifying the appropriate gauges to use in modeling the hydrology.

The report indicates that discharge data for the Johnsburg gauge is available only for the period between 1997 and 1999. SMC recommends contacting IDNR-OWR for possible additional discharge information for the Stratton Dam. IDNR-OWR calculates discharges for use in the dam operation.

<u>Response:</u> Thank you for your comment. Illinois EPA and AECOM will contact IDNR-OWR concerning dam operation.

Figure 5-2 depicting the relationship between temperature, depth and dissolved oxygen concentration could be simplified or reformatted to make it easier to read. It is difficult to show the relationship between 4 variables (depth, temperature, dissolved oxygen, and date) on a graph with 2 axes. Perhaps using the same color for temperature and DO data from the same date would make the relationship between these two variables more apparent.

Response: Thank you for your comment. AECOM will re-evaluate the graph.

The findings of the Center for Watershed Protection report "Impacts of Impervious Cover on Aquatic Systems" and its associated Impervious Cover Model (e.g., that impairment of waters is common at 25% watershed impervious cover) are applicable only to 1st, 2nd, and 3rd order streams. While the relationship between watershed imperviousness and water quality is likely similar in lakes and streams, the model has not been validated for large rivers or lakes and reservoirs. If findings or information from this report are to be used as sources of data for model or TMDL development, this is an important consideration. Application of this data to lakes (or to segment DT-35, which may be larger than 3rd order) may not be scientifically defensible.

<u>Response:</u> The reference to the "Center for Watershed Protection" report was merely used as an explanation for linking land use to sources of water body impairment. This information will not be used in the modeling approach.

Under section "6.1.1 Fox River," combined sewer overflows are listed as a potential source of the fecal coliform impairment. It would be helpful to verify the locations of any combined sewer systems (in both the Illinois and Wisconsin portions of the watershed) before any models are developed. There are no known CSO outfalls in Lake County.

<u>Response:</u> Thank you for your comment. The Stage 3 report will investigate the locations of CSO outfalls. The Stage 1 report will be updated to note that no known CSOs exist in Lake County.

It was unclear at the public meeting (August 25, 2009) how the model will account for the pollutant loads from the Wisconsin portion of the watershed. This should be clarified in the Stage 3 report. The Wisconsin land area tributary to the mainstem Fox River and Nippersink Creek watersheds encompasses over 1,000 square miles (according to the Wisconsin Department of Natural Resources) and is a mix of agricultural and urban areas. This is likely a significant source area for loadings entering the Illinois portion of watershed in the TMDL study area, particularly since Wisconsin accounts for the vast majority of the drainage area tributary to segment DT-35. The Southeastern Wisconsin Regional Planning Commission (SEWRPC) has provided land use data to SMC for past watershed plans and should be contacted if this information would benefit the development of TMDLs. SMC can provide contact information for SEWRPC if needed. It will also be important to coordinate with Wisconsin DNR, since the TMDL implementation plan will likely require significant actions in the Wisconsin portion of the watershed to meet the water quality standards for the impaired Illinois segments of the Fox River and Chain O' Lakes.

<u>Response:</u> Thank you for your comment. Illinois EPA and AECOM will contact SEWRPC and Wisconsin Department of Natural Resources regarding these issues.

Numerous lakes in this watershed have internal cycling of nutrients listed as a potential cause of impairment. While modeling may provide more information toward this conclusion, it is unlikely that a TMDL implementation plan will be able to provide much in the way of actionable items or preventive measures (aside from dredging). If the models suggest this (internal cycling), it might be more useful to direct effort to waters where development of an implementation plan might lead to more meaningful action items (such as additional data gathering to illuminate source areas and identifying specific measures that can be taken to reduce loadings).

<u>Response:</u> Thank you for your comment. The amount of loading from internal cycling will be investigated during the modeling. The implementation plan will attempt to identify and address all potential sources of impairment, as well as future monitoring needs for the purpose of identifying sources of pollutants.

In addition to the calculation of pollutant loads, the most important outcome of the TMDL process is the implementation plan that will provide recommendations for site-specific practices that will reduce pollutant loads to impaired waters. The TMDL approaches used for lakes and the Fox River should ensure that model results will be precise enough to produce geographically specific recommendations that can be implemented to meet water quality standards. A more detailed watershed assessment may be needed if the data sources and models proposed for the TMDL cannot provide this level of precision. The report suggests that this may be done during stage 3 for segment DT-35 of the Fox River, but it is unclear if this will be done for other water bodies. For water bodies with allochthonous, non-point sources of impairment, particularly those with large tributary areas, additional monitoring and assessment are likely needed to produce meaningful, site-specific recommendations that can be implemented to reduce non-point source pollution.

<u>Response:</u> An implementation plan will be developed for the Fox-Chain and Fox-Flint TMDL reports. These plans will be specific to the listed causes of impairment for each waterbody that will have a TMDL developed. Due to the lack of resources and lack of site specific data, a general implementation plan will be developed that is based largely on known land uses and point sources for each subwatershed. While the TMDL implementation plan will not recommend site-specific actions, it can be used as the basis for a more detailed, site-specific watershed-based implementation plan that Illinois EPA encourages local agencies or watershed groups to develop.

Please consider the use of public domain models in the generation of the TMDLs for the Fox-Chain O' Lakes and Fox-Flint watershed. The use of proprietary models could present difficulties for stakeholders that might want to re-run the models with different parameter values (for instance, if a stakeholder group wanted to model future conditions with different land use values).

<u>Response:</u> Illinois will work with AECOM in selecting appropriate models based on the characteristics of the watershed, the causes of impairment, and the amount of available data. If a public domain model is not used, efforts will be made to ensure that the model and accompanying data can be shared with other entities.

Please consider providing a bibliography or list of references for literature cited in the report. This information could be helpful or of interest to others.

<u>Response:</u> Thank you for your comment. The final Stage 1 reports will include a list of references in the appendices.

Section 6.1 "Fox River DT-23" suggests that Stratton (McHenry) Lock and Dam is located upstream of this reach (this is suggested again in section 7.1). One would infer from the maps, however, that the dam is located near the downstream end of the reach. The dam is located adjacent to Moraine Hills State Park in McHenry County. Presumably, the location of the dam affects the outcome of the model for this reach. Please ensure

that the correct geographic location of Stratton (McHenry) Dam is used in TMDL development and stage reports.

<u>Response:</u> Thank you for your comment. This will be corrected in the final Stage 1 report.

Section 6.5 "Island Lake" reports only 2 impaired waters tributary to Island Lake: Drummond and Napa Suwe. Section 6.4 "Woodland Lake" reports that it is tributary to Mutton Creek and, therefore, to Island Lake.

Response: Thank you for your comment. This will be corrected in the final Stage 1 report.

Section 7.2 "Recommended Modeling Approach for Fecal Coliform" refers to impaired segments DT-35 and Deep Lake, which are not within the study area. This section should be revised, particularly if it affects the recommended modeling approach.

<u>Response:</u> Thank you for your comments. This will be corrected in the final Stage 1 report.

The Flint Creek Watershed Partnership completed a watershed-based plan under the USEPA/Illinois EPA 319 program. Please consider the recommendations in this plan when drafting recommendations for the implementation of the TMDL study for Grassy, Honey, Echo, and Louise Lakes. The Flint Creek plan is available online at: <u>http://www.flintcreekwatershed.org/watershed_plan.html.</u>

<u>Response:</u> Thank you for your comment. Any recent or past watershed plans will be incorporated into the TMDL implementation plans as appropriate.

Both reports document hydrology of the Fox River watershed in Section 2.7 Hydrology. The "Fox River - Chain of Lakes Watershed" report uses the gage located at the outlet for Grass Lake with a drainage area of 919 square miles and a range of flows of 230 cfs to 2500 cfs. These statistics are based on 2 years of record. We suggest that the hydrology of the Fox River could be improved by the use of the gage "Fox River near New Munster, Wisconsin" (drainage area 811 square miles) and its predecessor gage "Fox River at Wilmot, Wisconsin." The range of flows for their combined period of record of 68 years is 35 cfs to 7100 cfs. The "Upper Fox River - Flint Creek Watershed" report uses the Fox River at Johnsburg gage with a drainage area of 1205 square miles and a range of flows of 239 cfs to 4610 cfs. The discharge estimates for this gage are only based on 2 years of record. The gage "Nippersink Creek near Spring Grove" has 43 years of discharge record and a drainage area of 192 square miles. Combining the flow records from the gage "Fox River near New Munster, Wisconsin" with the gage "Nippersink Creek near Spring Grove, Illinois" (referenced in the Fox River- Chain of Lake Watershed report) would give the flows for 1003 square mile drainage area for the 43 years of record.

<u>Response:</u> Thank you for your comments. Illinois EPA and AECOM will work with IDNR and Lake County SMC to determine the appropriate gauges to use in modeling the watershed hydrology.

In the "Upper Fox River – Flint Creek Watershed" report, Section 6.1 Fox River DT-23 states "Suspected sources of low DO in this segment include flow and water level manipulation at the McHenry Dam located just upstream of this segment." Stratton Dam (McHenry Dam) is located at the downstream end of this segment. We question whether the gate operations at Stratton Dam have an impact on low dissolved oxygen levels considering that DO levels upstream of run-of-river dams typically have diurnal fluctuations that result in low DO levels for part of the time. We would like to see the results of the Stage 3 study which will determine the impacts of other potential sources of low DO, including the NPDES discharge, before the low DO levels are attributed to the Stratton Dam gate operations.

<u>Response:</u> Thank you for your comment. The location of the dam with respect to the stream segment will be corrected. Confirming sources of impairment from all sources will be one of the goals of Stage 3 TMDL development. The models used will account for impacts from all upstream point sources and other sources causing low DO in the stream segment.

In the "Upper Fox River – Flint Creek Watershed' report, Section 6.11 Fox River DT-22 discusses the impairments to the Fox River. The report states "Potential sources of water quality impairment in this segment include flow and water level manipulation at the McHenry Dam located upstream of this segment." We question how the operation of the gates at Stratton Dam effects dissolved oxygen, fecal coliform, and high pH levels. Under natural conditions flow and water levels fluctuate on rivers; how are the flow and water levels at Stratton Dam different than what occurs naturally on other parts of the Fox River.

<u>Response:</u> In the *Integrated Water Quality Report and 303(d) List-2008 lists* "dam or impoundment" as a potential source of low dissolved oxygen and pH. The potential source for total fecal coliform is listed as "unknown". Dams can restrict flow and cause impoundment-like conditions. These conditions can contribute to excessive algal growth, which in turn can contribute to low and high (super saturation) dissolved oxygen concentrations and high pH.

Please respond with the IEPA's plan to comply with the CWA to limit all forms of pollution as necessary to attain full use.

Response: The Illinois Water Quality Management Plan is available upon request.

As presented at the meeting, both pollutant and non-pollutant agents are increasingly responsible for impairment of our lakes and streams and lead to non-point source pollution. Because non-pollutant agents are very difficult to reverse or effectively mitigate, I strongly urge you to include them in this TMDL so that we can manage them proactively to prevent lakes in this watershed which are not yet impaired from becoming so. For this TMDL, please provide models that enable awareness of the threat posed by potential non-pollutant agents, that we can use to protect waters not presently impaired - that might become so as the others have. Please include all lakes in this watershed in this TMDL, and provide a predictive TMDL model for each.

<u>Response:</u> At this time, Illinois EPA only develops TMDLs for pollutants with numeric standards for water bodies that are currently listed as impaired. However, both pollutants without numeric standards and non-pollutants may be addressed in the implementation plan for water bodies which have TMDLs developed. Local entities or watershed groups are encouraged to develop watershed based plans that address local water quality concerns, including protection of waters that are currently not listed as impaired.

I also note that IEPA has already completed many TMDLs, and I would like to know what lessons from those prior TMDL's might reasonably be applied now to all of Illinois watersheds, but in particular, the Subject watershed, to prevent further decline, and to begin their recovery. Such measures can still be adjusted or augmented at the conclusion of this and other TMDL studies, and can serve to prevent further decline in the interim.

<u>Response:</u> We have found that a majority of the watersheds we have developed TMDLs in are mostly impaired due to nonpoint sources. Since Illinois EPA lacks any regulatory authority over nonpoint sources of pollution, the implementation needed to restore water quality depends on voluntary action. Therefore, the success of implementation hinges on the dedicated actions of local governments and private citizens. Illinois EPA highly encourages the formation of local watershed groups made up of a diverse group of stakeholders representing government, industry, and private citizens working together to develop and implement a watershed-based plan. Illinois EPA provides grant money to help offset costs of both watershed planning and implementation of that plan.

I urge you to request stage 2 data collection for Sequoit Creek itself. Using instruction and methods provided by Dr. Skrukrud, a group of volunteers conducted a limited number of monitoring visits to Sequoit Creek, performing chemical and biological measurements. The chemical data is presented at http://illinois.sierraclub.org/w&w/Sprawl/SentinelSequoit.html

<u>Response:</u> We will investigate the usability of this data for the purpose of estimating pollutant loading from Sequoit Creek into downstream TMDL water bodies. However, since Sequoit creek is currently

not listed as impaired, a TMDL will not be developed. Illinois EPA recently completed a Facility Related Stream Survey on the Village of Antioch's wastewater treatment plant. The chemical data from this survey will be reviewed and incorporated into the TMDL as appropriate.

Karr and Yoder also urge greater reliance on biological indicators. As documented by Linda Curtis in the book <u>Aquatic Plants of Northeastern Illinois</u>, these lakes have evolved and support unique threatened and endangered aquatic plants, and their habitats should be protected for them.

<u>Response:</u> Thank you for your comment. The methodology for assessing the Aquatic Life Use in lakes can be found in the Illinois Integrated Water Quality Report and Section 303(d) List-2008

Appendix B

Land Use Categories

Land Cover Category	Area (Acres)	Percent Area (%)	Category
Agriculture, Other	920.92	0.39	Agricultural Land
Nurseries, Greenhouses, Orchards, Tree			
Farms, and Sod F	3615.14	1.54	Agricultural Land
Pastureland	554.56	0.24	Agricultural Land
Row Crop, Grain, Grazing	75452.40	32.22	Agricultural Land
Other Vacant Land	200.05	0.09	Barren and Exposed Land
Under Construction	1878.68	0.80	Barren and Exposed Land
Forested, Grasslands, Vegetation	22882.90	9.77	Forested Land
Lakes, Reservoirs, Lagoons	15052.40	6.43	Surface Water
Rivers, Streams, Canals	1888.18	0.81	Surface Water
Commercial and Services	3195.83	1.36	Urban and Built-Up Land
Industrial, Warehousing, Wholesale Trade	4221.34	1.80	Urban and Built-Up Land
Institutional	2745.24	1.17	Urban and Built-Up Land
Open Space	28218.10	12.05	Urban and Built-Up Land
Residential	48674.30	20.78	Urban and Built-Up Land
Transportation, Communication, and Utilities	7548.67	3.22	Urban and Built-Up Land
Wetland	17163.00	7.33	Wetland
Total	234211.70	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	94.30	33.52	Surface Water
21	Developed, Open Space	31.36	11.15	Urban and Built-Up Land
22	Developed, Low Intensity	91.18	32.41	Urban and Built-Up Land
23	Developed, Medium Intensity	9.79	3.48	Urban and Built-Up Land
41	Deciduous Forest	21.35	7.59	Forested Land
43	Mixed Forest	6.67	2.37	Forested Land
71	Herbaceous	12.45	4.43	Forested Land
90	Woody Wetlands	14.23	5.06	Wetland
	Total	281.33	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	15.35	14.84	Surface Water
21	Developed, Open Space	16.23	15.70	Urban and Built-Up Land
22	Developed, Low Intensity	6.67	6.45	Urban and Built-Up Land
41	Deciduous Forest	2.89	2.80	Urban and Built-Up Land
71	Herbaceous	0.89	0.86	Forested Land
81	Hay/Pasture	10.90	10.54	Agricultural Land
82	Cultivated Crops	48.70	47.10	Agricultural Land
90	Woody Wetlands	1.78	1.72	Wetland
	Total	103.41	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	267.76	21.86	Surface Water
21	Developed, Open Space	120.09	9.80	Urban and Built-Up Land
22	Developed, Low Intensity	473.92	38.68	Urban and Built-Up Land
23	Developed, Medium Intensity	180.58	14.74	Urban and Built-Up Land
24	Developed, High Intensity	61.38	5.01	Urban and Built-Up Land
41	Deciduous Forest	44.92	3.67	Forested Land
43	Mixed Forest	4.67	0.38	Forested Land
52	Shrub/Scrub	0.89	0.07	Forested Land
71	Herbaceous	2.67	0.22	Forested Land
81	Hay/Pasture	13.34	1.09	Agricultural Land
82	Cultivated Crops	2.89	0.24	Agricultural Land
90	Woody Wetlands	24.69	2.01	Wetland
95	Emergent Herbaceous Wetlands	27.35	2.23	Wetland
	Total	1225.17	100	

Appendix B

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	448.35	6.70	Surface Water
21	Developed, Open Space	1803.84	26.96	Urban and Built-Up Land
22	Developed, Low Intensity	2193.70	32.79	Urban and Built-Up Land
23	Developed, Medium Intensity	416.77	6.23	Urban and Built-Up Land
24	Developed, High Intensity	114.09	1.71	Urban and Built-Up Land
31	Barren Land	10.23	0.15	Barren and Exposed Land
41	Deciduous Forest	659.18	9.85	Forested Land
42	Evergreen Forest	1.11	0.02	Forested Land
43	Mixed Forest	154.79	2.31	Forested Land
52	Shrub/Scrub	10.01	0.15	Forested Land
71	Herbaceous	74.06	1.11	Forested Land
81	Hay/Pasture	216.83	3.24	Agricultural Land
82	Cultivated Crops	230.85	3.45	Agricultural Land
90	Woody Wetlands	238.18	3.56	Wetland
95	Emergent Herbaceous Wetlands	118.54	1.77	Wetland
	Total	6690.52	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	70.72	6.00	Surface Water
21	Developed, Open Space	357.83	30.38	Urban and Built-Up Land
22	Developed, Low Intensity	337.37	28.64	Urban and Built-Up Land
23	Developed, Medium Intensity	55.82	4.74	Urban and Built-Up Land
24	Developed, High Intensity	33.80	2.87	Urban and Built-Up Land
41	Deciduous Forest	136.77	11.61	Forested Land
43	Mixed Forest	35.14	2.98	Forested Land
52	Shrub/Scrub	3.78	0.32	Forested Land
71	Herbaceous	46.04	3.91	Forested Land
90	Woody Wetlands	59.82	5.08	Wetland
95	Emergent Herbaceous Wetlands	40.92	3.47	Wetland
	Total	1178.02	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	361.17	6.02	Surface Water
21	Developed, Open Space	530.41	8.83	Urban and Built-Up Land
22	Developed, Low Intensity	1142.66	19.03	Urban and Built-Up Land
23	Developed, Medium Intensity	278.44	4.64	Urban and Built-Up Land
24	Developed, High Intensity	111.20	1.85	Urban and Built-Up Land
31	Barren Land	1.56	0.03	Barren and Exposed Land
41	Deciduous Forest	441.45	7.35	Forested Land
42	Evergreen Forest	2.45	0.04	Forested Land
43	Mixed Forest	70.50	1.17	Forested Land
52	Shrub/Scrub	11.56	0.19	Forested Land
71	Herbaceous	170.13	2.83	Forested Land
81	Hay/Pasture	923.16	15.38	Agricultural Land
82	Cultivated Crops	1117.09	18.61	Agricultural Land
90	Woody Wetlands	121.23	2.02	Wetland
95	Emergent Herbaceous Wetlands	721.17	12.01	Wetland
	Total	6004.17	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	21.79	43.56	Surface Water
21	Developed, Open Space	4.67	9.33	Urban and Built-Up Land
22	Developed, Low Intensity	14.68	29.33	Urban and Built-Up Land
23	Developed, Medium Intensity	0.44	0.89	Urban and Built-Up Land
41	Deciduous Forest	3.11	6.22	Forested Land
43	Mixed Forest	4.23	8.44	Forested Land
90	Woody Wetlands	1.11	2.22	Wetland
	Total	50.04	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	135.22	11.97	Surface Water
21	Developed, Open Space	221.28	19.59	Urban and Built-Up Land
22	Developed, Low Intensity	268.21	23.74	Urban and Built-Up Land
23	Developed, Medium Intensity	23.35	2.07	Urban and Built-Up Land
41	Deciduous Forest	105.86	9.37	Forested Land
43	Mixed Forest	23.80	2.11	Forested Land
52	Shrub/Scrub	2.22	0.20	Forested Land
71	Herbaceous	39.36	3.48	Forested Land
81	Hay/Pasture	111.20	9.84	Agricultural Land
82	Cultivated Crops	149.67	13.25	Agricultural Land
90	Woody Wetlands	44.26	3.92	Wetland
95	Emergent Herbaceous Wetlands	5.34	0.47	Wetland
	Total	1129.76	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	200.38	12.38	Surface Water
21	Developed, Open Space	435.45	26.91	Urban and Built-Up Land
22	Developed, Low Intensity	759.70	46.94	Urban and Built-Up Land
23	Developed, Medium Intensity	59.16	3.66	Urban and Built-Up Land
24	Developed, High Intensity	5.78	0.36	Urban and Built-Up Land
31	Barren Land	1.56	0.10	Barren and Exposed Land
41	Deciduous Forest	89.85	5.55	Forested Land
42	Evergreen Forest	2.89	0.18	Forested Land
43	Mixed Forest	21.57	1.33	Forested Land
52	Shrub/Scrub	2.67	0.16	Forested Land
71	Herbaceous	2.22	0.14	Forested Land
90	Woody Wetlands	37.14	2.29	Wetland
	Total	1618.36	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	552.87	10.03	Surface Water
21	Developed, Open Space	661.40	11.99	Urban and Built-Up Land
22	Developed, Low Intensity	1541.42	27.95	Urban and Built-Up Land
23	Developed, Medium Intensity	462.58	8.39	Urban and Built-Up Land
24	Developed, High Intensity	129.88	2.36	Urban and Built-Up Land
41	Deciduous Forest	763.48	13.84	Forested Land
42	Evergreen Forest	14.68	0.27	Forested Land
43	Mixed Forest	148.56	2.69	Forested Land
52	Shrub/Scrub	52.49	0.95	Forested Land
71	Herbaceous	127.65	2.31	Forested Land
81	Hay/Pasture	241.74	4.38	Agricultural Land
82	Cultivated Crops	441.01	8.00	Agricultural Land
90	Woody Wetlands	235.07	4.26	Wetland
95	Emergent Herbaceous Wetlands	142.11	2.58	Wetland
	Total	5514.94	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	31.80	2.57	Surface Water
21	Developed, Open Space	357.39	28.89	Urban and Built-Up Land
22	Developed, Low Intensity	418.77	33.85	Urban and Built-Up Land
23	Developed, Medium Intensity	31.58	2.55	Urban and Built-Up Land
24	Developed, High Intensity	1.56	0.13	Urban and Built-Up Land
41	Deciduous Forest	77.17	6.24	Forested Land
43	Mixed Forest	6.00	0.49	Forested Land
52	Shrub/Scrub	2.67	0.22	Forested Land
81	Hay/Pasture	116.76	9.44	Agricultural Land
82	Cultivated Crops	149.23	12.06	Agricultural Land
90	Woody Wetlands	19.57	1.58	Wetland
95	Emergent Herbaceous Wetlands	24.46	1.98	Wetland
	Total	1236.96	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
11	Open Water	236	7.33	Surface Water
21	Developed, Open Space	913	28.41	Urban and Built-Up Land
22	Developed, Low Intensity	1028	32.01	Urban and Built-Up Land
23	Developed, Medium Intensity	63	1.97	Urban and Built-Up Land
24	Developed, High Intensity	3	0.08	Urban and Built-Up Land
41	Deciduous Forest	324	10.09	Forested Land
43	Mixed Forest	42	1.30	Forested Land
52	Shrub/Scrub	4	0.12	Forested Land
71	Herbaceous	78	2.44	Forested Land
81	Hay/Pasture	130	4.06	Agricultural Land
82	Cultivated Crops	176	5.49	Agricultural Land
90	Woody Wetlands	129	4.03	Wetland
95	Emergent Herbaceous Wetlands	86	2.67	Wetland
	Total	3213	100	

Land Cover Code	Land Cover Category	Area (Acres)	Percent Area (%)	Category
21	Developed, Open Space	17.35	28.89	Urban and Built-Up Land
22	Developed, Low Intensity	41.14	68.52	Urban and Built-Up Land
23	Developed, Medium Intensity	0.22	0.37	Urban and Built-Up Land
41	Deciduous Forest	1.11	1.85	Forested Land
43	Mixed Forest	0.22	0.37	Forested Land
	Total	60.05	100	

Appendix C

SSURGO Soil Series

Hydrologic Group - Dominant Condition	Area (Acres)	Percent Area (%)
A	261.79	0.24
A/D	10981.34	10.15
В	41458.28	38.30
B/D	12816.49	11.84
С	25060.47	23.15
C/D	10265.36	9.48
D	925.40	0.85
(blank)	6467.92	5.98
Total	108237.06	100.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Andres silt loam, 0 to 2 percent slopes	3.26	0.00
Andres silt loam, 0 to 2 percent slopes	6.11	0.01
Andres silt loam, 0 to 2 percent slopes	5.75	0.01
Andres silt loam, 0 to 2 percent slopes	4.81	0.00
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	1.97	0.00
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	14.43	0.01
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	0.55	0.00
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	23.53	0.02
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	21.46	0.02
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	1.70	0.00
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	5.30	0.00
Aptakisic and Nappanee silt loams, 0 to 2 percent slopes	6.61	0.01
Aptakisic and Nappanee silt loams, 2 to 4 percent slopes	2.60	0.00
Aptakisic and Nappanee silt loams, 2 to 4 percent slopes	5.54	0.01
Aptakisic and Nappanee silt loams, 2 to 4 percent slopes	9.89	0.01
Aptakisic silt loam, 0 to 2 percent slopes	3.76	0.00
Aptakisic silt loam, 0 to 2 percent slopes	9.72	0.01
Aptakisic silt loam, 0 to 2 percent slopes	2.94	0.00
Aptakisic silt loam, 0 to 2 percent slopes	4.81	0.00
Aptakisic silt loam, 0 to 2 percent slopes	5.89	0.01
Aptakisic silt loam, 0 to 2 percent slopes	7.89	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.69	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.45	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.36	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.64	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.94	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.22	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.13	0.00

Soil Description	Area (Acres)	Percent Area
Ashkum silty clay loam. 0 to 2 percent slopes	1.72	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	10.33	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	3.31	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.70	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.16	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.37	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	54.80	0.05
Ashkum silty clay loam. 0 to 2 percent slopes	1.03	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	3.43	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	17.37	0.02
Ashkum silty clay loam. 0 to 2 percent slopes	1.20	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	3.44	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	6.60	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	41.16	0.04
Ashkum silty clay loam. 0 to 2 percent slopes	7.91	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	4.01	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1.44	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.68	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.54	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.40	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.77	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.62	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	7.51	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	4.87	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.38	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.34	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.75	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.88	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	148.56	0.14
Ashkum silty clay loam, 0 to 2 percent slopes	1.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	9.24	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.15	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.96	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	10.93	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.08	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	13.10	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.81	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.99	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	12.37	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	10.18	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	11.61	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ashkum silty clay loam. 0 to 2 percent slopes	1.50	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	14.28	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	7.45	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.60	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.54	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.77	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.93	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	23.59	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.32	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	85.42	0.08
Ashkum silty clay loam, 0 to 2 percent slopes	8.12	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	30.91	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	20.12	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	9.03	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.84	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.03	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	25.72	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	2.97	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	228.49	0.21
Ashkum silty clay loam, 0 to 2 percent slopes	5.15	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.31	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	8.66	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.65	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.13	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	18.71	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	4.18	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	98.31	0.09
Ashkum silty clay loam, 0 to 2 percent slopes	16.73	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	0.79	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.35	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.13	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.92	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	32.29	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	10.22	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	22.94	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	3.93	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.69	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.33	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.19	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.92	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ashkum silty clay loam. 0 to 2 percent slopes	2.40	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1.51	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.11	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.49	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	21.30	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	2.95	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	3.73	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	2.50	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.77	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.21	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.10	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.54	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	2.12	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.18	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.80	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	13.91	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.23	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	11.36	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	17.38	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.25	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.37	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.93	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.37	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	11.00	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.22	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	29.04	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	1.60	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.43	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	20.51	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.71	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.47	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.30	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	14.10	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.08	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	44.83	0.04
Ashkum silty clay loam, 0 to 2 percent slopes	2.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.49	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.07	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	10.61	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	7.72	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ashkum silty clay loam, 0 to 2 percent slopes	9.48	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.93	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	11.52	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	8.13	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.44	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.11	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.52	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	7.24	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	32.17	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	21.26	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	2.21	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	23.89	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	19.48	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.04	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.91	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.42	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.01	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.61	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.99	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.82	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.05	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.35	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.80	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	14.20	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.50	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	9.77	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.30	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.07	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.97	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.72	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	21.59	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.22	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.70	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.40	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.47	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.41	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.90	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.87	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	11.02	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.72	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ashkum silty clay loam, 0 to 2 percent slopes	1.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.60	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	1.24	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.38	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.43	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.81	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.95	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.15	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.38	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.30	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.44	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.27	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.04	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.68	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.58	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.47	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	20.11	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	20.47	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	0.92	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.24	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.24	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.91	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.12	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.81	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.94	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.47	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	10.19	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.73	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	10.25	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.50	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.39	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.06	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.92	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.63	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.42	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.75	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.00	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.03	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.79	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.52	0.00
Soil Description	Area (Acres)	Percent Area
---	-----------------	--------------
Ashkum silty clay loam. 0 to 2 percent slopes	(Aci C3)	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.06	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2 45	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	5 35	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	0.67	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	34 11	0.03
Ashkum silty clay loam. 0 to 2 percent slopes	11 48	0.03
Ashkum silty clay loam. 0 to 2 percent slopes	3 53	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	12.05	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1 53	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	2.01	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	0.70	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	16.16	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1 1 2	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.62	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.51	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5 70	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.70	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.45	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1 57	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.52	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1 40	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	21 / 7	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.42	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	4 73	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	5 50	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.28	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	3 95	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4 31	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	47.40	0.04
Ashkum silty clay loam, 0 to 2 percent slopes	1.45	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	10.90	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	10.74	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	10.29	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.27	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.26	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.89	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.20	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	12.03	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	26.44	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.71	0.00

Soil Description	Area	Percent Area
Ashkum silty clay loam 0 to 2 percent slopes	19.98	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	19.11	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	2.24	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1.96	0.00
Ashkum silty clay loam. 0 to 2 percent slopes	1.75	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.42	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	14.48	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.87	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	14.53	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.30	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.71	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.68	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.24	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.74	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.26	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.64	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.59	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	14.92	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.87	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.23	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	18.44	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	1.92	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.70	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.89	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	7.17	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	22.70	0.02
Ashkum silty clay loam, 0 to 2 percent slopes	7.64	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	4.59	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.86	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.22	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	5.47	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.40	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	10.43	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.88	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	0.65	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.76	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	11.05	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	4.98	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.30	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.77	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ashkum silty clay loam. 0 to 2 percent slopes	7.43	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	40.26	0.04
Ashkum silty clay loam, 0 to 2 percent slopes	82.90	0.08
Ashkum silty clay loam, 0 to 2 percent slopes	4.28	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.20	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	6.73	0.01
Ashkum silty clay loam. 0 to 2 percent slopes	9.10	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	5.78	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	0.01	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	8.02	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	143.51	0.13
Ashkum silty clay loam. 0 to 2 percent slopes	11.53	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	12.31	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	1.33	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	9.42	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.42	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.04	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	2.33	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.33	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.83	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	9.57	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	12.55	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	2.87	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	3.81	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	35.95	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	74.55	0.07
Ashkum silty clay loam, 0 to 2 percent slopes	38.31	0.04
Ashkum silty clay loam, 0 to 2 percent slopes	13.73	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	30.33	0.03
Ashkum silty clay loam, 0 to 2 percent slopes	6.35	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	15.26	0.01
Ashkum silty clay loam, 0 to 2 percent slopes	3.91	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.82	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	1.08	0.00
Ashkum silty clay loam, 0 to 2 percent slopes	4.92	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	6.60	0.01
Barrington and Varna silt loams, 2 to 4 percent slopes	3.56	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	3.52	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	3.23	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	0.02	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	7.75	0.01

Soil Description	Area (Acres)	Percent Area
Barrington and Varna silt Joams, 2 to 4 percent slopes	18.74	0.02
Barrington and Varna silt loams, 2 to 4 percent slopes	1.53	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	40.51	0.04
Barrington and Varna silt loams, 2 to 4 percent slopes	4.69	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	19.07	0.02
Barrington and Varna silt loams, 2 to 4 percent slopes	7.38	0.01
Barrington and Varna silt loams, 2 to 4 percent slopes	5.25	0.00
Barrington and Varna silt loams, 2 to 4 percent slopes	5.30	0.00
Barrington silt loam, 0 to 2 percent slopes	2.98	0.00
Barrington silt loam, 0 to 2 percent slopes	4.49	0.00
Barrington silt loam, 2 to 4 percent slopes	2.05	0.00
Barrington silt loam, 2 to 4 percent slopes	1.73	0.00
Barrington silt loam, 2 to 4 percent slopes	3.60	0.00
Beecher silt loam, 0 to 2 percent slopes	0.87	0.00
Beecher silt loam, 0 to 2 percent slopes	15.01	0.01
Beecher silt loam, 0 to 2 percent slopes	4.24	0.00
Beecher silt loam, 0 to 2 percent slopes	6.57	0.01
Beecher silt loam, 0 to 2 percent slopes	1.27	0.00
Beecher silt loam, 0 to 2 percent slopes	2.13	0.00
Beecher silt loam, 0 to 2 percent slopes	10.30	0.01
Beecher silt loam, 0 to 2 percent slopes	2.13	0.00
Beecher silt loam, 0 to 2 percent slopes	1.98	0.00
Beecher silt loam, 0 to 2 percent slopes	5.00	0.00
Beecher silt loam, 0 to 2 percent slopes	3.90	0.00
Beecher silt loam, 0 to 2 percent slopes	1.24	0.00
Beecher silt loam, 0 to 2 percent slopes	6.05	0.01
Beecher silt loam, 0 to 2 percent slopes	3.53	0.00
Beecher silt loam, 0 to 2 percent slopes	2.58	0.00
Beecher silt loam, 0 to 2 percent slopes	1.55	0.00
Beecher silt loam, 0 to 2 percent slopes	1.32	0.00
Beecher silt loam, 0 to 2 percent slopes	13.07	0.01
Beecher silt loam, 0 to 2 percent slopes	5.65	0.01
Beecher silt loam, 0 to 2 percent slopes	4.69	0.00
Beecher silt loam, 0 to 2 percent slopes	4.77	0.00
Beecher silt loam, 0 to 2 percent slopes	1.93	0.00
Beecher silt loam, 0 to 2 percent slopes	8.24	0.01
Beecher silt loam, 0 to 2 percent slopes	1.42	0.00
Beecher silt loam, 0 to 2 percent slopes	2.62	0.00
Beecher silt loam, 0 to 2 percent slopes	1.29	0.00
Beecher silt loam, 0 to 2 percent slopes	4.09	0.00
Beecher silt loam, 0 to 2 percent slopes	1.78	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Beecher silt loam, 0 to 2 percent slopes	0.90	0.00
Beecher silt loam, 0 to 2 percent slopes	8.27	0.01
Beecher silt loam, 0 to 2 percent slopes	0.25	0.00
Beecher silt loam, 0 to 2 percent slopes	2.48	0.00
Beecher silt loam, 0 to 2 percent slopes	5.71	0.01
Beecher silt loam, 0 to 2 percent slopes	3.34	0.00
Beecher silt loam, 0 to 2 percent slopes	3.62	0.00
Beecher silt loam, 0 to 2 percent slopes	85.80	0.08
Beecher silt loam, 0 to 2 percent slopes	1.10	0.00
Beecher silt loam, 0 to 2 percent slopes	5.63	0.01
Beecher silt loam, 0 to 2 percent slopes	2.56	0.00
Beecher silt loam, 0 to 2 percent slopes	10.91	0.01
Beecher silt loam, 0 to 2 percent slopes	1.97	0.00
Beecher silt loam, 0 to 2 percent slopes	7.40	0.01
Beecher silt loam, 0 to 2 percent slopes	2.22	0.00
Beecher silt loam, 0 to 2 percent slopes	5.08	0.00
Beecher silt loam, 0 to 2 percent slopes	2.05	0.00
Beecher silt loam, 0 to 2 percent slopes	4.15	0.00
Beecher silt loam, 0 to 2 percent slopes	5.79	0.01
Beecher silt loam, 0 to 2 percent slopes	1.41	0.00
Beecher silt loam, 0 to 2 percent slopes	15.73	0.01
Beecher silt loam, 0 to 2 percent slopes	3.64	0.00
Beecher silt loam, 0 to 2 percent slopes	1.00	0.00
Beecher silt loam, 0 to 2 percent slopes	2.48	0.00
Beecher silt loam, 0 to 2 percent slopes	3.71	0.00
Beecher silt loam, 0 to 2 percent slopes	6.23	0.01
Beecher silt loam, 0 to 2 percent slopes	2.87	0.00
Beecher silt loam, 0 to 2 percent slopes	1.44	0.00
Beecher silt loam, 0 to 2 percent slopes	1.79	0.00
Beecher silt loam, 0 to 2 percent slopes	3.08	0.00
Beecher silt loam, 0 to 2 percent slopes	6.14	0.01
Beecher silt loam, 0 to 2 percent slopes	7.41	0.01
Beecher silt loam, 0 to 2 percent slopes	9.74	0.01
Beecher silt loam, 0 to 2 percent slopes	7.79	0.01
Beecher silt loam, 0 to 2 percent slopes	0.89	0.00
Beecher silt loam, 0 to 2 percent slopes	1.75	0.00
Beecher silt loam, 0 to 2 percent slopes	11.87	0.01
Beecher silt loam, 0 to 2 percent slopes	0.22	0.00
Beecher silt loam, 0 to 2 percent slopes	9.28	0.01
Beecher silt loam, 0 to 2 percent slopes	2.31	0.00
Beecher silt loam, 0 to 2 percent slopes	3.24	0.00

Soil Description	Area (Acres)	Percent Area (%)
Beecher silt loam, 0 to 2 percent slopes	5.77	0.01
Beecher silt loam. 0 to 2 percent slopes	13.77	0.01
Beecher silt loam, 0 to 2 percent slopes	2.42	0.00
Beecher silt loam, 0 to 2 percent slopes	2.31	0.00
Beecher silt loam, 0 to 2 percent slopes	2.71	0.00
Beecher silt loam, 2 to 4 percent slopes	8.20	0.01
Beecher silt loam, 2 to 4 percent slopes	2.48	0.00
Beecher silt loam, 2 to 4 percent slopes	1.35	0.00
Beecher silt loam, 2 to 4 percent slopes	20.41	0.02
Beecher silt loam, 2 to 4 percent slopes	4.50	0.00
Beecher silt loam, 2 to 4 percent slopes	0.47	0.00
Beecher silt loam, 2 to 4 percent slopes	31.03	0.03
Beecher silt loam, 2 to 4 percent slopes	14.39	0.01
Beecher silt loam, 2 to 4 percent slopes	73.87	0.07
Beecher silt loam, 2 to 4 percent slopes	3.09	0.00
Beecher silt loam, 2 to 4 percent slopes	11.05	0.01
Beecher silt loam, 2 to 4 percent slopes	1.95	0.00
Beecher silt loam, 2 to 4 percent slopes	25.64	0.02
Beecher silt loam, 2 to 4 percent slopes	20.24	0.02
Beecher silt loam, 2 to 4 percent slopes	14.14	0.01
Beecher silt loam, 2 to 4 percent slopes	1.13	0.00
Beecher silt loam, 2 to 4 percent slopes	10.04	0.01
Beecher silt loam, 2 to 4 percent slopes	6.63	0.01
Beecher silt loam, 2 to 4 percent slopes	3.46	0.00
Beecher silt loam, 2 to 4 percent slopes	10.08	0.01
Beecher silt loam, 2 to 4 percent slopes	2.76	0.00
Beecher silt loam, 2 to 4 percent slopes	26.72	0.02
Beecher silt loam, 2 to 4 percent slopes	11.87	0.01
Beecher silt loam, 2 to 4 percent slopes	7.52	0.01
Beecher silt loam, 2 to 4 percent slopes	7.82	0.01
Beecher silt loam, 2 to 4 percent slopes	4.55	0.00
Beecher silt loam, 2 to 4 percent slopes	2.13	0.00
Beecher silt loam, 2 to 4 percent slopes	4.27	0.00
Beecher silt loam, 2 to 4 percent slopes	4.73	0.00
Beecher silt loam, 2 to 4 percent slopes	8.03	0.01
Beecher silt loam, 2 to 4 percent slopes	4.63	0.00
Beecher silt loam, 2 to 4 percent slopes	1.26	0.00
Beecher silt loam, 2 to 4 percent slopes	13.14	0.01
Beecher silt loam, 2 to 4 percent slopes	3.83	0.00
Beecher silt loam, 2 to 4 percent slopes	9.91	0.01
Beecher silt loam, 2 to 4 percent slopes	12.14	0.01

Soil Description	Area	Percent Area
Reacher silt loam 2 to 4 percent slopes	(ACIES)	(/0)
Beecher silt loam, 2 to 4 percent slopes	5.02	0.00
Beecher silt loam, 2 to 4 percent slopes	0.77	0.01
Beecher silt loam, 2 to 4 percent slopes	2 79	0.00
Beecher silt loam, 2 to 4 percent slopes	2.75	0.00
Beecher silt loam, 2 to 4 percent slopes	20.40	0.02
Beecher silt loam, 2 to 4 percent slopes	3.54	0.01
Beecher silt loam, 2 to 4 percent slopes	2.53	0.00
Beecher silt loam, 2 to 4 percent slopes	2.55	0.00
Beecher silt loam, 2 to 4 percent slopes	4.16	0.00
Beecher silt loam, 2 to 4 percent slopes	4.10	0.00
Beecher silt loam, 2 to 4 percent slopes	12.08	0.00
Beecher silt loam, 2 to 4 percent slopes	2 12	0.01
Beecher silt loam, 2 to 4 percent slopes	0.06	0.00
Beecher silt loam, 2 to 4 percent slopes	5.21	0.00
Beecher silt loam, 2 to 4 percent slopes	5.21	0.00
Beecher silt loam, 2 to 4 percent slopes	5.02	0.01
Beecher silt loam, 2 to 4 percent slopes	3.00 17.26	0.01
Beecher silt loam, 2 to 4 percent slopes	2 15	0.02
Beecher silt loam, 2 to 4 percent slopes	3.13 4.22	0.00
Beecher silt loam, 2 to 4 percent slopes	4.33	0.00
Beecher silt loam, 2 to 4 percent slopes	2.05	0.01
Beecher silt loam, 2 to 4 percent slopes	2.95	0.00
Beecher silt loam, 2 to 4 percent slopes	29.33	0.03
Beecher silt loam, 2 to 4 percent slopes	0.45	0.01
Beecher silt loam, 2 to 4 percent slopes	2.03	0.00
Beecher silt loam, 2 to 4 percent slopes	8.92 4.64	0.01
Beecher silt loam, 2 to 4 percent slopes	4.04	0.00
Beecher silt loam, 2 to 4 percent slopes	1.40	0.00
Beecher silt loam, 2 to 4 percent slopes	1/3.32	0.10
Beecher silt loam, 2 to 4 percent slopes	1.90 5.02	0.00
Beecher silt loam, 2 to 4 percent slopes	2.32	0.01
Beecher silt loam, 2 to 4 percent slopes	5.55 21.20	0.00
Beecher silt loam, 2 to 4 percent slopes	21.30	0.02
Beecher silt loam, 2 to 4 percent slopes	11.06	0.00
Beecher silt loam, 2 to 4 percent clopes	11.30	0.01
Beecher silt loam, 2 to 4 percent slopes	4.0U	0.00
Beecher silt loam, 2 to 4 percent slopes	0.43	0.01
Peocher silt loam 2 to 4 percent clones	35.40	0.03
Beecher silt loam, 2 to 4 percent slopes	1.91	0.00
Beecher silt loam, 2 to 4 percent slopes	1.99	0.00
Beecher slit loam, 2 to 4 percent slopes	15.82	0.01

Soil Description	Area (Acres)	Percent Area
Beecher silt loam, 2 to 4 percent slopes	48.33	0.04
Beecher silt loam, 2 to 4 percent slopes	3.36	0.00
Beecher silt loam, 2 to 4 percent slopes	7.35	0.01
Beecher silt loam, 2 to 4 percent slopes	20.52	0.02
Beecher silt loam, 2 to 4 percent slopes	2.26	0.00
Beecher silt loam, 2 to 4 percent slopes	4.22	0.00
Beecher silt loam, 2 to 4 percent slopes	14.87	0.01
Beecher silt loam, 2 to 4 percent slopes	2.06	0.00
Beecher silt loam, 2 to 4 percent slopes	0.05	0.00
Beecher silt loam, 2 to 4 percent slopes	6.11	0.01
Beecher silt loam, 2 to 4 percent slopes	5.02	0.00
Beecher silt loam, 2 to 4 percent slopes	4.83	0.00
Beecher silt loam, 2 to 4 percent slopes	5.60	0.01
Beecher silt loam, 2 to 4 percent slopes	5.16	0.00
Beecher silt loam, 2 to 4 percent slopes	1.92	0.00
Beecher silt loam, 2 to 4 percent slopes	1.29	0.00
Beecher silt loam, 2 to 4 percent slopes	6.28	0.01
Beecher silt loam, 2 to 4 percent slopes	1.07	0.00
Beecher silt loam, 2 to 4 percent slopes	104.20	0.10
Beecher silt loam, 2 to 4 percent slopes	3.32	0.00
Beecher silt loam, 2 to 4 percent slopes	3.93	0.00
Beecher silt loam, 2 to 4 percent slopes	2.40	0.00
Beecher silt loam, 2 to 4 percent slopes	1.86	0.00
Beecher silt loam, 2 to 4 percent slopes	11.65	0.01
Beecher silt loam, 2 to 4 percent slopes	5.29	0.00
Beecher silt loam, 2 to 4 percent slopes	2.33	0.00
Beecher silt loam, 2 to 4 percent slopes	3.95	0.00
Beecher silt loam, 2 to 4 percent slopes	3.88	0.00
Beecher silt loam, 2 to 4 percent slopes	10.78	0.01
Beecher silt loam, 2 to 4 percent slopes	4.49	0.00
Beecher silt loam, 2 to 4 percent slopes	5.05	0.00
Beecher silt loam, 2 to 4 percent slopes	4.60	0.00
Beecher silt loam, 2 to 4 percent slopes	1.97	0.00
Beecher silt loam, 2 to 4 percent slopes	7.01	0.01
Beecher silt loam, 2 to 4 percent slopes	6.29	0.01
Beecher silt loam, 2 to 4 percent slopes	6.66	0.01
Beecher silt loam, 2 to 4 percent slopes	5.61	0.01
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	2.07	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	6.73	0.01
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	4.10	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	1.40	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	3.27	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	5.67	0.01
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	4.40	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	2.00	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	6.41	0.01
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	2.69	0.00
Blount silt loam, Lake Michigan Lobe, 0 to 2 percent slopes	6.19	0.01
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	3.34	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	4.24	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	4.10	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	16.38	0.02
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	2.99	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	3.76	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	3.75	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	11.71	0.01
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	3.73	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	2.92	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	4.70	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	44.65	0.04
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	3.04	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	1.66	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	4.26	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	10.74	0.01
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	24.29	0.02
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	2.93	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	0.79	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	4.15	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	13.85	0.01
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	1.20	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	1.26	0.00
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	6.91	0.01
Blount silt loam, Lake Michigan Lobe, 2 to 4 percent slopes	2.05	0.00
Bowes silt loam, 0 to 2 percent slopes	10.35	0.01
Bowes silt loam, 0 to 2 percent slopes	8.58	0.01
Bowes silt loam, 0 to 2 percent slopes	15.42	0.01
Bowes silt loam, 0 to 2 percent slopes	4.82	0.00
Bowes silt loam, 0 to 2 percent slopes	2.35	0.00
Bowes silt loam, 0 to 2 percent slopes	26.14	0.02
Bowes silt loam, 0 to 2 percent slopes	58.29	0.05
Bowes silt loam, 0 to 2 percent slopes	19.17	0.02
Bowes silt loam, 0 to 2 percent slopes	0.77	0.00

Soil Description	Area	Percent Area
Power silt loam 0 to 2 persent clopes	(Acres)	(%)
Bowes silt loam, 0 to 2 percent slopes	2 99	0.01
Bowes silt loam 0 to 2 percent slopes	2.88	0.00
Bowes silt loam, 0 to 2 percent slopes	7.62	0.00
Bowes silt loam, 0 to 2 percent slopes	14.09	0.01
Bowes silt loam 0 to 2 percent slopes	4.03	0.01
Bowes silt loam 0 to 2 percent slopes	4.01	0.00
Bowes silt loam 0 to 2 percent slopes	5.74	0.00
Bowes silt loam, 0 to 2 percent slopes	9.74	0.01
Bowes silt loam 0 to 2 percent slopes	2 73	0.01
Bowes silt loam, 0 to 2 percent slopes	2.73	0.00
Bowes silt loam, 0 to 2 percent slopes	4.25	0.00
Bowes silt loam, 2 to 4 percent slopes	5.13	0.00
Bowes silt loam 2 to 4 percent slopes	28.03	0.01
Bowes silt loam, 2 to 4 percent slopes	10.74	0.03
Bowes silt loam, 2 to 4 percent slopes	2 25	0.01
Bowes silt loam, 2 to 4 percent slopes	12.23	0.00
Bowes silt loam, 2 to 4 percent slopes	2.00	0.01
Bowes silt loam, 2 to 4 percent slopes	5.02	0.00
Bowes silt loam, 2 to 4 percent slopes	2.53	0.01
Bowes silt loam, 2 to 4 percent slopes	12.07	0.00
Bowes silt loam, 2 to 4 percent slopes	1 27	0.01
Bowes silt loam, 2 to 4 percent slopes	1.37	0.00
Bowes silt loam, 2 to 4 percent slopes	4.07	0.00
Bowes silt loam, 2 to 4 percent slopes	4.57	0.00
Bowes silt loam, 2 to 4 percent slopes	16 10	0.04
Bowes silt loam, 2 to 4 percent slopes	142.01	0.01
Bowes silt loam, 2 to 4 percent slopes	145.91	0.15
Bowes silt loam, 2 to 4 percent slopes	4.31 24.19	0.00
Bowes silt loam, 2 to 4 percent slopes	24.10	0.02
Bowes silt loam, 2 to 4 percent slopes	14.24	0.00
Power silt loam, 2 to 4 percent slopes	14.24	0.01
Bowes silt loam, 2 to 4 percent slopes	43.00	0.04
Bowes silt loam, 2 to 4 percent slopes	16.03	0.01
Bowes silt loam, 2 to 4 percent slopes	0.38	0.02
Bowes silt loam, 2 to 4 percent slopes	2.00	0.01
Bowes silt loam 2 to 4 percent slopes	2.90	0.00
Bowes silt loam 2 to 4 percent slopes	20.40	0.02
Bowes silt loam 2 to 4 percent slopes	11.21	0.02
Bowes sitt loam 2 to 4 percent slopes	2.00	0.00
Bowes silt loam 2 to 4 percent slopes	22.02	0.02
bowes sin roam, 2 to 4 percent slopes	30.54	0.03

Soil Description	Area	Percent Area
Bowes silt loam 2 to 4 percent slopes	5.58	0.01
Bowes silt loam, 2 to 4 percent slopes	5.50	0.00
Bowes silt loam, 2 to 4 percent slopes	7.27	0.01
Bowes silt loam, 2 to 4 percent slopes	18.40	0.02
Bowes silt loam, 2 to 4 percent slopes	4.50	0.00
Bowes silt loam, 2 to 4 percent slopes	5.08	0.00
Bowes silt loam, 2 to 4 percent slopes	12.93	0.01
Bowes silt loam, 2 to 4 percent slopes	10.73	0.01
Bowes silt loam, 2 to 4 percent slopes	2.72	0.00
Bowes silt loam, 2 to 4 percent slopes	5.05	0.00
Bowes silt loam, 2 to 4 percent slopes	5.44	0.01
Bowes silt loam, 2 to 4 percent slopes	3.67	0.00
Bowes silt loam, 2 to 4 percent slopes	1.38	0.00
Bowes silt loam, 2 to 4 percent slopes	5.70	0.01
Bowes silt loam, 2 to 4 percent slopes	1.97	0.00
Bowes silt loam, 2 to 4 percent slopes	4.13	0.00
Bowes silt loam, 2 to 4 percent slopes	63.80	0.06
Bowes silt loam, 2 to 4 percent slopes	7.30	0.01
Bowes silt loam, 2 to 4 percent slopes	3.87	0.00
Bowes silt loam, 2 to 4 percent slopes	43.19	0.04
Bowes silt loam, 2 to 4 percent slopes	3.08	0.00
Bowes silt loam, 2 to 4 percent slopes	22.39	0.02
Bowes silt loam, 2 to 4 percent slopes	17.15	0.02
Bowes silt loam, 2 to 4 percent slopes	29.14	0.03
Bowes silt loam, 2 to 4 percent slopes	40.19	0.04
Boyer sandy loam, 2 to 4 percent slopes	3.29	0.00
Boyer sandy loam, 2 to 4 percent slopes	21.87	0.02
Boyer sandy loam, 2 to 4 percent slopes	2.15	0.00
Boyer sandy loam, 2 to 4 percent slopes	5.51	0.01
Boyer sandy loam, 2 to 4 percent slopes	1.51	0.00
Boyer sandy loam, 2 to 4 percent slopes	1.68	0.00
Boyer sandy loam, 2 to 4 percent slopes	43.16	0.04
Boyer sandy loam, 2 to 4 percent slopes	3.22	0.00
Boyer sandy loam, 2 to 4 percent slopes	14.07	0.01
Boyer sandy loam, 2 to 4 percent slopes	11.21	0.01
Boyer sandy loam, 2 to 4 percent slopes	1.68	0.00
Boyer sandy loam, 2 to 4 percent slopes	3.51	0.00
Boyer sandy loam, 2 to 4 percent slopes	25.98	0.02
Boyer sandy loam, 2 to 4 percent slopes	2.05	0.00
Boyer sandy loam, 4 to 6 percent slopes	11.36	0.01
Boyer sandy loam, 4 to 6 percent slopes	7.08	0.01

Boyer sandy loam, 4 to 6 percent slopes(%)	0.00
Boyer sandy loam, 4 to 6 percent slopes [2.49]	0.00
	0.01
Boyer sandy loam, 4 to 6 percent slopes 5.50	0.01
Boyer sandy loam, 4 to 6 percent slopes 1.27	0.00
Boyer sandy loam, 4 to 6 percent slopes 2.83	0.00
Boyer sandy loam, 4 to 6 percent slopes9.76	0.01
Boyer sandy loam, 4 to 6 percent slopes 0.95	0.00
Boyer sandy loam, 4 to 6 percent slopes1.79	0.00
Boyer sandy loam, 4 to 6 percent slopes1.19	0.00
Brenton silt loam, 0 to 2 percent slopes 6.04	0.01
Brenton silt loam, 0 to 2 percent slopes3.42	0.00
Brenton silt loam, 0 to 2 percent slopes4.82	0.00
Brenton silt loam, 0 to 2 percent slopes 5.59	0.01
Brenton silt loam, 0 to 2 percent slopes 66.17	0.06
Brenton silt loam, 0 to 2 percent slopes 6.61	0.01
Brenton silt loam, 0 to 2 percent slopes 3.08	0.00
Brenton silt loam, 0 to 2 percent slopes 2.43	0.00
Brenton silt loam, 0 to 2 percent slopes 41.86	0.04
Brenton silt loam, 0 to 2 percent slopes 2.42	0.00
Brenton silt loam, 0 to 2 percent slopes 1.64	0.00
Brenton silt loam, 0 to 2 percent slopes 3.59	0.00
Brenton silt loam, 0 to 2 percent slopes 4.14	0.00
Brenton silt loam, 0 to 2 percent slopes 1.37	0.00
Brenton silt loam, 0 to 2 percent slopes 15.30	0.01
Brenton silt loam, 0 to 2 percent slopes 3.25	0.00
Brenton silt loam, 0 to 2 percent slopes 10.23	0.01
Brenton silt loam, 0 to 2 percent slopes 3.46	0.00
Brenton silt loam, 0 to 2 percent slopes 13.18	0.01
Brenton silt loam, 0 to 2 percent slopes 5.36	0.00
Brenton silt loam, 0 to 2 percent slopes 79.48	0.07
Brenton silt loam, 0 to 2 percent slopes 14.62	0.01
Brenton silt loam, 0 to 2 percent slopes 7.13	0.01
Brenton silt loam, 0 to 2 percent slopes 8.13	0.01
Brenton silt loam, 0 to 2 percent slopes 4.83	0.00
Brenton silt loam. 0 to 2 percent slopes 7.53	0.01
Brenton silt loam. 0 to 2 percent slopes 4.88	0.00
Brenton silt loam. 0 to 2 percent slopes 2.39	0.00
Brenton silt loam. 0 to 2 percent slopes 15.97	0.01
Brenton silt loam, 0 to 2 percent slopes 9 31	0.01
Brenton silt loam, 0 to 2 percent slopes 1 66	0.00
Brenton silt loam. 0 to 2 percent slopes 35.91	0.03
Brenton silt loam, 0 to 2 percent slopes 17.80	0.02

Soil Description	Area (Acres)	Percent Area (%)
Brenton silt loam, 0 to 2 percent slopes	7.67	0.01
Brenton silt loam, 0 to 2 percent slopes	10.98	0.01
Brenton silt loam. 0 to 2 percent slopes	10.60	0.01
Brenton silt loam. 0 to 2 percent slopes	6.68	0.01
Brenton silt loam, 0 to 2 percent slopes	2.54	0.00
Brenton silt loam. 0 to 2 percent slopes	6.39	0.01
Brenton silt loam. 0 to 2 percent slopes	1.89	0.00
Brenton silt loam, 0 to 2 percent slopes	2.83	0.00
Brenton silt loam. 0 to 2 percent slopes	73.00	0.07
Brenton silt loam. 0 to 2 percent slopes	2.67	0.00
Brenton silt loam, 0 to 2 percent slopes	14.21	0.01
Brenton silt loam. 0 to 2 percent slopes	21.43	0.02
Brenton silt loam. 0 to 2 percent slopes	4.23	0.00
Brenton silt loam. 0 to 2 percent slopes	10.81	0.01
Brenton silt loam. 0 to 2 percent slopes	5.03	0.00
Brenton silt loam. 0 to 2 percent slopes	7.85	0.01
Brenton silt loam. 0 to 2 percent slopes	10.67	0.01
Brenton silt loam, 0 to 2 percent slopes	3.48	0.00
Brenton silt loam. 0 to 2 percent slopes	8.02	0.01
Brenton silt loam, 0 to 2 percent slopes	13.86	0.01
Brenton silt loam, 0 to 2 percent slopes	20.93	0.02
Camden silt loam, 0 to 2 percent slopes	2.14	0.00
Camden silt loam, 0 to 2 percent slopes	14.36	0.01
Camden silt loam, 0 to 2 percent slopes	15.36	0.01
Camden silt loam, 0 to 2 percent slopes	12.13	0.01
Camden silt loam, 0 to 2 percent slopes	29.64	0.03
Camden silt loam, 0 to 2 percent slopes	1.26	0.00
Camden silt loam, 0 to 2 percent slopes	2.30	0.00
Camden silt loam, 0 to 2 percent slopes	98.20	0.09
Camden silt loam, 0 to 2 percent slopes	0.66	0.00
Camden silt loam, 0 to 2 percent slopes	21.69	0.02
Camden silt loam, 0 to 2 percent slopes	0.45	0.00
Camden silt loam, 0 to 2 percent slopes	1.55	0.00
Camden silt loam, 0 to 2 percent slopes	0.96	0.00
Camden silt loam, 0 to 2 percent slopes	0.69	0.00
Camden silt loam, 2 to 5 percent slopes	6.10	0.01
Camden silt loam, 2 to 5 percent slopes	11.82	0.01
Camden silt loam, 2 to 5 percent slopes	2.26	0.00
Camden silt loam, 2 to 5 percent slopes	8.70	0.01
Camden silt loam, 2 to 5 percent slopes	28.95	0.03
Camden silt loam, 2 to 5 percent slopes	10.43	0.01

Soil Description	Area (Acres)	Percent Area
Camden silt loam 2 to 5 percent slopes	11 34	0.01
Camden silt loam, 2 to 5 percent slopes	8.72	0.01
Camden silt loam, 2 to 5 percent slopes	4.36	0.00
Camden silt loam, 2 to 5 percent slopes	8.37	0.01
Camden silt loam, 2 to 5 percent slopes	5.56	0.01
Camden silt loam, 2 to 5 percent slopes	0.39	0.00
Camden silt loam, 2 to 5 percent slopes	3.66	0.00
Camden silt loam, 2 to 5 percent slopes	1.87	0.00
Camden silt loam, 2 to 5 percent slopes	20.79	0.02
Camden silt loam, 2 to 5 percent slopes	5.19	0.00
Camden silt loam, 2 to 5 percent slopes	34.34	0.03
Camden silt loam, 2 to 5 percent slopes	2.05	0.00
Camden silt loam, 2 to 5 percent slopes	8.25	0.01
Camden silt loam, 2 to 5 percent slopes	10.44	0.01
Camden silt loam, 2 to 5 percent slopes	23.03	0.02
Camden silt loam, 2 to 5 percent slopes	2.06	0.00
Camden silt loam, 2 to 5 percent slopes	1.65	0.00
Camden silt loam, 2 to 5 percent slopes	5.10	0.00
Camden silt loam, 2 to 5 percent slopes	32.85	0.03
Camden silt loam, 2 to 5 percent slopes	3.92	0.00
Camden silt loam, 2 to 5 percent slopes	23.67	0.02
Camden silt loam, 2 to 5 percent slopes	16.63	0.02
Camden silt loam, 2 to 5 percent slopes	8.61	0.01
Camden silt loam, 2 to 5 percent slopes	13.48	0.01
Camden silt loam, 2 to 5 percent slopes	5.72	0.01
Camden silt loam, 2 to 5 percent slopes	12.17	0.01
Camden silt loam, 2 to 5 percent slopes	0.88	0.00
Camden silt loam, 2 to 5 percent slopes	5.56	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	1.20	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	7.53	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	1.41	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	9.28	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	13.17	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	27.92	0.03
Casco clay loam, 4 to 6 percent slopes, severely eroded	1.40	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	3.04	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	4.06	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	2.29	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	3.87	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	15.42	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	7.14	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco clay loam, 4 to 6 percent slopes, severely eroded	2.62	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	4.61	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	2.66	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	1.12	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	0.16	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	5.72	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	6.25	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	22.39	0.02
Casco clay loam, 4 to 6 percent slopes, severely eroded	4.97	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	13.02	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	3.72	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	5.02	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	11.22	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	4.71	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	23.08	0.02
Casco clay loam, 4 to 6 percent slopes, severely eroded	9.79	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	8.29	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	3.64	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	5.90	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	10.63	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	12.55	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	2.15	0.00
Casco clay loam, 4 to 6 percent slopes, severely eroded	7.73	0.01
Casco clay loam, 4 to 6 percent slopes, severely eroded	19.36	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	7.96	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.01	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	2.25	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	19.64	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	4.64	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.20	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	17.40	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.34	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	20.31	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	6.51	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	6.90	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	2.81	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	7.78	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	10.86	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.75	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	4.07	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.41	0.00

Sail Description	Area	Percent Area
Soli Description	(Acres)	(%)
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.57	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	31.60	0.03
Casco clay loam, 6 to 12 percent slopes, severely eroded	6.96	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.31	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.60	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	13.54	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	8.52	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	10.08	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.86	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	6.42	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.52	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	15.87	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.04	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	26.96	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	2.95	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.28	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	18.90	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	8.22	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	9.13	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	4.26	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	7.09	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	18.62	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	6.32	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	16.90	0.02
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.90	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	7.35	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.05	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.73	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	4.08	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	10.49	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	4.51	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	28.54	0.03
Casco clay loam, 6 to 12 percent slopes, severely eroded	0.99	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.18	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	40.43	0.04
Casco clay loam, 6 to 12 percent slopes, severely eroded	16.01	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	2.30	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	11.01	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	9.54	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.87	0.01
Casco clay loam, 6 to 12 percent slopes, severely eroded	2.26	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.38	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.33	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.44	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.19	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.92	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	3.55	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.69	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	1.23	0.00
Casco clay loam, 6 to 12 percent slopes, severely eroded	5.35	0.00
Casco loam, 2 to 4 percent slopes	1.31	0.00
Casco loam, 2 to 4 percent slopes	2.76	0.00
Casco loam, 2 to 4 percent slopes	1.63	0.00
Casco loam, 2 to 4 percent slopes	4.05	0.00
Casco loam, 2 to 4 percent slopes	12.96	0.01
Casco loam, 2 to 4 percent slopes	3.59	0.00
Casco loam, 2 to 4 percent slopes	16.64	0.02
Casco loam, 2 to 4 percent slopes	2.52	0.00
Casco loam, 2 to 4 percent slopes	23.01	0.02
Casco loam, 2 to 4 percent slopes	16.04	0.01
Casco loam, 2 to 4 percent slopes	8.54	0.01
Casco loam, 2 to 4 percent slopes	6.51	0.01
Casco loam, 2 to 4 percent slopes	10.48	0.01
Casco loam, 2 to 4 percent slopes	1.31	0.00
Casco loam, 2 to 4 percent slopes	7.71	0.01
Casco loam, 2 to 4 percent slopes	6.19	0.01
Casco loam, 2 to 4 percent slopes	3.00	0.00
Casco loam, 2 to 4 percent slopes	14.55	0.01
Casco loam, 2 to 4 percent slopes	8.60	0.01
Casco loam, 2 to 4 percent slopes	6.19	0.01
Casco loam, 2 to 4 percent slopes	5.63	0.01
Casco loam, 2 to 4 percent slopes	6.79	0.01
Casco loam, 2 to 4 percent slopes	3.36	0.00
Casco loam, 2 to 4 percent slopes	2.98	0.00
Casco loam, 2 to 4 percent slopes	3.17	0.00
Casco loam, 2 to 4 percent slopes	31.91	0.03
Casco loam, 2 to 4 percent slopes	1.42	0.00
Casco loam, 2 to 4 percent slopes	1.36	0.00
Casco loam, 2 to 4 percent slopes	14.46	0.01
Casco loam, 2 to 4 percent slopes	21.44	0.02
Casco loam. 2 to 4 percent slopes	52.66	0.05
Casco loam, 2 to 4 percent slopes	2.28	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco loam, 2 to 4 percent slopes	14.03	0.01
Casco loam, 2 to 4 percent slopes	59.33	0.05
Casco loam, 2 to 4 percent slopes	4.15	0.00
Casco loam, 2 to 4 percent slopes	8.87	0.01
Casco loam, 2 to 4 percent slopes	3.14	0.00
Casco loam, 2 to 4 percent slopes	25.02	0.02
Casco loam, 2 to 4 percent slopes	1.89	0.00
Casco loam, 2 to 4 percent slopes	11.38	0.01
Casco loam, 2 to 4 percent slopes	17.44	0.02
Casco loam, 2 to 4 percent slopes	5.27	0.00
Casco loam, 2 to 4 percent slopes	28.13	0.03
Casco loam, 2 to 4 percent slopes	1.78	0.00
Casco loam, 2 to 4 percent slopes	3.29	0.00
Casco loam, 2 to 4 percent slopes	2.41	0.00
Casco loam, 2 to 4 percent slopes	2.72	0.00
Casco loam, 2 to 4 percent slopes	5.86	0.01
Casco loam, 2 to 4 percent slopes	3.41	0.00
Casco loam, 2 to 4 percent slopes	2.13	0.00
Casco loam, 2 to 4 percent slopes	1.39	0.00
Casco loam, 2 to 4 percent slopes	11.69	0.01
Casco loam, 2 to 4 percent slopes	7.66	0.01
Casco loam, 2 to 4 percent slopes	5.70	0.01
Casco loam, 2 to 4 percent slopes	2.13	0.00
Casco loam, 2 to 4 percent slopes	40.68	0.04
Casco loam, 2 to 4 percent slopes	1.98	0.00
Casco loam, 2 to 4 percent slopes	1.39	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.64	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.29	0.00
Casco loam, 4 to 6 percent slopes, eroded	11.86	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.01	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.08	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.64	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.76	0.00
Casco loam, 4 to 6 percent slopes, eroded	8.65	0.01
Casco loam, 4 to 6 percent slopes, eroded	7.61	0.01
Casco loam, 4 to 6 percent slopes, eroded	10.42	0.01
Casco loam, 4 to 6 percent slopes, eroded	4.28	0.00
Casco loam, 4 to 6 percent slopes, eroded	16.74	0.02
Casco loam, 4 to 6 percent slopes, eroded	3.44	0.00
Casco loam, 4 to 6 percent slopes, eroded	16.22	0.01
Casco loam, 4 to 6 percent slopes, eroded	4.09	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco loam, 4 to 6 percent slopes, eroded	2.98	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.17	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.66	0.01
Casco loam, 4 to 6 percent slopes, eroded	8.14	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.21	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.92	0.01
Casco loam, 4 to 6 percent slopes, eroded	17.77	0.02
Casco loam, 4 to 6 percent slopes, eroded	3.03	0.00
Casco loam, 4 to 6 percent slopes, eroded	8.23	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.30	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.14	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.03	0.01
Casco loam, 4 to 6 percent slopes, eroded	8.52	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.88	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.87	0.00
Casco loam, 4 to 6 percent slopes, eroded	46.51	0.04
Casco loam, 4 to 6 percent slopes, eroded	2.70	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.48	0.00
Casco loam, 4 to 6 percent slopes, eroded	21.60	0.02
Casco loam, 4 to 6 percent slopes, eroded	2.52	0.00
Casco loam, 4 to 6 percent slopes, eroded	12.90	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.88	0.00
Casco loam, 4 to 6 percent slopes, eroded	22.91	0.02
Casco loam, 4 to 6 percent slopes, eroded	3.92	0.00
Casco loam, 4 to 6 percent slopes, eroded	21.97	0.02
Casco loam, 4 to 6 percent slopes, eroded	6.26	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.19	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.69	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.78	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.41	0.00
Casco loam, 4 to 6 percent slopes, eroded	11.69	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.07	0.00
Casco loam, 4 to 6 percent slopes, eroded	11.33	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.16	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.60	0.00
Casco loam, 4 to 6 percent slopes, eroded	6.36	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.62	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.87	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.62	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.80	0.00
Casco loam, 4 to 6 percent slopes, eroded	12.12	0.01

Soil Description	Area (Acres)	Percent Area
Casco loam 4 to 6 percent slopes eroded	12 69	0.01
Casco loam, 4 to 6 percent slopes, eroded	13.82	0.01
Casco loam, 4 to 6 percent slopes, eroded	4.02	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.73	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.77	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.20	0.01
Casco loam, 4 to 6 percent slopes, eroded	6.05	0.01
Casco loam, 4 to 6 percent slopes, eroded	6.82	0.01
Casco loam, 4 to 6 percent slopes, eroded	8.63	0.01
Casco loam, 4 to 6 percent slopes, eroded	11.74	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.57	0.00
Casco loam, 4 to 6 percent slopes, eroded	56.52	0.05
Casco loam, 4 to 6 percent slopes, eroded	2.14	0.00
Casco loam, 4 to 6 percent slopes, eroded	8.63	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.63	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.75	0.00
Casco loam, 4 to 6 percent slopes, eroded	20.08	0.02
Casco loam, 4 to 6 percent slopes, eroded	8.49	0.01
Casco loam, 4 to 6 percent slopes, eroded	8.35	0.01
Casco loam, 4 to 6 percent slopes, eroded	27.46	0.03
Casco loam, 4 to 6 percent slopes, eroded	8.50	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.25	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.31	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.02	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.70	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.62	0.00
Casco loam, 4 to 6 percent slopes, eroded	14.00	0.01
Casco loam, 4 to 6 percent slopes, eroded	19.58	0.02
Casco loam, 4 to 6 percent slopes, eroded	85.04	0.08
Casco loam, 4 to 6 percent slopes, eroded	1.96	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.18	0.00
Casco loam, 4 to 6 percent slopes, eroded	14.23	0.01
Casco loam, 4 to 6 percent slopes, eroded	6.75	0.01
Casco loam, 4 to 6 percent slopes, eroded	16.80	0.02
Casco loam, 4 to 6 percent slopes, eroded	4.83	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.43	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.73	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.97	0.01
Casco loam, 4 to 6 percent slopes, eroded	20.47	0.02
Casco loam, 4 to 6 percent slopes, eroded	22.27	0.02
Casco loam, 4 to 6 percent slopes, eroded	2.96	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco loam, 4 to 6 percent slopes, eroded	4.33	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.88	0.00
Casco loam, 4 to 6 percent slopes, eroded	96.38	0.09
Casco loam, 4 to 6 percent slopes, eroded	6.18	0.01
Casco loam, 4 to 6 percent slopes, eroded	4.55	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.36	0.00
Casco loam, 4 to 6 percent slopes, eroded	25.34	0.02
Casco loam, 4 to 6 percent slopes, eroded	6.65	0.01
Casco loam, 4 to 6 percent slopes, eroded	28.42	0.03
Casco loam, 4 to 6 percent slopes, eroded	7.33	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.11	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.26	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.61	0.00
Casco loam, 4 to 6 percent slopes, eroded	8.30	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.69	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.74	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.39	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.94	0.01
Casco loam, 4 to 6 percent slopes, eroded	16.48	0.02
Casco loam, 4 to 6 percent slopes, eroded	2.09	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.55	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.15	0.00
Casco loam, 4 to 6 percent slopes, eroded	6.08	0.01
Casco loam, 4 to 6 percent slopes, eroded	139.12	0.13
Casco loam, 4 to 6 percent slopes, eroded	70.14	0.06
Casco loam, 4 to 6 percent slopes, eroded	10.68	0.01
Casco loam, 4 to 6 percent slopes, eroded	5.40	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.21	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.95	0.00
Casco loam, 4 to 6 percent slopes, eroded	8.34	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.96	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.98	0.00
Casco loam, 4 to 6 percent slopes, eroded	12.82	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.47	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.76	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.74	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.82	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.46	0.00
Casco loam, 4 to 6 percent slopes, eroded	20.19	0.02
Casco loam, 4 to 6 percent slopes, eroded	4.38	0.00
Casco loam, 4 to 6 percent slopes, eroded	10.08	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco loam, 4 to 6 percent slopes, eroded	1.32	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.02	0.00
Casco loam, 4 to 6 percent slopes, eroded	6.29	0.01
Casco loam, 4 to 6 percent slopes, eroded	9.70	0.01
Casco loam, 4 to 6 percent slopes, eroded	6.82	0.01
Casco loam, 4 to 6 percent slopes, eroded	6.01	0.01
Casco loam, 4 to 6 percent slopes, eroded	7.26	0.01
Casco loam, 4 to 6 percent slopes, eroded	11.27	0.01
Casco loam, 4 to 6 percent slopes, eroded	3.95	0.00
Casco loam, 4 to 6 percent slopes, eroded	17.00	0.02
Casco loam, 4 to 6 percent slopes, eroded	1.92	0.00
Casco loam, 4 to 6 percent slopes, eroded	41.74	0.04
Casco loam, 4 to 6 percent slopes, eroded	1.36	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.61	0.00
Casco loam, 4 to 6 percent slopes, eroded	13.03	0.01
Casco loam, 4 to 6 percent slopes, eroded	16.83	0.02
Casco loam, 4 to 6 percent slopes, eroded	2.78	0.00
Casco loam, 4 to 6 percent slopes, eroded	10.91	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.86	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.68	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.38	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.86	0.01
Casco loam, 4 to 6 percent slopes, eroded	9.77	0.01
Casco loam, 4 to 6 percent slopes, eroded	35.24	0.03
Casco loam, 4 to 6 percent slopes, eroded	19.93	0.02
Casco loam, 4 to 6 percent slopes, eroded	4.90	0.00
Casco loam, 4 to 6 percent slopes, eroded	19.44	0.02
Casco loam, 4 to 6 percent slopes, eroded	3.95	0.00
Casco loam, 4 to 6 percent slopes, eroded	2.54	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.95	0.01
Casco loam, 4 to 6 percent slopes, eroded	7.68	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.66	0.00
Casco loam, 4 to 6 percent slopes, eroded	7.31	0.01
Casco loam, 4 to 6 percent slopes, eroded	14.74	0.01
Casco loam, 4 to 6 percent slopes, eroded	1.46	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.63	0.01
Casco loam, 4 to 6 percent slopes, eroded	2.12	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.82	0.00
Casco loam, 4 to 6 percent slopes, eroded	1.96	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.87	0.00
Casco loam, 4 to 6 percent slopes, eroded	0.88	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco loam, 4 to 6 percent slopes, eroded	0.60	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.05	0.00
Casco loam, 4 to 6 percent slopes, eroded	3.53	0.00
Casco loam, 4 to 6 percent slopes, eroded	5.24	0.00
Casco loam, 4 to 6 percent slopes, eroded	4.32	0.00
Casco loam, 6 to 12 percent slopes, eroded	22.69	0.02
Casco loam, 6 to 12 percent slopes, eroded	5.25	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.11	0.00
Casco loam, 6 to 12 percent slopes, eroded	49.07	0.05
Casco loam, 6 to 12 percent slopes, eroded	2.50	0.00
Casco loam, 6 to 12 percent slopes, eroded	18.40	0.02
Casco loam, 6 to 12 percent slopes, eroded	9.21	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.92	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.78	0.00
Casco loam, 6 to 12 percent slopes, eroded	8.95	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.77	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.41	0.00
Casco loam, 6 to 12 percent slopes, eroded	8.29	0.01
Casco loam, 6 to 12 percent slopes, eroded	8.98	0.01
Casco loam, 6 to 12 percent slopes, eroded	11.08	0.01
Casco loam, 6 to 12 percent slopes, eroded	5.10	0.00
Casco loam, 6 to 12 percent slopes, eroded	15.72	0.01
Casco loam, 6 to 12 percent slopes, eroded	14.35	0.01
Casco loam, 6 to 12 percent slopes, eroded	14.23	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.63	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.94	0.00
Casco loam, 6 to 12 percent slopes, eroded	9.97	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.52	0.01
Casco loam, 6 to 12 percent slopes, eroded	37.58	0.03
Casco loam, 6 to 12 percent slopes, eroded	5.73	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.49	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.40	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.39	0.00
Casco loam, 6 to 12 percent slopes, eroded	7.22	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.97	0.00
Casco loam, 6 to 12 percent slopes, eroded	10.45	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.13	0.01
Casco loam, 6 to 12 percent slopes, eroded	8.80	0.01
Casco loam, 6 to 12 percent slopes, eroded	45.64	0.04
Casco loam, 6 to 12 percent slopes, eroded	3.01	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.89	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco loam, 6 to 12 percent slopes, eroded	18.74	0.02
Casco loam, 6 to 12 percent slopes, eroded	13.23	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.30	0.00
Casco loam, 6 to 12 percent slopes, eroded	5.44	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.40	0.00
Casco loam, 6 to 12 percent slopes, eroded	13.82	0.01
Casco loam, 6 to 12 percent slopes, eroded	17.26	0.02
Casco loam, 6 to 12 percent slopes, eroded	9.45	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.51	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.41	0.00
Casco loam, 6 to 12 percent slopes, eroded	29.74	0.03
Casco loam, 6 to 12 percent slopes, eroded	0.00	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.37	0.00
Casco loam, 6 to 12 percent slopes, eroded	7.34	0.01
Casco loam, 6 to 12 percent slopes, eroded	9.46	0.01
Casco loam, 6 to 12 percent slopes, eroded	4.62	0.00
Casco loam, 6 to 12 percent slopes, eroded	6.94	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.91	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.07	0.00
Casco loam, 6 to 12 percent slopes, eroded	9.83	0.01
Casco loam, 6 to 12 percent slopes, eroded	17.37	0.02
Casco loam, 6 to 12 percent slopes, eroded	59.15	0.05
Casco loam, 6 to 12 percent slopes, eroded	9.68	0.01
Casco loam, 6 to 12 percent slopes, eroded	20.05	0.02
Casco loam, 6 to 12 percent slopes, eroded	6.86	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.92	0.00
Casco loam, 6 to 12 percent slopes, eroded	10.62	0.01
Casco loam, 6 to 12 percent slopes, eroded	16.44	0.02
Casco loam, 6 to 12 percent slopes, eroded	3.02	0.00
Casco loam, 6 to 12 percent slopes, eroded	11.45	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.64	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.50	0.00
Casco loam, 6 to 12 percent slopes, eroded	336.39	0.31
Casco loam, 6 to 12 percent slopes, eroded	1.51	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.09	0.00
Casco loam, 6 to 12 percent slopes, eroded	3.06	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.45	0.00
Casco loam, 6 to 12 percent slopes, eroded	9.11	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.25	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.88	0.00
Casco loam, 6 to 12 percent slopes, eroded	10.33	0.01

Soil Description	Area	Percent Area
Casco loam 6 to 12 percent slopes eroded	(ACIES)	(/0)
Casco loam, 6 to 12 percent slopes, eroded	4 58	0.01
Casco loam, 6 to 12 percent slopes, eroded	15 20	0.00
Casco loam, 6 to 12 percent slopes, eroded	15.20	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.05	0.00
Casco loam, 6 to 12 percent slopes, eroded	11.56	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.25	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.16	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.81	0.00
Casco loam, 6 to 12 percent slopes, eroded	14.00	0.01
Casco loam, 6 to 12 percent slopes, eroded	7.39	0.01
Casco loam, 6 to 12 percent slopes, eroded	5.81	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.01	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.89	0.00
Casco loam, 6 to 12 percent slopes, eroded	21.94	0.02
Casco loam, 6 to 12 percent slopes, eroded	18.61	0.02
Casco loam, 6 to 12 percent slopes, eroded	8.90	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.42	0.00
Casco loam, 6 to 12 percent slopes, eroded	29.82	0.03
Casco loam, 6 to 12 percent slopes, eroded	2.62	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.11	0.00
Casco loam, 6 to 12 percent slopes, eroded	5.94	0.01
Casco loam, 6 to 12 percent slopes, eroded	108.24	0.10
Casco loam, 6 to 12 percent slopes, eroded	21.46	0.02
Casco loam, 6 to 12 percent slopes, eroded	2.79	0.00
Casco loam, 6 to 12 percent slopes, eroded	14.82	0.01
Casco loam, 6 to 12 percent slopes, eroded	149.92	0.14
Casco loam, 6 to 12 percent slopes, eroded	7.82	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.15	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.90	0.00
Casco loam, 6 to 12 percent slopes, eroded	7.87	0.01
Casco loam, 6 to 12 percent slopes, eroded	12.07	0.01
Casco loam, 6 to 12 percent slopes, eroded	4.83	0.00
Casco loam, 6 to 12 percent slopes, eroded	14.79	0.01
Casco loam, 6 to 12 percent slopes, eroded	12.14	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.60	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.13	0.00
Casco loam, 6 to 12 percent slopes, eroded	3.72	0.00
Casco loam, 6 to 12 percent slopes, eroded	6.35	0.01
Casco loam, 6 to 12 percent slopes, eroded	9.59	0.01
Casco loam, 6 to 12 percent slopes, eroded	4.34	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco loam, 6 to 12 percent slopes, eroded	9.20	0.01
Casco loam, 6 to 12 percent slopes, eroded	9.74	0.01
Casco loam, 6 to 12 percent slopes, eroded	12.02	0.01
Casco loam, 6 to 12 percent slopes, eroded	7.07	0.01
Casco loam, 6 to 12 percent slopes, eroded	92.84	0.09
Casco loam, 6 to 12 percent slopes, eroded	0.02	0.00
Casco loam, 6 to 12 percent slopes, eroded	25.94	0.02
Casco loam, 6 to 12 percent slopes, eroded	3.21	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.10	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.56	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.75	0.00
Casco loam, 6 to 12 percent slopes, eroded	2.44	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.26	0.00
Casco loam, 6 to 12 percent slopes, eroded	11.04	0.01
Casco loam, 6 to 12 percent slopes, eroded	5.86	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.11	0.00
Casco loam, 6 to 12 percent slopes, eroded	10.40	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.79	0.01
Casco loam, 6 to 12 percent slopes, eroded	0.85	0.00
Casco loam, 6 to 12 percent slopes, eroded	10.36	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.01	0.00
Casco loam, 6 to 12 percent slopes, eroded	12.20	0.01
Casco loam, 6 to 12 percent slopes, eroded	7.89	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.32	0.00
Casco loam, 6 to 12 percent slopes, eroded	15.94	0.01
Casco loam, 6 to 12 percent slopes, eroded	13.88	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.29	0.01
Casco loam, 6 to 12 percent slopes, eroded	28.81	0.03
Casco loam, 6 to 12 percent slopes, eroded	5.97	0.01
Casco loam, 6 to 12 percent slopes, eroded	1.76	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.10	0.00
Casco loam, 6 to 12 percent slopes, eroded	33.38	0.03
Casco loam, 6 to 12 percent slopes, eroded	1.66	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.24	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.88	0.00
Casco loam, 6 to 12 percent slopes, eroded	5.19	0.00
Casco loam, 6 to 12 percent slopes, eroded	5.82	0.01
Casco loam, 6 to 12 percent slopes, eroded	9.40	0.01
Casco loam, 6 to 12 percent slopes, eroded	35.01	0.03
Casco loam, 6 to 12 percent slopes, eroded	18.99	0.02
Casco loam, 6 to 12 percent slopes, eroded	44.44	0.04

	Area	Percent Area
Soli Description	(Acres)	(%)
Casco loam, 6 to 12 percent slopes, eroded	2.14	0.00
Casco loam, 6 to 12 percent slopes, eroded	4.69	0.00
Casco loam, 6 to 12 percent slopes, eroded	0.66	0.00
Casco loam, 6 to 12 percent slopes, eroded	23.68	0.02
Casco loam, 6 to 12 percent slopes, eroded	9.13	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.03	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.21	0.00
Casco loam, 6 to 12 percent slopes, eroded	8.33	0.01
Casco loam, 6 to 12 percent slopes, eroded	3.38	0.00
Casco loam, 6 to 12 percent slopes, eroded	9.02	0.01
Casco loam, 6 to 12 percent slopes, eroded	4.29	0.00
Casco loam, 6 to 12 percent slopes, eroded	1.95	0.00
Casco loam, 6 to 12 percent slopes, eroded	6.59	0.01
Casco loam, 6 to 12 percent slopes, eroded	9.65	0.01
Casco loam, 6 to 12 percent slopes, eroded	14.33	0.01
Casco loam, 6 to 12 percent slopes, eroded	2.90	0.00
Casco loam, 6 to 12 percent slopes, eroded	47.52	0.04
Casco loam, 6 to 12 percent slopes, eroded	10.79	0.01
Casco loam, 6 to 12 percent slopes, eroded	6.83	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.77	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	56.60	0.05
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.42	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.58	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	19.98	0.02
Casco-Rodman complex, 12 to 20 percent slopes, eroded	38.29	0.04
Casco-Rodman complex, 12 to 20 percent slopes, eroded	16.38	0.02
Casco-Rodman complex, 12 to 20 percent slopes, eroded	17.14	0.02
Casco-Rodman complex, 12 to 20 percent slopes, eroded	27.92	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.12	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.34	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.22	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.14	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.47	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.22	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.72	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.87	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.89	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.99	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.91	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.90	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	24.97	0.02

Soil Description	Area	Percent Area
	(Acres)	(%)
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.44	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	33.62	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.28	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.89	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.76	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	50.58	0.05
Casco-Rodman complex, 12 to 20 percent slopes, eroded	11.92	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.54	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.07	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	157.42	0.15
Casco-Rodman complex, 12 to 20 percent slopes, eroded	14.15	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.23	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.25	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.13	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	33.80	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.32	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	30.77	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.57	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	56.98	0.05
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.13	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.03	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.51	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.71	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	28.52	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.88	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.18	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	13.33	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	14.46	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.67	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	80.19	0.07
Casco-Rodman complex, 12 to 20 percent slopes, eroded	39.29	0.04
Casco-Rodman complex, 12 to 20 percent slopes, eroded	16.22	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.54	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	13.86	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.71	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	32.52	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	28.87	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.54	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.07	0.00
Casco-Bodman complex, 12 to 20 percent slopes, croded	7 80	0.01
Casco-Rodman complex, 12 to 20 percent slopes, croded	3 52	0.01
Casco-Rouman complex, 12 to 20 percent slopes, eroded	3.52	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.11	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.70	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.86	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.78	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.68	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.60	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.02	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.73	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.61	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.93	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.44	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.17	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	55.64	0.05
Casco-Rodman complex, 12 to 20 percent slopes, eroded	11.95	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.09	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	12.62	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.41	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.47	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.34	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.36	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.66	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	13.86	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	30.42	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.34	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.50	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.76	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.92	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	73.95	0.07
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.28	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	55.28	0.05
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.49	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.92	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.80	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.65	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	27.93	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	66.30	0.06
Casco-Rodman complex, 12 to 20 percent slopes, eroded	17.16	0.02
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.50	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	10.67	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	15.26	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.82	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.44	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	88.74	0.08
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.80	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	16.10	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.50	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.90	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.29	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.56	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.94	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.46	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.52	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.20	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.84	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.35	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.05	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	16.00	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.04	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.43	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.84	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.54	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.65	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.24	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.65	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	15.90	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	36.29	0.03
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.71	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.48	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.16	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.34	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	17.53	0.02
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.01	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.27	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.36	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	9.60	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.55	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.93	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.16	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.66	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	4.15	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	5.16	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.78	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.11	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	7.39	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.60	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	8.19	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.17	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	3.82	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.68	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.10	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.70	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.91	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	6.37	0.01
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.90	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.67	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	1.14	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	0.65	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.14	0.00
Casco-Rodman complex, 12 to 20 percent slopes, eroded	2.17	0.00
Casco-Rodman complex, 20 to 30 percent slopes	4.65	0.00
Casco-Rodman complex, 20 to 30 percent slopes	1.69	0.00
Casco-Rodman complex, 20 to 30 percent slopes	9.20	0.01
Casco-Rodman complex, 20 to 30 percent slopes	35.07	0.03
Casco-Rodman complex, 20 to 30 percent slopes	6.92	0.01
Casco-Rodman complex, 20 to 30 percent slopes	1.76	0.00
Casco-Rodman complex, 20 to 30 percent slopes	7.39	0.01
Casco-Rodman complex, 20 to 30 percent slopes	0.54	0.00
Casco-Rodman complex, 20 to 30 percent slopes	95.54	0.09
Casco-Rodman complex, 20 to 30 percent slopes	10.22	0.01
Casco-Rodman complex, 20 to 30 percent slopes	2.59	0.00
Casco-Rodman complex, 20 to 30 percent slopes	4.53	0.00
Casco-Rodman complex, 20 to 30 percent slopes	6.04	0.01
Casco-Rodman complex, 20 to 30 percent slopes	3.92	0.00
Casco-Rodman complex, 20 to 30 percent slopes	33.29	0.03
Casco-Rodman complex, 20 to 30 percent slopes	1.05	0.00
Casco-Rodman complex, 20 to 30 percent slopes	3.65	0.00
Casco-Rodman complex, 20 to 30 percent slopes	4.14	0.00
Casco-Rodman complex, 20 to 30 percent slopes	27.27	0.03
Casco-Rodman complex, 20 to 30 percent slopes	18.32	0.02
Casco-Rodman complex, 20 to 30 percent slopes	9.73	0.01
Casco-Rodman complex, 20 to 30 percent slopes	145.35	0.13
Casco-Rodman complex, 20 to 30 percent slopes	4.55	0.00
Casco-Rodman complex, 20 to 30 percent slopes	4.07	0.00

Soil Description	Area (Acres)	Percent Area (%)
Casco-Rodman complex, 20 to 30 percent slopes	4.91	0.00
Casco-Rodman complex, 20 to 30 percent slopes	17.89	0.02
Casco-Rodman complex, 20 to 30 percent slopes	15.67	0.01
Casco-Rodman complex, 20 to 30 percent slopes	4.55	0.00
Casco-Rodman complex, 20 to 30 percent slopes	28.89	0.03
Casco-Rodman complex, 20 to 30 percent slopes	20.71	0.02
Casco-Rodman complex, 20 to 30 percent slopes	13.62	0.01
Casco-Rodman complex, 20 to 30 percent slopes	1.91	0.00
Casco-Rodman complex, 20 to 30 percent slopes	23.26	0.02
Casco-Rodman complex, 20 to 30 percent slopes	1.77	0.00
Casco-Rodman complex, 20 to 30 percent slopes	14.27	0.01
Casco-Rodman complex, 20 to 30 percent slopes	12.37	0.01
Casco-Rodman complex, 20 to 30 percent slopes	2.37	0.00
Casco-Rodman complex, 20 to 30 percent slopes	4.81	0.00
Casco-Rodman complex, 20 to 30 percent slopes	11.85	0.01
Casco-Rodman complex, 20 to 30 percent slopes	11.67	0.01
Casco-Rodman complex, 20 to 30 percent slopes	5.77	0.01
Casco-Rodman complex, 20 to 30 percent slopes	4.58	0.00
Casco-Rodman complex, 20 to 30 percent slopes	9.06	0.01
Casco-Rodman complex, 20 to 30 percent slopes	6.54	0.01
Casco-Rodman complex, 20 to 30 percent slopes	4.99	0.00
Casco-Rodman complex, 20 to 30 percent slopes	2.92	0.00
Casco-Rodman complex, 20 to 30 percent slopes	166.02	0.15
Casco-Rodman complex, 20 to 30 percent slopes	18.08	0.02
Casco-Rodman complex, 20 to 30 percent slopes	107.01	0.10
Casco-Rodman complex, 20 to 30 percent slopes	21.11	0.02
Casco-Rodman complex, 20 to 30 percent slopes	2.76	0.00
Casco-Rodman complex, 20 to 30 percent slopes	15.37	0.01
Casco-Rodman complex, 20 to 30 percent slopes	18.69	0.02
Casco-Rodman complex, 20 to 30 percent slopes	36.41	0.03
Casco-Rodman complex, 20 to 30 percent slopes	226.77	0.21
Casco-Rodman complex, 20 to 30 percent slopes	4.08	0.00
Casco-Rodman complex, 20 to 30 percent slopes	0.91	0.00
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	3.19	0.00
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	12.51	0.01
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	3.63	0.00
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	8.40	0.01
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	21.97	0.02
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	0.00	0.00
Chatsworth silty clay, 6 to 12 percent slopes, severely eroded	1.65	0.00
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	3.89	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	7.52	0.01
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	36.47	0.03
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	30.64	0.03
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	2.13	0.00
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	35.47	0.03
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	8.71	0.01
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	2.83	0.00
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	27.98	0.03
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	4.17	0.00
Comfrey loam, 0 to 2 percent slopes, occasionally flooded	12.88	0.01
Comfrey loam, 0 to 2 percent slopes, undrained, occasionally flooded	15.35	0.01
Comfrey loam, 0 to 2 percent slopes, undrained, occasionally flooded	8.62	0.01
Comfrey loam, 0 to 2 percent slopes, undrained, occasionally flooded	11.40	0.01
Dakota loam, 0 to 2 percent slopes	2.32	0.00
Dakota loam, 0 to 2 percent slopes	1.65	0.00
Dakota loam, 0 to 2 percent slopes	6.74	0.01
Dakota loam, 0 to 2 percent slopes	7.85	0.01
Dakota loam, 2 to 4 percent slopes	16.84	0.02
Dakota loam, 2 to 4 percent slopes	5.52	0.01
Del Rey silt loam, 0 to 2 percent slopes	42.05	0.04
Del Rey silt loam, 0 to 2 percent slopes	3.41	0.00
Del Rey silt loam, 0 to 2 percent slopes	36.79	0.03
Del Rey silt loam, 0 to 2 percent slopes	4.76	0.00
Del Rey silt loam, 2 to 4 percent slopes	30.48	0.03
Del Rey silt loam, 2 to 4 percent slopes	10.43	0.01
Dickinson sandy loam, 0 to 2 percent slopes	4.60	0.00
Dickinson sandy loam, 0 to 2 percent slopes	3.79	0.00
Dickinson sandy loam, 0 to 2 percent slopes	1.54	0.00
Dickinson sandy loam, 0 to 2 percent slopes	4.64	0.00
Dickinson sandy loam, 0 to 2 percent slopes	3.27	0.00
Dickinson sandy loam, 2 to 5 percent slopes	10.57	0.01
Dickinson sandy loam, 2 to 5 percent slopes	7.40	0.01
Dickinson sandy loam, 2 to 5 percent slopes	7.19	0.01
Dickinson sandy loam, 2 to 5 percent slopes	1.68	0.00
Dickinson sandy loam, 2 to 5 percent slopes	5.20	0.00
Dickinson sandy loam, 2 to 5 percent slopes	5.02	0.00
Dickinson sandy loam, 2 to 5 percent slopes	4.23	0.00
Dickinson sandy loam, 2 to 5 percent slopes	5.58	0.01
Dickinson sandy loam, 2 to 5 percent slopes	1.26	0.00
Dickinson sandy loam, 2 to 5 percent slopes	1.30	0.00
Dickinson sandy loam, 2 to 5 percent slopes	6.59	0.01

Soil Description	Area (Acres)	Percent Area (%)
Dickinson sandy loam, 2 to 5 percent slopes	2.84	0.00
Dresden silt loam, 0 to 2 percent slopes	4.68	0.00
Dresden silt loam, 0 to 2 percent slopes	3.16	0.00
Dresden silt loam, 0 to 2 percent slopes	3.88	0.00
Dresden silt loam, 0 to 2 percent slopes	4.50	0.00
Dresden silt loam, 0 to 2 percent slopes	6.75	0.01
Dresden silt loam, 0 to 2 percent slopes	1.98	0.00
Dresden silt loam, 0 to 2 percent slopes	7.24	0.01
Dresden silt loam, 0 to 2 percent slopes	1.36	0.00
Dresden silt loam, 0 to 2 percent slopes	5.65	0.01
Dresden silt loam, 0 to 2 percent slopes	4.10	0.00
Dresden silt loam, 0 to 2 percent slopes	8.12	0.01
Dresden silt loam, 0 to 2 percent slopes	3.96	0.00
Dresden silt loam, 2 to 4 percent slopes	6.66	0.01
Dresden silt loam, 2 to 4 percent slopes	3.98	0.00
Dresden silt loam, 2 to 4 percent slopes	1.69	0.00
Dresden silt loam, 2 to 4 percent slopes	4.60	0.00
Dresden silt loam, 2 to 4 percent slopes	3.05	0.00
Dresden silt loam, 2 to 4 percent slopes	3.72	0.00
Dresden silt loam, 2 to 4 percent slopes	11.65	0.01
Dresden silt loam, 2 to 4 percent slopes	10.88	0.01
Dresden silt loam, 2 to 4 percent slopes	2.70	0.00
Dresden silt loam, 2 to 4 percent slopes	4.89	0.00
Dresden silt loam, 2 to 4 percent slopes	5.31	0.00
Dresden silt loam, 2 to 4 percent slopes	0.22	0.00
Dresden silt loam, 2 to 4 percent slopes	17.98	0.02
Dresden silt loam, 2 to 4 percent slopes	15.76	0.01
Dresden silt loam, 2 to 4 percent slopes	12.33	0.01
Dresden silt loam, 2 to 4 percent slopes	1.09	0.00
Dresden silt loam, 2 to 4 percent slopes	13.69	0.01
Dresden silt loam, 2 to 4 percent slopes	5.11	0.00
Dresden silt loam, 2 to 4 percent slopes	4.66	0.00
Dresden silt loam, 2 to 4 percent slopes	19.38	0.02
Dresden silt loam, 2 to 4 percent slopes	7.32	0.01
Dresden silt loam, 2 to 4 percent slopes	3.43	0.00
Dresden silt loam, 2 to 4 percent slopes	1.61	0.00
Dresden silt loam, 2 to 4 percent slopes	15.98	0.01
Dresden silt loam, 2 to 4 percent slopes	0.62	0.00
Dresden silt loam, 2 to 4 percent slopes	4.70	0.00
Dresden silt loam, 2 to 4 percent slopes	4.85	0.00
Dresden silt loam, 2 to 4 percent slopes	3.02	0.00

Soil Description	Area (Acres)	Percent Area (%)
Dresden silt loam, 2 to 4 percent slopes	4.33	0.00
Dresden silt loam, 2 to 4 percent slopes	9.00	0.01
Dresden silt loam, 2 to 4 percent slopes	0.89	0.00
Dresden silt loam, 2 to 4 percent slopes	2.54	0.00
Dresden silt loam, 2 to 4 percent slopes	46.41	0.04
Dresden silt loam, 2 to 4 percent slopes	1.51	0.00
Dresden silt loam, 2 to 4 percent slopes	10.17	0.01
Dresden silt loam, 2 to 4 percent slopes	3.89	0.00
Dresden silt loam, 2 to 4 percent slopes	3.96	0.00
Dresden silt loam, 2 to 4 percent slopes	13.70	0.01
Dresden silt loam, 2 to 4 percent slopes	11.43	0.01
Dresden silt loam, 2 to 4 percent slopes	1.65	0.00
Dresden silt loam, 2 to 4 percent slopes	0.94	0.00
Dresden silt loam, 2 to 4 percent slopes	6.88	0.01
Dresden silt loam, 2 to 4 percent slopes	9.07	0.01
Dresden silt loam, 2 to 4 percent slopes	5.97	0.01
Dresden silt loam, 2 to 4 percent slopes	5.15	0.00
Dresden silt loam, 2 to 4 percent slopes	15.63	0.01
Dresden silt loam, 2 to 4 percent slopes	11.29	0.01
Dresden silt loam, 2 to 4 percent slopes	3.84	0.00
Dresden silt loam, 2 to 4 percent slopes	4.16	0.00
Dresden silt loam, 2 to 4 percent slopes	18.79	0.02
Dresden silt loam, 2 to 4 percent slopes	6.17	0.01
Dresden silt loam, 2 to 4 percent slopes	6.20	0.01
Dresden silt loam, 2 to 4 percent slopes	2.33	0.00
Dresden silt loam, 2 to 4 percent slopes	3.09	0.00
Dresden silt loam, 2 to 4 percent slopes	2.04	0.00
Dresden silt loam, 2 to 4 percent slopes	0.80	0.00
Dresden silt loam, 2 to 4 percent slopes	1.84	0.00
Dresden silt loam, 2 to 4 percent slopes	6.77	0.01
Dresden silt loam, 2 to 4 percent slopes	4.49	0.00
Dunham silty clay loam, 0 to 2 percent slopes	0.00	0.00
Dunham silty clay loam, 0 to 2 percent slopes	6.01	0.01
Dunham silty clay loam, 0 to 2 percent slopes	39.21	0.04
Dunham silty clay loam, 0 to 2 percent slopes	8.84	0.01
Dunham silty clay loam, 0 to 2 percent slopes	31.03	0.03
Dunham silty clay loam, 0 to 2 percent slopes	2.74	0.00
Dunham silty clay loam, 0 to 2 percent slopes	7.02	0.01
Dunham silty clay loam, 0 to 2 percent slopes	0.69	0.00
Dunham silty clay loam, 0 to 2 percent slopes	34.88	0.03
Dunham silty clay loam, 0 to 2 percent slopes	0.92	0.00

Soil Description	Area (Acres)	Percent Area
Dunham silty clay loam, 0 to 2 percent slopes	15.76	0.01
Dunham silty clay loam, 0 to 2 percent slopes	1.78	0.00
Dunham silty clay loam, 0 to 2 percent slopes	7.67	0.01
Dunham silty clay loam, 0 to 2 percent slopes	4.33	0.00
Dunham silty clay loam, 0 to 2 percent slopes	3.27	0.00
Dunham silty clay loam, 0 to 2 percent slopes	0.33	0.00
Dunham silty clay loam, 0 to 2 percent slopes	66.32	0.06
Dunham silty clay loam, 0 to 2 percent slopes	1.34	0.00
Dunham silty clay loam, 0 to 2 percent slopes	3.23	0.00
Dunham silty clay loam, 0 to 2 percent slopes	10.02	0.01
Dunham silty clay loam, 0 to 2 percent slopes	8.24	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.11	0.00
Dunham silty clay loam, 0 to 2 percent slopes	10.72	0.01
Dunham silty clay loam, 0 to 2 percent slopes	10.39	0.01
Dunham silty clay loam, 0 to 2 percent slopes	11.70	0.01
Dunham silty clay loam, 0 to 2 percent slopes	15.91	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.80	0.00
Dunham silty clay loam, 0 to 2 percent slopes	83.66	0.08
Dunham silty clay loam, 0 to 2 percent slopes	7.27	0.01
Dunham silty clay loam, 0 to 2 percent slopes	1.58	0.00
Dunham silty clay loam, 0 to 2 percent slopes	67.25	0.06
Dunham silty clay loam, 0 to 2 percent slopes	13.38	0.01
Dunham silty clay loam, 0 to 2 percent slopes	1.47	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.76	0.01
Dunham silty clay loam, 0 to 2 percent slopes	38.53	0.04
Dunham silty clay loam, 0 to 2 percent slopes	1.76	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.51	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.70	0.00
Dunham silty clay loam, 0 to 2 percent slopes	25.70	0.02
Dunham silty clay loam, 0 to 2 percent slopes	3.55	0.00
Dunham silty clay loam, 0 to 2 percent slopes	9.70	0.01
Dunham silty clay loam, 0 to 2 percent slopes	10.10	0.01
Dunham silty clay loam, 0 to 2 percent slopes	12.27	0.01
Dunham silty clay loam, 0 to 2 percent slopes	33.95	0.03
Dunham silty clay loam, 0 to 2 percent slopes	3.11	0.00
Dunham silty clay loam, 0 to 2 percent slopes	4.22	0.00
Dunham silty clay loam, 0 to 2 percent slopes	30.83	0.03
Dunham silty clay loam, 0 to 2 percent slopes	1.86	0.00
Dunham silty clay loam, 0 to 2 percent slopes	14.16	0.01
Dunham silty clay loam, 0 to 2 percent slopes	5.06	0.00
Dunham silty clay loam, 0 to 2 percent slopes	8.43	0.01
Soil Description	Area (Acres)	Percent Area (%)
---	-----------------	---------------------
Dunham silty clay loam, 0 to 2 percent slopes	25.64	0.02
Dunham silty clay loam, 0 to 2 percent slopes	2.87	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.06	0.00
Dunham silty clay loam, 0 to 2 percent slopes	10.09	0.01
Dunham silty clay loam, 0 to 2 percent slopes	19.22	0.02
Dunham silty clay loam, 0 to 2 percent slopes	9.77	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.04	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.89	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.26	0.00
Dunham silty clay loam, 0 to 2 percent slopes	3.93	0.00
Dunham silty clay loam, 0 to 2 percent slopes	7.67	0.01
Dunham silty clay loam, 0 to 2 percent slopes	139.68	0.13
Dunham silty clay loam, 0 to 2 percent slopes	34.93	0.03
Dunham silty clay loam, 0 to 2 percent slopes	89.49	0.08
Dunham silty clay loam, 0 to 2 percent slopes	1.10	0.00
Dunham silty clay loam, 0 to 2 percent slopes	12.44	0.01
Dunham silty clay loam, 0 to 2 percent slopes	9.78	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.33	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.99	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.32	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.79	0.01
Dunham silty clay loam, 0 to 2 percent slopes	5.83	0.01
Dunham silty clay loam, 0 to 2 percent slopes	5.17	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.29	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.78	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.73	0.00
Dunham silty clay loam, 0 to 2 percent slopes	0.98	0.00
Dunham silty clay loam, 0 to 2 percent slopes	3.42	0.00
Dunham silty clay loam, 0 to 2 percent slopes	4.09	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.86	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.24	0.00
Dunham silty clay loam, 0 to 2 percent slopes	11.79	0.01
Dunham silty clay loam, 0 to 2 percent slopes	2.21	0.00
Dunham silty clay loam, 0 to 2 percent slopes	21.85	0.02
Dunham silty clay loam, 0 to 2 percent slopes	14.32	0.01
Dunham silty clay loam, 0 to 2 percent slopes	1.67	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.80	0.01
Dunham silty clay loam, 0 to 2 percent slopes	3.33	0.00
Dunham silty clay loam, 0 to 2 percent slopes	5.17	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.22	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.02	0.00

Soil Description	Area (Acres)	Percent Area (%)
Dunham silty clay loam, 0 to 2 percent slopes	9.47	0.01
Dunham silty clay loam, 0 to 2 percent slopes	3.42	0.00
Dunham silty clay loam, 0 to 2 percent slopes	0.98	0.00
Dunham silty clay loam, 0 to 2 percent slopes	1.04	0.00
Dunham silty clay loam, 0 to 2 percent slopes	2.61	0.00
Dunham silty clay loam, 0 to 2 percent slopes	10.48	0.01
Dunham silty clay loam, 0 to 2 percent slopes	0.85	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.79	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	5.65	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	6.60	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	1.57	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	6.37	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	12.20	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	11.29	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	11.87	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	5.21	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	19.72	0.02
Elburn silt loam, cool, 0 to 2 percent slopes	2.61	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	5.17	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.47	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.63	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.65	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	6.49	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	4.96	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.41	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	14.49	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	4.01	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.57	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	8.81	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	0.00	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	7.34	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	34.46	0.03
Elburn silt loam, cool, 0 to 2 percent slopes	12.60	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	0.88	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.13	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	15.15	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	4.99	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.27	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	4.03	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	9.34	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	12.70	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Elburn silt loam, cool, 0 to 2 percent slopes	5.29	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.05	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	5.88	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	0.74	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	4.10	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	0.80	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	6.11	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	2.98	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	4.41	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.52	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	4.59	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	19.66	0.02
Elburn silt loam, cool, 0 to 2 percent slopes	9.12	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	9.66	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	8.62	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	6.45	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	14.68	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	1.78	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	7.27	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	18.41	0.02
Elburn silt loam, cool, 0 to 2 percent slopes	1.21	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	5.24	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	6.98	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	0.01	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	3.49	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	7.77	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	1.17	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	4.39	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	2.97	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.67	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	11.96	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	128.81	0.12
Elburn silt loam, cool, 0 to 2 percent slopes	4.59	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	2.91	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	12.65	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	1.63	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	47.07	0.04
Elburn silt loam, cool, 0 to 2 percent slopes	12.82	0.01
Flburn silt loam, cool, 0 to 2 percent slopes	2.95	0.00
Flburn silt loam, cool, 0 to 2 percent slopes	10.58	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	1.79	0.00

Soil Description	Area (Acres)	Percent Area (%)
Elburn silt loam, cool, 0 to 2 percent slopes	8.70	0.01
Elburn silt loam, cool, 0 to 2 percent slopes	92.93	0.09
Elburn silt loam, cool, 0 to 2 percent slopes	1.76	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	1.07	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	2.01	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	2.86	0.00
Elburn silt loam, cool, 0 to 2 percent slopes	2.58	0.00
Elliott silt loam. 0 to 2 percent slopes	5.34	0.00
Elliott silt loam. 0 to 2 percent slopes	2.16	0.00
Elliott silt loam. 0 to 2 percent slopes	1.71	0.00
Elliott silt loam. 0 to 2 percent slopes	1.51	0.00
Elliott silt loam. 0 to 2 percent slopes	7.34	0.01
Elliott silt loam. 0 to 2 percent slopes	1.20	0.00
Elliott silt loam. 0 to 2 percent slopes	3.85	0.00
Elliott silt loam. 0 to 2 percent slopes	3.96	0.00
Elliott silt loam. 0 to 2 percent slopes	1.98	0.00
Elliott silt loam. 0 to 2 percent slopes	7.07	0.01
Elliott silt loam, 0 to 2 percent slopes	1.96	0.00
Elliott silt loam, 0 to 2 percent slopes	9.83	0.01
Elliott silt loam, 0 to 2 percent slopes	6.72	0.01
Elliott silt loam, 0 to 2 percent slopes	3.40	0.00
Elliott silt loam, 0 to 2 percent slopes	3.24	0.00
Elliott silt loam, 0 to 2 percent slopes	5.49	0.01
Elliott silt loam, 0 to 2 percent slopes	12.18	0.01
Elliott silt loam, 0 to 2 percent slopes	1.94	0.00
Elliott silt loam, 0 to 2 percent slopes	1.57	0.00
Elliott silt loam, 0 to 2 percent slopes	2.00	0.00
Elliott silt loam, 0 to 2 percent slopes	5.15	0.00
Elliott silt loam, 0 to 2 percent slopes	16.56	0.02
Elliott silt loam, 0 to 2 percent slopes	4.47	0.00
Elliott silt loam, 0 to 2 percent slopes	10.68	0.01
Elliott silt loam, 0 to 2 percent slopes	2.72	0.00
Elliott silt loam, 0 to 2 percent slopes	8.34	0.01
Elliott silt loam, 0 to 2 percent slopes	8.96	0.01
Elliott silt loam, 0 to 2 percent slopes	3.17	0.00
Elliott silt loam, 0 to 2 percent slopes	1.72	0.00
Elliott silt loam, 0 to 2 percent slopes	3.01	0.00
Elliott silt loam, 0 to 2 percent slopes	4.18	0.00
Elliott silt loam, 0 to 2 percent slopes	5.41	0.00
Elliott silt loam, 0 to 2 percent slopes	4.17	0.00
Elliott silt loam, 0 to 2 percent slopes	2.74	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Elliott silt loam, 0 to 2 percent slopes	3.33	0.00
Elliott silt loam, 0 to 2 percent slopes	5.60	0.01
Elliott silt loam, 0 to 2 percent slopes	2.57	0.00
Elliott silt loam, 0 to 2 percent slopes	3.76	0.00
Elliott silt loam, 0 to 2 percent slopes	2.96	0.00
Elliott silt loam, 0 to 2 percent slopes	2.93	0.00
Elliott silt loam, 0 to 2 percent slopes	3.23	0.00
Elliott silt loam, 0 to 2 percent slopes	1.67	0.00
Elliott silt loam, 0 to 2 percent slopes	3.10	0.00
Elliott silt loam, 0 to 2 percent slopes	2.14	0.00
Elliott silt loam, 2 to 4 percent slopes	2.82	0.00
Elliott silt loam, 2 to 4 percent slopes	2.86	0.00
Elliott silt loam, 2 to 4 percent slopes	3.31	0.00
Elliott silt loam, 2 to 4 percent slopes	3.35	0.00
Elliott silt loam, 2 to 4 percent slopes	1.31	0.00
Elliott silt loam, 2 to 4 percent slopes	1.52	0.00
Elliott silt loam, 2 to 4 percent slopes	46.00	0.04
Elliott silt loam, 2 to 4 percent slopes	0.93	0.00
Elliott silt loam, 2 to 4 percent slopes	3.54	0.00
Elliott silt loam, 2 to 4 percent slopes	10.96	0.01
Elliott silt loam, 2 to 4 percent slopes	7.12	0.01
Elliott silt loam, 2 to 4 percent slopes	8.36	0.01
Elliott silt loam, 2 to 4 percent slopes	4.20	0.00
Elliott silt loam, 2 to 4 percent slopes	4.70	0.00
Elliott silt loam, 2 to 4 percent slopes	0.83	0.00
Elliott silt loam, 2 to 4 percent slopes	8.90	0.01
Elliott silt loam, 2 to 4 percent slopes	10.73	0.01
Elliott silt loam, 2 to 4 percent slopes	19.02	0.02
Elliott silt loam, 2 to 4 percent slopes	17.91	0.02
Elliott silt loam, 2 to 4 percent slopes	22.68	0.02
Elliott silt loam, 2 to 4 percent slopes	1.42	0.00
Elliott silt loam, 2 to 4 percent slopes	13.34	0.01
Elliott silt loam, 2 to 4 percent slopes	4.67	0.00
Elliott silt loam, 2 to 4 percent slopes	7.95	0.01
Elliott silt loam, 2 to 4 percent slopes	21.44	0.02
Elliott silt loam, 2 to 4 percent slopes	10.37	0.01
Elliott silt loam, 2 to 4 percent slopes	3.78	0.00
Elliott silt loam, 2 to 4 percent slopes	1.62	0.00
Elliott silt loam, 2 to 4 percent slopes	61.78	0.06
Elliott silt loam, 2 to 4 percent slopes	8.75	0.01
Elliott silt loam, 2 to 4 percent slopes	21.49	0.02

Soil Description	Area	Percent Area
	(Acres)	(%)
Elliott silt loam, 2 to 4 percent slopes	2.03	0.00
Elliott silt loam, 2 to 4 percent slopes	2.05	0.00
Elliott silt loam, 2 to 4 percent slopes	2.30	0.00
Elliott silt loam, 2 to 4 percent slopes	1.99	0.00
Elliott silt loam, 2 to 4 percent slopes	1.88	0.00
Elliott silt loam, 2 to 4 percent slopes	6.43	0.01
Elliott silt loam, 2 to 4 percent slopes	4.16	0.00
Elliott silt loam, 2 to 4 percent slopes	36.67	0.03
Elliott silt loam, 2 to 4 percent slopes	2.81	0.00
Elliott silt loam, 2 to 4 percent slopes	5.09	0.00
Elliott silt loam, 2 to 4 percent slopes	3.98	0.00
Elliott silt loam, 2 to 4 percent slopes	3.86	0.00
Elliott silt loam, 2 to 4 percent slopes	1.73	0.00
Elliott silt loam, 2 to 4 percent slopes	77.05	0.07
Elliott silt loam, 2 to 4 percent slopes	3.20	0.00
Elliott silt loam, 2 to 4 percent slopes	3.56	0.00
Elliott silt loam, 2 to 4 percent slopes	9.18	0.01
Elliott silt loam, 2 to 4 percent slopes	1.28	0.00
Elliott silt loam, 2 to 4 percent slopes	13.35	0.01
Elliott silt loam, 2 to 4 percent slopes	16.59	0.02
Elliott silt loam, 2 to 4 percent slopes	8.13	0.01
Elliott silt loam, 2 to 4 percent slopes	9.10	0.01
Elliott silt loam, 2 to 4 percent slopes	7.80	0.01
Elliott silt loam, 2 to 4 percent slopes	12.43	0.01
Elliott silt loam, 2 to 4 percent slopes	3.64	0.00
Elliott silt loam, 2 to 4 percent slopes	2.82	0.00
Elliott silt loam, 2 to 4 percent slopes	41.16	0.04
Elliott silt loam, 2 to 4 percent slopes	28.37	0.03
Elliott silt loam, 2 to 4 percent slopes	6.84	0.01
Elliott silt loam, 2 to 4 percent slopes	12.61	0.01
Elliott silt loam, 2 to 4 percent slopes	9.92	0.01
Elliott silt loam, 2 to 4 percent slopes	1.20	0.00
Elliott silt loam, 2 to 4 percent slopes	1.97	0.00
Elliott silt loam, 2 to 4 percent slopes	4.83	0.00
Elliott silt loam, 2 to 4 percent slopes	8.03	0.01
Elliott silt loam, 2 to 4 percent slopes	12.34	0.01
Elliott silt loam, 2 to 4 percent slopes	2.69	0.00
Elliott silt loam, 2 to 4 percent slopes	1.11	0.00
Elliott silt loam, 2 to 4 percent slopes	6.12	0.01
Elliott silt loam, 2 to 4 percent slopes	3.37	0.00
Elliott silt loam, 2 to 4 percent slopes	30.45	0.03

Soil Description	Area	Percent Area
	(Acres)	(%)
Elliott silt loam, 2 to 4 percent slopes	7.37	0.01
Elliott silt loam, 2 to 4 percent slopes	0.48	0.00
Elliott silt loam, 2 to 4 percent slopes	3.97	0.00
Elliott silt loam, 2 to 4 percent slopes	27.48	0.03
Elliott silt loam, 2 to 4 percent slopes	2.54	0.00
Elliott silt loam, 2 to 4 percent slopes	0.03	0.00
Elliott silt loam, 2 to 4 percent slopes	1.55	0.00
Elliott silt loam, 2 to 4 percent slopes	2.41	0.00
Elliott silt loam, 2 to 4 percent slopes	7.67	0.01
Elliott silt loam, 2 to 4 percent slopes	6.62	0.01
Elliott silt loam, 2 to 4 percent slopes	2.44	0.00
Fox loam, 6 to 12 percent slopes, eroded	5.78	0.01
Fox loam, 6 to 12 percent slopes, eroded	11.01	0.01
Fox loam, 6 to 12 percent slopes, eroded	17.12	0.02
Fox loam, 6 to 12 percent slopes, eroded	3.22	0.00
Fox loam, 6 to 12 percent slopes, eroded	4.59	0.00
Fox loam, 6 to 12 percent slopes, eroded	15.37	0.01
Fox loam, 6 to 12 percent slopes, eroded	8.28	0.01
Fox loam, 6 to 12 percent slopes, eroded	3.59	0.00
Fox loam, 6 to 12 percent slopes, eroded	32.64	0.03
Fox loam, 6 to 12 percent slopes, eroded	4.28	0.00
Fox loam, 6 to 12 percent slopes, eroded	0.93	0.00
Fox loam, 6 to 12 percent slopes, eroded	18.15	0.02
Fox loam, 6 to 12 percent slopes, eroded	2.60	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.91	0.00
Fox loam, 6 to 12 percent slopes, eroded	3.16	0.00
Fox loam, 6 to 12 percent slopes, eroded	1.15	0.00
Fox loam, 6 to 12 percent slopes, eroded	5.91	0.01
Fox loam, 6 to 12 percent slopes, eroded	15.59	0.01
Fox loam, 6 to 12 percent slopes, eroded	0.99	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.49	0.00
Fox loam, 6 to 12 percent slopes, eroded	4.08	0.00
Fox loam, 6 to 12 percent slopes, eroded	4.66	0.00
Fox loam, 6 to 12 percent slopes, eroded	1.99	0.00
Fox loam, 6 to 12 percent slopes, eroded	15.31	0.01
Fox loam, 6 to 12 percent slopes, eroded	15.51	0.01
Fox loam, 6 to 12 percent slopes, eroded	4.28	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.63	0.00
Fox loam, 6 to 12 percent slopes, eroded	8.45	0.01
Fox loam, 6 to 12 percent slopes, eroded	8.92	0.01
Fox loam, 6 to 12 percent slopes, eroded	46.16	0.04

Soil Description	Area	Percent Area
	(Acres)	(%)
Fox loam, 6 to 12 percent slopes, eroded	1.41	0.00
Fox loam, 6 to 12 percent slopes, eroded	5.55	0.01
Fox loam, 6 to 12 percent slopes, eroded	2.35	0.00
Fox loam, 6 to 12 percent slopes, eroded	3.64	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.81	0.00
Fox loam, 6 to 12 percent slopes, eroded	15.26	0.01
Fox loam, 6 to 12 percent slopes, eroded	0.89	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.11	0.00
Fox loam, 6 to 12 percent slopes, eroded	3.55	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.09	0.00
Fox loam, 6 to 12 percent slopes, eroded	15.50	0.01
Fox loam, 6 to 12 percent slopes, eroded	2.56	0.00
Fox loam, 6 to 12 percent slopes, eroded	8.74	0.01
Fox loam, 6 to 12 percent slopes, eroded	7.29	0.01
Fox loam, 6 to 12 percent slopes, eroded	3.38	0.00
Fox loam, 6 to 12 percent slopes, eroded	5.29	0.00
Fox loam, 6 to 12 percent slopes, eroded	12.32	0.01
Fox loam, 6 to 12 percent slopes, eroded	6.78	0.01
Fox loam, 6 to 12 percent slopes, eroded	11.04	0.01
Fox loam, 6 to 12 percent slopes, eroded	14.90	0.01
Fox loam, 6 to 12 percent slopes, eroded	7.72	0.01
Fox loam, 6 to 12 percent slopes, eroded	9.30	0.01
Fox loam, 6 to 12 percent slopes, eroded	2.07	0.00
Fox loam, 6 to 12 percent slopes, eroded	5.27	0.00
Fox loam, 6 to 12 percent slopes, eroded	3.00	0.00
Fox loam, 6 to 12 percent slopes, eroded	7.66	0.01
Fox loam, 6 to 12 percent slopes, eroded	6.96	0.01
Fox loam, 6 to 12 percent slopes, eroded	8.04	0.01
Fox loam, 6 to 12 percent slopes, eroded	5.53	0.01
Fox loam, 6 to 12 percent slopes, eroded	16.92	0.02
Fox loam, 6 to 12 percent slopes, eroded	7.99	0.01
Fox loam, 6 to 12 percent slopes, eroded	2.71	0.00
Fox loam, 6 to 12 percent slopes, eroded	1.56	0.00
Fox loam, 6 to 12 percent slopes, eroded	1.94	0.00
Fox loam, 6 to 12 percent slopes, eroded	2.64	0.00
Fox loam, 6 to 12 percent slopes, eroded	1.55	0.00
Fox loam, 6 to 12 percent slopes, eroded	6.90	0.01
Fox loam, 6 to 12 percent slopes, eroded	1.66	0.00
Fox loam, 6 to 12 percent slopes, eroded	6.79	0.01
Fox loam, 6 to 12 percent slopes, eroded	2.18	0.00
Fox loam, 6 to 12 percent slopes, eroded	3.81	0.00

Soil Description	Area (Acres)	Percent Area
Fox loam 6 to 12 percent slopes eroded	12.03	0.01
Fox loam 6 to 12 percent slopes, croded	1 27	0.01
Fox loam, 6 to 12 percent slopes, eroded	0.96	0.00
Fox loam 6 to 12 percent slopes, croded	5.63	0.01
Fox loam, 6 to 12 percent slopes, croded	2 11	0.01
Fox loam 6 to 12 percent slopes, croded	1 56	0.00
Fox loam 6 to 12 percent slopes, croded	11.66	0.01
Fox loam 6 to 12 percent slopes, croded	4 46	0.00
Fox loam 6 to 12 percent slopes, croded	0.87	0.00
Fox loam, 6 to 12 percent slopes, croded	13.47	0.00
Fox loam, 6 to 12 percent slopes, croded	7 13	0.01
Fox loam, 6 to 12 percent slopes, croded	3 35	0.01
Fox loam, 6 to 12 percent slopes, croded	1.80	0.00
Fox loam, 6 to 12 percent slopes, eroded	6.64	0.00
Fox silt loam 0 to 2 percent slopes	10.28	0.01
Fox silt loam, 0 to 2 percent slopes	5.08	0.01
Fox silt loam, 0 to 2 percent slopes	10.20	0.00
Fox silt loam, 0 to 2 percent slopes	19.30	0.02
Fox silt loam, 0 to 2 percent slopes	2.02	0.01
Fox silt loam, 0 to 2 percent slopes	2.03	0.00
Fox silt loam, 0 to 2 percent slopes	20.28	0.01
Fox silt loam, 0 to 2 percent slopes	7.80	0.02
Fox silt loam, 0 to 2 percent slopes	/.80	0.01
Fox silt loam, 0 to 2 percent slopes	4.20	0.00
Fox silt loam, 0 to 2 percent slopes	2.51	0.00
Fox silt loam, 0 to 2 percent slopes	2.31	0.00
Fox silt loam, 0 to 2 percent slopes	2.20	0.00
Fox silt loam, 0 to 2 percent slopes	1.52	0.00
Fox silt loam, 0 to 2 percent slopes	25.20	0.02
Fox silt loam, 0 to 2 percent slopes	15.14	0.01
Fox silt loam, 2 to 4 percent slopes	4.05	0.00
Fox silt loam, 2 to 4 percent slopes	4.01	0.00
Fox silt loam, 2 to 4 percent slopes	8.35	0.01
Fox silt loam, 2 to 4 percent slopes	2.03	0.00
Fox silt loam, 2 to 4 percent slopes	3.96	0.00
Fox silt loam, 2 to 4 percent slopes	7.70	0.01
Fox slit loam, 2 to 4 percent slopes	6.31	0.01
Fox silt loam, 2 to 4 percent slopes	1.74	0.00
Fox slit loam, 2 to 4 percent slopes	37.52	0.03
Fox slit loam, 2 to 4 percent slopes	6.65	0.01
Fox silt loam, 2 to 4 percent slopes	4.57	0.00
Fox silt loam, 2 to 4 percent slopes	6.98	0.01

Soil Description	Area (Acres)	Percent Area (%)
Fox silt loam, 2 to 4 percent slopes	4.27	0.00
Fox silt loam, 2 to 4 percent slopes	4.66	0.00
Fox silt loam, 2 to 4 percent slopes	26.71	0.02
Fox silt loam, 2 to 4 percent slopes	1.06	0.00
Fox silt loam, 2 to 4 percent slopes	19.30	0.02
Fox silt loam, 2 to 4 percent slopes	3.48	0.00
Fox silt loam, 2 to 4 percent slopes	2.75	0.00
Fox silt loam, 2 to 4 percent slopes	8.94	0.01
Fox silt loam, 2 to 4 percent slopes	1.38	0.00
Fox silt loam, 2 to 4 percent slopes	54.48	0.05
Fox silt loam, 2 to 4 percent slopes	16.25	0.02
Fox silt loam, 2 to 4 percent slopes	2.22	0.00
Fox silt loam, 2 to 4 percent slopes	20.38	0.02
Fox silt loam, 2 to 4 percent slopes	5.09	0.00
Fox silt loam, 2 to 4 percent slopes	6.57	0.01
Fox silt loam, 2 to 4 percent slopes	0.61	0.00
Fox silt loam, 2 to 4 percent slopes	15.80	0.01
Fox silt loam, 2 to 4 percent slopes	12.88	0.01
Fox silt loam, 2 to 4 percent slopes	12.40	0.01
Fox silt loam, 2 to 4 percent slopes	0.08	0.00
Fox silt loam, 2 to 4 percent slopes	56.13	0.05
Fox silt loam, 2 to 4 percent slopes	4.30	0.00
Fox silt loam, 2 to 4 percent slopes	6.96	0.01
Fox silt loam, 2 to 4 percent slopes	4.68	0.00
Fox silt loam, 2 to 4 percent slopes	7.26	0.01
Fox silt loam, 2 to 4 percent slopes	86.60	0.08
Fox silt loam, 2 to 4 percent slopes	11.05	0.01
Fox silt loam, 2 to 4 percent slopes	3.17	0.00
Fox silt loam, 2 to 4 percent slopes	0.60	0.00
Fox silt loam, 2 to 4 percent slopes	56.51	0.05
Fox silt loam, 2 to 4 percent slopes	18.33	0.02
Fox silt loam, 2 to 4 percent slopes	5.83	0.01
Fox silt loam, 2 to 4 percent slopes	3.19	0.00
Fox silt loam, 2 to 4 percent slopes	3.52	0.00
Fox silt loam, 2 to 4 percent slopes	1.41	0.00
Fox silt loam, 2 to 4 percent slopes	21.88	0.02
Fox silt loam, 2 to 4 percent slopes	26.95	0.02
Fox silt loam, 2 to 4 percent slopes	3.99	0.00
Fox silt loam, 2 to 4 percent slopes	5.72	0.01
Fox silt loam, 2 to 4 percent slopes	50.43	0.05
Fox silt loam, 2 to 4 percent slopes	7.15	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Fox silt loam, 2 to 4 percent slopes	2.51	0.00
Fox silt loam, 2 to 4 percent slopes	22.11	0.02
Fox silt loam, 2 to 4 percent slopes	6.05	0.01
Fox silt loam, 2 to 4 percent slopes	8.68	0.01
Fox silt loam, 2 to 4 percent slopes	12.25	0.01
Fox silt loam, 2 to 4 percent slopes	3.24	0.00
Fox silt loam, 2 to 4 percent slopes	3.79	0.00
Fox silt loam, 2 to 4 percent slopes	1.41	0.00
Fox silt loam, 2 to 4 percent slopes	2.17	0.00
Fox silt loam, 2 to 4 percent slopes	1.83	0.00
Fox silt loam, 2 to 4 percent slopes	7.37	0.01
Fox silt loam, 2 to 4 percent slopes	0.90	0.00
Fox silt loam, 2 to 4 percent slopes	8.95	0.01
Fox silt loam, 2 to 4 percent slopes	2.66	0.00
Fox silt loam, 2 to 4 percent slopes	20.32	0.02
Fox silt loam, 2 to 4 percent slopes	10.77	0.01
Fox silt loam, 2 to 4 percent slopes	18.14	0.02
Fox silt loam, 2 to 4 percent slopes	12.55	0.01
Fox silt loam, 2 to 4 percent slopes	1.24	0.00
Fox silt loam, 2 to 4 percent slopes	8.26	0.01
Fox silt loam, 2 to 4 percent slopes	2.05	0.00
Fox silt loam, 2 to 4 percent slopes	7.23	0.01
Fox silt loam, 2 to 4 percent slopes	1.73	0.00
Fox silt loam, 2 to 4 percent slopes	6.70	0.01
Fox silt loam, 2 to 4 percent slopes	5.48	0.01
Fox silt loam, 2 to 4 percent slopes	3.71	0.00
Fox silt loam, 2 to 4 percent slopes	2.15	0.00
Fox silt loam, 2 to 4 percent slopes	0.61	0.00
Fox silt loam, 2 to 4 percent slopes	26.06	0.02
Fox silt loam, 2 to 4 percent slopes	18.68	0.02
Fox silt loam, 2 to 4 percent slopes	2.55	0.00
Fox silt loam, 2 to 4 percent slopes	2.31	0.00
Fox silt loam, 2 to 4 percent slopes	9.76	0.01
Fox silt loam, 2 to 4 percent slopes	28.34	0.03
Fox silt loam, 2 to 4 percent slopes	1.81	0.00
Fox silt loam, 2 to 4 percent slopes	9.20	0.01
Fox silt loam, 2 to 4 percent slopes	3.90	0.00
Fox silt loam, 2 to 4 percent slopes	3.01	0.00
Fox silt loam, 2 to 4 percent slopes	1.67	0.00
Fox silt loam, 2 to 4 percent slopes	2.33	0.00
Fox silt loam, 2 to 4 percent slopes	10.79	0.01

Soil Description	Area	Percent Area
Four silt los years and a supervised and a	(Acres)	(%)
Fox silt loam, 2 to 4 percent slopes	14.55	0.01
Fox silt loam, 2 to 4 percent slopes	6.11	0.01
Fox silt loam, 2 to 4 percent slopes	4.60	0.00
Fox silt loam, 2 to 4 percent slopes	2.08	0.00
Fox silt loam, 2 to 4 percent slopes	2.11	0.00
Fox silt loam, 2 to 4 percent slopes	1.74	0.00
Fox silt loam, 2 to 4 percent slopes	10.20	0.01
Fox silt loam, 2 to 4 percent slopes	16.49	0.02
Fox silt loam, 2 to 4 percent slopes	20.82	0.02
Fox silt loam, 2 to 4 percent slopes	8.28	0.01
Fox silt loam, 2 to 4 percent slopes	3.96	0.00
Fox silt loam, 2 to 4 percent slopes	2.23	0.00
Fox silt loam, 2 to 4 percent slopes	2.96	0.00
Fox silt loam, 2 to 4 percent slopes	11.67	0.01
Fox silt loam, 2 to 4 percent slopes	14.62	0.01
Fox silt loam, 2 to 4 percent slopes	5.02	0.00
Fox silt loam, 2 to 4 percent slopes	3.32	0.00
Fox silt loam, 2 to 4 percent slopes	5.83	0.01
Fox silt loam, 2 to 4 percent slopes	7.45	0.01
Fox silt loam, 2 to 4 percent slopes	3.04	0.00
Fox silt loam, 2 to 4 percent slopes	49.83	0.05
Fox silt loam, 2 to 4 percent slopes	4.22	0.00
Fox silt loam, 2 to 4 percent slopes	0.99	0.00
Fox silt loam, 2 to 4 percent slopes	19.51	0.02
Fox silt loam, 2 to 4 percent slopes	1.57	0.00
Fox silt loam, 2 to 4 percent slopes	305.30	0.28
Fox silt loam, 2 to 4 percent slopes	11.85	0.01
Fox silt loam, 2 to 4 percent slopes	1.11	0.00
Fox silt loam, 2 to 4 percent slopes	3.08	0.00
Fox silt loam, 2 to 4 percent slopes	1.76	0.00
Fox silt loam, 2 to 4 percent slopes	7.00	0.01
Fox silt loam, 2 to 4 percent slopes	1.83	0.00
Fox silt loam, 2 to 4 percent slopes	6.54	0.01
Fox silt loam, 2 to 4 percent slopes	60.81	0.06
Fox silt loam, 2 to 4 percent slopes	3.97	0.00
Fox silt loam, 2 to 4 percent slopes	69.68	0.06
Fox silt loam, 2 to 4 percent slopes	12.07	0.01
Fox silt loam, 2 to 4 percent slopes	11.39	0.01
Fox silt loam, 2 to 4 percent slopes	4.83	0.00
Fox silt loam, 2 to 4 percent slopes	1.94	0.00
Fox silt loam, 2 to 4 percent slopes	95.53	0.09

Soil Description	Area (Acres)	Percent Area (%)
Fox silt loam, 2 to 4 percent slopes	6.36	0.01
Fox silt loam, 2 to 4 percent slopes	16.04	0.01
Fox silt loam, 2 to 4 percent slopes	2.77	0.00
Fox silt loam, 2 to 4 percent slopes	6.59	0.01
Fox silt loam, 2 to 4 percent slopes	31.09	0.03
Fox silt loam, 2 to 4 percent slopes	8.85	0.01
Fox silt loam, 2 to 4 percent slopes	72.01	0.07
Fox silt loam, 2 to 4 percent slopes	2.98	0.00
Fox silt loam, 2 to 4 percent slopes	3.14	0.00
Fox silt loam, 2 to 4 percent slopes	12.41	0.01
Fox silt loam, 2 to 4 percent slopes	16.26	0.02
Fox silt loam, 2 to 4 percent slopes	13.72	0.01
Fox silt loam, 2 to 4 percent slopes	24.02	0.02
Fox silt loam, 2 to 4 percent slopes	2.80	0.00
Fox silt loam, 2 to 4 percent slopes	3.74	0.00
Fox silt loam, 2 to 4 percent slopes	3.43	0.00
Fox silt loam, 2 to 4 percent slopes	1.32	0.00
Fox silt loam, 2 to 4 percent slopes	7.39	0.01
Fox silt loam, 2 to 4 percent slopes	3.74	0.00
Fox silt loam, 2 to 4 percent slopes	5.95	0.01
Fox silt loam, 2 to 4 percent slopes	7.76	0.01
Fox silt loam, 2 to 4 percent slopes	2.13	0.00
Fox silt loam, 2 to 4 percent slopes	11.32	0.01
Fox silt loam, 2 to 4 percent slopes	4.82	0.00
Fox silt loam, 2 to 4 percent slopes	9.73	0.01
Fox silt loam, 2 to 4 percent slopes	3.90	0.00
Fox silt loam, 2 to 4 percent slopes	12.87	0.01
Fox silt loam, 2 to 4 percent slopes	24.98	0.02
Fox silt loam, 2 to 4 percent slopes	2.26	0.00
Fox silt loam, 2 to 4 percent slopes	47.25	0.04
Fox silt loam, 2 to 4 percent slopes	4.20	0.00
Fox silt loam, 2 to 4 percent slopes	3.17	0.00
Fox silt loam, 2 to 4 percent slopes	2.84	0.00
Fox silt loam, 2 to 4 percent slopes	4.03	0.00
Fox silt loam, 2 to 4 percent slopes	20.25	0.02
Fox silt loam, 2 to 4 percent slopes	13.47	0.01
Fox silt loam, 2 to 4 percent slopes	8.75	0.01
Fox silt loam, 2 to 4 percent slopes	1.60	0.00
Fox silt loam, 2 to 4 percent slopes	3.12	0.00
Fox silt loam, 2 to 4 percent slopes	26.64	0.02
Fox silt loam, 2 to 4 percent slopes	1.99	0.00

Soil Description	Area	Percent Area
Soli Description	(Acres)	(%)
Fox silt loam, 2 to 4 percent slopes	3.36	0.00
Fox silt loam, 2 to 4 percent slopes	3.98	0.00
Fox silt loam, 2 to 4 percent slopes	10.13	0.01
Fox silt loam, 2 to 4 percent slopes	12.68	0.01
Fox silt loam, 2 to 4 percent slopes	15.40	0.01
Fox silt loam, 2 to 4 percent slopes	15.31	0.01
Fox silt loam, 2 to 4 percent slopes	7.43	0.01
Fox silt loam, 2 to 4 percent slopes	5.89	0.01
Fox silt loam, 2 to 4 percent slopes	14.20	0.01
Fox silt loam, 2 to 4 percent slopes	24.47	0.02
Fox silt loam, 2 to 4 percent slopes	2.20	0.00
Fox silt loam, 2 to 4 percent slopes	10.31	0.01
Fox silt loam, 2 to 4 percent slopes	2.59	0.00
Fox silt loam, 2 to 4 percent slopes	3.36	0.00
Fox silt loam, 2 to 4 percent slopes	0.71	0.00
Fox silt loam, 2 to 4 percent slopes	4.98	0.00
Fox silt loam, 2 to 4 percent slopes	2.33	0.00
Fox silt loam, 2 to 4 percent slopes	6.36	0.01
Fox silt loam, 2 to 4 percent slopes	0.57	0.00
Fox silt loam, 2 to 4 percent slopes	1.91	0.00
Fox silt loam, 2 to 4 percent slopes	1.98	0.00
Fox silt loam, 2 to 4 percent slopes	11.20	0.01
Fox silt loam, 2 to 4 percent slopes	10.98	0.01
Fox silt loam, 2 to 4 percent slopes	28.61	0.03
Fox silt loam, 2 to 4 percent slopes	6.65	0.01
Fox silt loam, 2 to 4 percent slopes	9.66	0.01
Fox silt loam, 2 to 4 percent slopes	11.15	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	11.38	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	8.13	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.25	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.25	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	38.03	0.04
Fox silt loam, 4 to 6 percent slopes, eroded	3.84	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.93	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.08	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.56	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.82	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	11.94	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.77	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.39	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	14.25	0.01

Soil Description	Area (Acres)	Percent Area
Fox silt loam 4 to 6 percent slopes eroded	6.15	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	7.24	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	18.89	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	1.98	0.00
Fox silt loam 4 to 6 percent slopes, eroded	6 56	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	6.12	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	9.23	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	2.31	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	31.93	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	1.64	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.08	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	16.39	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	8.88	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.91	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.99	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.64	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.96	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	18.13	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	17.19	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	8.27	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	21.16	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	4.11	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.77	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.92	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.57	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	2.94	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.43	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	20.11	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	6.32	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	8.53	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	23.86	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	5.43	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	5.75	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	6.88	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.33	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.60	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	9.32	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	27.87	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	1.84	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.21	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.76	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Fox silt loam, 4 to 6 percent slopes, eroded	5.80	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.42	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	10.45	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	28.68	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	1.58	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.12	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.83	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	8.41	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	68.49	0.06
Fox silt loam, 4 to 6 percent slopes, eroded	43.48	0.04
Fox silt loam, 4 to 6 percent slopes, eroded	7.46	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.47	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.40	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.71	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.35	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.43	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	8.43	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.17	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	16.95	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	2.20	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	26.29	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	30.30	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	1.37	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.08	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.56	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.12	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.59	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.53	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.75	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	2.17	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.93	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.35	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	18.40	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	1.61	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.52	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.01	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.66	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.46	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.40	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.36	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	16.61	0.02

Soil Description	Area	Percent Area
Fox silt loam 1 to 6 percent slopes eroded	8 82	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.10	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.97	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4 47	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	42.05	0.04
Fox silt loam, 4 to 6 percent slopes, eroded	18.41	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	60.38	0.06
Fox silt loam, 4 to 6 percent slopes, eroded	4.65	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.40	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.76	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.61	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.74	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	16.10	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	10.14	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	6.49	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	14.94	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	56.08	0.05
Fox silt loam, 4 to 6 percent slopes, eroded	8.97	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	95.28	0.09
Fox silt loam, 4 to 6 percent slopes, eroded	10.59	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	28.91	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	18.14	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	19.32	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	6.69	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	25.82	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	9.41	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	5.33	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	8.19	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.72	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.05	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.75	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	5.62	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.12	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.28	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	69.69	0.06
Fox silt loam, 4 to 6 percent slopes, eroded	19.67	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	5.02	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.49	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.01	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.68	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.81	0.00

Soil Description	Area	Percent Area
Fox silt loam 1 to 6 percent slopes eroded	1 22	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2 10	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4 10	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1 16	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	8 57	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.89	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.36	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.09	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.70	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.43	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.05	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	10.64	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	23.92	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	30.37	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	2.85	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.49	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	2.46	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	11.58	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.31	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.52	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.63	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	61.92	0.06
Fox silt loam, 4 to 6 percent slopes, eroded	2.48	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.14	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.47	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.36	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.82	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	12.74	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.97	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.77	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.18	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	12.42	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	18.85	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	3.20	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	29.73	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	4.72	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	15.66	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.58	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.34	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.21	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.64	0.00

Soil Description	Area (Acres)	Percent Area
Fox silt loam 4 to 6 percent slopes eroded	67.82	0.06
Fox silt loam, 4 to 6 percent slopes, eroded	7.94	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.07	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.93	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.25	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.29	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.02	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.61	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.98	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	9.86	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	28.69	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	0.35	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	35.41	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	2.15	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.59	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	9.53	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	4.88	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.33	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.46	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	1.41	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.54	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	22.55	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	6.66	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	2.87	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	16.59	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	3.72	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	34.79	0.03
Fox silt loam, 4 to 6 percent slopes, eroded	2.54	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.62	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.47	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.80	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	6.98	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.52	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.70	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.78	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	0.84	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	5.40	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	12.87	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	1.01	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.14	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	4.23	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Fox silt loam, 4 to 6 percent slopes, eroded	2.03	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	3.32	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	0.46	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	13.18	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	11.56	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	11.11	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	22.82	0.02
Fox silt loam, 4 to 6 percent slopes, eroded	15.26	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.86	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	2.96	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	9.54	0.01
Fox silt loam, 4 to 6 percent slopes, eroded	3.34	0.00
Fox silt loam, 4 to 6 percent slopes, eroded	7.31	0.01
Frankfort silt loam, 0 to 2 percent slopes	7.78	0.01
Frankfort silt loam, 0 to 2 percent slopes	1.15	0.00
Frankfort silt loam, 2 to 4 percent slopes	1.88	0.00
Frankfort silt loam, 2 to 4 percent slopes	5.08	0.00
Frankfort silt loam, 2 to 4 percent slopes	7.20	0.01
Frankfort silt loam, 2 to 4 percent slopes	3.30	0.00
Frankfort silty clay loam, 2 to 4 percent slopes, eroded	9.20	0.01
Frankfort silty clay loam, 2 to 4 percent slopes, eroded	4.94	0.00
Granby fine sandy loam, 0 to 2 percent slopes	3.16	0.00
Granby fine sandy loam, 0 to 2 percent slopes	13.53	0.01
Granby fine sandy loam, 0 to 2 percent slopes	5.08	0.00
Grays and Markham silt loams, 0 to 2 percent slopes	4.71	0.00
Grays and Markham silt loams, 0 to 2 percent slopes	15.13	0.01
Grays and Markham silt loams, 0 to 2 percent slopes	13.23	0.01
Gravs and Markham silt loams, 0 to 2 percent slopes	2.85	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	5.35	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	2.99	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	7.32	0.01
Gravs and Markham silt loams, 0 to 2 percent slopes	14.24	0.01
Gravs and Markham silt loams, 0 to 2 percent slopes	2.67	0.00
Gravs and Markham silt loams 0 to 2 percent slopes	3 25	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	8.08	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	12.05	0.01
Gravs and Markham silt loams, 0 to 2 percent slopes	10.08	0.01
Grave and Markham silt loams, 0 to 2 percent slopes	2 16	0.01
Grave and Markham silt loams, 0 to 2 percent clopes	2.10 E 00	0.00
Grays and Markham silt loams, 0 to 2 percent slopes	3.96	0.01
Grays and Warkham silt loams, 0 to 2 percent slopes	3.03	0.00
Grays and Warkham sill loams, U to 2 percent slopes	10.19	0.01

Soil Description	Area	Percent Area
Gravs and Markham silt loams. 0 to 2 percent slopes	29.65	0.03
Gravs and Markham silt loams, 0 to 2 percent slopes	16.48	0.02
Gravs and Markham silt loams, 0 to 2 percent slopes	6.78	0.01
Gravs and Markham silt loams, 0 to 2 percent slopes	2.76	0.00
Gravs and Markham silt loams, 0 to 2 percent slopes	2.70	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	1.26	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	1.77	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	1.04	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	4.57	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	27.80	0.03
Gravs and Markham silt loams, 2 to 4 percent slopes	3.73	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	5.10	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	18.94	0.02
Grays and Markham silt loams, 2 to 4 percent slopes	8.22	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	2.58	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	8.39	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	5.09	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	2.40	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	7.93	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	3.17	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	7.72	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	4.02	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	3.60	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	11.04	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	8.39	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	11.87	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	2.66	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	35.92	0.03
Grays and Markham silt loams, 2 to 4 percent slopes	3.36	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	2.09	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	11.46	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	3.97	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	1.52	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	42.76	0.04
Grays and Markham silt loams, 2 to 4 percent slopes	2.81	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	6.69	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	2.55	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	3.21	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	3.55	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	6.01	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	1.76	0.00

Soil Description	Area	Percent Area
Gravs and Markham silt loams 2 to 4 percent slopes	1.83	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	8.97	0.00
Gravs and Markham silt loams, 2 to 4 percent slopes	7 91	0.01
Gravs and Markham silt loams, 2 to 4 percent slopes	1 78	0.01
Grays and Markham silt loams, 2 to 4 percent slopes	1.70	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	3.62	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	0.05	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	12 76	0.00
Grays and Markham silt loams, 2 to 4 percent slopes	24.41	0.01
Grave silt loam 0 to 2 percent clopes	24.41 1 95	0.02
Grave silt learn, 0 to 2 percent slopes	4.65	0.00
Grays silt loam, 0 to 2 percent slopes	1.58	0.00
Grays silt loam, 0 to 2 percent slopes	2.12	0.00
Grays silt loam, 0 to 2 percent slopes	1.73	0.00
Grays slit loam, 0 to 2 percent slopes	1.63	0.00
Grays silt loam, 0 to 2 percent slopes	33.20	0.03
Grays silt loam, 0 to 2 percent slopes	8.51	0.01
Grays silt loam, 0 to 2 percent slopes	1.85	0.00
Grays silt loam, 0 to 2 percent slopes	3.61	0.00
Grays silt loam, 0 to 2 percent slopes	10.33	0.01
Grays silt loam, 2 to 4 percent slopes	11.41	0.01
Grays silt loam, 2 to 4 percent slopes	9.98	0.01
Grays silt loam, 2 to 4 percent slopes	6.67	0.01
Grays silt loam, 2 to 4 percent slopes	7.13	0.01
Grays silt loam, 2 to 4 percent slopes	2.16	0.00
Grays silt loam, 2 to 4 percent slopes	27.49	0.03
Grays silt loam, 2 to 4 percent slopes	9.01	0.01
Grays silt loam, 2 to 4 percent slopes	1.27	0.00
Grays silt loam, 2 to 4 percent slopes	3.66	0.00
Grays silt loam, 2 to 4 percent slopes	8.69	0.01
Grays silt loam, 2 to 4 percent slopes	3.89	0.00
Grays silt loam, 2 to 4 percent slopes	18.22	0.02
Grays silt loam, 2 to 4 percent slopes	71.52	0.07
Grays silt loam, 2 to 4 percent slopes	4.19	0.00
Grays silt loam, 2 to 4 percent slopes	0.73	0.00
Grays silt loam, 2 to 4 percent slopes	8.82	0.01
Grays silt loam, 2 to 4 percent slopes	9.39	0.01
Grays silt loam, 2 to 4 percent slopes	8.45	0.01
Grays silt loam, 2 to 4 percent slopes	12.48	0.01
Grays silt loam, 2 to 4 percent slopes	22.28	0.02
Grays silt loam, 2 to 4 percent slopes	2.54	0.00
Grays silt loam, 2 to 4 percent slopes	2.95	0.00

Soil Description	Area (Acres)	Percent Area (%)
Gravs silt loam, 2 to 4 percent slopes	2.57	0.00
Grays silt loam, 2 to 4 percent slopes	2.11	0.00
Grays silt loam, 2 to 4 percent slopes	45.77	0.04
Grays silt loam, 2 to 4 percent slopes	3.59	0.00
Grays silt loam, 2 to 4 percent slopes	8.70	0.01
Grays silt loam, 2 to 4 percent slopes	2.25	0.00
Grays silt loam, 2 to 4 percent slopes	5.73	0.01
Grays silt loam, 2 to 4 percent slopes	14.26	0.01
Griswold loam, 2 to 4 percent slopes	5.02	0.00
Griswold loam, 2 to 4 percent slopes	0.57	0.00
Griswold loam, 2 to 4 percent slopes	19.60	0.02
Griswold loam, 2 to 4 percent slopes	6.52	0.01
Griswold loam, 2 to 4 percent slopes	16.31	0.02
Griswold loam, 2 to 4 percent slopes	8.52	0.01
Griswold loam, 2 to 4 percent slopes	0.73	0.00
Griswold loam, 2 to 4 percent slopes	6.67	0.01
Griswold loam, 2 to 4 percent slopes	8.70	0.01
Griswold loam, 2 to 4 percent slopes	1.64	0.00
Griswold loam, 2 to 4 percent slopes	1.14	0.00
Griswold loam, 2 to 4 percent slopes	1.82	0.00
Griswold loam, 2 to 4 percent slopes	3.34	0.00
Griswold loam, 2 to 4 percent slopes	15.25	0.01
Griswold loam, 4 to 6 percent slopes, eroded	5.25	0.00
Griswold loam, 4 to 6 percent slopes, eroded	6.09	0.01
Griswold loam, 4 to 6 percent slopes, eroded	10.61	0.01
Griswold loam, 4 to 6 percent slopes, eroded	22.06	0.02
Griswold loam, 4 to 6 percent slopes, eroded	58.30	0.05
Griswold loam, 4 to 6 percent slopes, eroded	5.22	0.00
Griswold loam, 4 to 6 percent slopes, eroded	22.21	0.02
Griswold loam, 4 to 6 percent slopes, eroded	9.60	0.01
Griswold loam, 4 to 6 percent slopes, eroded	10.03	0.01
Griswold loam, 4 to 6 percent slopes, eroded	36.98	0.03
Griswold loam, 4 to 6 percent slopes, eroded	5.37	0.00
Griswold loam, 4 to 6 percent slopes, eroded	5.66	0.01
Griswold loam, 4 to 6 percent slopes, eroded	2.73	0.00
Griswold loam, 4 to 6 percent slopes, eroded	4.46	0.00
Griswold loam, 4 to 6 percent slopes, eroded	8.72	0.01
Griswold loam, 4 to 6 percent slopes, eroded	14.03	0.01
Griswold loam, 4 to 6 percent slopes, eroded	3.74	0.00
Griswold loam, 4 to 6 percent slopes, eroded	11.39	0.01
Griswold loam, 4 to 6 percent slopes, eroded	21.10	0.02

(Acres) (%)	
Griswold loam, 4 to 6 percent slopes, eroded 9.20	0.01
Griswold loam, 4 to 6 percent slopes, eroded 2.51	0.00
Griswold loam, 4 to 6 percent slopes, eroded 8.85	0.01
Griswold loam, 4 to 6 percent slopes, eroded 2.21	0.00
Griswold loam, 4 to 6 percent slopes, eroded 2.21	0.00
Griswold loam, 4 to 6 percent slopes, eroded 2.38	0.00
Griswold loam, 4 to 6 percent slopes, eroded 5.31	0.00
Griswold loam, 4 to 6 percent slopes, eroded 5.44	0.01
Griswold loam, 4 to 6 percent slopes, eroded 10.28	0.01
Griswold loam, 4 to 6 percent slopes, eroded 64.90	0.06
Griswold loam, 4 to 6 percent slopes, eroded 2.46	0.00
Griswold loam, 4 to 6 percent slopes, eroded 2.66	0.00
Griswold loam, 4 to 6 percent slopes, eroded 4.73	0.00
Griswold loam, 4 to 6 percent slopes, eroded 2.25	0.00
Griswold loam, 4 to 6 percent slopes, eroded 2.83	0.00
Griswold loam, 4 to 6 percent slopes, eroded 3.26	0.00
Griswold loam, 4 to 6 percent slopes, eroded 1.66	0.00
Griswold loam, 4 to 6 percent slopes, eroded 24.28	0.02
Griswold loam, 4 to 6 percent slopes, eroded 7.11	0.01
Griswold loam, 4 to 6 percent slopes, eroded 3.97	0.00
Griswold loam, 4 to 6 percent slopes, eroded 6.60	0.01
Griswold loam, 4 to 6 percent slopes, eroded 48.60	0.04
Griswold loam, 4 to 6 percent slopes, eroded 9.10	0.01
Griswold loam, 4 to 6 percent slopes, eroded 4.14	0.00
Griswold loam, 4 to 6 percent slopes, eroded 16.16	0.01
Griswold loam, 4 to 6 percent slopes, eroded 2.76	0.00
Griswold loam, 4 to 6 percent slopes, eroded 6.59	0.01
Griswold loam, 4 to 6 percent slopes, eroded 4.53	0.00
Griswold loam, 4 to 6 percent slopes, eroded 21.33	0.02
Griswold loam, 4 to 6 percent slopes, eroded 1.71	0.00
Griswold loam, 4 to 6 percent slopes, eroded 134.89	0.12
Griswold Joam, 4 to 6 percent slopes, eroded 58.33	0.05
Griswold loam, 4 to 6 percent slopes, eroded 2.36	0.00
Griswold Joam, 4 to 6 percent slopes, eroded 9.21	0.01
Griswold Joam, 4 to 6 percent slopes, eroded 5.61	0.01
Griswold Joam, 4 to 6 percent slopes, eroded 2.44	0.00
Griswold Joam, 4 to 6 percent slopes, eroded 58.25	0.05
Griswold Joan, 4 to 6 percent slopes, eroded 7 30	0.01
Griswold Joam, 4 to 6 percent slopes, eroded 3 91	0.00
Griswold Joam 4 to 6 percent slopes, eroded 4 26	0.00
Griswold Joam, 4 to 6 percent slopes, eroded 6.69	0.01

Soil Description	Area (Acres)	Percent Area (%)
Griswold loam, 4 to 6 percent slopes, eroded	17.40	0.02
Griswold loam, 4 to 6 percent slopes, eroded	5.69	0.01
Griswold loam, 4 to 6 percent slopes, eroded	2.13	0.00
Griswold loam, 4 to 6 percent slopes, eroded	2.13	0.00
Griswold loam, 4 to 6 percent slopes, eroded	16.01	0.01
Griswold loam, 4 to 6 percent slopes, eroded	5.34	0.00
Griswold loam, 4 to 6 percent slopes, eroded	17.46	0.02
Griswold loam, 4 to 6 percent slopes, eroded	1.73	0.00
Griswold loam, 4 to 6 percent slopes, eroded	48.23	0.04
Griswold loam, 4 to 6 percent slopes, eroded	2.54	0.00
Griswold loam, 4 to 6 percent slopes, eroded	5.35	0.00
Griswold loam, 4 to 6 percent slopes, eroded	29.81	0.03
Griswold loam, 4 to 6 percent slopes, eroded	4.86	0.00
Griswold loam, 4 to 6 percent slopes, eroded	9.66	0.01
Griswold loam, 4 to 6 percent slopes, eroded	4.92	0.00
Griswold loam, 4 to 6 percent slopes, eroded	35.60	0.03
Griswold loam, 4 to 6 percent slopes, eroded	29.27	0.03
Griswold loam, 4 to 6 percent slopes, eroded	2.68	0.00
Griswold loam, 4 to 6 percent slopes, eroded	7.91	0.01
Griswold loam, 4 to 6 percent slopes, eroded	3.15	0.00
Griswold loam, 4 to 6 percent slopes, eroded	3.80	0.00
Griswold loam, 4 to 6 percent slopes, eroded	6.24	0.01
Griswold loam, 4 to 6 percent slopes, eroded	2.44	0.00
Griswold loam, 4 to 6 percent slopes, eroded	15.28	0.01
Griswold loam, 4 to 6 percent slopes, eroded	2.91	0.00
Griswold loam, 4 to 6 percent slopes, eroded	3.88	0.00
Griswold loam, 4 to 6 percent slopes, eroded	25.69	0.02
Griswold loam, 4 to 6 percent slopes, eroded	42.02	0.04
Griswold loam, 4 to 6 percent slopes, eroded	4.07	0.00
Griswold loam, 4 to 6 percent slopes, eroded	2.76	0.00
Griswold loam, 4 to 6 percent slopes, eroded	7.43	0.01
Griswold loam, 4 to 6 percent slopes, eroded	47.54	0.04
Griswold loam, 4 to 6 percent slopes, eroded	3.51	0.00
Griswold loam, 4 to 6 percent slopes, eroded	2.35	0.00
Griswold loam, 4 to 6 percent slopes, eroded	21.97	0.02
Griswold loam, 4 to 6 percent slopes, eroded	41.50	0.04
Griswold loam, 4 to 6 percent slopes, eroded	8.24	0.01
Griswold loam, 4 to 6 percent slopes, eroded	10.35	0.01
Griswold loam, 4 to 6 percent slopes, eroded	7.41	0.01
Griswold loam, 4 to 6 percent slopes, eroded	23.15	0.02
Griswold loam, 4 to 6 percent slopes, eroded	0.96	0.00

Soil Description	Area	Percent Area
Griswold loam 4 to 6 percent slopes eroded	174.86	(/0)
Griswold Ioam, 4 to 6 percent slopes, eroded	3 24	0.10
Griswold Ioam, 4 to 6 percent slopes, eroded	4 91	0.00
Griswold Ioam, 4 to 6 percent slopes, croded	2 56	0.00
Griswold Ioam, 4 to 6 percent slopes, croded	13.96	0.00
Griswold Joam, 6 to 12 percent slopes, eroded	1.83	0.00
Griswold Joam, 6 to 12 percent slopes, eroded	3.69	0.00
Griswold Joam, 6 to 12 percent slopes, eroded	9.64	0.01
Griswold Joam, 6 to 12 percent slopes, eroded	11.18	0.01
Griswold loam, 6 to 12 percent slopes, eroded	18.27	0.02
Griswold loam, 6 to 12 percent slopes, eroded	2.42	0.00
Griswold loam, 6 to 12 percent slopes, eroded	3.67	0.00
Griswold loam, 6 to 12 percent slopes, eroded	6.91	0.01
Griswold loam, 6 to 12 percent slopes, eroded	9.91	0.01
Griswold loam, 6 to 12 percent slopes, eroded	4.16	0.00
Griswold loam, 6 to 12 percent slopes, eroded	6.02	0.01
Griswold loam, 6 to 12 percent slopes, eroded	4.52	0.00
Griswold loam, 6 to 12 percent slopes, eroded	14.78	0.01
Griswold loam, 6 to 12 percent slopes, eroded	6.87	0.01
Griswold loam, 6 to 12 percent slopes, eroded	9.58	0.01
Griswold loam, 6 to 12 percent slopes, eroded	8.19	0.01
Griswold loam, 6 to 12 percent slopes, eroded	3.13	0.00
Griswold loam, 6 to 12 percent slopes, eroded	8.81	0.01
Griswold loam, 6 to 12 percent slopes, eroded	8.20	0.01
Griswold loam, 6 to 12 percent slopes, eroded	1.84	0.00
Griswold loam, 6 to 12 percent slopes, eroded	3.61	0.00
Griswold loam, 6 to 12 percent slopes, eroded	15.39	0.01
Griswold loam, 6 to 12 percent slopes, eroded	4.58	0.00
Griswold loam, 6 to 12 percent slopes, eroded	2.97	0.00
Griswold loam, 6 to 12 percent slopes, eroded	2.80	0.00
Griswold loam, 6 to 12 percent slopes, eroded	27.22	0.03
Griswold loam, 6 to 12 percent slopes, eroded	7.29	0.01
Griswold loam, 6 to 12 percent slopes, eroded	19.86	0.02
Griswold loam, 6 to 12 percent slopes, eroded	5.85	0.01
Griswold loam, 6 to 12 percent slopes, eroded	5.56	0.01
Griswold loam, 6 to 12 percent slopes, eroded	5.76	0.01
Griswold loam, 6 to 12 percent slopes, eroded	10.95	0.01
Griswold loam, 6 to 12 percent slopes, eroded	3.01	0.00
Griswold loam, 6 to 12 percent slopes, eroded	2.33	0.00
Griswold loam, 6 to 12 percent slopes, eroded	15.07	0.01
Griswold loam, 6 to 12 percent slopes, eroded	24.59	0.02

Soil Description	Area	Percent Area
Crisweld loom 6 to 12 percent clopes, eroded	(Acres)	(%)
Griswold Ioani, 6 to 12 percent slopes, eroded	3.33	0.00
Grundelein silt loam, 0 to 2 percent slopes	9.00	0.01
Grundelein silt loam, 0 to 2 percent slopes	7.62	0.01
Grundelein silt loam, 0 to 2 percent slopes	5.00	0.00
Grundelein silt loam, 0 to 2 percent slopes	0.74	0.01
Grundelein silt loam, 0 to 2 percent slopes	1.33	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.80	0.00
Grundelein silt loam, 0 to 2 percent slopes	12.65	0.01
Grundelein silt loam, 0 to 2 percent slopes	8.39	0.01
Grundelein silt loam, 0 to 2 percent slopes	1.82	0.00
Grundelein silt loam, 0 to 2 percent slopes	0.01	0.00
Grundelein silt loam, 0 to 2 percent slopes	4.09	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.34	0.00
Grundelein silt loam, 0 to 2 percent slopes	4.08	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.47	0.00
Grundelein silt loam, 0 to 2 percent slopes	27.05	0.02
Grundelein silt loam, 0 to 2 percent slopes	1.62	0.00
Grundelein silt loam, 0 to 2 percent slopes	12.57	0.01
Grundelein silt loam, 0 to 2 percent slopes	4.79	0.00
Grundelein silt loam, 0 to 2 percent slopes	5.40	0.00
Grundelein silt loam, 0 to 2 percent slopes	3.73	0.00
Grundelein silt loam, 0 to 2 percent slopes	3.75	0.00
Grundelein silt loam, 0 to 2 percent slopes	12.52	0.01
Grundelein silt loam, 0 to 2 percent slopes	5.20	0.00
Grundelein silt loam, 0 to 2 percent slopes	36.58	0.03
Grundelein silt loam, 0 to 2 percent slopes	1.20	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.36	0.00
Grundelein silt loam, 0 to 2 percent slopes	5.56	0.01
Grundelein silt loam, 0 to 2 percent slopes	6.98	0.01
Grundelein silt loam, 0 to 2 percent slopes	8.28	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.50	0.00
Grundelein silt loam, 0 to 2 percent slopes	6.95	0.01
Grundelein silt loam, 0 to 2 percent slopes	2.11	0.00
Grundelein silt loam, 0 to 2 percent slopes	3.29	0.00
Grundelein silt loam, 0 to 2 percent slopes	10.80	0.01
Grundelein silt loam, 0 to 2 percent slopes	2.71	0.00
Grundelein silt loam, 0 to 2 percent slopes	8.61	0.01
Grundelein silt loam, 0 to 2 percent slopes	2.45	0.00
Grundelein silt loam, 0 to 2 percent slopes	10.03	0.01
Grundelein silt loam, 0 to 2 percent slopes	6.76	0.01
Grundelein silt loam, 0 to 2 percent slopes	4.72	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Grundelein silt loam, 0 to 2 percent slopes	3.16	0.00
Grundelein silt loam, 0 to 2 percent slopes	6.89	0.01
Grundelein silt loam, 0 to 2 percent slopes	5.31	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.89	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.63	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.15	0.00
Grundelein silt loam, 0 to 2 percent slopes	13.80	0.01
Grundelein silt loam, 0 to 2 percent slopes	2.31	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.80	0.00
Grundelein silt loam, 0 to 2 percent slopes	35.53	0.03
Grundelein silt loam, 0 to 2 percent slopes	27.88	0.03
Grundelein silt loam, 0 to 2 percent slopes	4.76	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.00	0.00
Grundelein silt loam, 0 to 2 percent slopes	24.20	0.02
Grundelein silt loam, 0 to 2 percent slopes	8.26	0.01
Grundelein silt loam, 0 to 2 percent slopes	1.43	0.00
Grundelein silt loam, 0 to 2 percent slopes	22.74	0.02
Grundelein silt loam, 0 to 2 percent slopes	1.00	0.00
Grundelein silt loam, 0 to 2 percent slopes	6.94	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.83	0.00
Grundelein silt loam, 0 to 2 percent slopes	10.94	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.67	0.00
Grundelein silt loam, 0 to 2 percent slopes	12.80	0.01
Grundelein silt loam, 0 to 2 percent slopes	71.85	0.07
Grundelein silt loam, 0 to 2 percent slopes	4.74	0.00
Grundelein silt loam, 0 to 2 percent slopes	26.12	0.02
Grundelein silt loam, 0 to 2 percent slopes	4.09	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.65	0.00
Grundelein silt loam, 0 to 2 percent slopes	48.16	0.04
Grundelein silt loam, 0 to 2 percent slopes	6.02	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.12	0.00
Grundelein silt loam, 0 to 2 percent slopes	1.82	0.00
Grundelein silt loam, 0 to 2 percent slopes	4.92	0.00
Grundelein silt loam, 0 to 2 percent slopes	4.86	0.00
Grundelein silt loam, 0 to 2 percent slopes	18.72	0.02
Grundelein silt loam, 0 to 2 percent slopes	24.28	0.02
Grundelein silt loam, 0 to 2 percent slopes	8.24	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.42	0.00
Grundelein silt loam. 0 to 2 percent slopes	1.11	0.00
Grundelein silt loam. 0 to 2 percent slopes	2.36	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.26	0.00

Soil Description	Area	Percent Area
Grundelein silt loam. 0 to 2 percent slopes	(Acres)	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.45	0.01
Grundelein silt loam, 0 to 2 percent slopes	2 79	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.75	0.00
Grundelein silt loam, 0 to 2 percent slopes	1 92	0.00
Grundelein silt loam, 0 to 2 percent slopes	5.75	0.01
Grundelein silt loam. 0 to 2 percent slopes	6.07	0.01
Grundelein silt loam. 0 to 2 percent slopes	3.13	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.69	0.00
Grundelein silt loam, 0 to 2 percent slopes	5.03	0.00
Grundelein silt loam, 0 to 2 percent slopes	2.10	0.00
Grundelein silt loam, 0 to 2 percent slopes	5.85	0.01
Grundelein silt loam, 0 to 2 percent slopes	3.07	0.00
Grundelein silt loam, 0 to 2 percent slopes	3.84	0.00
Grundelein silt loam, 0 to 2 percent slopes	7.73	0.01
Grundelein silt loam, 0 to 2 percent slopes	6.82	0.01
Grundelein silt loam, 0 to 2 percent slopes	4.21	0.00
Grundelein silt loam, 0 to 2 percent slopes	15.46	0.01
Grundelein silt loam, 0 to 2 percent slopes	10.69	0.01
Grundelein silt loam, 0 to 2 percent slopes	8.77	0.01
Grundelein silt loam, 0 to 2 percent slopes	2.66	0.00
Grundelein silt loam, 0 to 2 percent slopes	15.84	0.01
Grundelein silt loam, 0 to 2 percent slopes	4.53	0.00
Grundelein silt loam, 0 to 2 percent slopes	0.67	0.00
Grundelein silt loam, 0 to 2 percent slopes	20.92	0.02
Harpster silt loam, 0 to 2 percent slopes, undrained	9.79	0.01
Harpster silt loam, 0 to 2 percent slopes, undrained	105.12	0.10
Harpster silt loam, 0 to 2 percent slopes, undrained	9.23	0.01
Harpster silt loam, 0 to 2 percent slopes, undrained	9.46	0.01
Harpster silt loam, 0 to 2 percent slopes, undrained	2.82	0.00
Harpster silt loam, 0 to 2 percent slopes, undrained	24.19	0.02
Harpster silt loam, 0 to 2 percent slopes, undrained	17.62	0.02
Harpster silt loam, 0 to 2 percent slopes, undrained	6.73	0.01
Harpster silty clay loam, 0 to 2 percent slopes	2.59	0.00
Harpster silty clay loam, 0 to 2 percent slopes	31.63	0.03
Harpster silty clay loam, 0 to 2 percent slopes	6.65	0.01
Harpster silty clay loam, 0 to 2 percent slopes	5.80	0.01
Harpster silty clay loam, 0 to 2 percent slopes	6.70	0.01
Harpster silty clay loam, 0 to 2 percent slopes	5.99	0.01
Harpster silty clay loam, 0 to 2 percent slopes	2.04	0.00
Harpster silty clay loam, 0 to 2 percent slopes	3.93	0.00

Soil Description	Area (Acres)	Percent Area (%)
Harpster silty clay loam, 0 to 2 percent slopes	8.61	0.01
Harpster silty clay loam, 0 to 2 percent slopes	3.13	0.00
Harpster silty clay loam, 0 to 2 percent slopes	6.56	0.01
Harpster silty clay loam, 0 to 2 percent slopes	9.10	0.01
Harpster silty clay loam, 0 to 2 percent slopes	16.83	0.02
Harpster silty clay loam, 0 to 2 percent slopes	3.58	0.00
Harpster silty clay loam, 0 to 2 percent slopes	2.40	0.00
Harpster silty clay loam, 0 to 2 percent slopes	8.14	0.01
Harpster silty clay loam, 0 to 2 percent slopes	5.44	0.01
Harpster silty clay loam, 0 to 2 percent slopes	12.60	0.01
Harpster silty clay loam, 0 to 2 percent slopes	8.37	0.01
Harpster silty clay loam, 0 to 2 percent slopes	13.08	0.01
Harpster silty clay loam, 0 to 2 percent slopes	13.75	0.01
Harpster silty clay loam, 0 to 2 percent slopes	4.30	0.00
Harpster silty clay loam, 0 to 2 percent slopes	5.45	0.01
Harpster silty clay loam, 0 to 2 percent slopes	0.76	0.00
Harpster silty clay loam, 0 to 2 percent slopes	1.86	0.00
Harpster silty clay loam, 0 to 2 percent slopes	10.77	0.01
Harpster silty clay loam, 0 to 2 percent slopes	12.43	0.01
Harpster silty clay loam, 0 to 2 percent slopes	4.87	0.00
Harpster silty clay loam, 0 to 2 percent slopes	3.94	0.00
Harpster silty clay loam, 0 to 2 percent slopes	17.01	0.02
Harpster silty clay loam, 0 to 2 percent slopes	1.85	0.00
Harpster silty clay loam, 0 to 2 percent slopes	2.93	0.00
Harpster silty clay loam, 0 to 2 percent slopes	1.25	0.00
Harpster silty clay loam, 0 to 2 percent slopes	1.50	0.00
Harpster silty clay loam, 0 to 2 percent slopes	33.54	0.03
Harpster silty clay loam, 0 to 2 percent slopes	3.87	0.00
Harvard silt loam, 0 to 2 percent slopes	4.92	0.00
Harvard silt loam, 0 to 2 percent slopes	2.99	0.00
Harvard silt loam, 0 to 2 percent slopes	0.00	0.00
Harvard silt loam, 0 to 2 percent slopes	6.62	0.01
Harvard silt loam, 0 to 2 percent slopes	8.48	0.01
Harvard silt loam, 0 to 2 percent slopes	24.61	0.02
Harvard silt loam, 0 to 2 percent slopes	3.45	0.00
Harvard silt loam, 0 to 2 percent slopes	6.53	0.01
Harvard silt loam, 0 to 2 percent slopes	15.57	0.01
Harvard silt loam, 2 to 5 percent slopes	2.87	0.00
Harvard silt loam, 2 to 5 percent slopes	6.77	0.01
Harvard silt loam, 2 to 5 percent slopes	3.91	0.00
Harvard silt loam, 2 to 5 percent slopes	12.51	0.01

Soil Description	Area	Percent Area
Harvard silt loam 2 to 5 percent slopes	5 54	0.01
Harvard silt loam, 2 to 5 percent slopes	11 12	0.01
Harvard silt loam, 2 to 5 percent slopes	1.81	0.00
Harvard silt loam, 2 to 5 percent slopes	9.30	0.01
Harvard silt loam, 2 to 5 percent slopes	4 47	0.00
Harvard silt loam, 2 to 5 percent slopes	19.97	0.02
Harvard silt loam, 2 to 5 percent slopes	6.03	0.01
Harvard silt loam, 2 to 5 percent slopes	8.25	0.01
Harvard silt loam, 2 to 5 percent slopes	11.78	0.01
Harvard silt loam, 2 to 5 percent slopes	25.68	0.02
Harvard silt loam, 2 to 5 percent slopes	6.74	0.01
Harvard silt loam, 2 to 5 percent slopes	11.80	0.01
Harvard silt loam, 2 to 5 percent slopes	3.98	0.00
Hoopeston sandy loam, 0 to 2 percent slopes	2.26	0.00
Hoopeston sandy loam, 0 to 2 percent slopes	1.22	0.00
Hoopeston sandy loam, 0 to 2 percent slopes	0.80	0.00
Hoopeston sandy loam, 0 to 2 percent slopes	1.62	0.00
Hoopeston sandy loam, 0 to 2 percent slopes	6.84	0.01
Hooppole loam, 0 to 2 percent slopes	145.76	0.13
Hooppole loam, 0 to 2 percent slopes	6.05	0.01
Hooppole loam, 0 to 2 percent slopes	23.36	0.02
Hooppole loam, 0 to 2 percent slopes	3.47	0.00
Hooppole loam, 0 to 2 percent slopes	5.38	0.00
Hooppole loam, 0 to 2 percent slopes	21.12	0.02
Hooppole loam, 0 to 2 percent slopes	4.26	0.00
Hooppole loam, 0 to 2 percent slopes	4.65	0.00
Hooppole loam, 0 to 2 percent slopes	8.19	0.01
Hooppole loam, 0 to 2 percent slopes	5.98	0.01
Hooppole loam, 0 to 2 percent slopes	1.52	0.00
Hooppole loam, 0 to 2 percent slopes	6.49	0.01
Hooppole loam, 0 to 2 percent slopes	2.63	0.00
Hooppole loam, 0 to 2 percent slopes	11.63	0.01
Hooppole loam, 0 to 2 percent slopes	1.08	0.00
Hooppole loam, 0 to 2 percent slopes	11.02	0.01
Hooppole loam, 0 to 2 percent slopes	22.35	0.02
Hooppole loam, 0 to 2 percent slopes	0.78	0.00
Hooppole loam, 0 to 2 percent slopes	9.36	0.01
Hooppole loam, 0 to 2 percent slopes	15.71	0.01
Hooppole loam, 0 to 2 percent slopes	26.91	0.02
Hooppole loam, 0 to 2 percent slopes	3.64	0.00
Hooppole loam, 0 to 2 percent slopes	18.38	0.02

Soil Description	Area	Percent Area
Soli Description	(Acres)	(%)
Hooppole loam, 0 to 2 percent slopes	5.65	0.01
Hooppole loam, 0 to 2 percent slopes	8.64	0.01
Hooppole loam, 0 to 2 percent slopes	2.45	0.00
Hooppole loam, 0 to 2 percent slopes	2.32	0.00
Hooppole loam, 0 to 2 percent slopes	5.12	0.00
Hooppole loam, 0 to 2 percent slopes	3.88	0.00
Hooppole loam, 0 to 2 percent slopes	7.76	0.01
Hooppole loam, 0 to 2 percent slopes	20.97	0.02
Hooppole loam, 0 to 2 percent slopes	2.29	0.00
Hooppole loam, 0 to 2 percent slopes	0.38	0.00
Hooppole loam, 0 to 2 percent slopes	3.86	0.00
Hooppole loam, 0 to 2 percent slopes	5.24	0.00
Hooppole loam, 0 to 2 percent slopes	4.58	0.00
Hooppole loam, 0 to 2 percent slopes	6.98	0.01
Hooppole loam, 0 to 2 percent slopes	5.62	0.01
Hooppole loam, 0 to 2 percent slopes	3.20	0.00
Hooppole loam, 0 to 2 percent slopes	4.14	0.00
Hooppole loam, 0 to 2 percent slopes	99.86	0.09
Hooppole loam, 0 to 2 percent slopes	38.86	0.04
Hooppole loam, 0 to 2 percent slopes	44.08	0.04
Hooppole loam, 0 to 2 percent slopes	9.29	0.01
Hooppole loam, 0 to 2 percent slopes	8.49	0.01
Hooppole loam, 0 to 2 percent slopes	10.15	0.01
Hooppole loam, 0 to 2 percent slopes	11.37	0.01
Hooppole loam, 0 to 2 percent slopes	4.69	0.00
Hooppole loam, 0 to 2 percent slopes	12.83	0.01
Hooppole loam, 0 to 2 percent slopes, undrained	6.18	0.01
Hooppole loam, 0 to 2 percent slopes, undrained	32.15	0.03
Hooppole loam, 0 to 2 percent slopes, undrained	6.54	0.01
Hooppole loam, 0 to 2 percent slopes, undrained	22.91	0.02
Hooppole loam, 0 to 2 percent slopes, undrained	28.09	0.03
Hooppole loam, 0 to 2 percent slopes, undrained	6.88	0.01
Hooppole loam, 0 to 2 percent slopes, undrained	25.44	0.02
Hooppole loam, 0 to 2 percent slopes, undrained	1.67	0.00
Hooppole loam, 0 to 2 percent slopes, undrained	7.80	0.01
Hooppole loam, 0 to 2 percent slopes, undrained	71.60	0.07
Hooppole loam, 0 to 2 percent slopes, undrained	47.30	0.04
Hooppole loam, 0 to 2 percent slopes, undrained	3.51	0.00
Hooppole loam, 0 to 2 percent slopes, undrained	78.88	0.07
Hooppole loam, 0 to 2 percent slopes, undrained	25.05	0.02
Hooppole loam, 0 to 2 percent slopes, undrained	8.73	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Houghton muck, 0 to 2 percent slopes	7.52	0.01
Houghton muck, 0 to 2 percent slopes	1.77	0.00
Houghton muck, 0 to 2 percent slopes	1.86	0.00
Houghton muck, 0 to 2 percent slopes	11.34	0.01
Houghton muck, 0 to 2 percent slopes	31.00	0.03
Houghton muck, 0 to 2 percent slopes	1.73	0.00
Houghton muck, 0 to 2 percent slopes	1.69	0.00
Houghton muck, 0 to 2 percent slopes	6.38	0.01
Houghton muck, 0 to 2 percent slopes	11.63	0.01
Houghton muck, 0 to 2 percent slopes	8.92	0.01
Houghton muck, 0 to 2 percent slopes	9.66	0.01
Houghton muck, 0 to 2 percent slopes	24.63	0.02
Houghton muck, 0 to 2 percent slopes	0.29	0.00
Houghton muck, 0 to 2 percent slopes	64.37	0.06
Houghton muck, 0 to 2 percent slopes	305.52	0.28
Houghton muck, 0 to 2 percent slopes	1.44	0.00
Houghton muck, 0 to 2 percent slopes	5.03	0.00
Houghton muck, 0 to 2 percent slopes	44.34	0.04
Houghton muck, 0 to 2 percent slopes	20.99	0.02
Houghton muck, 0 to 2 percent slopes	2.45	0.00
Houghton muck, 0 to 2 percent slopes	6.30	0.01
Houghton muck, 0 to 2 percent slopes	3.68	0.00
Houghton muck, 0 to 2 percent slopes	4.55	0.00
Houghton muck, 0 to 2 percent slopes	6.26	0.01
Houghton muck, 0 to 2 percent slopes	12.26	0.01
Houghton muck, 0 to 2 percent slopes	3.60	0.00
Houghton muck, 0 to 2 percent slopes	5.10	0.00
Houghton muck, 0 to 2 percent slopes	2.96	0.00
Houghton muck, 0 to 2 percent slopes	6.84	0.01
Houghton muck, 0 to 2 percent slopes	2.81	0.00
Houghton muck, 0 to 2 percent slopes	20.63	0.02
Houghton muck. 0 to 2 percent slopes	5.02	0.00
Houghton muck, 0 to 2 percent slopes	5.91	0.01
Houghton muck. 0 to 2 percent slopes	2.66	0.00
Houghton muck. 0 to 2 percent slopes	2.15	0.00
Houghton muck. 0 to 2 percent slopes	21.58	0.02
Houghton muck. 0 to 2 percent slopes	14.29	0.01
Houghton muck. 0 to 2 percent slopes	14.91	0.01
Houghton muck. 0 to 2 percent slopes	0.21	0.00
Houghton muck, 0 to 2 percent slopes	104 71	0.10
Houghton muck. 0 to 2 percent slopes	74.96	0.07
Houghton muck, 0 to 2 percent slopesHoughton muck, 0 to 2 percent sl	0.29 64.37 305.52 1.44 5.03 44.34 20.99 2.45 6.30 3.68 4.55 6.26 12.26 3.60 5.10 2.96 6.84 2.81 2.063 5.02 5.91 2.66 2.15 2.158 14.29 14.91 0.21 104.71	0.00 0.06 0.28 0.00 0.00 0.04 0.02 0.02 0.00 0.01 0.00 0.01 0.00 0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Houghton muck, 0 to 2 percent slopes	4.21	0.00
Houghton muck, 0 to 2 percent slopes	108.06	0.10
Houghton muck, 0 to 2 percent slopes	3.67	0.00
Houghton muck, 0 to 2 percent slopes	34.39	0.03
Houghton muck, 0 to 2 percent slopes	7.25	0.01
Houghton muck, 0 to 2 percent slopes	28.68	0.03
Houghton muck, 0 to 2 percent slopes	38.37	0.04
Houghton muck, 0 to 2 percent slopes	116.10	0.11
Houghton muck, 0 to 2 percent slopes	0.89	0.00
Houghton muck, 0 to 2 percent slopes	1.89	0.00
Houghton muck, 0 to 2 percent slopes	1.32	0.00
Houghton muck, 0 to 2 percent slopes	110.92	0.10
Houghton muck, 0 to 2 percent slopes	3.40	0.00
Houghton muck, 0 to 2 percent slopes	12.59	0.01
Houghton muck, 0 to 2 percent slopes	4.86	0.00
Houghton muck, 0 to 2 percent slopes	3.73	0.00
Houghton muck, 0 to 2 percent slopes	77.46	0.07
Houghton muck, 0 to 2 percent slopes	29.69	0.03
Houghton muck, 0 to 2 percent slopes	22.29	0.02
Houghton muck, 0 to 2 percent slopes	4.36	0.00
Houghton muck, 0 to 2 percent slopes	0.58	0.00
Houghton muck, 0 to 2 percent slopes	26.94	0.02
Houghton muck, 0 to 2 percent slopes	5.08	0.00
Houghton muck, 0 to 2 percent slopes	4.86	0.00
Houghton muck, 0 to 2 percent slopes	6.74	0.01
Houghton muck, 0 to 2 percent slopes	1.74	0.00
Houghton muck, 0 to 2 percent slopes	22.85	0.02
Houghton muck, 0 to 2 percent slopes	0.61	0.00
Houghton muck, 0 to 2 percent slopes	3.77	0.00
Houghton muck, 0 to 2 percent slopes	3.03	0.00
Houghton muck, 0 to 2 percent slopes	1.04	0.00
Houghton muck, 0 to 2 percent slopes	8.82	0.01
Houghton muck, 0 to 2 percent slopes	361.31	0.33
Houghton muck, 0 to 2 percent slopes	3.05	0.00
Houghton muck, 0 to 2 percent slopes	3.41	0.00
Houghton muck, 0 to 2 percent slopes	8.02	0.01
Houghton muck, 0 to 2 percent slopes	8.05	0.01
Houghton muck, 0 to 2 percent slopes	8.10	0.01
Houghton muck, 0 to 2 percent slopes	1.10	0.00
Houghton muck, 0 to 2 percent slopes	4.81	0.00
Houghton muck, 0 to 2 percent slopes	5.84	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Houghton muck, 0 to 2 percent slopes	1.75	0.00
Houghton muck, 0 to 2 percent slopes	9.18	0.01
Houghton muck, 0 to 2 percent slopes	10.77	0.01
Houghton muck, 0 to 2 percent slopes	2.21	0.00
Houghton muck, 0 to 2 percent slopes	9.94	0.01
Houghton muck, 0 to 2 percent slopes	11.05	0.01
Houghton muck, 0 to 2 percent slopes	7.56	0.01
Houghton muck, 0 to 2 percent slopes	0.82	0.00
Houghton muck, 0 to 2 percent slopes	6.21	0.01
Houghton muck, 0 to 2 percent slopes	3.54	0.00
Houghton muck, 0 to 2 percent slopes	2.01	0.00
Houghton muck, 0 to 2 percent slopes	10.12	0.01
Houghton muck, 0 to 2 percent slopes	7.49	0.01
Houghton muck, 0 to 2 percent slopes	2.76	0.00
Houghton muck, 0 to 2 percent slopes	3.90	0.00
Houghton muck, 0 to 2 percent slopes	9.08	0.01
Houghton muck, 0 to 2 percent slopes	9.66	0.01
Houghton muck, 0 to 2 percent slopes	3.14	0.00
Houghton muck, 0 to 2 percent slopes	9.88	0.01
Houghton muck, 0 to 2 percent slopes	0.00	0.00
Houghton muck, 0 to 2 percent slopes	1.88	0.00
Houghton muck, 0 to 2 percent slopes	1.16	0.00
Houghton muck, 0 to 2 percent slopes	1.94	0.00
Houghton muck, 0 to 2 percent slopes	93.05	0.09
Houghton muck, 0 to 2 percent slopes	2.81	0.00
Houghton muck, 0 to 2 percent slopes	2.93	0.00
Houghton muck, 0 to 2 percent slopes	12.97	0.01
Houghton muck, 0 to 2 percent slopes	0.89	0.00
Houghton muck, 0 to 2 percent slopes	3.30	0.00
Houghton muck, 0 to 2 percent slopes	2.16	0.00
Houghton muck, 0 to 2 percent slopes	1.68	0.00
Houghton muck, 0 to 2 percent slopes	8.43	0.01
Houghton muck, 0 to 2 percent slopes	1.31	0.00
Houghton muck, 0 to 2 percent slopes	6.23	0.01
Houghton muck, 0 to 2 percent slopes	0.92	0.00
Houghton muck, 0 to 2 percent slopes	3.43	0.00
Houghton muck, 0 to 2 percent slopes	1.73	0.00
Houghton muck, 0 to 2 percent slopes	0.13	0.00
Houghton muck, 0 to 2 percent slopes	2.17	0.00
Houghton muck, 0 to 2 percent slopes	2.29	0.00
Houghton muck, 0 to 2 percent slopes	29.00	0.03

SSURGO Soil Series

Appendix C

Soil Deceription	Area	Percent Area
Soli Description	(Acres)	(%)
Houghton muck, 0 to 2 percent slopes	2.27	0.00
Houghton muck, 0 to 2 percent slopes	60.24	0.06
Houghton muck, 0 to 2 percent slopes	40.25	0.04
Houghton muck, 0 to 2 percent slopes	1.72	0.00
Houghton muck, 0 to 2 percent slopes	5.49	0.01
Houghton muck, 0 to 2 percent slopes	0.60	0.00
Houghton muck, 0 to 2 percent slopes	12.31	0.01
Houghton muck, 0 to 2 percent slopes	11.66	0.01
Houghton muck, 0 to 2 percent slopes	2.36	0.00
Houghton muck, 0 to 2 percent slopes	26.22	0.02
Houghton muck, 0 to 2 percent slopes	1.96	0.00
Houghton muck, 0 to 2 percent slopes	16.14	0.01
Houghton muck, 0 to 2 percent slopes	8.71	0.01
Houghton muck, 0 to 2 percent slopes	0.95	0.00
Houghton muck, 0 to 2 percent slopes	2.69	0.00
Houghton muck, 0 to 2 percent slopes	3.69	0.00
Houghton muck, 0 to 2 percent slopes	8.28	0.01
Houghton muck, 0 to 2 percent slopes	2.70	0.00
Houghton muck, 0 to 2 percent slopes	2.12	0.00
Houghton muck, 0 to 2 percent slopes	6.71	0.01
Houghton muck, 0 to 2 percent slopes	2.38	0.00
Houghton muck, 0 to 2 percent slopes	24.73	0.02
Houghton muck, 0 to 2 percent slopes	12.92	0.01
Houghton muck, 0 to 2 percent slopes	2.83	0.00
Houghton muck, 0 to 2 percent slopes	1.15	0.00
Houghton muck, 0 to 2 percent slopes	2.10	0.00
Houghton muck, 0 to 2 percent slopes	1.61	0.00
Houghton muck, 0 to 2 percent slopes	0.93	0.00
Houghton muck, 0 to 2 percent slopes	0.76	0.00
Houghton muck, 0 to 2 percent slopes	5.90	0.01
Houghton muck, 0 to 2 percent slopes	1.94	0.00
Houghton muck, 0 to 2 percent slopes	4.44	0.00
Houghton muck, 0 to 2 percent slopes	0.95	0.00
Houghton muck, 0 to 2 percent slopes	6.80	0.01
Houghton muck, 0 to 2 percent slopes	1.15	0.00
Houghton muck, 0 to 2 percent slopes	7.27	0.01
Houghton muck, 0 to 2 percent slopes	0.90	0.00
Houghton muck, 0 to 2 percent slopes	1.53	0.00
Houghton muck, 0 to 2 percent slopes	6.99	0.01
Houghton muck, 0 to 2 percent slopes	5.35	0.00
Houghton muck, 0 to 2 percent slopes	10.98	0.01
Soil Description	Area (Acres)	Percent Area (%)
--------------------------------------	-----------------	---------------------
Houghton muck, 0 to 2 percent slopes	1.00	0.00
Houghton muck, 0 to 2 percent slopes	3.63	0.00
Houghton muck, 0 to 2 percent slopes	13.74	0.01
Houghton muck, 0 to 2 percent slopes	0.80	0.00
Houghton muck, 0 to 2 percent slopes	18.65	0.02
Houghton muck, 0 to 2 percent slopes	2.52	0.00
Houghton muck, 0 to 2 percent slopes	1.11	0.00
Houghton muck. 0 to 2 percent slopes	10.62	0.01
Houghton muck, 0 to 2 percent slopes	4.34	0.00
Houghton muck, 0 to 2 percent slopes	3.92	0.00
Houghton muck, 0 to 2 percent slopes	1.12	0.00
Houghton muck, 0 to 2 percent slopes	2.85	0.00
Houghton muck, 0 to 2 percent slopes	1.69	0.00
Houghton muck, 0 to 2 percent slopes	2.41	0.00
Houghton muck, 0 to 2 percent slopes	8.90	0.01
Houghton muck, 0 to 2 percent slopes	0.57	0.00
Houghton muck, 0 to 2 percent slopes	3.07	0.00
Houghton muck, 0 to 2 percent slopes	2.62	0.00
Houghton muck. 0 to 2 percent slopes	21.46	0.02
Houghton muck, 0 to 2 percent slopes	4.16	0.00
Houghton muck, 0 to 2 percent slopes	1.35	0.00
Houghton muck, 0 to 2 percent slopes	1.37	0.00
Houghton muck, 0 to 2 percent slopes	5.83	0.01
Houghton muck, 0 to 2 percent slopes	1.15	0.00
Houghton muck, 0 to 2 percent slopes	3.63	0.00
Houghton muck, 0 to 2 percent slopes	1.71	0.00
Houghton muck, 0 to 2 percent slopes	1.00	0.00
Houghton muck, 0 to 2 percent slopes	2.76	0.00
Houghton muck, 0 to 2 percent slopes	2.54	0.00
Houghton muck, 0 to 2 percent slopes	16.98	0.02
Houghton muck, 0 to 2 percent slopes	1.18	0.00
Houghton muck, 0 to 2 percent slopes	9.26	0.01
Houghton muck, 0 to 2 percent slopes	0.90	0.00
Houghton muck, 0 to 2 percent slopes	0.81	0.00
Houghton muck, 0 to 2 percent slopes	9.60	0.01
Houghton muck, 0 to 2 percent slopes	0.71	0.00
Houghton muck, 0 to 2 percent slopes	0.50	0.00
Houghton muck, 0 to 2 percent slopes	1.65	0.00
Houghton muck, 0 to 2 percent slopes	8.44	0.01
Houghton muck, 0 to 2 percent slopes	9.85	0.01
Houghton muck, 0 to 2 percent slopes	1.75	0.00

Area	Percent Area
(Acres)	(%)
4.25	0.00
2.42	0.00
1.90	0.00
1.04	0.00
0.96	0.00
12.77	0.01
1.33	0.00
2.61	0.00
27.62	0.03
5.21	0.00
1.03	0.00
23.60	0.02
1.25	0.00
131.32	0.12
2.97	0.00
11.48	0.01
1.57	0.00
3.15	0.00
0.94	0.00
1.87	0.00
1.56	0.00
3.87	0.00
1.67	0.00
8.72	0.01
0.98	0.00
1.44	0.00
1.50	0.00
30.59	0.03
2.16	0.00
3.57	0.00
1.35	0.00
1.35	0.00
4.90	0.00
20.23	0.02
2.43	0.00
4.51	0.00
3.48	0.00
4.31	0.00
1.38	0.00
3.16	0.00
2.81	0.00
	Area (Acres) 4.25 2.42 1.90 1.04 0.96 12.77 1.33 2.61 27.62 5.21 1.03 23.60 1.25 131.32 2.97 11.48 1.57 3.15 0.94 1.57 3.15 0.94 1.57 3.15 0.94 1.57 3.15 0.94 1.57 3.15 0.94 1.56 3.87 1.56 3.87 1.56 3.87 1.50 3.87 1.67 8.72 0.98 1.44 1.50 3.059 2.16 3.57 1.35 4.90 2.43 4.51

Soil Description	Area	Percent Area
	(Acres)	(%)
Houghton muck, 0 to 2 percent slopes	0.66	0.00
Houghton muck, 0 to 2 percent slopes	1.87	0.00
Houghton muck, 0 to 2 percent slopes	1.//	0.00
Houghton muck, 0 to 2 percent slopes	2.55	0.00
Houghton muck, 0 to 2 percent slopes	14.74	0.01
Houghton muck, 0 to 2 percent slopes	1.34	0.00
Houghton muck, 0 to 2 percent slopes	1.10	0.00
Houghton muck, 0 to 2 percent slopes	7.71	0.01
Houghton muck, 0 to 2 percent slopes	0.51	0.00
Houghton muck, 0 to 2 percent slopes	1.30	0.00
Houghton muck, 0 to 2 percent slopes	2.80	0.00
Houghton muck, 0 to 2 percent slopes	103.22	0.10
Houghton muck, 0 to 2 percent slopes	4.61	0.00
Houghton muck, 0 to 2 percent slopes	7.15	0.01
Houghton muck, 0 to 2 percent slopes	0.92	0.00
Houghton muck, 0 to 2 percent slopes	1.41	0.00
Houghton muck, 0 to 2 percent slopes	2.16	0.00
Houghton muck, 0 to 2 percent slopes	2.91	0.00
Houghton muck, 0 to 2 percent slopes	0.91	0.00
Houghton muck, 0 to 2 percent slopes	3.66	0.00
Houghton muck, 0 to 2 percent slopes	8.39	0.01
Houghton muck, 0 to 2 percent slopes	2.14	0.00
Houghton muck, 0 to 2 percent slopes	3.72	0.00
Houghton muck, 0 to 2 percent slopes	3.44	0.00
Houghton muck, 0 to 2 percent slopes	10.22	0.01
Houghton muck, 0 to 2 percent slopes	4.26	0.00
Houghton muck, 0 to 2 percent slopes	1.01	0.00
Houghton muck, 0 to 2 percent slopes	4.40	0.00
Houghton muck, 0 to 2 percent slopes	14.38	0.01
Houghton muck, 0 to 2 percent slopes	1.56	0.00
Houghton muck, 0 to 2 percent slopes, undrained	30.51	0.03
Houghton muck, 0 to 2 percent slopes, undrained	84.62	0.08
Houghton muck, 0 to 2 percent slopes, undrained	28.00	0.03
Houghton muck, 0 to 2 percent slopes, undrained	1.53	0.00
Houghton muck, 0 to 2 percent slopes, undrained	16.54	0.02
Houghton muck, 0 to 2 percent slopes, undrained	11.36	0.01
Houghton muck, 0 to 2 percent slopes, undrained	13.35	0.01
Houghton muck, 0 to 2 percent slopes, undrained	13.89	0.01
Houghton muck, 0 to 2 percent slopes, undrained	87.02	0.08
Houghton muck, 0 to 2 percent slopes, undrained	2.87	0.00
Houghton muck, 0 to 2 percent slopes, undrained	1.00	0.00

Soil Description	Area (Acres)	Percent Area (%)
Houghton muck, 0 to 2 percent slopes, undrained	11.48	0.01
Houghton muck, 0 to 2 percent slopes, undrained	25.73	0.02
Houghton muck, 0 to 2 percent slopes, undrained	11.16	0.01
Houghton muck, 0 to 2 percent slopes, undrained	128.89	0.12
Houghton muck, 0 to 2 percent slopes, undrained	2.20	0.00
Houghton muck, 0 to 2 percent slopes, undrained	16.55	0.02
Houghton muck, 0 to 2 percent slopes, undrained	1.09	0.00
Houghton muck, 0 to 2 percent slopes, undrained	3.66	0.00
Houghton muck, 0 to 2 percent slopes, undrained	36.19	0.03
Houghton muck, 0 to 2 percent slopes, undrained	1.57	0.00
Houghton muck, 0 to 2 percent slopes, undrained	33.61	0.03
Houghton muck, 0 to 2 percent slopes, undrained	259.19	0.24
Houghton muck, 0 to 2 percent slopes, undrained	4.68	0.00
Houghton muck, 0 to 2 percent slopes, undrained	3.02	0.00
Houghton muck, 0 to 2 percent slopes, undrained	6.23	0.01
Houghton muck, 0 to 2 percent slopes, undrained	14.77	0.01
Houghton muck, 0 to 2 percent slopes, undrained	25.40	0.02
Houghton muck, 0 to 2 percent slopes, undrained	19.83	0.02
Houghton muck, 0 to 2 percent slopes, undrained	37.50	0.03
Houghton muck, 0 to 2 percent slopes, undrained	84.51	0.08
Houghton muck, 0 to 2 percent slopes, undrained	6.27	0.01
Houghton muck, 0 to 2 percent slopes, undrained	11.98	0.01
Houghton muck, 0 to 2 percent slopes, undrained	19.94	0.02
Houghton muck, 0 to 2 percent slopes, undrained	76.23	0.07
Houghton muck, 0 to 2 percent slopes, undrained	5.31	0.00
Houghton muck, 0 to 2 percent slopes, undrained	13.33	0.01
Houghton muck, 0 to 2 percent slopes, undrained	51.39	0.05
Houghton muck, 0 to 2 percent slopes, undrained	28.11	0.03
Houghton muck, 0 to 2 percent slopes, undrained	8.80	0.01
Houghton muck, 0 to 2 percent slopes, undrained	23.42	0.02
Houghton muck, 0 to 2 percent slopes, undrained	23.83	0.02
Houghton muck, 0 to 2 percent slopes, undrained	50.56	0.05
Houghton muck, 0 to 2 percent slopes, undrained	2.26	0.00
Houghton muck, 0 to 2 percent slopes, undrained	1.21	0.00
Houghton muck, 0 to 2 percent slopes, undrained	157.46	0.15
Houghton muck, 0 to 2 percent slopes, undrained	36.34	0.03
Houghton muck, 0 to 2 percent slopes, undrained	230.57	0.21
Houghton muck, 0 to 2 percent slopes, undrained	0.88	0.00
Houghton muck, ponded, 0 to 2 percent slopes	5.49	0.01
Houghton muck, ponded, 0 to 2 percent slopes	3.47	0.00
Houghton muck, ponded, 0 to 2 percent slopes	169.62	0.16

Soil Description	Area (Acres)	Percent Area (%)
Houghton muck, ponded, 0 to 2 percent slopes	5.61	0.01
Houghton muck, ponded, 0 to 2 percent slopes	0.80	0.00
Houghton muck, ponded, 0 to 2 percent slopes	18.68	0.02
Houghton muck, ponded, 0 to 2 percent slopes	76.94	0.07
Houghton muck, ponded, 0 to 2 percent slopes	8.50	0.01
Houghton muck, ponded, 0 to 2 percent slopes	11.91	0.01
Houghton muck, ponded, 0 to 2 percent slopes	28.81	0.03
Houghton muck, ponded, 0 to 2 percent slopes	2.37	0.00
Houghton muck, ponded, 0 to 2 percent slopes	11.74	0.01
Houghton muck, ponded, 0 to 2 percent slopes	7.71	0.01
Houghton muck, ponded, 0 to 2 percent slopes	0.39	0.00
Houghton muck, ponded, 0 to 2 percent slopes	6.43	0.01
Houghton muck, ponded, 0 to 2 percent slopes	8.75	0.01
Houghton muck, ponded, 0 to 2 percent slopes	5.67	0.01
Houghton muck, ponded, 0 to 2 percent slopes	35.17	0.03
Houghton muck, ponded, 0 to 2 percent slopes	0.98	0.00
Houghton muck, ponded, 0 to 2 percent slopes	410.16	0.38
Houghton muck, ponded, 0 to 2 percent slopes	2.97	0.00
Houghton muck, ponded, 0 to 2 percent slopes	16.23	0.01
Houghton muck, ponded, 0 to 2 percent slopes	12.31	0.01
Houghton muck, ponded, 0 to 2 percent slopes	2.63	0.00
Houghton muck, ponded, 0 to 2 percent slopes	33.00	0.03
Houghton muck, ponded, 0 to 2 percent slopes	38.94	0.04
Houghton muck, ponded, 0 to 2 percent slopes	1.52	0.00
Houghton muck, ponded, 0 to 2 percent slopes	62.55	0.06
Houghton muck, ponded, 0 to 2 percent slopes	6.43	0.01
Houghton muck, ponded, 0 to 2 percent slopes	261.07	0.24
Houghton muck, ponded, 0 to 2 percent slopes	4.49	0.00
Houghton muck, ponded, 0 to 2 percent slopes	0.85	0.00
Houghton muck, ponded, 0 to 2 percent slopes	12.47	0.01
Houghton muck, ponded, 0 to 2 percent slopes	69.91	0.06
Houghton muck, ponded, 0 to 2 percent slopes	18.90	0.02
Houghton muck, ponded, 0 to 2 percent slopes	20.53	0.02
Houghton muck, ponded, 0 to 2 percent slopes	13.87	0.01
Houghton muck, ponded, 0 to 2 percent slopes	27.56	0.03
Houghton muck, ponded, 0 to 2 percent slopes	86.30	0.08
Houghton muck, ponded, 0 to 2 percent slopes	2.13	0.00
Houghton muck, ponded, 0 to 2 percent slopes	9.18	0.01
Houghton muck, ponded, 0 to 2 percent slopes	12.81	0.01
Houghton muck, ponded, 0 to 2 percent slopes	19.82	0.02
Houghton muck, ponded, 0 to 2 percent slopes	13.13	0.01

Soil Description	Area (Acres)	Percent Area (%)
Houghton muck, ponded, 0 to 2 percent slopes	3.31	0.00
Houghton muck, ponded, 0 to 2 percent slopes	8.12	0.01
Houghton muck, ponded, 0 to 2 percent slopes	11.19	0.01
Houghton muck, ponded, 0 to 2 percent slopes	18.04	0.02
Houghton muck, ponded, 0 to 2 percent slopes	9.54	0.01
Houghton muck, ponded, 0 to 2 percent slopes	13.10	0.01
Houghton muck, ponded, 0 to 2 percent slopes	11.33	0.01
Houghton muck, ponded, 0 to 2 percent slopes	20.88	0.02
Houghton muck, ponded, 0 to 2 percent slopes	12.16	0.01
Houghton muck, ponded, 0 to 2 percent slopes	21.73	0.02
Houghton muck, ponded, 0 to 2 percent slopes	6.89	0.01
Houghton muck, ponded, 0 to 2 percent slopes	19.17	0.02
Houghton muck, ponded, 0 to 2 percent slopes	3.14	0.00
Houghton muck, ponded, 0 to 2 percent slopes	18.49	0.02
Houghton muck, ponded, 0 to 2 percent slopes	18.02	0.02
Houghton muck, ponded, 0 to 2 percent slopes	17.50	0.02
Houghton muck, ponded, 0 to 2 percent slopes	62.32	0.06
Houghton muck, ponded, 0 to 2 percent slopes	62.23	0.06
Houghton muck, ponded, 0 to 2 percent slopes	82.23	0.08
Houghton muck, ponded, 0 to 2 percent slopes	25.92	0.02
Houghton muck, ponded, 0 to 2 percent slopes	7.84	0.01
Houghton muck, ponded, 0 to 2 percent slopes	5.16	0.00
Houghton muck, ponded, 0 to 2 percent slopes	1.47	0.00
Houghton muck, ponded, 0 to 2 percent slopes	36.30	0.03
Houghton muck, ponded, 0 to 2 percent slopes	8.77	0.01
Houghton muck, ponded, 0 to 2 percent slopes	14.81	0.01
Houghton muck, ponded, 0 to 2 percent slopes	15.16	0.01
Houghton muck, ponded, 0 to 2 percent slopes	104.55	0.10
Houghton muck, ponded, 0 to 2 percent slopes	12.54	0.01
Houghton muck, ponded, 0 to 2 percent slopes	10.18	0.01
Houghton muck, ponded, 0 to 2 percent slopes	22.09	0.02
Houghton muck, ponded, 0 to 2 percent slopes	10.73	0.01
Houghton muck, ponded, 0 to 2 percent slopes	19.85	0.02
Houghton muck, ponded, 0 to 2 percent slopes	13.23	0.01
Houghton muck, ponded, 0 to 2 percent slopes	6.76	0.01
Houghton muck, undrained, 0 to 2 percent slopes	3.76	0.00
Houghton muck, undrained, 0 to 2 percent slopes	9.38	0.01
Houghton muck, undrained, 0 to 2 percent slopes	9.19	0.01
Houghton muck, undrained, 0 to 2 percent slopes	11.95	0.01
Houghton muck, undrained, 0 to 2 percent slopes	2.93	0.00
Houghton muck, undrained, 0 to 2 percent slopes	12.05	0.01

Soil Description	Area	Percent Area
Houghton muck undrained 0 to 2 percent slopes	(ACIES)	(/0)
Houghton muck, undrained, 0 to 2 percent slopes	2.04	0.00
Houghton muck, undrained, 0 to 2 percent slopes	5.81	0.01
Houghton muck, undrained, 0 to 2 percent slopes	26 53	0.02
Houghton muck, undrained, 0 to 2 percent slopes	5 94	0.02
Houghton muck, undrained, 0 to 2 percent slopes	2.34	0.00
Houghton muck, undrained, 0 to 2 percent slopes	54.39	0.05
Houghton muck, undrained, 0 to 2 percent slopes	11.59	0.01
Houghton muck, undrained, 0 to 2 percent slopes	17.82	0.02
Houghton muck, undrained, 0 to 2 percent slopes	15.88	0.01
Houghton muck, undrained, 0 to 2 percent slopes	3.86	0.00
Houghton muck, undrained, 0 to 2 percent slopes	22.22	0.02
Houghton muck, undrained, 0 to 2 percent slopes	38.72	0.04
Houghton muck, undrained, 0 to 2 percent slopes	1.78	0.00
Houghton muck, undrained, 0 to 2 percent slopes	24.90	0.02
Houghton muck, undrained, 0 to 2 percent slopes	0.74	0.00
Houghton muck, undrained, 0 to 2 percent slopes	12.64	0.01
Houghton muck, undrained, 0 to 2 percent slopes	4.24	0.00
Houghton muck, undrained, 0 to 2 percent slopes	85.40	0.08
Houghton muck, undrained, 0 to 2 percent slopes	1.84	0.00
Houghton muck, undrained, 0 to 2 percent slopes	14.40	0.01
Houghton muck, undrained, 0 to 2 percent slopes	3.41	0.00
Houghton muck, undrained, 0 to 2 percent slopes	12.19	0.01
Houghton muck, undrained, 0 to 2 percent slopes	1.35	0.00
Houghton muck, undrained, 0 to 2 percent slopes	15.21	0.01
Houghton muck, undrained, 0 to 2 percent slopes	21.79	0.02
Houghton muck, undrained, 0 to 2 percent slopes	3.58	0.00
Houghton muck, undrained, 0 to 2 percent slopes	4.29	0.00
Houghton muck, undrained, 0 to 2 percent slopes	4.63	0.00
Houghton muck, undrained, 0 to 2 percent slopes	19.78	0.02
Houghton muck, undrained, 0 to 2 percent slopes	13.98	0.01
Houghton muck, undrained, 0 to 2 percent slopes	17.11	0.02
Houghton muck, undrained, 0 to 2 percent slopes	148.41	0.14
Houghton muck, undrained, 0 to 2 percent slopes	9.51	0.01
Houghton muck, undrained, 0 to 2 percent slopes	18.45	0.02
Houghton muck, undrained, 0 to 2 percent slopes	1.35	0.00
Houghton muck, undrained, 0 to 2 percent slopes	4.03	0.00
Houghton muck, undrained, 0 to 2 percent slopes	3.65	0.00
Houghton muck, undrained, 0 to 2 percent slopes	35.17	0.03
Houghton muck, undrained, 0 to 2 percent slopes	2.70	0.00
Houghton muck, undrained, 0 to 2 percent slopes	0.70	0.00

Soil Description	Area (Acres)	Percent Area (%)
Houghton muck, undrained, 0 to 2 percent slopes	46.79	0.04
Houghton muck, undrained, 0 to 2 percent slopes	34.54	0.03
Houghton muck, undrained, 0 to 2 percent slopes	15.34	0.01
Houghton muck, undrained, 0 to 2 percent slopes	129.11	0.12
Houghton muck, undrained, 0 to 2 percent slopes	1.57	0.00
Houghton muck, undrained, 0 to 2 percent slopes	27.39	0.03
Houghton muck, undrained, 0 to 2 percent slopes	3.15	0.00
Houghton muck, undrained, 0 to 2 percent slopes	212.26	0.20
Houghton muck, undrained, 0 to 2 percent slopes	2.82	0.00
Houghton muck, undrained, 0 to 2 percent slopes	44.69	0.04
Houghton muck, undrained, 0 to 2 percent slopes	35.45	0.03
Houghton muck, undrained, 0 to 2 percent slopes	8.76	0.01
Houghton muck, undrained, 0 to 2 percent slopes	2.06	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.09	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.48	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.69	0.00
Houghton muck, undrained, 0 to 2 percent slopes	3.75	0.00
Houghton muck, undrained, 0 to 2 percent slopes	4.76	0.00
Houghton muck, undrained, 0 to 2 percent slopes	2.37	0.00
Houghton muck, undrained, 0 to 2 percent slopes	3.62	0.00
Houghton muck, undrained, 0 to 2 percent slopes	19.23	0.02
Houghton muck, undrained, 0 to 2 percent slopes	11.64	0.01
Houghton muck, undrained, 0 to 2 percent slopes	1.65	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.62	0.00
Houghton muck, undrained, 0 to 2 percent slopes	3.17	0.00
Houghton muck, undrained, 0 to 2 percent slopes	58.24	0.05
Houghton muck, undrained, 0 to 2 percent slopes	0.99	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.56	0.00
Houghton muck, undrained, 0 to 2 percent slopes	0.74	0.00
Houghton muck, undrained, 0 to 2 percent slopes	5.90	0.01
Houghton muck, undrained, 0 to 2 percent slopes	13.57	0.01
Houghton muck, undrained, 0 to 2 percent slopes	3.46	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.41	0.00
Houghton muck, undrained, 0 to 2 percent slopes	3.97	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.27	0.00
Houghton muck, undrained, 0 to 2 percent slopes	6.63	0.01
Houghton muck, undrained, 0 to 2 percent slopes	27.05	0.02
Houghton muck, undrained, 0 to 2 percent slopes	98.72	0.09
Houghton muck, undrained, 0 to 2 percent slopes	1.42	0.00
Houghton muck, undrained, 0 to 2 percent slopes	10.54	0.01
Houghton muck, undrained, 0 to 2 percent slopes	4.10	0.00

Soil Description	Area (Acres)	Percent Area (%)
Houghton muck, undrained, 0 to 2 percent slopes	6.76	0.01
Houghton muck, undrained, 0 to 2 percent slopes	23.88	0.02
Houghton muck, undrained, 0 to 2 percent slopes	4.58	0.00
Houghton muck, undrained, 0 to 2 percent slopes	16.47	0.02
Houghton muck, undrained, 0 to 2 percent slopes	3.95	0.00
Houghton muck, undrained, 0 to 2 percent slopes	1.34	0.00
Houghton muck, undrained, 0 to 2 percent slopes	15.34	0.01
Houghton muck, undrained, 0 to 2 percent slopes	3.67	0.00
Houghton muck, undrained, 0 to 2 percent slopes	5.99	0.01
Houghton muck, undrained, 0 to 2 percent slopes	22.56	0.02
Kane silt loam, 0 to 2 percent slopes	5.18	0.00
Kane silt loam, 0 to 2 percent slopes	0.78	0.00
Kane silt loam, 0 to 2 percent slopes	5.67	0.01
Kane silt loam, 0 to 2 percent slopes	9.19	0.01
Kane silt loam, 0 to 2 percent slopes	2.59	0.00
Kane silt loam, 0 to 2 percent slopes	8.04	0.01
Kane silt loam, 0 to 2 percent slopes	5.18	0.00
Kane silt loam, 0 to 2 percent slopes	13.24	0.01
Kane silt loam, 0 to 2 percent slopes	5.04	0.00
Kane silt loam, 0 to 2 percent slopes	1.65	0.00
Kane silt loam, 0 to 2 percent slopes	11.65	0.01
Kane silt loam, 0 to 2 percent slopes	4.33	0.00
Kane silt loam, 0 to 2 percent slopes	2.53	0.00
Kane silt loam, 0 to 2 percent slopes	8.31	0.01
Kane silt loam, 0 to 2 percent slopes	8.27	0.01
Kane silt loam, 0 to 2 percent slopes	2.00	0.00
Kane silt loam, 0 to 2 percent slopes	14.66	0.01
Kane silt loam, 0 to 2 percent slopes	2.43	0.00
Kane silt loam, 0 to 2 percent slopes	3.41	0.00
Kane silt loam, 0 to 2 percent slopes	2.00	0.00
Kane silt loam, 0 to 2 percent slopes	11.39	0.01
Kane silt loam, 0 to 2 percent slopes	3.71	0.00
Kane silt loam, 0 to 2 percent slopes	3.06	0.00
Kane silt loam, 0 to 2 percent slopes	4.84	0.00
Kane silt loam, 0 to 2 percent slopes	6.96	0.01
Kane silt loam, 0 to 2 percent slopes	2.37	0.00
Kane silt loam, 0 to 2 percent slopes	1.84	0.00
Kane silt loam, 0 to 2 percent slopes	4.25	0.00
Kane silt loam, 0 to 2 percent slopes	3.84	0.00
Kane silt loam, 0 to 2 percent slopes	8.42	0.01
Kane silt loam, 0 to 2 percent slopes	1.14	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Kane silt loam, 0 to 2 percent slopes	9.46	0.01
Kane silt loam, 0 to 2 percent slopes	2.75	0.00
Kane silt loam, 0 to 2 percent slopes	4.87	0.00
Kane silt loam, 0 to 2 percent slopes	2.69	0.00
Kane silt loam, 0 to 2 percent slopes	2.98	0.00
Kane silt loam, 0 to 2 percent slopes	2.70	0.00
Kane silt loam, 0 to 2 percent slopes	3.23	0.00
Kane silt loam, 0 to 2 percent slopes	2.89	0.00
Kane silt loam, 0 to 2 percent slopes	4.16	0.00
Kane silt loam, 0 to 2 percent slopes	4.84	0.00
Kidami loam, 4 to 6 percent slopes, eroded	4.60	0.00
Kidami silt loam, 2 to 4 percent slopes	31.81	0.03
Kidami silt loam, 4 to 6 percent slopes	7.52	0.01
Kidder clay loam, 4 to 6 percent slopes, severely eroded	17.60	0.02
Kidder clay loam, 4 to 6 percent slopes, severely eroded	1.13	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	1.70	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	23.27	0.02
Kidder clay loam, 4 to 6 percent slopes, severely eroded	112.00	0.10
Kidder clay loam, 4 to 6 percent slopes, severely eroded	3.94	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	4.75	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	3.94	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	6.89	0.01
Kidder clay loam, 4 to 6 percent slopes, severely eroded	10.07	0.01
Kidder clay loam, 4 to 6 percent slopes, severely eroded	3.53	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	1.43	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	3.44	0.00
Kidder clay loam, 4 to 6 percent slopes, severely eroded	1.87	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.51	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	13.08	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	6.78	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.70	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	22.58	0.02
Kidder clay loam, 6 to 12 percent slopes, severely eroded	14.92	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.41	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	4.22	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	3.90	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	5.57	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	12.14	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	4.55	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	7.97	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.87	0.00

Soil Description	Area (Acres)	Percent Area (%)
Kidder clay loam, 6 to 12 percent slopes, severely eroded	6.38	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	5.41	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.57	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	4.03	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.81	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	6.10	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	3.72	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	32.29	0.03
Kidder clay loam, 6 to 12 percent slopes, severely eroded	11.72	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	3.98	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.96	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	15.33	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.70	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	16.79	0.02
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.06	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	9.58	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	7.06	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.80	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	34.93	0.03
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.66	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	5.01	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	7.14	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	0.85	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	3.80	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.24	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.36	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	41.73	0.04
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.84	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	12.56	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.85	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.30	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	3.19	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	20.86	0.02
Kidder clay loam, 6 to 12 percent slopes, severely eroded	0.75	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	11.43	0.01
Kidder clay loam, 6 to 12 percent slopes, severely eroded	2.71	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	1.44	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	20.59	0.02
Kidder clay loam, 6 to 12 percent slopes, severely eroded	4.46	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	4.07	0.00
Kidder clay loam, 6 to 12 percent slopes, severely eroded	26.61	0.02

Soil Description	Area	Percent Area
Kidder clay loam 6 to 12 percent slopes severely eroded	10.25	0.01
Kidder clay loam, 6 to 12 percent slopes, severely croded	4.54	0.00
Kidder loam, 12 to 20 percent slopes	23.42	0.02
Kidder Joam, 12 to 20 percent slopes	11.53	0.01
Kidder Joam, 12 to 20 percent slopes	2.18	0.00
Kidder loam, 12 to 20 percent slopes	62.70	0.06
Kidder loam, 12 to 20 percent slopes	12.65	0.01
Kidder loam, 12 to 20 percent slopes	4.72	0.00
Kidder loam, 12 to 20 percent slopes	3.80	0.00
Kidder loam, 12 to 20 percent slopes	7.43	0.01
Kidder loam, 12 to 20 percent slopes	52.67	0.05
Kidder loam, 12 to 20 percent slopes	7.81	0.01
Kidder loam, 12 to 20 percent slopes	29.04	0.03
Kidder loam, 12 to 20 percent slopes	7.88	0.01
Kidder loam, 12 to 20 percent slopes	69.45	0.06
Kidder loam, 12 to 20 percent slopes	4.42	0.00
Kidder loam, 12 to 20 percent slopes	94.96	0.09
Kidder loam, 12 to 20 percent slopes	6.97	0.01
Kidder loam, 12 to 20 percent slopes	7.99	0.01
Kidder loam, 12 to 20 percent slopes	13.13	0.01
Kidder loam, 12 to 20 percent slopes	1.77	0.00
Kidder loam, 12 to 20 percent slopes	14.43	0.01
Kidder loam, 12 to 20 percent slopes	38.67	0.04
Kidder loam, 12 to 20 percent slopes	2.98	0.00
Kidder loam, 12 to 20 percent slopes, eroded	4.75	0.00
Kidder loam, 12 to 20 percent slopes, eroded	4.26	0.00
Kidder loam, 12 to 20 percent slopes, eroded	2.43	0.00
Kidder loam, 12 to 20 percent slopes, eroded	3.72	0.00
Kidder loam, 12 to 20 percent slopes, eroded	4.61	0.00
Kidder loam, 12 to 20 percent slopes, eroded	5.61	0.01
Kidder loam, 12 to 20 percent slopes, eroded	3.59	0.00
Kidder loam, 12 to 20 percent slopes, eroded	5.54	0.01
Kidder loam, 12 to 20 percent slopes, eroded	4.05	0.00
Kidder loam, 12 to 20 percent slopes, eroded	6.96	0.01
Kidder loam, 12 to 20 percent slopes, eroded	6.99	0.01
Kidder loam, 12 to 20 percent slopes, eroded	9.93	0.01
Kidder loam, 12 to 20 percent slopes, eroded	5.46	0.01
Kidder loam, 12 to 20 percent slopes, eroded	2.42	0.00
Kidder loam, 12 to 20 percent slopes, eroded	3.19	0.00
Kidder loam, 12 to 20 percent slopes, eroded	4.38	0.00
Kidder loam, 12 to 20 percent slopes, eroded	2.26	0.00

Soil Description	Area	Percent Area
Kidden laans 42 to 20 normant danse one ded	(Acres)	(%)
Kidder Ioam, 12 to 20 percent slopes, eroded	3.16	0.00
Kidder Ioam, 12 to 20 percent slopes, eroded	8.36	0.01
Kidder Ioam, 12 to 20 percent slopes, eroded	11.31	0.01
Kidder loam, 12 to 20 percent slopes, eroded	3.96	0.00
Kidder loam, 12 to 20 percent slopes, eroded	4.78	0.00
Kidder loam, 12 to 20 percent slopes, eroded	2.03	0.00
Kidder loam, 12 to 20 percent slopes, eroded	3.36	0.00
Kidder loam, 12 to 20 percent slopes, eroded	2.49	0.00
Kidder loam, 12 to 20 percent slopes, eroded	34.23	0.03
Kidder loam, 12 to 20 percent slopes, eroded	2.24	0.00
Kidder loam, 12 to 20 percent slopes, eroded	17.06	0.02
Kidder loam, 12 to 20 percent slopes, eroded	5.15	0.00
Kidder loam, 12 to 20 percent slopes, eroded	79.34	0.07
Kidder loam, 12 to 20 percent slopes, eroded	14.15	0.01
Kidder loam, 12 to 20 percent slopes, eroded	3.20	0.00
Kidder loam, 12 to 20 percent slopes, eroded	3.08	0.00
Kidder loam, 12 to 20 percent slopes, eroded	10.52	0.01
Kidder loam, 2 to 4 percent slopes	1.35	0.00
Kidder loam, 2 to 4 percent slopes	2.91	0.00
Kidder loam, 2 to 4 percent slopes	4.58	0.00
Kidder loam, 2 to 4 percent slopes	3.38	0.00
Kidder loam, 2 to 4 percent slopes	3.45	0.00
Kidder loam, 2 to 4 percent slopes	10.41	0.01
Kidder loam, 2 to 4 percent slopes	8.77	0.01
Kidder loam, 2 to 4 percent slopes	2.82	0.00
Kidder loam, 2 to 4 percent slopes	16.28	0.02
Kidder loam, 2 to 4 percent slopes	6.06	0.01
Kidder loam, 2 to 4 percent slopes	4.72	0.00
Kidder loam, 2 to 4 percent slopes	16.48	0.02
Kidder loam, 2 to 4 percent slopes	2.91	0.00
Kidder loam, 2 to 4 percent slopes	137.74	0.13
Kidder loam, 2 to 4 percent slopes	0.50	0.00
Kidder loam, 2 to 4 percent slopes	8.86	0.01
Kidder loam, 2 to 4 percent slopes	3.09	0.00
Kidder loam, 2 to 4 percent slopes	6.45	0.01
Kidder loam, 2 to 4 percent slopes	2.52	0.00
Kidder loam, 2 to 4 percent slopes	2.64	0.00
Kidder loam, 2 to 4 percent slopes	5.32	0.00
Kidder loam, 2 to 4 percent slopes	34.74	0.03
Kidder loam, 2 to 4 percent slopes	7.84	0.01
Kidder loam, 2 to 4 percent slopes	3.26	0.00

Soil Description	Area (Acres)	Percent Area (%)
Kidder Joam, 2 to 4 percent slopes	15.78	0.01
Kidder loam, 2 to 4 percent slopes	5.41	0.01
Kidder loam, 2 to 4 percent slopes	9.58	0.01
Kidder loam, 2 to 4 percent slopes	1.26	0.00
Kidder loam, 2 to 4 percent slopes	5.68	0.01
Kidder loam, 2 to 4 percent slopes	5.47	0.01
Kidder loam, 2 to 4 percent slopes	43.75	0.04
Kidder loam, 2 to 4 percent slopes	7.88	0.01
Kidder loam, 2 to 4 percent slopes	12.66	0.01
Kidder loam, 4 to 6 percent slopes	1.39	0.00
Kidder loam, 4 to 6 percent slopes	23.81	0.02
Kidder loam, 4 to 6 percent slopes	12.79	0.01
Kidder loam, 4 to 6 percent slopes	5.70	0.01
Kidder loam, 4 to 6 percent slopes	9.56	0.01
Kidder loam, 4 to 6 percent slopes	6.06	0.01
Kidder loam, 4 to 6 percent slopes	2.29	0.00
Kidder loam, 4 to 6 percent slopes	1.50	0.00
Kidder loam, 4 to 6 percent slopes	2.67	0.00
Kidder loam, 4 to 6 percent slopes	12.44	0.01
Kidder loam, 4 to 6 percent slopes	4.02	0.00
Kidder loam, 4 to 6 percent slopes	3.71	0.00
Kidder loam, 4 to 6 percent slopes	7.49	0.01
Kidder loam, 4 to 6 percent slopes	38.44	0.04
Kidder loam, 4 to 6 percent slopes	4.07	0.00
Kidder loam, 4 to 6 percent slopes	5.09	0.00
Kidder loam, 4 to 6 percent slopes	2.55	0.00
Kidder loam, 4 to 6 percent slopes	1.73	0.00
Kidder loam, 4 to 6 percent slopes	3.49	0.00
Kidder loam, 4 to 6 percent slopes	31.52	0.03
Kidder loam, 4 to 6 percent slopes	5.16	0.00
Kidder loam, 4 to 6 percent slopes	4.89	0.00
Kidder loam, 4 to 6 percent slopes	3.35	0.00
Kidder loam, 4 to 6 percent slopes	5.35	0.00
Kidder loam, 4 to 6 percent slopes	17.83	0.02
Kidder loam, 4 to 6 percent slopes	2.81	0.00
Kidder loam, 4 to 6 percent slopes	5.05	0.00
Kidder loam, 4 to 6 percent slopes	55.06	0.05
Kidder loam, 4 to 6 percent slopes	10.01	0.01
Kidder loam, 4 to 6 percent slopes	6.19	0.01
Kidder loam, 4 to 6 percent slopes	6.99	0.01
Kidder loam, 4 to 6 percent slopes	4.64	0.00

Soil Description	Area	Percent Area
Kidder Joam A to 6 percent clones	(Acres)	(%)
Kidder Joam, 4 to 6 percent slopes	40.30	0.04
Kidder Joam 4 to 6 percent slopes	5.06	0.00
Kidder Joam 4 to 6 percent slopes	3.00	0.00
Kidder Joam, 4 to 6 percent slopes	2 24	0.03
Kidder Joam 4 to 6 percent slopes	3.24 8.86	0.00
Kidder Joam 4 to 6 percent slopes	14.47	0.01
Kidder Joam 4 to 6 percent slopes	6.63	0.01
Kidder Joam 4 to 6 percent slopes	8 70	0.01
Kidder Ioam 4 to 6 percent slopes	16.89	0.01
Kidder Joam 4 to 6 percent slopes	2 79	0.02
Kidder Joam 4 to 6 percent slopes	18.45	0.00
Kidder Joam 4 to 6 percent slopes, eroded	6.47	0.02
Kidder Joam 4 to 6 percent slopes, eroded	3 /9	0.01
Kidder Joam 4 to 6 percent slopes, eroded	16 14	0.00
Kidder Joam 4 to 6 percent slopes, eroded	5 47	0.01
Kidder Joam 4 to 6 percent slopes, eroded	1.60	0.01
Kidder Joam 4 to 6 percent slopes, eroded	3.58	0.00
Kidder Joam 4 to 6 percent slopes, eroded	2.30	0.00
Kidder Joam 4 to 6 percent slopes, eroded	55 76	0.00
Kidder Joam 4 to 6 percent slopes, eroded	5 81	0.03
Kidder Joam 4 to 6 percent slopes, eroded	3/ 93	0.01
Kidder Joam 4 to 6 percent slopes, eroded	12 97	0.03
Kidder Joam 4 to 6 percent slopes, eroded	2 10	0.01
Kidder Joam 4 to 6 percent slopes, eroded	1 59	0.00
Kidder Ioam 4 to 6 percent slopes, croded	38.9/	0.00
Kidder Ioam 4 to 6 percent slopes, croded	4 56	0.04
Kidder Joam 4 to 6 percent slopes, eroded	15.40	0.00
Kidder Ioam, 4 to 6 percent slopes, eroded	15.40	0.01
Kidder Ioam, 4 to 6 percent slopes, croded	11.95	0.01
Kidder Ioam, 4 to 6 percent slopes, croded	3 35	0.01
Kidder Ioam, 4 to 6 percent slopes, croded	8 24	0.00
Kidder Ioam, 4 to 6 percent slopes, croded	2 41	0.01
Kidder Ioam, 4 to 6 percent slopes, eroded	2.11	0.00
Kidder Ioam, 4 to 6 percent slopes, eroded	70.42	0.07
Kidder Ioam, 4 to 6 percent slopes, eroded	3 55	0.00
Kidder Ioam, 4 to 6 percent slopes, croded	1 64	0.00
Kidder Joam, 4 to 6 percent slopes, eroded	46.17	0.04
Kidder Joam, 4 to 6 percent slopes, eroded	4.08	0.00
Kidder Joam, 4 to 6 percent slopes, eroded	4.61	0.00
Kidder loam, 4 to 6 percent slopes, eroded	31.74	0.03

Soil Description	Area (Acres)	Percent Area
Kidder loam 4 to 6 percent slopes, eroded	2.87	0.00
Kidder Joam, 4 to 6 percent slopes, eroded	13.40	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.44	0.00
Kidder loam, 4 to 6 percent slopes, eroded	103.18	0.10
Kidder loam, 4 to 6 percent slopes, eroded	5.36	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.56	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.47	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.59	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.26	0.00
Kidder loam, 4 to 6 percent slopes, eroded	35.34	0.03
Kidder loam, 4 to 6 percent slopes, eroded	23.31	0.02
Kidder loam, 4 to 6 percent slopes, eroded	27.52	0.03
Kidder loam, 4 to 6 percent slopes, eroded	6.90	0.01
Kidder loam, 4 to 6 percent slopes, eroded	9.11	0.01
Kidder loam, 4 to 6 percent slopes, eroded	2.82	0.00
Kidder loam, 4 to 6 percent slopes, eroded	187.38	0.17
Kidder loam, 4 to 6 percent slopes, eroded	3.29	0.00
Kidder loam, 4 to 6 percent slopes, eroded	6.51	0.01
Kidder loam, 4 to 6 percent slopes, eroded	20.65	0.02
Kidder loam, 4 to 6 percent slopes, eroded	109.69	0.10
Kidder loam, 4 to 6 percent slopes, eroded	28.01	0.03
Kidder loam, 4 to 6 percent slopes, eroded	1.17	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.80	0.00
Kidder loam, 4 to 6 percent slopes, eroded	5.65	0.01
Kidder loam, 4 to 6 percent slopes, eroded	4.17	0.00
Kidder loam, 4 to 6 percent slopes, eroded	7.75	0.01
Kidder loam, 4 to 6 percent slopes, eroded	13.40	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.21	0.00
Kidder loam, 4 to 6 percent slopes, eroded	9.93	0.01
Kidder loam, 4 to 6 percent slopes, eroded	30.00	0.03
Kidder loam, 4 to 6 percent slopes, eroded	5.31	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.39	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.09	0.00
Kidder loam, 4 to 6 percent slopes, eroded	12.33	0.01
Kidder loam, 4 to 6 percent slopes, eroded	6.39	0.01
Kidder loam, 4 to 6 percent slopes, eroded	4.86	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.50	0.00
Kidder loam, 4 to 6 percent slopes, eroded	0.55	0.00
Kidder loam, 4 to 6 percent slopes, eroded	10.49	0.01
Kidder loam, 4 to 6 percent slopes, eroded	0.94	0.00
Kidder loam, 4 to 6 percent slopes, eroded	22.25	0.02

Soil Description	Area (Acres)	Percent Area (%)
Kidder loam 4 to 6 percent slopes, eroded	8.60	0.01
Kidder Joam, 4 to 6 percent slopes, eroded	17.69	0.02
Kidder loam, 4 to 6 percent slopes, eroded	5.48	0.01
Kidder loam, 4 to 6 percent slopes, eroded	8.32	0.01
Kidder loam, 4 to 6 percent slopes, eroded	10.04	0.01
Kidder loam, 4 to 6 percent slopes, eroded	4.97	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.70	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.90	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.19	0.00
Kidder loam, 4 to 6 percent slopes, eroded	14.20	0.01
Kidder loam, 4 to 6 percent slopes, eroded	3.35	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.03	0.00
Kidder loam, 4 to 6 percent slopes, eroded	26.95	0.02
Kidder loam, 4 to 6 percent slopes, eroded	28.89	0.03
Kidder loam, 4 to 6 percent slopes, eroded	37.16	0.03
Kidder loam, 4 to 6 percent slopes, eroded	25.34	0.02
Kidder loam, 4 to 6 percent slopes, eroded	0.40	0.00
Kidder loam, 4 to 6 percent slopes, eroded	19.15	0.02
Kidder loam, 4 to 6 percent slopes, eroded	2.88	0.00
Kidder loam, 4 to 6 percent slopes, eroded	72.16	0.07
Kidder loam, 4 to 6 percent slopes, eroded	9.03	0.01
Kidder loam, 4 to 6 percent slopes, eroded	18.37	0.02
Kidder loam, 4 to 6 percent slopes, eroded	22.91	0.02
Kidder loam, 4 to 6 percent slopes, eroded	2.60	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.10	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.27	0.00
Kidder loam, 4 to 6 percent slopes, eroded	7.54	0.01
Kidder loam, 4 to 6 percent slopes, eroded	8.49	0.01
Kidder loam, 4 to 6 percent slopes, eroded	14.34	0.01
Kidder loam, 4 to 6 percent slopes, eroded	28.09	0.03
Kidder loam, 4 to 6 percent slopes, eroded	30.14	0.03
Kidder loam, 4 to 6 percent slopes, eroded	2.49	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.11	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.76	0.00
Kidder loam, 4 to 6 percent slopes, eroded	5.93	0.01
Kidder loam, 4 to 6 percent slopes, eroded	7.71	0.01
Kidder loam, 4 to 6 percent slopes, eroded	3.38	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.75	0.00
Kidder loam, 4 to 6 percent slopes, eroded	8.19	0.01
Kidder loam, 4 to 6 percent slopes, eroded	47.71	0.04
Kidder loam, 4 to 6 percent slopes, eroded	96.07	0.09

Soil Description	Area (Acres)	Percent Area (%)
Kidder loam 4 to 6 percent slopes, eroded	91.18	0.08
Kidder loam, 4 to 6 percent slopes, eroded	4.23	0.00
Kidder loam, 4 to 6 percent slopes, eroded	7.10	0.01
Kidder loam, 4 to 6 percent slopes, eroded	3.51	0.00
Kidder loam, 4 to 6 percent slopes, eroded	20.40	0.02
Kidder loam, 4 to 6 percent slopes, eroded	21.01	0.02
Kidder loam, 4 to 6 percent slopes, eroded	2.39	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.78	0.00
Kidder loam, 4 to 6 percent slopes, eroded	29.48	0.03
Kidder loam, 4 to 6 percent slopes, eroded	14.38	0.01
Kidder loam, 4 to 6 percent slopes, eroded	7.84	0.01
Kidder loam, 4 to 6 percent slopes, eroded	2.53	0.00
Kidder loam, 4 to 6 percent slopes, eroded	64.79	0.06
Kidder loam, 4 to 6 percent slopes, eroded	22.16	0.02
Kidder loam, 4 to 6 percent slopes, eroded	6.05	0.01
Kidder loam, 4 to 6 percent slopes, eroded	5.58	0.01
Kidder loam, 4 to 6 percent slopes, eroded	46.79	0.04
Kidder loam, 4 to 6 percent slopes, eroded	3.33	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.10	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.90	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.60	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.69	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.32	0.00
Kidder loam, 4 to 6 percent slopes, eroded	38.91	0.04
Kidder loam, 4 to 6 percent slopes, eroded	3.03	0.00
Kidder loam, 4 to 6 percent slopes, eroded	5.02	0.00
Kidder loam, 4 to 6 percent slopes, eroded	17.35	0.02
Kidder loam, 4 to 6 percent slopes, eroded	1.39	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.88	0.00
Kidder loam, 4 to 6 percent slopes, eroded	8.02	0.01
Kidder loam, 4 to 6 percent slopes, eroded	9.41	0.01
Kidder loam, 4 to 6 percent slopes, eroded	9.34	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.73	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.74	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.82	0.00
Kidder loam, 4 to 6 percent slopes, eroded	14.57	0.01
Kidder loam, 4 to 6 percent slopes, eroded	16.49	0.02
Kidder loam, 4 to 6 percent slopes, eroded	6.99	0.01
Kidder loam, 4 to 6 percent slopes, eroded	6.26	0.01
Kidder loam, 4 to 6 percent slopes, eroded	5.41	0.01
Kidder loam, 4 to 6 percent slopes, eroded	5.70	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Kidder loam, 4 to 6 percent slopes, eroded	17.24	0.02
Kidder loam, 4 to 6 percent slopes, eroded	22.37	0.02
Kidder loam, 4 to 6 percent slopes, eroded	8.77	0.01
Kidder loam, 4 to 6 percent slopes, eroded	4.73	0.00
Kidder loam, 4 to 6 percent slopes, eroded	11.34	0.01
Kidder loam, 4 to 6 percent slopes, eroded	56.22	0.05
Kidder loam, 4 to 6 percent slopes, eroded	1.67	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.18	0.00
Kidder loam, 4 to 6 percent slopes, eroded	26.71	0.02
Kidder loam, 4 to 6 percent slopes, eroded	2.71	0.00
Kidder loam, 4 to 6 percent slopes, eroded	5.28	0.00
Kidder loam, 4 to 6 percent slopes, eroded	14.65	0.01
Kidder loam, 4 to 6 percent slopes, eroded	7.50	0.01
Kidder loam, 4 to 6 percent slopes, eroded	9.21	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.66	0.00
Kidder loam, 4 to 6 percent slopes, eroded	6.79	0.01
Kidder loam, 4 to 6 percent slopes, eroded	3.81	0.00
Kidder loam, 4 to 6 percent slopes, eroded	9.00	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.67	0.00
Kidder loam, 4 to 6 percent slopes, eroded	39.83	0.04
Kidder loam, 4 to 6 percent slopes, eroded	2.57	0.00
Kidder loam, 4 to 6 percent slopes, eroded	20.85	0.02
Kidder loam, 4 to 6 percent slopes, eroded	10.53	0.01
Kidder loam, 4 to 6 percent slopes, eroded	18.49	0.02
Kidder loam, 4 to 6 percent slopes, eroded	1.93	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.72	0.00
Kidder loam, 4 to 6 percent slopes, eroded	234.92	0.22
Kidder loam, 4 to 6 percent slopes, eroded	22.52	0.02
Kidder loam, 4 to 6 percent slopes, eroded	2.09	0.00
Kidder loam, 4 to 6 percent slopes, eroded	35.07	0.03
Kidder loam, 4 to 6 percent slopes, eroded	5.23	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.70	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.50	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.57	0.00
Kidder loam, 4 to 6 percent slopes, eroded	7.15	0.01
Kidder loam, 4 to 6 percent slopes, eroded	1.91	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.91	0.00
Kidder loam, 4 to 6 percent slopes, eroded	6.37	0.01
Kidder loam, 4 to 6 percent slopes, eroded	18.88	0.02
Kidder loam, 4 to 6 percent slopes, eroded	6.93	0.01
Kidder loam, 4 to 6 percent slopes, eroded	7.55	0.01

Soil Description	Area (Acres)	Percent Area (%)
Kidder loam, 4 to 6 percent slopes, eroded	149.44	0.14
Kidder loam, 4 to 6 percent slopes, eroded	7.35	0.01
Kidder loam, 4 to 6 percent slopes, eroded	19.19	0.02
Kidder loam, 4 to 6 percent slopes, eroded	1.93	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.28	0.00
Kidder loam, 4 to 6 percent slopes, eroded	2.35	0.00
Kidder loam, 4 to 6 percent slopes, eroded	1.72	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.07	0.00
Kidder loam, 4 to 6 percent slopes, eroded	5.03	0.00
Kidder loam, 4 to 6 percent slopes, eroded	16.57	0.02
Kidder loam, 4 to 6 percent slopes, eroded	0.48	0.00
Kidder loam, 4 to 6 percent slopes, eroded	4.08	0.00
Kidder loam, 4 to 6 percent slopes, eroded	3.51	0.00
Kidder loam, 4 to 6 percent slopes, eroded	14.96	0.01
Kidder loam, 6 to 12 percent slopes, eroded	1.18	0.00
Kidder loam, 6 to 12 percent slopes, eroded	1.90	0.00
Kidder loam, 6 to 12 percent slopes, eroded	14.33	0.01
Kidder loam, 6 to 12 percent slopes, eroded	4.41	0.00
Kidder loam, 6 to 12 percent slopes, eroded	5.64	0.01
Kidder loam, 6 to 12 percent slopes, eroded	19.96	0.02
Kidder loam, 6 to 12 percent slopes, eroded	3.36	0.00
Kidder loam, 6 to 12 percent slopes, eroded	18.44	0.02
Kidder loam, 6 to 12 percent slopes, eroded	2.63	0.00
Kidder loam, 6 to 12 percent slopes, eroded	2.87	0.00
Kidder loam, 6 to 12 percent slopes, eroded	12.26	0.01
Kidder loam, 6 to 12 percent slopes, eroded	8.24	0.01
Kidder loam, 6 to 12 percent slopes, eroded	23.66	0.02
Kidder loam, 6 to 12 percent slopes, eroded	36.72	0.03
Kidder loam, 6 to 12 percent slopes, eroded	8.41	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.20	0.00
Kidder loam, 6 to 12 percent slopes, eroded	15.42	0.01
Kidder loam, 6 to 12 percent slopes, eroded	5.66	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.49	0.00
Kidder loam, 6 to 12 percent slopes, eroded	76.22	0.07
Kidder loam, 6 to 12 percent slopes, eroded	7.92	0.01
Kidder loam, 6 to 12 percent slopes, eroded	5.54	0.01
Kidder loam, 6 to 12 percent slopes, eroded	23.69	0.02
Kidder loam, 6 to 12 percent slopes, eroded	4.00	0.00
Kidder loam, 6 to 12 percent slopes, eroded	40.33	0.04
Kidder loam, 6 to 12 percent slopes, eroded	34.49	0.03
Kidder loam, 6 to 12 percent slopes, eroded	24.47	0.02

Soil Description	Area	Percent Area
Kidder loam 6 to 12 percent slopes eroded	13 27	0.01
Kidder Joam, 6 to 12 percent slopes, croded	1.87	0.00
Kidder Joam, 6 to 12 percent slopes, eroded	3.14	0.00
Kidder Joam, 6 to 12 percent slopes, eroded	2.16	0.00
Kidder Joam, 6 to 12 percent slopes, eroded	12.39	0.01
Kidder loam, 6 to 12 percent slopes, eroded	1.52	0.00
Kidder loam, 6 to 12 percent slopes, eroded	9.16	0.01
Kidder loam, 6 to 12 percent slopes, eroded	9.52	0.01
Kidder loam, 6 to 12 percent slopes, eroded	18.10	0.02
Kidder loam, 6 to 12 percent slopes, eroded	3.59	0.00
Kidder loam, 6 to 12 percent slopes, eroded	22.32	0.02
Kidder loam, 6 to 12 percent slopes, eroded	2.56	0.00
Kidder loam, 6 to 12 percent slopes, eroded	6.14	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.69	0.00
Kidder loam, 6 to 12 percent slopes, eroded	3.98	0.00
Kidder loam, 6 to 12 percent slopes, eroded	19.06	0.02
Kidder loam, 6 to 12 percent slopes, eroded	2.90	0.00
Kidder loam, 6 to 12 percent slopes, eroded	15.37	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.77	0.00
Kidder loam, 6 to 12 percent slopes, eroded	2.31	0.00
Kidder loam, 6 to 12 percent slopes, eroded	5.69	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.47	0.00
Kidder loam, 6 to 12 percent slopes, eroded	24.71	0.02
Kidder loam, 6 to 12 percent slopes, eroded	8.42	0.01
Kidder loam, 6 to 12 percent slopes, eroded	5.60	0.01
Kidder loam, 6 to 12 percent slopes, eroded	18.85	0.02
Kidder loam, 6 to 12 percent slopes, eroded	2.82	0.00
Kidder loam, 6 to 12 percent slopes, eroded	6.06	0.01
Kidder loam, 6 to 12 percent slopes, eroded	0.28	0.00
Kidder loam, 6 to 12 percent slopes, eroded	6.28	0.01
Kidder loam, 6 to 12 percent slopes, eroded	16.58	0.02
Kidder loam, 6 to 12 percent slopes, eroded	50.25	0.05
Kidder loam, 6 to 12 percent slopes, eroded	6.56	0.01
Kidder loam, 6 to 12 percent slopes, eroded	5.47	0.01
Kidder loam, 6 to 12 percent slopes, eroded	10.21	0.01
Kidder loam, 6 to 12 percent slopes, eroded	13.19	0.01
Kidder loam, 6 to 12 percent slopes, eroded	9.34	0.01
Kidder loam, 6 to 12 percent slopes, eroded	80.13	0.07
Kidder loam, 6 to 12 percent slopes, eroded	23.67	0.02
Kidder loam, 6 to 12 percent slopes, eroded	5.45	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.74	0.00

Soil Description	Area (Acres)	Percent Area
Kidder loam 6 to 12 percent slopes eroded	6.24	0.01
Kidder Joam, 6 to 12 percent slopes, eroded	37.84	0.03
Kidder Joam, 6 to 12 percent slopes, eroded	2.10	0.00
Kidder Joam, 6 to 12 percent slopes, eroded	21.32	0.02
Kidder Joam, 6 to 12 percent slopes, eroded	2.36	0.00
Kidder loam, 6 to 12 percent slopes, eroded	15.91	0.01
Kidder loam, 6 to 12 percent slopes, eroded	27.83	0.03
Kidder loam, 6 to 12 percent slopes, eroded	1.32	0.00
Kidder loam, 6 to 12 percent slopes, eroded	6.68	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.67	0.00
Kidder loam, 6 to 12 percent slopes, eroded	5.69	0.01
Kidder loam, 6 to 12 percent slopes, eroded	1.43	0.00
Kidder loam, 6 to 12 percent slopes, eroded	30.78	0.03
Kidder loam, 6 to 12 percent slopes, eroded	56.49	0.05
Kidder loam, 6 to 12 percent slopes, eroded	7.96	0.01
Kidder loam, 6 to 12 percent slopes, eroded	53.62	0.05
Kidder loam, 6 to 12 percent slopes, eroded	1.92	0.00
Kidder loam, 6 to 12 percent slopes, eroded	4.06	0.00
Kidder loam, 6 to 12 percent slopes, eroded	19.71	0.02
Kidder loam, 6 to 12 percent slopes, eroded	5.54	0.01
Kidder loam, 6 to 12 percent slopes, eroded	6.55	0.01
Kidder loam, 6 to 12 percent slopes, eroded	4.96	0.00
Kidder loam, 6 to 12 percent slopes, eroded	70.85	0.07
Kidder loam, 6 to 12 percent slopes, eroded	30.12	0.03
Kidder loam, 6 to 12 percent slopes, eroded	9.49	0.01
Kidder loam, 6 to 12 percent slopes, eroded	16.07	0.01
Kidder loam, 6 to 12 percent slopes, eroded	5.74	0.01
Kidder loam, 6 to 12 percent slopes, eroded	6.48	0.01
Kidder loam, 6 to 12 percent slopes, eroded	17.31	0.02
Kidder loam, 6 to 12 percent slopes, eroded	85.69	0.08
Kidder loam, 6 to 12 percent slopes, eroded	0.00	0.00
Kidder loam, 6 to 12 percent slopes, eroded	5.12	0.00
Kidder loam, 6 to 12 percent slopes, eroded	4.89	0.00
Kidder loam, 6 to 12 percent slopes, eroded	3.45	0.00
Kidder loam, 6 to 12 percent slopes, eroded	12.49	0.01
Kidder loam, 6 to 12 percent slopes, eroded	11.83	0.01
Kidder loam, 6 to 12 percent slopes, eroded	6.96	0.01
Kidder loam, 6 to 12 percent slopes, eroded	7.18	0.01
Kidder loam, 6 to 12 percent slopes, eroded	2.45	0.00
Kidder loam, 6 to 12 percent slopes, eroded	71.15	0.07
Kidder loam, 6 to 12 percent slopes, eroded	29.25	0.03

Soil Description	Area	Percent Area
Kidder Joam 6 to 12 percent clopes, aroded	(Acres)	(%)
Kidder Joam, 6 to 12 percent slopes, eroded	6.74	0.02
Kidder Joam, 6 to 12 percent slopes, eroded	22.10	0.01
Kidder Joam, 6 to 12 percent slopes, eroded	11 59	0.02
Kidder Joam, 6 to 12 percent slopes, eroded	1 26	0.01
Kidder Joam, 6 to 12 percent slopes, eroded	1.20	0.00
Kidder foan, o to 12 percent slopes, eroded	2 81	0.01
Kidder silt loam, 20 to 30 percent slopes	2.01	0.00
Kidder silt loam, 20 to 30 percent slopes	5.47	0.00
Kidder silt loam, 20 to 30 percent slopes	23.40	0.01
Kidder silt loam, 20 to 30 percent slopes	18 10	0.02
Kidder silt loam, 20 to 30 percent slopes	11.15	0.02
Kidder silt loam, 20 to 30 percent slopes	2 96	0.01
Kidder silt loam, 20 to 30 percent slopes	1.88	0.00
Kidder silt loam, 20 to 30 percent slopes	15.65	0.00
Kidder silt loam, 20 to 30 percent slopes	123.05	0.01
Kidder silt loam, 20 to 30 percent slopes	7 20	0.11
Kidder silt loam, 20 to 30 percent slopes	6.89	0.01
Kidder silt loam, 20 to 30 percent slopes	35 32	0.01
Kidder silt loam, 20 to 30 percent slopes	13.06	0.03
Kidder silt loam, 20 to 30 percent slopes	36.98	0.03
Kish loam, 0 to 2 percent slopes	3.02	0.00
Kish loam, 0 to 2 percent slopes	2.64	0.00
Kish loam, 0 to 2 percent slopes	3.81	0.00
Kish loam, 0 to 2 percent slopes	1.74	0.00
Kish loam, 0 to 2 percent slopes	6.48	0.01
Kish loam, 0 to 2 percent slopes	4.58	0.00
Kish loam, 0 to 2 percent slopes	60.68	0.06
Kish loam, 0 to 2 percent slopes	18.49	0.02
Kish loam, 0 to 2 percent slopes	17.22	0.02
Kish loam, 0 to 2 percent slopes	3.51	0.00
Kish loam, 0 to 2 percent slopes	18.11	0.02
Kish loam, 0 to 2 percent slopes	42.04	0.04
Kish loam, 0 to 2 percent slopes	23.44	0.02
Kish loam, 0 to 2 percent slopes	11.49	0.01
Kish loam, 0 to 2 percent slopes	5.88	0.01
Kish loam, 0 to 2 percent slopes	13.01	0.01
Kish loam, 0 to 2 percent slopes	4.53	0.00
Kish loam, 0 to 2 percent slopes	10.26	0.01
Kish loam, 0 to 2 percent slopes	8.22	0.01
Kish loam, 0 to 2 percent slopes	1.79	0.00

Soil Description	Area (Acres)	Percent Area (%)
Kish loam, 0 to 2 percent slopes	1.68	0.00
Kish loam, 0 to 2 percent slopes	7.56	0.01
Kish loam, 0 to 2 percent slopes	4.28	0.00
Kish loam, 0 to 2 percent slopes	6.11	0.01
Kish loam, 0 to 2 percent slopes	14.59	0.01
Kish loam, 0 to 2 percent slopes	1.98	0.00
Kish loam, 0 to 2 percent slopes	12.29	0.01
Kish loam, 0 to 2 percent slopes	2.70	0.00
Kish loam, 0 to 2 percent slopes	4.81	0.00
Kish loam, 0 to 2 percent slopes	7.71	0.01
Kish loam, 0 to 2 percent slopes	15.28	0.01
Kish loam, 0 to 2 percent slopes	43.55	0.04
Kish loam, 0 to 2 percent slopes	2.77	0.00
Kish loam, 0 to 2 percent slopes	1.84	0.00
Kish loam, 0 to 2 percent slopes	4.03	0.00
Kish loam, 0 to 2 percent slopes	6.88	0.01
Kish loam, 0 to 2 percent slopes	9.11	0.01
Kish loam, 0 to 2 percent slopes	2.24	0.00
Kish loam, 0 to 2 percent slopes	11.29	0.01
Kish loam, 0 to 2 percent slopes	5.93	0.01
Kish loam, 0 to 2 percent slopes	10.54	0.01
Kish loam, 0 to 2 percent slopes	3.81	0.00
Kish loam, 0 to 2 percent slopes	4.13	0.00
Kish loam, 0 to 2 percent slopes	10.28	0.01
Kish loam, 0 to 2 percent slopes	1.43	0.00
Kish loam, 0 to 2 percent slopes	0.74	0.00
Kish loam, 0 to 2 percent slopes	13.86	0.01
Kish loam, 0 to 2 percent slopes	3.09	0.00
Kish loam, 0 to 2 percent slopes	20.49	0.02
Kish loam, 0 to 2 percent slopes	4.12	0.00
Kish loam, 0 to 2 percent slopes	11.88	0.01
Kish loam, 0 to 2 percent slopes	1.74	0.00
Kish loam, 0 to 2 percent slopes	33.83	0.03
Kish loam, 0 to 2 percent slopes	9.50	0.01
Kish loam, 0 to 2 percent slopes	1.43	0.00
Kish loam, 0 to 2 percent slopes	1.56	0.00
Kish loam, 0 to 2 percent slopes	6.39	0.01
Kish loam, 0 to 2 percent slopes, undrained	33.11	0.03
Kish loam, 0 to 2 percent slopes, undrained	4.82	0.00
Kish loam, 0 to 2 percent slopes, undrained	10.91	0.01
Kish loam, 0 to 2 percent slopes, undrained	27.38	0.03

Soil Description	Area	Percent Area
Kish loam 0 to 2 percent slopes undrained	/13 33	0.04
Laboguess loam 0 to 2 percent slopes	1 49	0.00
Laboguess loam, 0 to 2 percent slopes	2 73	0.00
Laboguess loam, 0 to 2 percent slopes	1 46	0.00
Laboguess loam, 0 to 2 percent slopes	12.46	0.01
Lahoguess loam, 0 to 2 percent slopes	3.60	0.00
Lahoguess loam, 0 to 2 percent slopes	16.04	0.01
Lahoguess loam, 0 to 2 percent slopes	3.20	0.00
Lahoguess loam, 0 to 2 percent slopes	4.50	0.00
Lahoguess loam, 0 to 2 percent slopes	2.38	0.00
Lahoguess loam, 0 to 2 percent slopes	3.04	0.00
Lahoguess loam, 0 to 2 percent slopes	7.83	0.01
Lahoguess loam, 0 to 2 percent slopes	2.23	0.00
Lahoguess loam, 0 to 2 percent slopes	2.58	0.00
Lahoguess loam, 0 to 2 percent slopes	1.99	0.00
Lahoguess loam, 0 to 2 percent slopes	9.02	0.01
Lahoguess loam, 0 to 2 percent slopes	2.39	0.00
Landfills	3.45	0.00
Landfills	78.23	0.07
Lena muck, 0 to 2 percent slopes	7.01	0.01
Lena muck, 0 to 2 percent slopes	31.55	0.03
Lena muck, 0 to 2 percent slopes	2.08	0.00
Lena muck, 0 to 2 percent slopes	6.06	0.01
Lena muck, 0 to 2 percent slopes	12.15	0.01
Lena muck, 0 to 2 percent slopes	67.74	0.06
Lena muck, 0 to 2 percent slopes	8.60	0.01
Lena muck, 0 to 2 percent slopes	61.84	0.06
Lena muck, 0 to 2 percent slopes	12.25	0.01
Lena muck, 0 to 2 percent slopes	11.65	0.01
Lena muck, 0 to 2 percent slopes	18.95	0.02
Lena muck, 0 to 2 percent slopes	52.34	0.05
Lena muck, 0 to 2 percent slopes	20.62	0.02
Lena muck, 0 to 2 percent slopes	33.25	0.03
Lena muck, 0 to 2 percent slopes	2.08	0.00
Lena muck, 0 to 2 percent slopes	4.17	0.00
Lena muck, 0 to 2 percent slopes	2.83	0.00
Lena muck, 0 to 2 percent slopes	2.13	0.00
Lena muck, 0 to 2 percent slopes	23.21	0.02
Lena muck, 0 to 2 percent slopes	1.67	0.00
Lena muck, 0 to 2 percent slopes	1.83	0.00
Lena muck, 0 to 2 percent slopes	1.91	0.00

Soil Description	Area (Acres)	Percent Area (%)
Lena muck, 0 to 2 percent slopes	11.72	0.01
Lena muck, 0 to 2 percent slopes	8.23	0.01
Lena muck, 0 to 2 percent slopes	1.72	0.00
Lena muck, 0 to 2 percent slopes	2.01	0.00
Lena muck, 0 to 2 percent slopes	4.01	0.00
Lena muck, 0 to 2 percent slopes	19.70	0.02
Lena muck, 0 to 2 percent slopes	1.52	0.00
Lena muck, 0 to 2 percent slopes	4.11	0.00
Lena muck, 0 to 2 percent slopes	12.04	0.01
Lena muck, 0 to 2 percent slopes	22.95	0.02
Lena muck, 0 to 2 percent slopes	7.23	0.01
Lena muck, 0 to 2 percent slopes	5.32	0.00
Lena muck, 0 to 2 percent slopes	5.62	0.01
Lena muck, 0 to 2 percent slopes	15.60	0.01
Lena muck, 0 to 2 percent slopes	25.00	0.02
Lena muck, 0 to 2 percent slopes	15.82	0.01
Lena muck, 0 to 2 percent slopes	3.27	0.00
Lena muck, 0 to 2 percent slopes	10.92	0.01
Lena muck, 0 to 2 percent slopes	6.17	0.01
Lena muck, 0 to 2 percent slopes	4.42	0.00
Lena muck, 0 to 2 percent slopes	36.92	0.03
Lena muck, 0 to 2 percent slopes	1.35	0.00
Lena muck, 0 to 2 percent slopes, undrained	74.98	0.07
Lena muck, 0 to 2 percent slopes, undrained	124.44	0.11
Lena muck, 0 to 2 percent slopes, undrained	29.46	0.03
Lena muck, 0 to 2 percent slopes, undrained	39.16	0.04
Lena muck, 0 to 2 percent slopes, undrained	26.93	0.02
Lena muck, 0 to 2 percent slopes, undrained	25.13	0.02
Lena muck, 0 to 2 percent slopes, undrained	2.74	0.00
Lena muck, 0 to 2 percent slopes, undrained	12.58	0.01
Lena muck, 0 to 2 percent slopes, undrained	190.19	0.18
Lena muck, 0 to 2 percent slopes, undrained	1.98	0.00
Lena muck, 0 to 2 percent slopes, undrained	1.26	0.00
Lena muck, 0 to 2 percent slopes, undrained	11.21	0.01
Lena muck, 0 to 2 percent slopes, undrained	2.43	0.00
Lena muck, 0 to 2 percent slopes, undrained	125.15	0.12
Lena muck, 0 to 2 percent slopes, undrained	2.81	0.00
Lena muck, 0 to 2 percent slopes, undrained	49.58	0.05
Lena muck, 0 to 2 percent slopes, undrained	5.39	0.00
Lena muck, 0 to 2 percent slopes, undrained	3.89	0.00
Lena muck, 0 to 2 percent slopes, undrained	10.86	0.01

Soil Description	Area	Percent Area
Lena muck 0 to 2 percent slopes undrained	2 19	0.00
Lena muck, 0 to 2 percent slopes, undrained	49.98	0.05
Lena muck, 0 to 2 percent slopes, undrained	1.87	0.00
Lena muck, 0 to 2 percent slopes, undrained	8.25	0.01
Lena muck, 0 to 2 percent slopes, undrained	5.40	0.00
Lena muck. 0 to 2 percent slopes, undrained	70.35	0.06
Lena muck, 0 to 2 percent slopes, undrained	1.49	0.00
Lena muck, 0 to 2 percent slopes, undrained	200.33	0.19
Lena muck, 0 to 2 percent slopes, undrained	7.68	0.01
Lena muck, 0 to 2 percent slopes, undrained	8.33	0.01
Lena muck, 0 to 2 percent slopes, undrained	4.25	0.00
Lena muck, undrained, 0 to 2 percent slopes	92.33	0.09
Lisbon silt loam, 0 to 2 percent slopes	3.96	0.00
Lorenzo loam, 2 to 4 percent slopes	22.41	0.02
Lorenzo loam, 2 to 4 percent slopes	17.03	0.02
Lorenzo loam, 2 to 4 percent slopes	4.44	0.00
Lorenzo loam, 2 to 4 percent slopes	2.16	0.00
Lorenzo loam, 2 to 4 percent slopes	5.12	0.00
Lorenzo loam, 2 to 4 percent slopes	1.29	0.00
Lorenzo loam, 2 to 4 percent slopes	5.94	0.01
Lorenzo loam, 2 to 4 percent slopes	2.67	0.00
Lorenzo loam, 2 to 4 percent slopes	17.96	0.02
Lorenzo loam, 2 to 4 percent slopes	5.16	0.00
Lorenzo loam, 2 to 4 percent slopes	1.22	0.00
Lorenzo loam, 2 to 4 percent slopes	3.89	0.00
Lorenzo loam, 2 to 4 percent slopes	9.43	0.01
Lorenzo loam, 2 to 4 percent slopes	2.11	0.00
Lorenzo loam, 2 to 4 percent slopes	7.31	0.01
Lorenzo loam, 2 to 4 percent slopes	0.16	0.00
Lorenzo loam, 2 to 4 percent slopes	4.15	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	7.30	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	3.10	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	0.10	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	27.81	0.03
Lorenzo loam, 4 to 6 percent slopes, eroded	26.83	0.02
Lorenzo loam, 4 to 6 percent slopes, eroded	7.42	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	2.78	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	4.26	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	12.36	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	22.44	0.02
Lorenzo loam, 4 to 6 percent slopes, eroded	17.88	0.02

Soil Description	Area	Percent Area
Lorenzo loam. 4 to 6 percent slopes, eroded	2.56	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	12.80	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	9.66	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	0.87	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	9.38	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	23.65	0.02
Lorenzo loam, 4 to 6 percent slopes, eroded	28.92	0.03
Lorenzo loam, 4 to 6 percent slopes, eroded	6.65	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	1.90	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	9.64	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	4.11	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	21.22	0.02
Lorenzo loam, 4 to 6 percent slopes, eroded	1.98	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	9.83	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	2.06	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	14.00	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	2.00	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	3.87	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	11.50	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	31.00	0.03
Lorenzo loam, 4 to 6 percent slopes, eroded	11.80	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	26.42	0.02
Lorenzo loam, 4 to 6 percent slopes, eroded	5.30	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	2.39	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	2.96	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	5.52	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	8.90	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	1.02	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	9.25	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	8.10	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	5.75	0.01
Lorenzo loam, 4 to 6 percent slopes, eroded	3.06	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	1.62	0.00
Lorenzo loam, 4 to 6 percent slopes, eroded	48.30	0.04
Lorenzo loam, 6 to 12 percent slopes, eroded	4.18	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.14	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	3.01	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	2.87	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	10.07	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	1.60	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	4.41	0.00

Soil Description	Area (Acres)	Percent Area
Lorenzo loam 6 to 12 percent slopes eroded	21 91	0.02
Lorenzo loam, 6 to 12 percent slopes, eroded	6.55	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	2.02	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	8.35	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	1.03	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	7.45	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	4.10	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	3.59	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	8.10	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	4.10	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.52	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	2.03	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.56	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	26.40	0.02
Lorenzo loam, 6 to 12 percent slopes, eroded	2.09	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	20.22	0.02
Lorenzo loam, 6 to 12 percent slopes, eroded	7.87	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	4.74	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	2.97	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.72	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	12.02	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	2.27	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	3.39	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	2.36	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.15	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	30.98	0.03
Lorenzo loam, 6 to 12 percent slopes, eroded	13.94	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	1.41	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	6.06	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	12.68	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	8.83	0.01
Lorenzo loam, 6 to 12 percent slopes, eroded	3.33	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	1.72	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	2.11	0.00
Lorenzo loam, 6 to 12 percent slopes, eroded	29.65	0.03
Lorenzo loam, 6 to 12 percent slopes, eroded	16.61	0.02
Markham silt loam, 2 to 4 percent slopes	3.50	0.00
Markham silt loam, 2 to 4 percent slopes	24.49	0.02
Markham silt loam, 2 to 4 percent slopes	0.27	0.00
Markham silt loam, 2 to 4 percent slopes	3.96	0.00
Markham silt loam, 2 to 4 percent slopes	3.98	0.00

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 2 to 4 percent slopes	15.97	0.01
Markham silt loam, 2 to 4 percent slopes	3.76	0.00
Markham silt loam, 2 to 4 percent slopes	5.66	0.01
Markham silt loam, 2 to 4 percent slopes	2.24	0.00
Markham silt loam, 2 to 4 percent slopes	12.38	0.01
Markham silt loam, 2 to 4 percent slopes	3.42	0.00
Markham silt loam, 2 to 4 percent slopes	7.06	0.01
Markham silt loam, 2 to 4 percent slopes	1.38	0.00
Markham silt loam, 2 to 4 percent slopes	4.21	0.00
Markham silt loam, 2 to 4 percent slopes	3.53	0.00
Markham silt loam, 2 to 4 percent slopes	3.42	0.00
Markham silt loam, 2 to 4 percent slopes	5.03	0.00
Markham silt loam, 2 to 4 percent slopes	16.44	0.02
Markham silt loam, 2 to 4 percent slopes	11.18	0.01
Markham silt loam, 2 to 4 percent slopes	6.08	0.01
Markham silt loam, 2 to 4 percent slopes	2.53	0.00
Markham silt loam, 2 to 4 percent slopes	3.55	0.00
Markham silt loam, 2 to 4 percent slopes	5.41	0.01
Markham silt loam, 2 to 4 percent slopes	15.34	0.01
Markham silt loam, 2 to 4 percent slopes	6.41	0.01
Markham silt loam, 2 to 4 percent slopes	5.50	0.01
Markham silt loam, 2 to 4 percent slopes	11.50	0.01
Markham silt loam, 2 to 4 percent slopes	11.92	0.01
Markham silt loam, 2 to 4 percent slopes	169.85	0.16
Markham silt loam, 2 to 4 percent slopes	2.25	0.00
Markham silt loam, 2 to 4 percent slopes	16.53	0.02
Markham silt loam, 2 to 4 percent slopes	13.22	0.01
Markham silt loam, 2 to 4 percent slopes	3.45	0.00
Markham silt loam, 2 to 4 percent slopes	2.65	0.00
Markham silt loam, 2 to 4 percent slopes	18.85	0.02
Markham silt loam, 2 to 4 percent slopes	2.34	0.00
Markham silt loam, 2 to 4 percent slopes	20.65	0.02
Markham silt loam, 2 to 4 percent slopes	3.64	0.00
Markham silt loam, 2 to 4 percent slopes	3.51	0.00
Markham silt loam, 2 to 4 percent slopes	1.40	0.00
Markham silt loam, 2 to 4 percent slopes	3.50	0.00
Markham silt loam, 2 to 4 percent slopes	7.00	0.01
Markham silt loam, 2 to 4 percent slopes	0.97	0.00
Markham silt loam, 2 to 4 percent slopes	11.04	0.01
Markham silt loam, 2 to 4 percent slopes	1.21	0.00
Markham silt loam, 2 to 4 percent slopes	9.46	0.01

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 2 to 4 percent slopes	6.18	0.01
Markham silt loam, 2 to 4 percent slopes	6.25	0.01
Markham silt loam, 2 to 4 percent slopes	7.27	0.01
Markham silt loam, 2 to 4 percent slopes	12.31	0.01
Markham silt loam, 2 to 4 percent slopes	1.76	0.00
Markham silt loam, 2 to 4 percent slopes	11.52	0.01
Markham silt loam, 2 to 4 percent slopes	4.76	0.00
Markham silt loam, 2 to 4 percent slopes	12.29	0.01
Markham silt loam, 2 to 4 percent slopes	2.08	0.00
Markham silt loam, 2 to 4 percent slopes	7.16	0.01
Markham silt loam, 2 to 4 percent slopes	13.23	0.01
Markham silt loam, 2 to 4 percent slopes	23.63	0.02
Markham silt loam, 2 to 4 percent slopes	1.73	0.00
Markham silt loam, 2 to 4 percent slopes	8.99	0.01
Markham silt loam, 2 to 4 percent slopes	10.11	0.01
Markham silt loam, 2 to 4 percent slopes	0.83	0.00
Markham silt loam, 2 to 4 percent slopes	2.17	0.00
Markham silt loam, 2 to 4 percent slopes	22.49	0.02
Markham silt loam, 2 to 4 percent slopes	1.96	0.00
Markham silt loam, 2 to 4 percent slopes	9.18	0.01
Markham silt loam, 2 to 4 percent slopes	13.57	0.01
Markham silt loam, 2 to 4 percent slopes	2.82	0.00
Markham silt loam, 2 to 4 percent slopes	410.23	0.38
Markham silt loam, 2 to 4 percent slopes	1.92	0.00
Markham silt loam, 2 to 4 percent slopes	36.74	0.03
Markham silt loam, 2 to 4 percent slopes	3.66	0.00
Markham silt loam, 2 to 4 percent slopes	155.69	0.14
Markham silt loam, 2 to 4 percent slopes	23.68	0.02
Markham silt loam, 2 to 4 percent slopes	2.20	0.00
Markham silt loam, 2 to 4 percent slopes	3.95	0.00
Markham silt loam, 2 to 4 percent slopes	18.19	0.02
Markham silt loam, 2 to 4 percent slopes	1.00	0.00
Markham silt loam, 2 to 4 percent slopes	2.69	0.00
Markham silt loam, 2 to 4 percent slopes	2.02	0.00
Markham silt loam, 2 to 4 percent slopes	6.45	0.01
Markham silt loam, 2 to 4 percent slopes	12.14	0.01
Markham silt loam, 2 to 4 percent slopes	3.57	0.00
Markham silt loam, 2 to 4 percent slopes	4.99	0.00
Markham silt loam, 2 to 4 percent slopes	18.18	0.02
Markham silt loam, 2 to 4 percent slopes	9.89	0.01
Markham silt loam, 2 to 4 percent slopes	4.39	0.00

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 2 to 4 percent slopes	4.93	0.00
Markham silt loam, 2 to 4 percent slopes	2.97	0.00
Markham silt loam, 2 to 4 percent slopes	7.78	0.01
Markham silt loam, 2 to 4 percent slopes	3.42	0.00
Markham silt loam, 2 to 4 percent slopes	1.50	0.00
Markham silt loam, 2 to 4 percent slopes	2.87	0.00
Markham silt loam, 2 to 4 percent slopes	3.64	0.00
Markham silt loam, 2 to 4 percent slopes	16.26	0.02
Markham silt loam, 2 to 4 percent slopes	3.51	0.00
Markham silt loam, 2 to 4 percent slopes	3.76	0.00
Markham silt loam, 2 to 4 percent slopes	2.08	0.00
Markham silt loam, 2 to 4 percent slopes	3.75	0.00
Markham silt loam, 2 to 4 percent slopes	2.33	0.00
Markham silt loam, 2 to 4 percent slopes	6.65	0.01
Markham silt loam, 2 to 4 percent slopes	9.78	0.01
Markham silt loam, 2 to 4 percent slopes	20.05	0.02
Markham silt loam, 2 to 4 percent slopes	19.04	0.02
Markham silt loam, 2 to 4 percent slopes	26.59	0.02
Markham silt loam, 2 to 4 percent slopes	62.28	0.06
Markham silt loam, 2 to 4 percent slopes	4.76	0.00
Markham silt loam, 2 to 4 percent slopes	2.82	0.00
Markham silt loam, 2 to 4 percent slopes	1.27	0.00
Markham silt loam, 2 to 4 percent slopes	3.90	0.00
Markham silt loam, 2 to 4 percent slopes	1.37	0.00
Markham silt loam, 2 to 4 percent slopes	6.02	0.01
Markham silt loam, 2 to 4 percent slopes	5.52	0.01
Markham silt loam, 2 to 4 percent slopes	10.20	0.01
Markham silt loam, 2 to 4 percent slopes	3.36	0.00
Markham silt loam, 2 to 4 percent slopes	6.28	0.01
Markham silt loam, 2 to 4 percent slopes	7.63	0.01
Markham silt loam, 2 to 4 percent slopes	4.01	0.00
Markham silt loam, 2 to 4 percent slopes	6.53	0.01
Markham silt loam, 2 to 4 percent slopes	5.41	0.01
Markham silt loam, 2 to 4 percent slopes	29.60	0.03
Markham silt loam, 2 to 4 percent slopes	5.25	0.00
Markham silt loam, 2 to 4 percent slopes	8.13	0.01
Markham silt loam, 2 to 4 percent slopes	1.21	0.00
Markham silt loam, 2 to 4 percent slopes	29.17	0.03
Markham silt loam, 2 to 4 percent slopes	16.28	0.02
Markham silt loam, 2 to 4 percent slopes	4.75	0.00
Markham silt loam, 2 to 4 percent slopes	7.81	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Markham silt loam, 2 to 4 percent slopes	23.81	0.02
Markham silt loam, 2 to 4 percent slopes	7.42	0.01
Markham silt loam, 2 to 4 percent slopes	26.17	0.02
Markham silt loam, 2 to 4 percent slopes	29.88	0.03
Markham silt loam, 2 to 4 percent slopes	2.12	0.00
Markham silt loam, 2 to 4 percent slopes	8.23	0.01
Markham silt loam, 2 to 4 percent slopes	3.96	0.00
Markham silt loam, 2 to 4 percent slopes	11.85	0.01
Markham silt loam, 2 to 4 percent slopes	12.52	0.01
Markham silt loam, 2 to 4 percent slopes	2.47	0.00
Markham silt loam, 2 to 4 percent slopes	4.04	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	0.10	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	10.65	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	8.42	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	6.49	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.56	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.34	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.40	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	19.88	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	3.99	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	51.01	0.05
Markham silt loam, 4 to 6 percent slopes, eroded	0.94	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.30	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	12.01	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.10	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.21	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	0.66	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.45	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	24.95	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	9.34	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.22	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.96	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.63	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.77	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.77	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.77	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.05	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.24	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	8.38	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.44	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.70	0.01

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 4 to 6 percent slopes, eroded	59.65	0.06
Markham silt loam, 4 to 6 percent slopes, eroded	3.85	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.06	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.04	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.78	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	11.61	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.38	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	141.48	0.13
Markham silt loam, 4 to 6 percent slopes, eroded	0.64	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.86	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.74	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.81	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.93	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.63	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.70	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.40	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.06	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.16	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.78	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	11.28	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	8.50	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.16	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.76	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.10	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.07	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.39	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	8.29	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	15.29	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.57	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	33.64	0.03
Markham silt loam, 4 to 6 percent slopes, eroded	24.14	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	10.93	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.23	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.82	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.34	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.76	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.85	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	16.45	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	2.15	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	8.54	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	33.98	0.03

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 4 to 6 percent slopes, eroded	11.44	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	8.25	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	0.81	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.67	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	20.91	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	2.11	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	9.15	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	7.63	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.23	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	0.88	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	39.94	0.04
Markham silt loam, 4 to 6 percent slopes, eroded	2.64	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.36	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.20	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.55	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	9.64	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.92	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.74	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.49	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.81	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.86	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.60	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	0.77	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.65	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.48	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.92	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.06	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	8.47	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.33	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.46	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.08	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	38.85	0.04
Markham silt loam, 4 to 6 percent slopes, eroded	8.24	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.64	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.00	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.77	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	13.23	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.59	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.14	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.92	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	13.65	0.01

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 4 to 6 percent slopes, eroded	2.67	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.20	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.02	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.07	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.56	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.97	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	12.60	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.25	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.13	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.33	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	7.70	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.19	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.71	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	11.33	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.96	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.56	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.69	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.08	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	10.24	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	12.44	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.02	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.07	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	110.36	0.10
Markham silt loam, 4 to 6 percent slopes, eroded	4.91	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.46	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.17	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	14.62	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.41	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.54	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	0.86	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.90	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	10.04	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.25	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	52.21	0.05
Markham silt loam, 4 to 6 percent slopes, eroded	13.95	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.81	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	29.09	0.03
Markham silt loam, 4 to 6 percent slopes, eroded	11.04	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.13	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.13	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	1.16	0.00
Soil Description	Area (Acres)	Percent Area (%)
--	-----------------	---------------------
Markham silt loam, 4 to 6 percent slopes, eroded	6.78	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.54	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	1.29	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.67	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.02	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	3.92	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.05	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	2.67	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	212.29	0.20
Markham silt loam, 4 to 6 percent slopes, eroded	12.18	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	5.16	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	6.45	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	38.01	0.04
Markham silt loam, 4 to 6 percent slopes, eroded	2.52	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	15.96	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	17.61	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	3.35	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	4.27	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	5.63	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	16.37	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	5.17	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	29.75	0.03
Markham silt loam, 4 to 6 percent slopes, eroded	6.54	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	4.26	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	15.03	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	30.53	0.03
Markham silt loam, 4 to 6 percent slopes, eroded	7.98	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	6.34	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.06	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	20.40	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	6.68	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.49	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	8.40	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	7.25	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	21.01	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	8.33	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	10.61	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	9.26	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	3.40	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	21.10	0.02
Markham silt loam, 4 to 6 percent slopes, eroded	22.13	0.02

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 4 to 6 percent slopes, eroded	3.00	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	67.14	0.06
Markham silt loam, 4 to 6 percent slopes, eroded	5.66	0.01
Markham silt loam, 4 to 6 percent slopes, eroded	2.35	0.00
Markham silt loam, 4 to 6 percent slopes, eroded	8.05	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	10.01	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	4.45	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.26	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	5.34	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.16	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.16	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.52	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	0.36	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	4.50	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	4.01	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	7.67	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	4.18	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	4.47	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	18.45	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	1.39	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.76	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.89	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.87	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	4.41	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	43.49	0.04
Markham silt loam, 6 to 12 percent slopes, eroded	5.59	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	20.93	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	2.12	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.02	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	5.17	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	17.21	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	11.16	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	34.21	0.03
Markham silt loam, 6 to 12 percent slopes, eroded	4.10	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.37	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	4.44	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.97	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.70	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.96	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.97	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	1.49	0.00

Soil Description	Area (Acres)	Percent Area (%)
Markham silt loam, 6 to 12 percent slopes, eroded	27.32	0.03
Markham silt loam, 6 to 12 percent slopes, eroded	1.74	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	12.92	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	1.33	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.27	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.12	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	11.43	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	5.40	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.17	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.18	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	7.44	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	19.56	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	2.79	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	24.36	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	4.95	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	0.79	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	25.50	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	3.87	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	3.28	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	2.94	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	5.86	0.01
Markham silt loam, 6 to 12 percent slopes, eroded	1.16	0.00
Markham silt loam, 6 to 12 percent slopes, eroded	24.32	0.02
Markham silt loam, 6 to 12 percent slopes, eroded	33.31	0.03
Markham silt loam, 6 to 12 percent slopes, eroded	4.79	0.00
Markham-Ashkum-Beecher complex, 1 to 6 percent slopes	541.40	0.50
Martinsville silt loam, 0 to 2 percent slopes	5.99	0.01
Martinsville silt loam, 0 to 2 percent slopes	3.40	0.00
Martinsville silt loam, 0 to 2 percent slopes	1.51	0.00
Martinsville silt loam, 0 to 2 percent slopes	2.53	0.00
Martinsville silt loam, 0 to 2 percent slopes	2.11	0.00
Martinsville silt loam, 0 to 2 percent slopes	6.06	0.01
Martinsville silt loam, 0 to 2 percent slopes	6.58	0.01
Martinsville silt loam, 0 to 2 percent slopes	11.32	0.01
Martinsville silt loam, 0 to 2 percent slopes	1.13	0.00
Martinsville silt loam, 0 to 2 percent slopes	2.20	0.00
Martinsville silt loam, 0 to 2 percent slopes	4.49	0.00
Martinsville silt loam, 0 to 2 percent slopes	10.13	0.01
Martinsville silt loam, 2 to 4 percent slopes	1.27	0.00
Martinsville silt loam, 2 to 4 percent slopes	13.89	0.01
Martinsville silt loam, 2 to 4 percent slopes	2.03	0.00

Soil Description	Area (Acres)	Percent Area (%)
Martinsville silt loam, 2 to 4 percent slopes	12.49	0.01
Martinsville silt loam, 2 to 4 percent slopes	12.08	0.01
Martinsville silt loam, 2 to 4 percent slopes	5.89	0.01
Martinsville silt loam, 2 to 4 percent slopes	5.22	0.00
Martinsville silt loam, 2 to 4 percent slopes	1.56	0.00
Martinsville silt loam, 2 to 4 percent slopes	2.96	0.00
Martinsville silt loam, 2 to 4 percent slopes	2.18	0.00
Martinsville silt loam, 2 to 4 percent slopes	12.96	0.01
Martinsville silt loam, 2 to 4 percent slopes	9.48	0.01
Martinsville silt loam, 2 to 4 percent slopes	4.46	0.00
Martinsville silt loam, 2 to 4 percent slopes	11.45	0.01
Martinsville silt loam, 2 to 4 percent slopes	9.56	0.01
Martinsville silt loam, 2 to 4 percent slopes	2.99	0.00
Martinsville silt loam, 2 to 4 percent slopes	56.66	0.05
Martinsville silt loam, 2 to 4 percent slopes	5.41	0.00
Martinsville silt loam, 2 to 4 percent slopes	5.65	0.01
Martinsville silt loam, 2 to 4 percent slopes	6.99	0.01
Martinsville silt loam, 2 to 4 percent slopes	11.65	0.01
Martinsville silt loam, 2 to 4 percent slopes	160.17	0.15
Martinsville silt loam, 2 to 4 percent slopes	5.84	0.01
Martinsville silt loam, 2 to 4 percent slopes	2.94	0.00
Martinsville silt loam, 2 to 4 percent slopes	12.00	0.01
Martinsville silt loam, 2 to 4 percent slopes	6.29	0.01
Martinsville silt loam, 2 to 4 percent slopes	28.00	0.03
Martinsville silt loam, 2 to 4 percent slopes	3.78	0.00
Martinsville silt loam, 2 to 4 percent slopes	1.60	0.00
Martinsville silt loam, 2 to 4 percent slopes	15.25	0.01
Martinsville silt loam, 2 to 4 percent slopes	6.45	0.01
Martinsville silt loam, 2 to 4 percent slopes	6.18	0.01
Martinsville silt loam, 2 to 4 percent slopes	0.79	0.00
Martinsville silt loam, 2 to 4 percent slopes	25.53	0.02
Martinsville silt loam, 2 to 4 percent slopes	1.79	0.00
Martinsville silt loam, 2 to 4 percent slopes	3.04	0.00
Martinsville silt loam, 2 to 4 percent slopes	0.85	0.00
Martinsville silt loam, 2 to 4 percent slopes	1.66	0.00
Martinsville silt loam, 2 to 4 percent slopes	0.07	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	4.30	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.95	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	4.74	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	7.42	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	36.43	0.03

Soil Description	Area (Acres)	Percent Area (%)
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.91	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	6.24	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.62	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	10.64	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	11.62	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.12	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.29	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.82	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.49	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	12.50	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	5.82	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.50	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.64	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	26.98	0.02
Martinsville silt loam, 4 to 6 percent slopes, eroded	6.71	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.96	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.73	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	16.07	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	9.26	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.72	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.99	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.84	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	28.24	0.03
Martinsville silt loam, 4 to 6 percent slopes, eroded	7.18	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.77	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.74	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.80	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.88	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	6.02	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	6.73	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	8.52	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	6.77	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.34	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	3.01	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	1.17	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	4.42	0.00
Martinsville silt loam, 4 to 6 percent slopes, eroded	53.29	0.05
Martinsville silt loam, 4 to 6 percent slopes, eroded	5.71	0.01
Martinsville silt loam, 4 to 6 percent slopes, eroded	2.77	0.00
Martinton silt loam, 0 to 2 percent slopes	1.55	0.00
Martinton silt loam, 0 to 2 percent slopes	5.20	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Martinton silt loam, 0 to 2 percent slopes	2.55	0.00
Martinton silt loam, 0 to 2 percent slopes	1.35	0.00
Martinton silt loam, 0 to 2 percent slopes	4.90	0.00
Martinton silt loam, 0 to 2 percent slopes	4.59	0.00
Martinton silt loam, 0 to 2 percent slopes	23.18	0.02
Michenry slit loam, 2 to 4 percent slopes	20.02	0.02
McHenry silt loam, 2 to 4 percent slopes	14.07	0.01
McHenry silt loam, 2 to 4 percent slopes	17.31	0.02
McHenry silt loam, 2 to 4 percent slopes	/9.49	0.07
McHenry silt loam, 2 to 4 percent slopes	4.04	0.00
McHenry silt loam, 2 to 4 percent slopes	2.14	0.00
McHenry silt loam, 2 to 4 percent slopes	10.43	0.01
McHenry silt loam, 2 to 4 percent slopes	134.21	0.12
McHenry silt loam, 2 to 4 percent slopes	73.82	0.07
McHenry silt loam, 2 to 4 percent slopes	9.89	0.01
McHenry silt loam, 2 to 4 percent slopes	5.50	0.01
McHenry silt loam, 2 to 4 percent slopes	3.08	0.00
McHenry silt loam, 2 to 4 percent slopes	3.92	0.00
McHenry silt loam, 2 to 4 percent slopes	181.90	0.17
McHenry silt loam, 2 to 4 percent slopes	4.16	0.00
McHenry silt loam, 2 to 4 percent slopes	2.23	0.00
McHenry silt loam, 2 to 4 percent slopes	35.48	0.03
McHenry silt loam, 2 to 4 percent slopes	9.25	0.01
McHenry silt loam, 2 to 4 percent slopes	2.43	0.00
McHenry silt loam, 2 to 4 percent slopes	5.60	0.01
McHenry silt loam, 2 to 4 percent slopes	27.18	0.03
McHenry silt loam, 2 to 4 percent slopes	2.32	0.00
McHenry silt loam, 2 to 4 percent slopes	2.68	0.00
McHenry silt loam, 2 to 4 percent slopes	3.56	0.00
McHenry silt loam, 2 to 4 percent slopes	24.50	0.02
McHenry silt loam, 2 to 4 percent slopes	7.34	0.01
McHenry silt loam, 2 to 4 percent slopes	4.13	0.00
McHenry silt loam, 2 to 4 percent slopes	7.38	0.01
McHenry silt loam, 2 to 4 percent slopes	5.21	0.00
McHenry silt loam, 2 to 4 percent slopes	2.14	0.00
McHenry silt loam, 2 to 4 percent slopes	3.06	0.00
McHenry silt loam, 2 to 4 percent slopes	2.54	0.00
McHenry silt loam, 2 to 4 percent slopes	1.64	0.00
McHenry silt loam, 2 to 4 percent slopes	26.23	0.02
McHenry silt loam, 2 to 4 percent slopes	94.04	0.09
McHenry silt loam, 2 to 4 percent slopes	9.29	0.01

(Acres) (%) 2.47 0.00 79.81 0.07
2.47 0.00
79.81 0.07
/5:81 0:07
5.52 0.01
19.15 0.02
8.38 0.01
0.28 0.00
2.14 0.00
10.89 0.01
5.19 0.00
1.81 0.00
98.36 0.09
0.45 0.00
36.84 0.03
4.43 0.00
1.84 0.00
1.36 0.00
7.31 0.01
7.82 0.01
5.62 0.01
26.05 0.02
33.66 0.03
70.61 0.07
69.39 0.06
26.90 0.02
7.23 0.01
6.47 0.01
199.98 0.18
4.34 0.00
17.56 0.02
6.06 0.01
2.72 0.00
5.33 0.00
1.06 0.00
1.52 0.00
1.84 0.00
5.24 0.00
1.82 0.00
5.39 0.00
1 71 0 00
22 23 0.02
17.12 0.02
19.15 0. 8.38 0. 0.28 0. 2.14 0. 10.89 0. 5.19 0. 1.81 0. 98.36 0. 0.45 0. 36.84 0. 1.36 0. 1.36 0. 7.31 0. 7.32 0. 5.62 0. 26.05 0. 33.66 0. 70.61 0. 69.39 0. 26.90 0. 7.23 0. 6.47 0. 199.98 0. 4.34 0. 17.56 0. 1.06 0. 1.52 0. 1.84 0. 1.52 0. 1.84 0. 1.52 0. 1.84 0. 1.52 0. <t< td=""></t<>

Soil Description	Area (Acres)	Percent Area
McHenry silt loam 2 to 4 percent slopes	11 34	0.01
McHenry silt loam, 2 to 4 percent slopes	5.46	0.01
McHenry silt loam, 2 to 4 percent slopes	11.37	0.01
McHenry silt loam, 2 to 4 percent slopes	2.83	0.00
McHenry silt loam, 2 to 4 percent slopes	46.33	0.04
McHenry silt loam, 2 to 4 percent slopes	7.27	0.01
McHenry silt loam, 2 to 4 percent slopes	1.10	0.00
McHenry silt loam, 2 to 4 percent slopes	4.75	0.00
McHenry silt loam, 2 to 4 percent slopes	9.00	0.01
McHenry silt loam, 2 to 4 percent slopes	9.46	0.01
McHenry silt loam, 2 to 4 percent slopes	2.42	0.00
McHenry silt loam, 2 to 4 percent slopes	2.71	0.00
McHenry silt loam, 2 to 4 percent slopes	102.34	0.09
McHenry silt loam, 2 to 4 percent slopes	35.56	0.03
McHenry silt loam, 2 to 4 percent slopes	6.36	0.01
McHenry silt loam, 2 to 4 percent slopes	8.89	0.01
McHenry silt loam, 2 to 4 percent slopes	1.79	0.00
McHenry silt loam, 2 to 4 percent slopes	9.79	0.01
McHenry silt loam, 2 to 4 percent slopes	2.38	0.00
McHenry silt loam, 2 to 4 percent slopes	19.96	0.02
McHenry silt loam, 2 to 4 percent slopes	1.56	0.00
McHenry silt loam, 2 to 4 percent slopes	8.62	0.01
McHenry silt loam, 2 to 4 percent slopes	58.86	0.05
McHenry silt loam, 2 to 4 percent slopes	130.35	0.12
McHenry silt loam, 2 to 4 percent slopes	1.80	0.00
McHenry silt loam, 2 to 4 percent slopes	4.72	0.00
McHenry silt loam, 2 to 4 percent slopes	38.65	0.04
McHenry silt loam, 2 to 4 percent slopes	295.72	0.27
McHenry silt loam, 2 to 4 percent slopes	3.55	0.00
McHenry silt loam, 2 to 4 percent slopes	4.60	0.00
McHenry silt loam, 2 to 4 percent slopes	2.70	0.00
McHenry silt loam, 2 to 4 percent slopes	1.75	0.00
McHenry silt loam, 2 to 4 percent slopes	36.84	0.03
McHenry silt loam, 2 to 4 percent slopes	3.03	0.00
McHenry silt loam, 2 to 4 percent slopes	9.92	0.01
McHenry silt loam, 2 to 4 percent slopes	6.74	0.01
McHenry silt loam, 2 to 4 percent slopes	0.55	0.00
McHenry silt loam, 2 to 4 percent slopes	12.06	0.01
McHenry silt loam, 2 to 4 percent slopes	26.28	0.02
McHenry silt loam, 2 to 4 percent slopes	1.31	0.00
McHenry silt loam, 2 to 4 percent slopes	6.30	0.01

Soil Description	Area (Acres)	Percent Area (%)
McHenry silt loam, 2 to 4 percent slopes	2.82	0.00
McHenry silt loam, 2 to 4 percent slopes	0.78	0.00
McHenry silt loam, 2 to 4 percent slopes	4.39	0.00
McHenry silt loam, 2 to 4 percent slopes	3.59	0.00
McHenry silt loam, 2 to 4 percent slopes	7.84	0.01
McHenry silt loam, 2 to 4 percent slopes	1.40	0.00
McHenry silt loam, 2 to 4 percent slopes	16.92	0.02
McHenry silt loam, 2 to 4 percent slopes	7.05	0.01
McHenry silt loam, 2 to 4 percent slopes	7.93	0.01
McHenry silt loam, 2 to 4 percent slopes	1.60	0.00
McHenry silt loam, 2 to 4 percent slopes	2.55	0.00
McHenry silt loam, 2 to 4 percent slopes	69.52	0.06
McHenry silt loam, 2 to 4 percent slopes	3.66	0.00
McHenry silt loam, 2 to 4 percent slopes	43.37	0.04
McHenry silt loam, 2 to 4 percent slopes	9.16	0.01
McHenry silt loam, 2 to 4 percent slopes	4.28	0.00
McHenry silt loam, 2 to 4 percent slopes	3.59	0.00
McHenry silt loam, 2 to 4 percent slopes	5.61	0.01
McHenry silt loam, 2 to 4 percent slopes	9.32	0.01
McHenry silt loam, 2 to 4 percent slopes	1.12	0.00
McHenry silt loam, 2 to 4 percent slopes	2.05	0.00
McHenry silt loam, 2 to 4 percent slopes	6.46	0.01
McHenry silt loam, 2 to 4 percent slopes	2.95	0.00
McHenry silt loam, 2 to 4 percent slopes	2.31	0.00
McHenry silt loam, 2 to 4 percent slopes	38.92	0.04
McHenry silt loam, 2 to 4 percent slopes	6.40	0.01
McHenry silt loam, 2 to 4 percent slopes	0.27	0.00
Milford silty clay loam, 0 to 2 percent slopes	3.27	0.00
Millbrook silt loam, 0 to 2 percent slopes	11.29	0.01
Millbrook silt loam, 0 to 2 percent slopes	5.83	0.01
Millbrook silt loam, 0 to 2 percent slopes	10.67	0.01
Millbrook silt loam, 0 to 2 percent slopes	0.90	0.00
Millbrook silt loam, 0 to 2 percent slopes	29.21	0.03
Millbrook silt loam, 0 to 2 percent slopes	2.98	0.00
Millbrook silt loam, 0 to 2 percent slopes	16.93	0.02
Millbrook silt loam, 0 to 2 percent slopes	5.55	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.67	0.00
Millbrook silt loam, 0 to 2 percent slopes	24.84	0.02
Millbrook silt loam, 0 to 2 percent slopes	2.81	0.00
Millbrook silt loam, 0 to 2 percent slopes	6.62	0.01
Millbrook silt loam, 0 to 2 percent slopes	9.28	0.01

SSURGO Soil Series

Soil Description	Area (Acres)	Percent Area (%)
Millbrook silt loam, 0 to 2 percent slopes	1.68	0.00
Millbrook silt loam, 0 to 2 percent slopes	18.97	0.02
Millbrook silt loam, 0 to 2 percent slopes	4.70	0.00
Millbrook silt loam, 0 to 2 percent slopes	10.26	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.00	0.00
Millbrook silt loam, 0 to 2 percent slopes	2.82	0.00
Millbrook silt loam, 0 to 2 percent slopes	11.98	0.01
Millbrook silt loam, 0 to 2 percent slopes	3.65	0.00
Millbrook silt loam, 0 to 2 percent slopes	2.01	0.00
Millbrook silt loam, 0 to 2 percent slopes	3.86	0.00
Millbrook silt loam, 0 to 2 percent slopes	2.46	0.00
Millbrook silt loam, 0 to 2 percent slopes	40.90	0.04
Millbrook silt loam, 0 to 2 percent slopes	1.13	0.00
Millbrook silt loam, 0 to 2 percent slopes	5.55	0.01
Millbrook silt loam, 0 to 2 percent slopes	1.12	0.00
Millbrook silt loam, 0 to 2 percent slopes	21.39	0.02
Millbrook silt loam, 0 to 2 percent slopes	28.84	0.03
Millbrook silt loam, 0 to 2 percent slopes	5.60	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.50	0.00
Millbrook silt loam, 0 to 2 percent slopes	12.79	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.65	0.00
Millbrook silt loam, 0 to 2 percent slopes	8.72	0.01
Millbrook silt loam, 0 to 2 percent slopes	4.65	0.00
Millbrook silt loam, 0 to 2 percent slopes	11.72	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.34	0.00
Millbrook silt loam, 0 to 2 percent slopes	1.74	0.00
Millbrook silt loam, 0 to 2 percent slopes	3.69	0.00
Millbrook silt loam, 0 to 2 percent slopes	4.61	0.00
Millbrook silt loam, 0 to 2 percent slopes	21.35	0.02
Millbrook silt loam, 0 to 2 percent slopes	4.44	0.00
Millbrook silt loam, 0 to 2 percent slopes	23.09	0.02
Millbrook silt loam, 0 to 2 percent slopes	0.91	0.00
Millbrook silt loam, 0 to 2 percent slopes	10.03	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.40	0.00
Millbrook silt loam, 0 to 2 percent slopes	4.89	0.00
Millbrook silt loam, 0 to 2 percent slopes	7.48	0.01
Millbrook silt loam, 0 to 2 percent slopes	2.58	0.00
Millbrook silt loam, 0 to 2 percent slopes	2.71	0.00
Millbrook silt loam, 0 to 2 percent slopes	4.33	0.00
Millbrook silt loam, 0 to 2 percent slopes	3.61	0.00
Millbrook silt loam, 0 to 2 percent slopes	5.10	0.00

Soil Description	Area	Percent Area
Millbrook silt loam. 0 to 2 percent slopes	6.08	0.01
Millbrook silt loam 0 to 2 percent slopes	6.71	0.01
Millbrook silt loam. 0 to 2 percent slopes	2.57	0.01
Millbrook silt loam 0 to 2 percent slopes	2.57	0.00
Millbrook silt loom, 0 to 2 percent slopes	2.30	0.00
Millbrook silt loom, 0 to 2 percent slopes	3.78	0.00
Millbrook silt loam, 0 to 2 percent slopes	0.89	0.00
Millbrook silt loam, U to 2 percent slopes	8.18	0.01
Millbrook silt loam, 0 to 2 percent slopes	10.49	0.01
Milbrook silt loam, 0 to 2 percent slopes	6.19	0.01
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	1.47	0.00
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	17.80	0.02
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	42.03	0.04
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	39.82	0.04
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	5.92	0.01
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	23.05	0.02
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	4.19	0.00
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	8.43	0.01
Millington silt loam, 0 to 2 percent slopes, occasionally flooded	2.57	0.00
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally		
flooded	3.05	0.00
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally		
flooded	26.92	0.02
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally		
flooded	11.16	0.01
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally		
flooded	1.50	0.00
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally		0.40
flooded	145.52	0.13
Millington silt loam, 0 to 2 percent slopes, undrained, occasionally	100.00	0.40
TIOODED	199.89	0.18
flooded	4 OF	0.00
Millington silt loam 0 to 2 percent slopes undrained occasionally	4.65	0.00
flooded	2.96	0.00
Millington silt loam 0 to 2 percent slopes undrained occasionally	2.50	0.00
flooded	20.27	0.02
Millstream silt loam 0 to 2 percent slopes	4 22	0.00
Millstream silt loam. 0 to 2 percent slopes	14.18	0.01
Millstream silt loam 0 to 2 percent slopes	1/ 30	0.01
Millstream silt loam 0 to 2 percent slopes	1 66	0.01
Millstream silt loam 0 to 2 percent slopes	0/ OF	0.00
Milletream silt loam 0 to 2 percent clones	34.53	0.09
Milletroom silt loom. O to 2 percent closes	2.04	0.00
whistream slit loam, 0 to 2 percent slopes	8.04	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Millstream silt loam, 0 to 2 percent slopes	0.42	0.00
Millstream silt loam, 0 to 2 percent slopes	1.38	0.00
Millstream silt loam, 0 to 2 percent slopes	0.97	0.00
Millstream silt loam, 0 to 2 percent slopes	8.78	0.01
Millstream silt loam, 0 to 2 percent slopes	1.81	0.00
Millstream silt loam, 0 to 2 percent slopes	1.14	0.00
Millstream silt loam, 0 to 2 percent slopes	2.85	0.00
Millstream silt loam, 0 to 2 percent slopes	5.80	0.01
Millstream silt loam, 0 to 2 percent slopes	1.96	0.00
Millstream silt loam, 0 to 2 percent slopes	14.42	0.01
Millstream silt loam, 0 to 2 percent slopes	2.29	0.00
Millstream silt loam, 0 to 2 percent slopes	30.70	0.03
Millstream silt loam, 0 to 2 percent slopes	16.29	0.02
Millstream silt loam, 0 to 2 percent slopes	6.20	0.01
Millstream silt loam, 0 to 2 percent slopes	4.26	0.00
Millstream silt loam, 0 to 2 percent slopes	94.88	0.09
Millstream silt loam, 0 to 2 percent slopes	15.74	0.01
Millstream silt loam, 0 to 2 percent slopes	10.51	0.01
Millstream silt loam, 0 to 2 percent slopes	4.19	0.00
Millstream silt loam, 0 to 2 percent slopes	1.93	0.00
Millstream silt loam, 0 to 2 percent slopes	15.72	0.01
Millstream silt loam, 0 to 2 percent slopes	2.06	0.00
Millstream silt loam, 0 to 2 percent slopes	1.50	0.00
Millstream silt loam, 0 to 2 percent slopes	9.28	0.01
Millstream silt loam, 0 to 2 percent slopes	6.19	0.01
Millstream silt loam, 0 to 2 percent slopes	2.62	0.00
Millstream silt loam, 0 to 2 percent slopes	5.24	0.00
Millstream silt loam, 0 to 2 percent slopes	3.15	0.00
Millstream silt loam, 0 to 2 percent slopes	1.97	0.00
Millstream silt loam, 0 to 2 percent slopes	6.72	0.01
Millstream silt loam, 0 to 2 percent slopes	3.01	0.00
Millstream silt loam, 0 to 2 percent slopes	34.27	0.03
Millstream silt loam, 0 to 2 percent slopes	12.19	0.01
Millstream silt loam, 0 to 2 percent slopes	6.09	0.01
Millstream silt loam, 0 to 2 percent slopes	3.38	0.00
Millstream silt loam, 0 to 2 percent slopes	2.91	0.00
Millstream silt loam, 0 to 2 percent slopes	6.94	0.01
Millstream silt loam, 0 to 2 percent slopes	1.09	0.00
Millstream silt loam, 0 to 2 percent slopes	10.85	0.01
Millstream silt loam, 0 to 2 percent slopes	4.04	0.00
Millstream silt loam, 0 to 2 percent slopes	9.30	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Millstream silt loam, 0 to 2 percent slopes	1.70	0.00
Millstream silt loam, 0 to 2 percent slopes	2.97	0.00
Millstream silt loam, 0 to 2 percent slopes	0.90	0.00
Millstream silt loam, 0 to 2 percent slopes	11.31	0.01
Millstream silt loam, 0 to 2 percent slopes	11.04	0.01
Millstream silt loam, 0 to 2 percent slopes	3.31	0.00
Millstream silt loam, 0 to 2 percent slopes	8.29	0.01
Millstream silt loam, 0 to 2 percent slopes	9.69	0.01
Millstream silt loam, 0 to 2 percent slopes	0.37	0.00
Millstream silt loam, 0 to 2 percent slopes	7.23	0.01
Millstream silt loam, 0 to 2 percent slopes	3.33	0.00
Millstream silt loam, 0 to 2 percent slopes	7.36	0.01
Millstream silt loam, 0 to 2 percent slopes	32.89	0.03
Millstream silt loam, 0 to 2 percent slopes	2.63	0.00
Millstream silt loam, 0 to 2 percent slopes	9.25	0.01
Millstream silt loam, 0 to 2 percent slopes	1.08	0.00
Millstream silt loam, 0 to 2 percent slopes	6.67	0.01
Millstream silt loam, 0 to 2 percent slopes	1.40	0.00
Millstream silt loam, 0 to 2 percent slopes	1.81	0.00
Millstream silt loam, 0 to 2 percent slopes	1.60	0.00
Millstream silt loam, 0 to 2 percent slopes	1.32	0.00
Millstream silt loam, 0 to 2 percent slopes	0.86	0.00
Millstream silt loam, 0 to 2 percent slopes	2.12	0.00
Millstream silt loam, 0 to 2 percent slopes	24.11	0.02
Millstream silt loam, 0 to 2 percent slopes	7.94	0.01
Millstream silt loam, 0 to 2 percent slopes	5.55	0.01
Millstream silt loam, 0 to 2 percent slopes	1.46	0.00
Millstream silt loam, 0 to 2 percent slopes	2.36	0.00
Millstream silt loam, 0 to 2 percent slopes	0.77	0.00
Millstream silt loam, 0 to 2 percent slopes	31.79	0.03
Millstream silt loam, 0 to 2 percent slopes	48.65	0.04
Millstream silt loam, 0 to 2 percent slopes	2.52	0.00
Millstream silt loam, 0 to 2 percent slopes	10.05	0.01
Millstream silt loam, 0 to 2 percent slopes	2.26	0.00
Millstream silt loam, 0 to 2 percent slopes	11.06	0.01
Millstream silt loam, 0 to 2 percent slopes	1.39	0.00
Millstream silt loam, 0 to 2 percent slopes	2.05	0.00
Millstream silt loam, 0 to 2 percent slopes	15.67	0.01
Millstream silt loam, 0 to 2 percent slopes	3.14	0.00
Millstream silt loam, 0 to 2 percent slopes	7.33	0.01
Millstream silt loam, 0 to 2 percent slopes	2.20	0.00

Appendix C

Soil Description	Area	Percent Area
	(Acres)	(%)
Millstream silt loam, 0 to 2 percent slopes	6.12	0.01
Millstream silt loam, 0 to 2 percent slopes	2.24	0.00
Millstream silt loam, 0 to 2 percent slopes	3.63	0.00
Millstream silt loam, 0 to 2 percent slopes	3.82	0.00
Millstream silt loam, 0 to 2 percent slopes	1.07	0.00
Millstream silt loam, 0 to 2 percent slopes	3.83	0.00
Millstream silt loam, 0 to 2 percent slopes	2.32	0.00
Millstream silt loam, 0 to 2 percent slopes	12.65	0.01
Millstream silt loam, 0 to 2 percent slopes	7.84	0.01
Millstream silt loam, 0 to 2 percent slopes	3.72	0.00
Millstream silt loam, 0 to 2 percent slopes	0.81	0.00
Millstream silt loam, 0 to 2 percent slopes	3.86	0.00
Millstream silt loam, 0 to 2 percent slopes	1.74	0.00
Millstream silt loam, 0 to 2 percent slopes	4.20	0.00
Millstream silt loam, 0 to 2 percent slopes	1.27	0.00
Millstream silt loam, 0 to 2 percent slopes	10.12	0.01
Millstream silt loam, 0 to 2 percent slopes	42.79	0.04
Millstream silt loam, 0 to 2 percent slopes	2.17	0.00
Millstream silt loam, 0 to 2 percent slopes	30.75	0.03
Millstream silt loam, 0 to 2 percent slopes	2.52	0.00
Millstream silt loam, 0 to 2 percent slopes	1.90	0.00
Millstream silt loam, 0 to 2 percent slopes	54.67	0.05
Millstream silt loam, 0 to 2 percent slopes	4.56	0.00
Millstream silt loam, 0 to 2 percent slopes	7.12	0.01
Millstream silt loam, 0 to 2 percent slopes	1.30	0.00
Millstream silt loam, 0 to 2 percent slopes	10.97	0.01
Millstream silt loam, 0 to 2 percent slopes	10.27	0.01
Millstream silt loam, 0 to 2 percent slopes	1.61	0.00
Millstream silt loam, 0 to 2 percent slopes	3.53	0.00
Millstream silt loam, 0 to 2 percent slopes	3.50	0.00
Millstream silt loam, 0 to 2 percent slopes	21.51	0.02
Millstream silt loam, 0 to 2 percent slopes	8.47	0.01
Millstream silt loam, 0 to 2 percent slopes	1.54	0.00
Millstream silt loam, 0 to 2 percent slopes	1.04	0.00
Millstream silt loam, 0 to 2 percent slopes	3.16	0.00
Millstream silt loam, 0 to 2 percent slopes	2.76	0.00
Millstream silt loam, 0 to 2 percent slopes	3.07	0.00
Millstream silt loam, 0 to 2 percent slopes	9.51	0.01
Millstream silt loam, 0 to 2 percent slopes	26.71	0.02
Millstream silt loam, 0 to 2 percent slopes	2.78	0.00
Millstream silt loam, 0 to 2 percent slopes	4.56	0.00

Soil Description	Area	Percent Area
Milletroom silt loom 0 to 2 percent slopes	(Acres)	(%)
Millstream silt loam, 0 to 2 percent slopes	9.22	0.01
Millstream silt loam 0 to 2 percent slopes	3 36	0.02
Millstream silt loam 0 to 2 percent slopes	1 30	0.00
Millstream silt loam, 0 to 2 percent slopes	8.03	0.00
Millstream silt loam 0 to 2 percent slopes	0.03 4 74	0.01
Millstream silt loam 0 to 2 percent slopes	3.86	0.00
Millstream silt loam 0 to 2 percent slopes	0.86	0.00
Millstream silt loam 0 to 2 percent slopes	4 23	0.00
Millstream silt loam 0 to 2 percent slopes	7.20	0.00
Millstream silt loam 0 to 2 percent slopes	3 3 2	0.01
Millstream silt loam 0 to 2 percent slopes	2 99	0.00
Millstream silt loam, 0 to 2 percent slopes	2.55	0.00
Millstream silt loam 0 to 2 percent slopes	2 51	0.01
Millstream silt loam 0 to 2 percent slopes	3.96	0.00
Millstream silt loam 0 to 2 percent slopes	3.50	0.00
Millstream silt loam, 0 to 2 percent slopes	2.50	0.00
Millstream silt loam 0 to 2 percent slopes	1 98	0.00
Millstream silt loam, 0 to 2 percent slopes	1.98	0.00
Millstream silt loam, 0 to 2 percent slopes	1 21	0.01
Millstream silt loam 0 to 2 percent slopes	5.65	0.00
Millstream silt loam 0 to 2 percent slopes	6.08	0.01
Millstream silt loam, 0 to 2 percent slopes	0.08	0.01
Millstream silt loam, 0 to 2 percent slopes	1.80	0.00
Millstream silt loam 0 to 2 percent slopes	26.04	0.00
Millstream silt loam, 0 to 2 percent slopes	1 / 3	0.02
Millstream silt loam 0 to 2 percent slopes	3 10	0.00
Millstream silt loam, 0 to 2 percent slopes	2 51	0.00
Millstream silt loam 0 to 2 percent slopes	130.8/	0.00
Millstream silt loam 0 to 2 percent slopes	12 75	0.12
Millstream silt loam 0 to 2 percent slopes	12.75 A 11	0.01
Millstream silt loam 0 to 2 percent slopes	6.68	0.00
Millstream silt loam 0 to 2 percent slopes	1 71	0.01
Millstream silt loam 0 to 2 percent slopes	25.05	0.00
Montgomery silty clay loam 0 to 2 percent slopes	10.84	0.02
Montgomery silty clay loam, 0 to 2 percent slopes	3 88	0.01
Montgomery silty clay loam, 0 to 2 percent slopes	3.00	0.00
Montgomery silty clay loam, 0 to 2 percent slopes	21 <i>I</i> (1)	0.00
Montgomery silty clay loam, 0 to 2 percent slopes	15.79	0.02
Mundelein and Elliott silt loams. 0 to 2 percent slopes	6.27	0.01
Mundelein and Elliott silt Joams, 0 to 2 percent slopes	5 51	0.01
manacient and Emote site loants, o to 2 percent slopes	5.51	0.01

Soil Description	Area	Percent Area
Mundoloin and Elliott silt loams. O to 2 persont clones	(Acres)	(%)
Mundelein and Elliott silt loams, 0 to 2 percent slopes	7.51	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	4.54	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	4.07	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	1 72	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	1.75 9 E 1	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	8.31	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	4.00	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	12.02	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	12.02	0.01
Mundelein and Elliott silt Joams, 0 to 2 percent slopes	8.40	0.01
Mundelein and Elliott silt Joans, 0 to 2 percent slopes	1.08	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	5.18	0.00
Nundelein and Elliott silt loams, 0 to 2 percent slopes	5.74	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	7.21	0.01
Mundelein and Elliott silt loams, 0 to 2 percent slopes	2.51	0.00
Mundelein and Elliott silt loams, 0 to 2 percent slopes	3.05	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	1.53	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.95	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.09	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.05	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	9.00	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	7.47	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	1.49	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	7.48	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	8.87	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	9.95	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	4.11	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.11	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.16	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.24	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	3.32	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	1.18	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.06	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	5.27	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.14	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	0.90	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	3.13	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	12.18	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	6.44	0.01
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.45	0.00
Mundelein and Elliott silt loams, 2 to 4 percent slopes	3.34	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Mundelein and Elliott silt loams, 2 to 4 percent slopes	2.50	0.00
Mundelein silt loam, 0 to 2 percent slopes	4.52	0.00
Mundelein silt loam, 0 to 2 percent slopes	68.91	0.06
Mundelein silt loam, 0 to 2 percent slopes	2.10	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.68	0.00
Mundelein silt loam, 0 to 2 percent slopes	2.15	0.00
Mundelein silt loam, 0 to 2 percent slopes	19.62	0.02
Mundelein silt loam, 0 to 2 percent slopes	3.48	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.32	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.50	0.00
Mundelein silt loam, 0 to 2 percent slopes	13.19	0.01
Mundelein silt loam, 0 to 2 percent slopes	29.99	0.03
Mundelein silt loam, 0 to 2 percent slopes	17.90	0.02
Mundelein silt loam, 0 to 2 percent slopes	4.16	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.24	0.00
Mundelein silt loam, 0 to 2 percent slopes	4.14	0.00
Mundelein silt loam, 0 to 2 percent slopes	2.37	0.00
Mundelein silt loam, 0 to 2 percent slopes	2.71	0.00
Mundelein silt loam, 0 to 2 percent slopes	10.22	0.01
Mundelein silt loam, 0 to 2 percent slopes	0.81	0.00
Mundelein silt loam, 0 to 2 percent slopes	7.67	0.01
Mundelein silt loam, 0 to 2 percent slopes	4.08	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.51	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.81	0.00
Mundelein silt loam, 0 to 2 percent slopes	4.82	0.00
Mundelein silt loam, 0 to 2 percent slopes	3.78	0.00
Mundelein silt loam, 0 to 2 percent slopes	23.01	0.02
Mundelein silt loam, 0 to 2 percent slopes	6.27	0.01
Mundelein silt loam, 0 to 2 percent slopes	11.08	0.01
Mundelein silt loam, 0 to 2 percent slopes	5.35	0.00
Mundelein silt loam, 0 to 2 percent slopes	6.69	0.01
Mundelein silt loam, 0 to 2 percent slopes	1.97	0.00
Mundelein silt loam, 0 to 2 percent slopes	1.31	0.00
Mundelein silt loam, 2 to 4 percent slopes	6.47	0.01
Mundelein silt loam, 2 to 4 percent slopes	7.93	0.01
Mundelein silt loam, 2 to 4 percent slopes	7.71	0.01
Mundelein silt loam, 2 to 4 percent slopes	7.04	0.01
Mundelein silt loam, 2 to 4 percent slopes	9.58	0.01
Mundelein silt loam, 2 to 4 percent slopes	5.13	0.00
Mundelein silt loam, 2 to 4 percent slopes	4.80	0.00
Mundelein silt loam, 2 to 4 percent slopes	2.56	0.00

Soil Description	Area (Acres)	Percent Area (%)
Mundelein silt loam, 2 to 4 percent slopes	1.23	0.00
Muskego and Houghton mucks, 0 to 2 percent slopes	2.94	0.00
Muskego and Houghton mucks, 0 to 2 percent slopes	46.90	0.04
Muskego and Houghton mucks, 0 to 2 percent slopes	0.19	0.00
Muskego and Houghton mucks, 0 to 2 percent slopes	2.32	0.00
Muskego and Houghton mucks, 0 to 2 percent slopes	2.92	0.00
Muskego and Houghton mucks, 0 to 2 percent slopes	9.44	0.01
Muskego and Houghton mucks, 0 to 2 percent slopes	25.56	0.02
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	1.52	0.00
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	3.14	0.00
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	31.88	0.03
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	2.03	0.00
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	15.07	0.01
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	13.44	0.01
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	2.57	0.00
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	8.29	0.01
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	6.02	0.01
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	3.77	0.00
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	12.12	0.01
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	88.27	0.08
Muskego and Houghton mucks, undrained, 0 to 2 percent slopes	5.69	0.01
Muskego and Peotone soils, ponded, 0 to 2 percent slopes	1.61	0.00
Nappanee silt loam, 0 to 2 percent slopes	3.36	0.00
Nappanee silt loam, 0 to 2 percent slopes	4.77	0.00
Nappanee silt loam, 0 to 2 percent slopes	1.26	0.00
Nappanee silt loam, 0 to 2 percent slopes	1.01	0.00
Nappanee silt loam, 2 to 4 percent slopes	6.90	0.01
Nappanee silt loam, 2 to 4 percent slopes	4.01	0.00
Nappanee silt loam, 2 to 4 percent slopes	16.87	0.02
Nappanee silt loam, 2 to 4 percent slopes	2.58	0.00
Nappanee silt loam, 2 to 4 percent slopes	4.35	0.00
Nappanee silt loam, 2 to 4 percent slopes	2.64	0.00
Nappanee silt loam, 2 to 4 percent slopes	18.54	0.02
Nappanee silt loam, 2 to 4 percent slopes	13.98	0.01
Nappanee silt loam, 2 to 4 percent slopes	7.21	0.01
Nappanee silt loam, 2 to 4 percent slopes	4.22	0.00
Nappanee silt loam, 2 to 4 percent slopes	0.96	0.00
Nappanee silt loam, 2 to 4 percent slopes	1.88	0.00
Nappanee silt loam, 2 to 4 percent slopes	2.93	0.00
Nappanee silt loam, 2 to 4 percent slopes	3.78	0.00
Nappanee silt loam, 2 to 4 percent slopes	7.91	0.01

Soil Description	Area (Acres)	Percent Area
Nannanee silt loam 2 to 4 percent slopes	1.61	0.00
Nappanee silt loam, 2 to 4 percent slopes	5.83	0.00
Nappanee silt loam, 2 to 4 percent slopes	3.28	0.00
Nappanee silt loam, 2 to 4 percent slopes	1 51	0.00
Nappanee silt loam, 2 to 4 percent slopes	4 36	0.00
Nappanee silt loam, 2 to 4 percent slopes	2 45	0.00
Nappanee silty clay loam 2 to 4 percent slopes eroded	4 02	0.00
Nappanee silty clay loam, 2 to 4 percent slopes, eroded	5.02	0.00
Nappanee silty clay loam, 2 to 4 percent slopes, eroded	1.69	0.00
Nappanee silty clay loam, 2 to 4 percent slopes, eroded	5 74	0.01
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	3.48	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	4 05	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	1.03	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	2.84	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	11.06	0.01
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	11.05	0.01
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	8.98	0.01
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	4.10	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	1.91	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	40.70	0.04
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	0.94	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	2.44	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	3.33	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	4.32	0.00
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	7.33	0.01
Nappanee silty clay loam, 4 to 6 percent slopes, eroded	1.05	0.00
Orthents, clayey, undulating	21.52	0.02
Orthents, clayey, undulating	1.24	0.00
Orthents, clayey, undulating	2.90	0.00
Orthents, clayey, undulating	1.24	0.00
Orthents, clayey, undulating	10.51	0.01
Orthents, clayey, undulating	1.65	0.00
Orthents, clayey, undulating	2.65	0.00
Orthents, clayey, undulating	12.42	0.01
Orthents, clayey, undulating	0.87	0.00
Orthents, clayey, undulating	31.30	0.03
Orthents, clayey, undulating	0.75	0.00
Orthents, clayey, undulating	1.81	0.00
Orthents, clayey, undulating	4.43	0.00
Orthents, clayey, undulating	2.30	0.00
Orthents, clayey, undulating	6.05	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Orthents, clayey, undulating	/.36	0.01
Orthents, clayey, undulating	33.71	0.03
Orthents, clayey, undulating	1.21	0.00
Orthents, clayey, undulating	43.73	0.04
Orthents, clayey, undulating	10.56	0.01
Orthents, clayey, undulating	5.56	0.01
Orthents, clayey, undulating	8.83	0.01
Orthents, clayey, undulating	6.84	0.01
Orthents, clayey, undulating	1.95	0.00
Orthents, clayey, undulating	5.99	0.01
Orthents, clayey, undulating	16.54	0.02
Orthents, clayey, undulating	4.99	0.00
Orthents, clayey, undulating	1.42	0.00
Orthents, clayey, undulating	4.18	0.00
Orthents, clayey, undulating	2.86	0.00
Orthents, clayey, undulating	6.26	0.01
Orthents, clayey, undulating	10.18	0.01
Orthents, clayey, undulating	12.34	0.01
Orthents, loamy, undulating	0.99	0.00
Orthents, loamy, undulating	13.89	0.01
Orthents, loamy, undulating	2.97	0.00
Orthents, loamy, undulating	4.15	0.00
Orthents, loamy, undulating	8.11	0.01
Orthents, loamy, undulating	3.82	0.00
Orthents, loamy, undulating	2.54	0.00
Orthents, loamy, undulating	2.33	0.00
Orthents, loamy, undulating	2.86	0.00
Orthents, loamy, undulating	5.96	0.01
Orthents, loamy, undulating	0.89	0.00
Orthents, loamy, undulating	0.16	0.00
Orthents, loamy, undulating	12.37	0.01
Orthents, loamy, undulating	2.67	0.00
Orthents, loamy, undulating	2.62	0.00
Orthents, loamy, undulating	0.64	0.00
Orthents, loamy, undulating	18.85	0.02
Orthents, loamy, undulating	2.20	0.00
Orthents, loamy, undulating	1.30	0.00
Orthents, loamy, undulating	42.48	0.04
Orthents, loamy, undulating	1.60	0.00
Orthents, loamy, undulating	208.50	0.19
Orthents, loamy, undulating	2.75	0.00

Soil Description	Area (Acres)	Percent Area (%)
Orthents, loamy, undulating	2.62	0.00
Orthents, loamy, undulating	1.41	0.00
Orthents, loamy, undulating	2.36	0.00
Orthents, loamy, undulating	1.05	0.00
Orthents, loamy, undulating	1.62	0.00
Orthents, loamy, undulating	9.08	0.01
Orthents, loamy, undulating	11.51	0.01
Orthents, loamy, undulating	2.10	0.00
Orthents, loamy, undulating	18.72	0.02
Orthents, loamy, undulating	8.10	0.01
Orthents, loamy, undulating	7.01	0.01
Orthents, loamy, undulating	28.25	0.03
Orthents, loamy, undulating	1.20	0.00
Orthents, loamy, undulating	87.60	0.08
Orthents, loamy, undulating	3.92	0.00
Orthents, loamy, undulating	0.06	0.00
Orthents, loamy, undulating	11.84	0.01
Orthents, loamy, undulating	1.36	0.00
Orthents, loamy, undulating	1.90	0.00
Orthents, loamy, undulating	7.48	0.01
Orthents, loamy, undulating	1.14	0.00
Orthents, loamy, undulating	13.04	0.01
Orthents, loamy, undulating	1.36	0.00
Orthents, loamy, undulating	37.43	0.03
Orthents, loamy, undulating	16.06	0.01
Orthents, loamy, undulating	12.13	0.01
Orthents, loamy, undulating	16.01	0.01
Orthents, loamy, undulating	22.67	0.02
Orthents, loamy, undulating	3.39	0.00
Orthents, loamy, undulating	0.80	0.00
Orthents, loamy, undulating	0.69	0.00
Orthents, loamy, undulating	12.81	0.01
Orthents, loamy, undulating	8.95	0.01
Orthents, loamy, undulating	0.92	0.00
Orthents, loamy, undulating	44.29	0.04
Orthents, loamy, undulating	2.26	0.00
Orthents, loamy, undulating	0.98	0.00
Orthents, loamy, undulating	2.13	0.00
Orthents, loamy, undulating	4.92	0.00
Orthents, loamy, undulating	1.25	0.00
Orthents, loamy, undulating	3.92	0.00

Soil Description	Area (Acres)	Percent Area (%)
Orthents loamy undulating	1 23	0.00
Orthents, loamy, undulating	1.32	0.00
Orthents, loamy, undulating	35.01	0.03
Orthents, loamy, undulating	1.09	0.00
Orthents, loamy, undulating	10.02	0.01
Orthents, loamy, undulating	1.50	0.00
Ozaukee silt loam, 12 to 20 percent slopes	3.72	0.00
Ozaukee silt loam, 12 to 20 percent slopes	14.34	0.01
Ozaukee silt loam, 12 to 20 percent slopes	10.51	0.01
Ozaukee silt loam, 12 to 20 percent slopes	7.43	0.01
Ozaukee silt loam, 12 to 20 percent slopes	16.69	0.02
Ozaukee silt loam, 12 to 20 percent slopes	14.54	0.01
Ozaukee silt loam, 12 to 20 percent slopes	5.78	0.01
Ozaukee silt loam, 12 to 20 percent slopes	6.55	0.01
Ozaukee silt loam, 12 to 20 percent slopes	4.17	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.23	0.00
Ozaukee silt loam, 12 to 20 percent slopes	5.61	0.01
Ozaukee silt loam, 12 to 20 percent slopes	0.97	0.00
Ozaukee silt loam, 12 to 20 percent slopes	1.01	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.07	0.00
Ozaukee silt loam, 12 to 20 percent slopes	21.67	0.02
Ozaukee silt loam, 12 to 20 percent slopes	13.17	0.01
Ozaukee silt loam, 12 to 20 percent slopes	0.76	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.04	0.00
Ozaukee silt loam, 12 to 20 percent slopes	7.44	0.01
Ozaukee silt loam, 12 to 20 percent slopes	34.49	0.03
Ozaukee silt loam, 12 to 20 percent slopes	8.58	0.01
Ozaukee silt loam, 12 to 20 percent slopes	13.79	0.01
Ozaukee silt loam, 12 to 20 percent slopes	2.46	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.71	0.00
Ozaukee silt loam, 12 to 20 percent slopes	1.63	0.00
Ozaukee silt loam, 12 to 20 percent slopes	4.09	0.00
Ozaukee silt loam, 12 to 20 percent slopes	6.31	0.01
Ozaukee silt loam, 12 to 20 percent slopes	10.26	0.01
Ozaukee silt loam, 12 to 20 percent slopes	1.69	0.00
Ozaukee silt loam, 12 to 20 percent slopes	21.56	0.02
Ozaukee silt loam, 12 to 20 percent slopes	3.49	0.00
Ozaukee silt loam, 12 to 20 percent slopes	18.10	0.02
Ozaukee silt loam, 12 to 20 percent slopes	5.11	0.00
Ozaukee silt loam, 12 to 20 percent slopes	22.21	0.02
Ozaukee silt loam, 12 to 20 percent slopes	0.83	0.00

Soil Description	Area (Acres)	Percent Area
Ozaukee silt loam 12 to 20 percent slopes	14 15	0.01
Ozaukee silt loam, 12 to 20 percent slopes	12.46	0.01
Ozaukee silt loam, 12 to 20 percent slopes	9.21	0.01
Ozaukee silt loam, 12 to 20 percent slopes	24.46	0.02
Ozaukee silt loam, 12 to 20 percent slopes	6.30	0.01
Ozaukee silt loam, 12 to 20 percent slopes	4.70	0.00
Ozaukee silt loam, 12 to 20 percent slopes	7.46	0.01
Ozaukee silt loam, 12 to 20 percent slopes	0.00	0.00
Ozaukee silt loam, 12 to 20 percent slopes	12.91	0.01
Ozaukee silt loam, 12 to 20 percent slopes	34.67	0.03
Ozaukee silt loam, 12 to 20 percent slopes	1.72	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.12	0.00
Ozaukee silt loam, 12 to 20 percent slopes	20.80	0.02
Ozaukee silt loam, 12 to 20 percent slopes	8.83	0.01
Ozaukee silt loam, 12 to 20 percent slopes	2.46	0.00
Ozaukee silt loam, 12 to 20 percent slopes	33.59	0.03
Ozaukee silt loam, 12 to 20 percent slopes	4.57	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.73	0.00
Ozaukee silt loam, 12 to 20 percent slopes	1.37	0.00
Ozaukee silt loam, 12 to 20 percent slopes	5.40	0.00
Ozaukee silt loam, 12 to 20 percent slopes	10.23	0.01
Ozaukee silt loam, 12 to 20 percent slopes	1.06	0.00
Ozaukee silt loam, 12 to 20 percent slopes	2.75	0.00
Ozaukee silt loam, 12 to 20 percent slopes	6.91	0.01
Ozaukee silt loam, 12 to 20 percent slopes	0.40	0.00
Ozaukee silt loam, 12 to 20 percent slopes	3.20	0.00
Ozaukee silt loam, 12 to 20 percent slopes	5.92	0.01
Ozaukee silt loam, 12 to 20 percent slopes	26.81	0.02
Ozaukee silt loam, 12 to 20 percent slopes	3.48	0.00
Ozaukee silt loam, 12 to 20 percent slopes	22.91	0.02
Ozaukee silt loam, 12 to 20 percent slopes	31.81	0.03
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.39	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.20	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.74	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	9.91	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	50.95	0.05
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.55	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	10.04	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	8.22	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	20.78	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	7.53	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.18	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.19	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.55	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	0.98	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.05	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.21	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	5.99	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	24.92	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	9.84	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.73	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	10.74	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.95	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.21	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	19.66	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.94	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.06	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.25	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.62	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.32	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	11.93	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	9.04	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.05	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	11.62	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	6.89	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	14.26	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.91	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	11.85	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.50	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	5.34	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.62	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	7.80	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	10.49	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.21	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	46.04	0.04
Ozaukee silt loam, 12 to 20 percent slopes, eroded	6.26	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.30	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	28.48	0.03
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.68	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.32	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	7.94	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.39	0.00

Soil Description	Area	Percent Area
Ozaukaa silt loam 12 to 20 percent slopes, eroded	(ACIES)	(^0)
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.12	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.14	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	11 70	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	7 27	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	14.61	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2 5 4	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1 95	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.03	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.02	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	5.05	0.00
Ozaukee siit loam, 12 to 20 percent slopes, eroded	2.20	0.01
Ozaukee siit loam, 12 to 20 percent slopes, eroded	3.20	0.00
Ozaukee siit loam, 12 to 20 percent slopes, eroded	7.90	0.01
Ozaukee siit loam, 12 to 20 percent slopes, eroded	3.74	0.00
Ozaukee siit loam, 12 to 20 percent slopes, eroded	1.93	0.00
Ozaukee siit loam, 12 to 20 percent slopes, eroded	6.71	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	0.66	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	32.14	0.03
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.54	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	22.99	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	6.35	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	0.90	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	40.05	0.04
Ozaukee silt loam, 12 to 20 percent slopes, eroded	18.26	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	9.47	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	6.03	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	5.66	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	17.84	0.02
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.26	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.71	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.94	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	4.16	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	3.16	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.74	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	10.40	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.32	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	2.33	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	31.27	0.03
Ozaukee silt loam, 12 to 20 percent slopes, eroded	10.55	0.01
Ozaukee silt loam, 12 to 20 percent slopes, eroded	1.67	0.00
Ozaukee silt loam, 12 to 20 percent slopes, eroded	6.12	0.01

Soil Description	Area	Percent Area
Ozaukaa silt laam 2 ta 4 parsant slapas	(Acres)	(70)
Ozaukee silt loam 2 to 4 percent slopes	2 35	0.03
Ozaukee silt loam 2 to 4 percent slopes	10.23	0.00
Ozaukee silt loam 2 to 4 percent slopes	4 38	0.00
Ozaukee silt loam 2 to 4 percent slopes	16 51	0.02
Ozaukee silt loam 2 to 4 percent slopes	116.51	0.11
Ozaukee silt loam, 2 to 4 percent slopes	43.63	0.04
Ozaukee silt loam, 2 to 4 percent slopes	93.50	0.09
Ozaukee silt loam, 2 to 4 percent slopes	0.82	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.08	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.31	0.00
Ozaukee silt loam, 2 to 4 percent slopes	11.95	0.01
Ozaukee silt loam, 2 to 4 percent slopes	8.34	0.01
Ozaukee silt loam, 2 to 4 percent slopes	4.57	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.39	0.01
Ozaukee silt loam, 2 to 4 percent slopes	7.04	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.28	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.69	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.00	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.48	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.53	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.69	0.00
Ozaukee silt loam, 2 to 4 percent slopes	15.33	0.01
Ozaukee silt loam, 2 to 4 percent slopes	20.84	0.02
Ozaukee silt loam, 2 to 4 percent slopes	4.26	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.19	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.53	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.71	0.01
Ozaukee silt loam, 2 to 4 percent slopes	18.21	0.02
Ozaukee silt loam, 2 to 4 percent slopes	4.83	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.15	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.10	0.00
Ozaukee silt loam, 2 to 4 percent slopes	12.83	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.64	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.46	0.01
Ozaukee silt loam, 2 to 4 percent slopes	41.78	0.04
Ozaukee silt loam, 2 to 4 percent slopes	16.60	0.02
Ozaukee silt loam, 2 to 4 percent slopes	6.92	0.01
Ozaukee silt loam, 2 to 4 percent slopes	22.59	0.02
Ozaukee silt loam, 2 to 4 percent slopes	96.62	0.09
Ozaukee silt loam, 2 to 4 percent slopes	4.07	0.00

Soil Description	Area	Percent Area
Ozaukaa silt laam 2 ta 4 parsant slanas	(Acres)	(/0)
Ozaukee silt loam, 2 to 4 percent slopes	1.01	0.00
Ozaukee silt loam, 2 to 4 percent slopes	28.86	0.00
Ozaukae silt loam, 2 to 4 percent slopes	20.00	0.03
Ozaukee siit loam, 2 to 4 percent slopes	14.19	0.01
Ozaukee siit loam, 2 to 4 percent slopes	2.01	0.01
Ozaukee siit loam, 2 to 4 percent slopes	5.91	0.00
Ozaukee siit loam, 2 to 4 percent slopes	7.40	0.01
Ozaukee siit loam, 2 to 4 percent slopes	14.21	0.01
Ozaukee siit loam, 2 to 4 percent slopes	0.11	0.00
Ozaukee siit loam, 2 to 4 percent slopes	11.03	0.01
Ozaukee siit loam, 2 to 4 percent slopes	8.80	0.01
Ozaukee siit loam, 2 to 4 percent slopes	14.29	0.01
Ozaukee siit loam, 2 to 4 percent slopes	0.58	0.00
Ozaukee silt loam, 2 to 4 percent slopes	9.06	0.01
Ozaukee silt loam, 2 to 4 percent slopes	7.31	0.01
Ozaukee silt loam, 2 to 4 percent slopes	20.17	0.02
Ozaukee silt loam, 2 to 4 percent slopes	13.52	0.01
Ozaukee silt loam, 2 to 4 percent slopes	39.40	0.04
Ozaukee silt loam, 2 to 4 percent slopes	141.76	0.13
Ozaukee silt loam, 2 to 4 percent slopes	18.88	0.02
Ozaukee silt loam, 2 to 4 percent slopes	2.14	0.00
Ozaukee silt loam, 2 to 4 percent slopes	21.19	0.02
Ozaukee silt loam, 2 to 4 percent slopes	3.59	0.00
Ozaukee silt loam, 2 to 4 percent slopes	20.71	0.02
Ozaukee silt loam, 2 to 4 percent slopes	7.38	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.06	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.22	0.01
Ozaukee silt loam, 2 to 4 percent slopes	1.24	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.57	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.29	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.65	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.61	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.42	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.85	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.04	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.35	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.66	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.65	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.73	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.92	0.01
Ozaukee silt loam, 2 to 4 percent slopes	27.95	0.03

Soil Description	Area	Percent Area
Ozaukee silt loam 2 to 4 percent slopes	1.68	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.41	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.07	0.00
Ozaukee silt loam, 2 to 4 percent slopes	44.99	0.04
Ozaukee silt loam, 2 to 4 percent slopes	1.21	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.69	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.58	0.00
Ozaukee silt loam, 2 to 4 percent slopes	48.52	0.04
Ozaukee silt loam, 2 to 4 percent slopes	6.60	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.04	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.18	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.65	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.31	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.82	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.66	0.00
Ozaukee silt loam, 2 to 4 percent slopes	9.49	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.53	0.00
Ozaukee silt loam, 2 to 4 percent slopes	20.81	0.02
Ozaukee silt loam, 2 to 4 percent slopes	2.95	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.92	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.31	0.00
Ozaukee silt loam, 2 to 4 percent slopes	45.22	0.04
Ozaukee silt loam, 2 to 4 percent slopes	1.05	0.00
Ozaukee silt loam, 2 to 4 percent slopes	12.75	0.01
Ozaukee silt loam, 2 to 4 percent slopes	1.40	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.41	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.74	0.01
Ozaukee silt loam, 2 to 4 percent slopes	11.52	0.01
Ozaukee silt loam, 2 to 4 percent slopes	8.10	0.01
Ozaukee silt loam, 2 to 4 percent slopes	21.27	0.02
Ozaukee silt loam, 2 to 4 percent slopes	17.04	0.02
Ozaukee silt loam, 2 to 4 percent slopes	5.49	0.01
Ozaukee silt loam, 2 to 4 percent slopes	31.57	0.03
Ozaukee silt loam, 2 to 4 percent slopes	2.30	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.13	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.56	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.82	0.00
Ozaukee silt loam, 2 to 4 percent slopes	45.68	0.04
Ozaukee silt loam, 2 to 4 percent slopes	1.14	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.30	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.03	0.00

Soil Description	Area	Percent Area
Ozaukaa silt laam 2 ta 4 parsant slapas		(/0)
Ozaukee silt loam 2 to 4 percent slopes	1.00	0.00
Ozaukee silt loam 2 to 4 percent slopes	1.00	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2 35	0.00
Ozaukee silt loam, 2 to 4 percent slopes	380.10	0.00
Ozaukee silt loam 2 to 4 percent slopes	9 25	0.01
Ozaukee silt loam 2 to 4 percent slopes	1 95	0.01
Ozaukee silt loam 2 to 4 percent slopes	5.14	0.00
Ozaukee silt loam 2 to 4 percent slopes	0.78	0.00
Ozaukee silt loam 2 to 4 percent slopes	62.25	0.06
Ozaukee silt loam 2 to 4 percent slopes	1.04	0.00
Ozaukee silt loam 2 to 4 percent slopes	3.07	0.00
Ozaukee silt loam 2 to 4 percent slopes	1 19	0.00
Ozaukee silt loam 2 to 4 percent slopes	7 12	0.00
Ozaukee silt loam 2 to 4 percent slopes	2 19	0.01
Ozaukee silt loam 2 to 4 percent slopes	1 91	0.00
Ozaukee silt loam 2 to 4 percent slopes	7.86	0.01
Ozaukee silt loam 2 to 4 percent slopes	1 78	0.00
Ozaukee silt loam 2 to 4 percent slopes	7.06	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.14	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.95	0.00
Ozaukee silt loam, 2 to 4 percent slopes	77.85	0.07
Ozaukee silt loam, 2 to 4 percent slopes	5.70	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.63	0.01
Ozaukee silt loam, 2 to 4 percent slopes	4.37	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.33	0.00
Ozaukee silt loam, 2 to 4 percent slopes	8.12	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.01	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.69	0.01
Ozaukee silt loam, 2 to 4 percent slopes	46.90	0.04
Ozaukee silt loam, 2 to 4 percent slopes	2.14	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.27	0.01
Ozaukee silt loam, 2 to 4 percent slopes	7.01	0.01
Ozaukee silt loam, 2 to 4 percent slopes	14.70	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.28	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.43	0.00
Ozaukee silt loam, 2 to 4 percent slopes	8.13	0.01
Ozaukee silt loam, 2 to 4 percent slopes	1.76	0.00
Ozaukee silt loam, 2 to 4 percent slopes	22.40	0.02
Ozaukee silt loam, 2 to 4 percent slopes	3.96	0.00
Ozaukee silt loam, 2 to 4 percent slopes	14.08	0.01

Soil Description	Area	Percent Area
Ozaukee silt loam 2 to 4 percent slopes	7 18	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.21	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.29	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.05	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.60	0.01
Ozaukee silt loam, 2 to 4 percent slopes	8.13	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.91	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.08	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.17	0.01
Ozaukee silt loam, 2 to 4 percent slopes	9.85	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.89	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.35	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.14	0.00
Ozaukee silt loam, 2 to 4 percent slopes	17.17	0.02
Ozaukee silt loam, 2 to 4 percent slopes	50.56	0.05
Ozaukee silt loam, 2 to 4 percent slopes	1.78	0.00
Ozaukee silt loam, 2 to 4 percent slopes	70.94	0.07
Ozaukee silt loam, 2 to 4 percent slopes	46.87	0.04
Ozaukee silt loam, 2 to 4 percent slopes	2.95	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.86	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.99	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.07	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.60	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.19	0.00
Ozaukee silt loam, 2 to 4 percent slopes	19.04	0.02
Ozaukee silt loam, 2 to 4 percent slopes	7.71	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.74	0.00
Ozaukee silt loam, 2 to 4 percent slopes	29.49	0.03
Ozaukee silt loam, 2 to 4 percent slopes	9.36	0.01
Ozaukee silt loam, 2 to 4 percent slopes	12.59	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.08	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.42	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.31	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.11	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.79	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.67	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.68	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.23	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.21	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.08	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.53	0.00

Soil Description	Area	Percent Area
Ozaukaa silt laam 2 ta 4 parsant slapas	(Acres)	(//)
Ozaukee silt loam, 2 to 4 percent slopes	2 80	0.02
Ozaukee silt loam 2 to 4 percent slopes	17.99	0.00
Ozaukee siit loam, 2 to 4 percent slopes	204	0.02
Ozaukee siit loam, 2 to 4 percent slopes	0.04	0.01
Ozaukee siit loam, 2 to 4 percent slopes	9.57	0.01
Ozaukee siit loam, 2 to 4 percent slopes	1.45	0.00
Ozaukee siit loam, 2 to 4 percent slopes	2.57	0.00
Ozaukee siit loam, 2 to 4 percent slopes	4.17	0.00
Ozaukee siit loam, 2 to 4 percent slopes	24.46	0.00
Ozaukee siit loam, 2 to 4 percent slopes	24.40	0.02
Ozaukee siit loam, 2 to 4 percent slopes	52.47	0.05
Ozaukee siit loam, 2 to 4 percent slopes	2.05	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.54	0.00
Ozaukee silt loam, 2 to 4 percent slopes	13.62	0.01
Ozaukee silt loam, 2 to 4 percent slopes	4.24	0.00
Ozaukee silt loam, 2 to 4 percent slopes	8.40	0.01
Ozaukee silt loam, 2 to 4 percent slopes	6.68	0.01
Ozaukee silt loam, 2 to 4 percent slopes	7.51	0.01
Ozaukee silt loam, 2 to 4 percent slopes	18.40	0.02
Ozaukee silt loam, 2 to 4 percent slopes	21.39	0.02
Ozaukee silt loam, 2 to 4 percent slopes	26.33	0.02
Ozaukee silt loam, 2 to 4 percent slopes	5.81	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.63	0.00
Ozaukee silt loam, 2 to 4 percent slopes	2.28	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.86	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.93	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.68	0.01
Ozaukee silt loam, 2 to 4 percent slopes	15.07	0.01
Ozaukee silt loam, 2 to 4 percent slopes	87.30	0.08
Ozaukee silt loam, 2 to 4 percent slopes	2.78	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.49	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.09	0.00
Ozaukee silt loam, 2 to 4 percent slopes	15.01	0.01
Ozaukee silt loam, 2 to 4 percent slopes	8.86	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.71	0.00
Ozaukee silt loam, 2 to 4 percent slopes	48.47	0.04
Ozaukee silt loam, 2 to 4 percent slopes	2.94	0.00
Ozaukee silt loam, 2 to 4 percent slopes	40.38	0.04
Ozaukee silt loam, 2 to 4 percent slopes	12.32	0.01
Ozaukee silt loam, 2 to 4 percent slopes	2.80	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.36	0.01

Soil Description	Area	Percent Area
Ozaukaa silt laam 2 ta 4 parsant slanas	(Acres)	(%)
Ozaukee silt loam, 2 to 4 percent slopes	2.05	0.00
Ozaukee silt loam, 2 to 4 percent slopes	25.00	0.00
Ozaukee silt loam, 2 to 4 percent slopes	23.30	0.02
Ozaukee silt loam, 2 to 4 percent slopes	4.82	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.28	0.01
Ozaukee silt loam 2 to 4 percent slopes	5.05	0.00
Ozaukee silt loam 2 to 4 percent slopes	2 58	0.00
Ozaukee silt loam 2 to 4 percent slopes	2.33	0.00
Ozaukee silt loam 2 to 4 percent slopes	4 59	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.78	0.00
Ozaukee silt loam, 2 to 4 percent slopes	5.48	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.55	0.00
Ozaukee silt loam, 2 to 4 percent slopes	0.09	0.00
Ozaukee silt loam, 2 to 4 percent slopes	6.02	0.01
Ozaukee silt loam, 2 to 4 percent slopes	5.18	0.00
Ozaukee silt loam, 2 to 4 percent slopes	15.88	0.01
Ozaukee silt loam, 2 to 4 percent slopes	1.63	0.00
Ozaukee silt loam, 2 to 4 percent slopes	18.99	0.02
Ozaukee silt loam, 2 to 4 percent slopes	2.00	0.00
Ozaukee silt loam, 2 to 4 percent slopes	4.51	0.00
Ozaukee silt loam, 2 to 4 percent slopes	10.49	0.01
Ozaukee silt loam, 2 to 4 percent slopes	9.84	0.01
Ozaukee silt loam, 2 to 4 percent slopes	4.85	0.00
Ozaukee silt loam, 2 to 4 percent slopes	3.04	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.47	0.00
Ozaukee silt loam, 2 to 4 percent slopes	23.67	0.02
Ozaukee silt loam, 2 to 4 percent slopes	12.33	0.01
Ozaukee silt loam, 2 to 4 percent slopes	3.24	0.00
Ozaukee silt loam, 2 to 4 percent slopes	73.37	0.07
Ozaukee silt loam, 2 to 4 percent slopes	5.39	0.00
Ozaukee silt loam, 2 to 4 percent slopes	7.02	0.01
Ozaukee silt loam, 2 to 4 percent slopes	15.19	0.01
Ozaukee silt loam, 2 to 4 percent slopes	0.91	0.00
Ozaukee silt loam, 2 to 4 percent slopes	1.56	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.09	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.24	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	12.56	0.01
Ozaukee silt loam, 2 to 4 percent slopes, eroded	2.17	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	16.62	0.02
Ozaukee silt loam, 2 to 4 percent slopes, eroded	5.18	0.00

Soil Description	Area (Acres)	Percent Area
Ozaukee silt loam 2 to 4 percent slopes, eroded	6.92	0.01
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.05	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.93	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	10.86	0.01
Ozaukee silt loam, 2 to 4 percent slopes, eroded	2.78	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	1.37	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	27.50	0.03
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.56	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	2.16	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	2.30	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	1.03	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	2.87	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	8.39	0.01
Ozaukee silt loam, 2 to 4 percent slopes, eroded	5.12	0.00
Ozaukee silt loam, 2 to 4 percent slopes, eroded	3.54	0.00
Ozaukee silt loam, 20 to 30 percent slopes	0.82	0.00
Ozaukee silt loam, 20 to 30 percent slopes	12.34	0.01
Ozaukee silt loam, 20 to 30 percent slopes	19.57	0.02
Ozaukee silt loam, 20 to 30 percent slopes	9.93	0.01
Ozaukee silt loam, 20 to 30 percent slopes	3.41	0.00
Ozaukee silt loam, 20 to 30 percent slopes	4.01	0.00
Ozaukee silt loam, 20 to 30 percent slopes	7.89	0.01
Ozaukee silt loam, 20 to 30 percent slopes	7.19	0.01
Ozaukee silt loam, 20 to 30 percent slopes	4.41	0.00
Ozaukee silt loam, 20 to 30 percent slopes	6.11	0.01
Ozaukee silt loam, 20 to 30 percent slopes	2.21	0.00
Ozaukee silt loam, 20 to 30 percent slopes	2.07	0.00
Ozaukee silt loam, 20 to 30 percent slopes	9.87	0.01
Ozaukee silt loam, 20 to 30 percent slopes	4.81	0.00
Ozaukee silt loam, 20 to 30 percent slopes	13.26	0.01
Ozaukee silt loam, 20 to 30 percent slopes	6.08	0.01
Ozaukee silt loam, 20 to 30 percent slopes	0.63	0.00
Ozaukee silt loam, 20 to 30 percent slopes	4.77	0.00
Ozaukee silt loam, 20 to 30 percent slopes	4.89	0.00
Ozaukee silt loam, 20 to 30 percent slopes	52.81	0.05
Ozaukee silt loam, 20 to 30 percent slopes	13.04	0.01
Ozaukee silt loam, 20 to 30 percent slopes	1.99	0.00
Ozaukee silt loam, 20 to 30 percent slopes	0.98	0.00
Ozaukee silt loam, 20 to 30 percent slopes	27.40	0.03
Ozaukee silt loam, 20 to 30 percent slopes	12.17	0.01
Ozaukee silt loam, 20 to 30 percent slopes	10.00	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Ozaukee silt loam, 20 to 30 percent slopes	9.47	0.01
Ozaukee silt loam, 20 to 30 percent slopes	9.82	0.01
Ozaukee silt loam, 20 to 30 percent slopes	3.55	0.00
Ozaukee silt loam, 20 to 30 percent slopes	2.66	0.00
Ozaukee silt loam, 20 to 30 percent slopes	1.68	0.00
Ozaukee silt loam, 20 to 30 percent slopes	35.61	0.03
Ozaukee silt loam, 20 to 30 percent slopes	37.39	0.03
Ozaukee silt loam, 20 to 30 percent slopes	5.81	0.01
Ozaukee silt loam, 20 to 30 percent slopes	33.33	0.03
Ozaukee silt loam, 20 to 30 percent slopes	3.95	0.00
Ozaukee silt loam, 20 to 30 percent slopes	61.58	0.06
Ozaukee silt loam, 20 to 30 percent slopes	1.72	0.00
Ozaukee silt loam, 20 to 30 percent slopes	1.52	0.00
Ozaukee silt loam, 20 to 30 percent slopes	1.26	0.00
Ozaukee silt loam, 20 to 30 percent slopes	1.92	0.00
Ozaukee silt loam, 20 to 30 percent slopes	4.26	0.00
Ozaukee silt loam, 20 to 30 percent slopes	1.61	0.00
Ozaukee silt loam, 20 to 30 percent slopes	2.95	0.00
Ozaukee silt loam, 20 to 30 percent slopes	6.52	0.01
Ozaukee silt loam, 20 to 30 percent slopes	1.93	0.00
Ozaukee silt loam, 20 to 30 percent slopes	3.37	0.00
Ozaukee silt loam, 20 to 30 percent slopes	3.17	0.00
Ozaukee silt loam, 20 to 30 percent slopes	3.20	0.00
Ozaukee silt loam, 20 to 30 percent slopes	2.42	0.00
Ozaukee silt loam, 20 to 30 percent slopes	41.03	0.04
Ozaukee silt loam, 20 to 30 percent slopes	4.22	0.00
Ozaukee silt loam, 20 to 30 percent slopes	3.17	0.00
Ozaukee silt loam, 20 to 30 percent slopes	11.39	0.01
Ozaukee silt loam, 20 to 30 percent slopes	23.24	0.02
Ozaukee silt loam, 4 to 6 percent slopes	14.51	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.01	0.00
Ozaukee silt loam, 4 to 6 percent slopes	11.15	0.01
Ozaukee silt loam, 4 to 6 percent slopes	35.27	0.03
Ozaukee silt loam, 4 to 6 percent slopes	10.22	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes	6.09	0.01
Ozaukee silt loam, 4 to 6 percent slopes	0.73	0.00
Ozaukee silt loam, 4 to 6 percent slopes	42.72	0.04
Ozaukee silt loam, 4 to 6 percent slopes	9.28	0.01
Ozaukee silt loam, 4 to 6 percent slopes	7.43	0.01

Soil Description	Area	Percent Area
Ozaukaa silt loam. A to 6 percent slopes	(ACIES)	(/0)
Ozaukee silt loam, 4 to 6 percent slopes	2 95	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.88	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5.00	0.01
Ozaukee silt loam, 4 to 6 percent slopes	6.20	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.31	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5.88	0.01
Ozaukee silt loam, 4 to 6 percent slopes	11.10	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.94	0.00
Ozaukee silt loam, 4 to 6 percent slopes	56.86	0.05
Ozaukee silt loam, 4 to 6 percent slopes	1.54	0.00
Ozaukee silt loam, 4 to 6 percent slopes	0.93	0.00
Ozaukee silt loam, 4 to 6 percent slopes	17.89	0.02
Ozaukee silt loam, 4 to 6 percent slopes	12.42	0.01
Ozaukee silt loam, 4 to 6 percent slopes	7.00	0.01
Ozaukee silt loam, 4 to 6 percent slopes	27.22	0.03
Ozaukee silt loam, 4 to 6 percent slopes	5.53	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.36	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.84	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.34	0.00
Ozaukee silt loam, 4 to 6 percent slopes	6.81	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes	32.54	0.03
Ozaukee silt loam, 4 to 6 percent slopes	2.61	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.51	0.00
Ozaukee silt loam, 4 to 6 percent slopes	11.13	0.01
Ozaukee silt loam, 4 to 6 percent slopes	7.84	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.52	0.00
Ozaukee silt loam, 4 to 6 percent slopes	10.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes	2.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes	10.97	0.01
Ozaukee silt loam, 4 to 6 percent slopes	2.71	0.00
Ozaukee silt loam, 4 to 6 percent slopes	21.69	0.02
Ozaukee silt loam, 4 to 6 percent slopes	6.83	0.01
Ozaukee silt loam, 4 to 6 percent slopes	1.56	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.89	0.00
Ozaukee silt loam, 4 to 6 percent slopes	6.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes	10.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes	20.93	0.02
Ozaukee silt loam, 4 to 6 percent slopes	2.71	0.00
Ozaukee silt loam, 4 to 6 percent slopes	6.68	0.01

Soil Description	Area	Percent Area
Ozaukaa silt laam. 4 ta 6 parsant slapas	(ACTES)	(70)
Ozaukee silt loam, 4 to 6 percent slopes	1.05	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.12	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.38	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.02	0.01
Ozaukee silt loam, 4 to 6 percent slopes	10.62	0.00
Ozaukee silt loam, 4 to 6 percent slopes	34.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes	1 23	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.92	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.09	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4 82	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5 17	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.97	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.28	0.00
Ozaukee silt loam, 4 to 6 percent slopes	28.13	0.03
Ozaukee silt loam, 4 to 6 percent slopes	0.50	0.00
Ozaukee silt loam, 4 to 6 percent slopes	11.95	0.01
Ozaukee silt loam, 4 to 6 percent slopes	0.96	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.05	0.00
Ozaukee silt loam, 4 to 6 percent slopes	9.93	0.01
Ozaukee silt loam, 4 to 6 percent slopes	13.87	0.01
Ozaukee silt loam, 4 to 6 percent slopes	23.43	0.02
Ozaukee silt loam, 4 to 6 percent slopes	4.20	0.00
Ozaukee silt loam, 4 to 6 percent slopes	7.07	0.01
Ozaukee silt loam, 4 to 6 percent slopes	32.13	0.03
Ozaukee silt loam, 4 to 6 percent slopes	4.62	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.35	0.00
Ozaukee silt loam, 4 to 6 percent slopes	17.75	0.02
Ozaukee silt loam, 4 to 6 percent slopes	3.27	0.00
Ozaukee silt loam, 4 to 6 percent slopes	0.97	0.00
Ozaukee silt loam, 4 to 6 percent slopes	38.37	0.04
Ozaukee silt loam, 4 to 6 percent slopes	40.38	0.04
Ozaukee silt loam, 4 to 6 percent slopes	5.59	0.01
Ozaukee silt loam, 4 to 6 percent slopes	10.63	0.01
Ozaukee silt loam, 4 to 6 percent slopes	5.60	0.01
Ozaukee silt loam, 4 to 6 percent slopes	5.32	0.00
Ozaukee silt loam, 4 to 6 percent slopes	43.65	0.04
Ozaukee silt loam, 4 to 6 percent slopes	2.09	0.00
Ozaukee silt loam, 4 to 6 percent slopes	9.37	0.01
Ozaukee silt loam, 4 to 6 percent slopes	10.61	0.01
Soil Description	Area	Percent Area
--	--------	--------------
Ozaukae silt loam 1 to 6 percent slopes	14.16	0.01
Ozaukee silt loam, 4 to 6 percent slopes	14.10	0.01
Ozaukee silt loam, 4 to 6 percent slopes	5.07	0.01
Ozaukee silt loam, 4 to 6 percent slopes	2.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes	102.03	0.00
Ozaukee silt loam, 4 to 6 percent slopes	102.73	0.03
Ozaukee silt loam, 4 to 6 percent slopes	10.47	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.55	0.00
Ozaukee silt loam, 4 to 6 percent slopes	8.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes	1.64	0.01
Ozaukaa silt loam. 4 to 6 percent slopes	1.04	0.00
Ozaukee siit loam, 4 to 6 percent slopes	2.21	0.01
Ozaukee siit loam, 4 to 6 percent slopes	5.51	0.00
Ozaukee siit loam, 4 to 6 percent slopes	1.90	0.00
Ozaukee siit loam, 4 to 6 percent slopes	7.41	0.01
Ozaukee siit loam, 4 to 6 percent slopes	3.04	0.00
Ozaukee siit loam, 4 to 6 percent slopes	1.43	0.00
Ozaukee siit loam, 4 to 6 percent slopes	13.34	0.01
Ozaukee siit loam, 4 to 6 percent slopes	20.38	0.02
Ozaukee siit loam, 4 to 6 percent slopes	6.30	0.01
Ozaukee silt loam, 4 to 6 percent slopes	10.03	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.23	0.00
Ozaukee silt loam, 4 to 6 percent slopes	7.06	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.43	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.91	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5.65	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.53	0.00
Ozaukee silt loam, 4 to 6 percent slopes	7.35	0.01
Ozaukee silt loam, 4 to 6 percent slopes	8.34	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.34	0.00
Ozaukee silt loam, 4 to 6 percent slopes	77.57	0.07
Ozaukee silt loam, 4 to 6 percent slopes	2.46	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.97	0.00
Ozaukee silt loam, 4 to 6 percent slopes	24.35	0.02
Ozaukee silt loam, 4 to 6 percent slopes	9.87	0.01
Ozaukee silt loam, 4 to 6 percent slopes	13.12	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.55	0.00
Ozaukee silt loam, 4 to 6 percent slopes	10.08	0.01
Ozaukee silt loam, 4 to 6 percent slopes	12.61	0.01
Ozaukee silt loam, 4 to 6 percent slopes	20.49	0.02
Ozaukee silt loam, 4 to 6 percent slopes	7.36	0.01
Ozaukee silt loam, 4 to 6 percent slopes	3.10	0.00

Soil Description	Area	Percent Area
Ozaukaa silt loam. A to 6 percent slopes	(ACIES)	(/0)
Ozaukee silt loam, 4 to 6 percent slopes	2.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes	7 99	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.82	0.00
Ozaukee silt loam, 4 to 6 percent slopes	1.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5.42	0.01
Ozaukee silt loam, 4 to 6 percent slopes	1.30	0.00
Ozaukee silt loam, 4 to 6 percent slopes	5.52	0.01
Ozaukee silt loam, 4 to 6 percent slopes	4.67	0.00
Ozaukee silt loam, 4 to 6 percent slopes	102.10	0.09
Ozaukee silt loam, 4 to 6 percent slopes	3.35	0.00
Ozaukee silt loam, 4 to 6 percent slopes	4.28	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.25	0.00
Ozaukee silt loam, 4 to 6 percent slopes	2.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes	6.75	0.01
Ozaukee silt loam, 4 to 6 percent slopes	1.02	0.00
Ozaukee silt loam, 4 to 6 percent slopes	3.86	0.00
Ozaukee silt loam, 4 to 6 percent slopes	0.52	0.00
Ozaukee silt loam, 4 to 6 percent slopes	0.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.71	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.98	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.99	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.86	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.34	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.73	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.78	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.41	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.77	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.91	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.10	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.28	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.71	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.79	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.42	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.23	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	32.44	0.03

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.94	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.43	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.14	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.87	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.68	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.94	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.13	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.63	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	11.08	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.80	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.19	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	11.12	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.00	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.19	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.49	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.22	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.59	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.16	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.73	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	40.98	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.62	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	14.83	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.05	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.78	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	20.44	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.33	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	13.30	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.42	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.14	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.81	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.11	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	27.53	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.09	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.09	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.56	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.08	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.22	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.49	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.32	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.79	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.92	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.29	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.98	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.33	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.25	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.56	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	13.22	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.44	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.21	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.58	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.71	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.95	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.76	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.09	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	34.37	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	41.68	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.91	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.66	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	11.60	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.59	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.71	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.90	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.18	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.12	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.51	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.52	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.05	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	51.58	0.05
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.79	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.96	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	14.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.42	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.44	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.05	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	16.02	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.80	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.75	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.31	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	26.24	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.35	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	31.37	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	14.80	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.70	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.85	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.21	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.55	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.14	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.79	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.92	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.19	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.11	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.47	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.72	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.66	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.41	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.34	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.11	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.95	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.86	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.87	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.19	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.34	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.42	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.58	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.54	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.64	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.32	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.97	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.50	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.57	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	33.23	0.03

Soil Description	Area	Percent Area
Ozaukee silt loam 4 to 6 percent slopes eroded	2 75	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.25	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.39	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.36	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.09	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.82	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.98	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	11.39	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	33.79	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	11.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.18	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.99	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.68	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.85	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	14.41	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.86	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	28.63	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.11	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.98	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.84	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.08	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	19.75	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	17.06	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	41.16	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.70	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.89	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.36	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.73	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	23.13	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.88	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.61	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.42	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	30.80	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.25	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	14.98	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.58	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.29	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	37.29	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.53	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.04	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.57	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.74	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.21	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.07	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.02	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.21	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.02	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.66	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	13.09	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.00	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.68	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.67	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.22	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.95	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.14	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.21	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.25	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.91	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.96	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.87	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.20	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.23	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.05	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.60	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.44	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.66	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.53	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.97	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.57	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.73	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.45	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.97	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam. 4 to 6 percent slopes, eroded	5.99	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.01	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	16.57	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.95	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.82	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.76	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.10	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.72	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.20	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.21	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.33	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	16.06	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.35	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.99	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.18	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	17.65	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.73	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.11	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.16	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.74	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.03	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	30.48	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.79	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.85	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.52	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.33	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.68	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.66	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	22.68	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.29	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.23	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.02	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.01	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.44	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.16	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.87	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.75	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.15	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.62	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.85	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.29	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.23	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.20	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.74	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	13.75	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	18.95	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.32	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.05	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.69	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	36.43	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.48	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.76	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.15	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.22	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.58	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.39	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.53	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.57	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.14	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.64	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.71	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.20	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.82	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.17	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.54	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.29	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.37	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.61	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.01	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.56	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.29	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.51	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.18	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.27	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.58	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.48	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.11	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.49	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.72	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.40	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.63	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.74	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.46	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	19.19	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.80	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.56	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.44	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.93	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.24	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	51.89	0.05
Ozaukee silt loam, 4 to 6 percent slopes, eroded	34.97	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.76	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.79	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.78	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	17.63	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.77	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.80	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	38.89	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.67	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.00	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.13	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	29.22	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.15	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.96	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	38.66	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.74	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	36.50	0.03
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.46	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	10.86	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.62	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.58	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.81	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.33	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.00	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.27	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.51	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.16	0.00

Soil Description	Area (Acres)	Percent Area
Ozaukee silt loam 1 to 6 percent slopes eroded	62 51	0.06
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.84	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	16.29	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.60	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	1.24	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	9.48	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	6.65	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.41	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	61.99	0.06
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.11	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	4.82	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	0.92	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	42.89	0.04
Ozaukee silt loam, 4 to 6 percent slopes, eroded	3.67	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	15.70	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	5.21	0.00
Ozaukee silt loam, 4 to 6 percent slopes, eroded	23.08	0.02
Ozaukee silt loam, 4 to 6 percent slopes, eroded	60.55	0.06
Ozaukee silt loam, 4 to 6 percent slopes, eroded	7.60	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	12.54	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	8.23	0.01
Ozaukee silt loam, 4 to 6 percent slopes, eroded	75.81	0.07
Ozaukee silt loam, 4 to 6 percent slopes, eroded	2.53	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.32	0.00
Ozaukee silt loam, 6 to 12 percent slopes	2.19	0.00
Ozaukee silt loam, 6 to 12 percent slopes	6.69	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes	12.48	0.01
Ozaukee silt loam, 6 to 12 percent slopes	18.93	0.02
Ozaukee silt loam, 6 to 12 percent slopes	12.35	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes	13.52	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.96	0.00
Ozaukee silt loam, 6 to 12 percent slopes	9.28	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.91	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.58	0.00
Ozaukee silt loam, 6 to 12 percent slopes	13.78	0.01
Ozaukee silt loam, 6 to 12 percent slopes	5.87	0.01
Ozaukee silt loam, 6 to 12 percent slopes	10.84	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.92	0.00
Ozaukee silt loam, 6 to 12 percent slopes	9.78	0.01

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes	3.37	0.00
Ozaukee silt loam, 6 to 12 percent slopes	5.30	0.00
Ozaukee silt loam, 6 to 12 percent slopes	6.71	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.82	0.00
Ozaukee silt loam, 6 to 12 percent slopes	27.04	0.02
Ozaukee silt loam, 6 to 12 percent slopes	1.52	0.00
Ozaukee silt loam, 6 to 12 percent slopes	7.17	0.01
Ozaukee silt loam, 6 to 12 percent slopes	11.73	0.01
Ozaukee silt loam, 6 to 12 percent slopes	5.86	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.19	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.90	0.00
Ozaukee silt loam, 6 to 12 percent slopes	2.49	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.49	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.39	0.00
Ozaukee silt loam, 6 to 12 percent slopes	13.25	0.01
Ozaukee silt loam, 6 to 12 percent slopes	17.01	0.02
Ozaukee silt loam, 6 to 12 percent slopes	7.89	0.01
Ozaukee silt loam, 6 to 12 percent slopes	4.48	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.60	0.00
Ozaukee silt loam, 6 to 12 percent slopes	7.07	0.01
Ozaukee silt loam, 6 to 12 percent slopes	8.22	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.18	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes	15.27	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.28	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.63	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.97	0.00
Ozaukee silt loam, 6 to 12 percent slopes	13.14	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.62	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.80	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.37	0.00
Ozaukee silt loam, 6 to 12 percent slopes	21.48	0.02
Ozaukee silt loam, 6 to 12 percent slopes	24.07	0.02
Ozaukee silt loam, 6 to 12 percent slopes	5.58	0.01
Ozaukee silt loam, 6 to 12 percent slopes	10.54	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.94	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.88	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.96	0.00
Ozaukee silt loam, 6 to 12 percent slopes	13.86	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.07	0.00
Ozaukee silt loam, 6 to 12 percent slopes	5.03	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes	3.64	0.00
Ozaukee silt loam, 6 to 12 percent slopes	8.05	0.01
Ozaukee silt loam, 6 to 12 percent slopes	27.95	0.03
Ozaukee silt loam, 6 to 12 percent slopes	4.66	0.00
Ozaukee silt loam, 6 to 12 percent slopes	4.55	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.49	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.04	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.83	0.00
Ozaukee silt loam, 6 to 12 percent slopes	24.27	0.02
Ozaukee silt loam, 6 to 12 percent slopes	1.66	0.00
Ozaukee silt loam, 6 to 12 percent slopes	8.84	0.01
Ozaukee silt loam, 6 to 12 percent slopes	16.18	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.80	0.00
Ozaukee silt loam, 6 to 12 percent slopes	18.38	0.02
Ozaukee silt loam, 6 to 12 percent slopes	13.61	0.01
Ozaukee silt loam, 6 to 12 percent slopes	0.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes	18.06	0.02
Ozaukee silt loam, 6 to 12 percent slopes	3.42	0.00
Ozaukee silt loam, 6 to 12 percent slopes	8.00	0.01
Ozaukee silt loam, 6 to 12 percent slopes	5.07	0.00
Ozaukee silt loam, 6 to 12 percent slopes	23.08	0.02
Ozaukee silt loam, 6 to 12 percent slopes	1.74	0.00
Ozaukee silt loam, 6 to 12 percent slopes	0.95	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes	5.78	0.01
Ozaukee silt loam, 6 to 12 percent slopes	6.71	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes	2.98	0.00
Ozaukee silt loam, 6 to 12 percent slopes	2.70	0.00
Ozaukee silt loam, 6 to 12 percent slopes	2.55	0.00
Ozaukee silt loam, 6 to 12 percent slopes	4.46	0.00
Ozaukee silt loam, 6 to 12 percent slopes	6.19	0.01
Ozaukee silt loam, 6 to 12 percent slopes	1.61	0.00
Ozaukee silt loam, 6 to 12 percent slopes	16.64	0.02
Ozaukee silt loam, 6 to 12 percent slopes	5.59	0.01
Ozaukee silt loam, 6 to 12 percent slopes	4.57	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.81	0.00
Ozaukee silt loam, 6 to 12 percent slopes	1.23	0.00
Ozaukee silt loam, 6 to 12 percent slopes	5.29	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.59	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Ozaukee silt loam, 6 to 12 percent slopes	3.82	0.00
Ozaukee silt loam, 6 to 12 percent slopes	3.93	0.00
Ozaukee silt loam, 6 to 12 percent slopes	5.38	0.00
Ozaukee silt loam, 6 to 12 percent slopes	4.15	0.00
Ozaukee silt loam, 6 to 12 percent slopes	6.12	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.09	0.00
Ozaukee silt loam, 6 to 12 percent slopes	6.33	0.01
Ozaukee silt loam, 6 to 12 percent slopes	2.47	0.00
Ozaukee silt loam, 6 to 12 percent slopes	4.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes	7.14	0.01
Ozaukee silt loam, 6 to 12 percent slopes	12.87	0.01
Ozaukee silt loam, 6 to 12 percent slopes	3.60	0.00
Ozaukee silt loam, 6 to 12 percent slopes	11.45	0.01
Ozaukee silt loam, 6 to 12 percent slopes	5.71	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.49	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.42	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.85	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.31	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.59	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.87	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	20.60	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.18	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.21	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.36	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.76	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.40	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.00	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.35	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.66	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.27	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	17.79	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	17.28	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.74	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	19.37	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.55	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.88	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.43	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.06	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.37	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.02	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.03	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	20.36	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.11	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.06	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.36	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.35	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.47	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.92	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.97	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.09	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.88	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.21	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.04	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.61	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.63	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.07	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	12.95	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.40	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.14	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.90	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.55	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.08	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.48	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.01	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.22	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.05	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.35	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.01	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	30.48	0.03
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.98	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.38	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	12.23	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.32	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.01	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.56	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.71	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	16.94	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.24	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.54	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.91	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.78	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.78	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.79	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	16.73	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.20	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.46	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	18.38	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.57	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.17	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.09	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.99	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.34	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.25	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.76	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.92	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	11.09	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.29	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.29	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.76	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.08	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.82	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	11.90	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.38	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.14	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.69	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.12	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.29	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.93	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.11	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	11.98	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.78	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.67	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	12.09	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.95	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.66	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.39	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	17.87	0.02

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.43	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.19	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.28	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.91	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.76	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.53	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.72	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.83	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.24	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	14.86	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.18	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.16	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	13.28	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	13.41	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.98	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.23	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.21	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.60	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.60	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.24	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	33.66	0.03
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.02	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.27	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.99	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.18	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.57	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.09	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.48	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.68	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.93	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.61	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.84	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	11.04	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.16	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.09	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.27	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.28	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	11.58	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.22	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.95	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.31	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.46	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.82	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.16	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.21	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.12	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.76	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.35	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.18	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.59	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.42	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.04	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.20	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.72	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.05	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.59	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.12	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.75	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.58	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.24	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.35	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.96	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.82	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.67	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.09	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.76	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.00	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.88	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.32	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.45	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	15.93	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.88	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.13	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.53	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	31.09	0.03
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.02	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	13.29	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.77	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.24	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.58	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.44	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.28	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.08	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	15.27	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.93	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.12	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.27	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	19.76	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	25.38	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.41	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.91	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.77	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.59	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	18.84	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.81	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.58	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	37.92	0.04
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.92	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.17	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	19.15	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.15	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.59	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.97	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.49	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	3.89	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.64	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.27	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.12	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.55	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	15.69	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.64	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	9.60	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	16.54	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.34	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	4.60	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	1.34	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	6.68	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	10.97	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	0.99	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	13.98	0.01

Soil Description	Area	Percent Area
Ozaukao silt loam 6 to 12 percent clapes, gradad	(Acres)	(70)
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.20	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.55	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.33 E 1E	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	5.15	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	7.92	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.15	0.00
Ozaukee siit loam, 6 to 12 percent slopes, eroded	8.08	0.01
Ozaukee siit loam, 6 to 12 percent slopes, eroded	2.53	0.00
Ozaukee siit loam, 6 to 12 percent slopes, eroded	9.20	0.01
Ozaukee siit loam, 6 to 12 percent slopes, eroded	4.53	0.00
Ozaukee silt loam, 6 to 12 percent slopes, eroded	8.71	0.01
Ozaukee silt loam, 6 to 12 percent slopes, eroded	21.27	0.02
Ozaukee silt loam, 6 to 12 percent slopes, eroded	2.80	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	3.70	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.95	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.43	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	5.25	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	7.05	0.01
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	1.17	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.69	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	1.44	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	0.54	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	10.13	0.01
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	9.09	0.01
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	10.47	0.01
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	17.86	0.02
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.79	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.87	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	1.76	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.48	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	3.15	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	8.56	0.01
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	2.94	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	4.60	0.00
Ozaukee silty clay loam, 4 to 6 percent slopes, severely eroded	4.44	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.02	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.16	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.55	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	0.65	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.00	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.46	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.90	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.55	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	15.33	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.20	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.99	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.67	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.09	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.19	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	6.15	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.68	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.17	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.94	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.60	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	9.46	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.09	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	4.19	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	4.15	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.43	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	8.48	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	22.15	0.02
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	9.04	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.16	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.15	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	16.03	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.86	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.19	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.57	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	6.15	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.99	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	7.60	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.51	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.68	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.82	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.72	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	4.08	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.72	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.16	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.68	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.70	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.02	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.01	0.00

Soil Description	Area (Acres)	Percent Area (%)
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	27.23	0.03
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	30.10	0.03
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	13.04	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.58	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	3.78	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	32.37	0.03
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	8.52	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	15.56	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	29.42	0.03
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.38	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.19	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.83	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.56	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.29	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	8.75	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.28	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	22.70	0.02
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	0.00	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.02	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.28	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	5.82	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	22.33	0.02
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	7.06	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	4.07	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	7.87	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	2.55	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	1.43	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	4.11	0.00
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	6.23	0.01
Ozaukee silty clay loam, 6 to 12 percent slopes, severely eroded	13.31	0.01
Palms muck, 0 to 2 percent slopes	1.98	0.00
Palms muck, 0 to 2 percent slopes	14.85	0.01
Palms muck, 0 to 2 percent slopes	4.13	0.00
Palms muck, 0 to 2 percent slopes	1.97	0.00
Palms muck, 0 to 2 percent slopes	3.77	0.00
Palms muck, 0 to 2 percent slopes	1.78	0.00
Palms muck, 0 to 2 percent slopes	2.75	0.00
Palms muck, 0 to 2 percent slopes	3.00	0.00
Palms muck, 0 to 2 percent slopes	56.69	0.05
Palms muck, 0 to 2 percent slopes	3.73	0.00
Palms muck, ponded, 0 to 2 percent slopes	4.36	0.00

Soil Description	Area	Percent Area
Palms muck ponded 0 to 2 percent slopes	5.26	0.00
Palms muck, ponded, 0 to 2 percent slopes	6.57	0.01
Palms muck, ponded, 0 to 2 percent slopes	2.84	0.00
Palms muck, ponded, 0 to 2 percent slopes	3.66	0.00
Palms muck, ponded, 0 to 2 percent slopes	1.80	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.38	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.47	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.81	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	4.13	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.43	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	8.10	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	1.12	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.35	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.07	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.67	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	7.91	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	2.85	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.49	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.65	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.99	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	6.87	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	0.99	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.22	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.38	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.85	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.92	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.31	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.57	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.37	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.49	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.12	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.51	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.37	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	7.63	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	1.80	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	6.79	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	2.42	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.36	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.22	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.98	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.61	0.00

Soil Description	Area (Acres)	Percent Area (%)
Pella silt loam, 0 to 2 percent slopes, overwash	2.30	0.00
Pella silt loam. 0 to 2 percent slopes, overwash	4.21	0.00
Pella silt loam. 0 to 2 percent slopes, overwash	1.27	0.00
Pella silt loam. 0 to 2 percent slopes, overwash	1.11	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.63	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.52	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.32	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.47	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.85	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.93	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.68	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.78	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.96	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	6.73	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	2.62	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.78	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.09	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.75	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.44	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	5.15	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.64	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.19	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.70	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.76	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.08	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.18	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.31	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.65	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.49	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.91	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	7.92	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	2.75	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	6.38	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	1.09	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.75	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.78	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.71	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.92	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	5.01	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.83	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.09	0.00

Soil Description	Area (Acres)	Percent Area (%)
Pella silt loam, 0 to 2 percent slopes, overwash	1.22	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.85	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.73	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.71	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.74	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.72	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.03	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.87	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.16	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.62	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.15	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	0.99	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	9.01	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	42.47	0.04
Pella silt loam, 0 to 2 percent slopes, overwash	2.15	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.53	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	5.30	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	14.56	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	5.27	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	18.93	0.02
Pella silt loam, 0 to 2 percent slopes, overwash	17.97	0.02
Pella silt loam, 0 to 2 percent slopes, overwash	3.08	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	1.22	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	3.62	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	2.72	0.00
Pella silt loam, 0 to 2 percent slopes, overwash	9.25	0.01
Pella silt loam, 0 to 2 percent slopes, overwash	2.93	0.00
Pella silty clay loam, 0 to 2 percent slopes	106.96	0.10
Pella silty clay loam, 0 to 2 percent slopes	28.16	0.03
Pella silty clay loam, 0 to 2 percent slopes	3.06	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.35	0.00
Pella silty clay loam, 0 to 2 percent slopes	9.20	0.01
Pella silty clay loam, 0 to 2 percent slopes	3.83	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.54	0.00
Pella silty clay loam, 0 to 2 percent slopes	2.35	0.00
Pella silty clay loam, 0 to 2 percent slopes	12.10	0.01
Pella silty clay loam, 0 to 2 percent slopes	4.93	0.00
Pella silty clay loam, 0 to 2 percent slopes	14.53	0.01
Pella silty clay loam, 0 to 2 percent slopes	1.54	0.00
Pella silty clay loam, 0 to 2 percent slopes	3.22	0.00
Pella silty clay loam, 0 to 2 percent slopes	4.30	0.00

Soil Description	Area	Percent Area
Pella silty clay loam 0 to 2 percent slopes	(Acres) 4 44	0.00
Pella sity clay loam, 0 to 2 percent slopes	2.62	0.00
Pella sity clay loam, 0 to 2 percent slopes	32.41	0.03
Pella silty clay loam, 0 to 2 percent slopes	0.86	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.73	0.00
Pella silty clay loam, 0 to 2 percent slopes	8.92	0.01
Pella silty clay loam, 0 to 2 percent slopes	0.80	0.00
Pella silty clay loam, 0 to 2 percent slopes	11.87	0.01
Pella silty clay loam, 0 to 2 percent slopes	1.74	0.00
Pella silty clay loam, 0 to 2 percent slopes	13.53	0.01
Pella silty clay loam, 0 to 2 percent slopes	1.24	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.40	0.00
Pella silty clay loam, 0 to 2 percent slopes	5.71	0.01
Pella silty clay loam, 0 to 2 percent slopes	3.62	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.88	0.00
Pella silty clay loam, 0 to 2 percent slopes	5.65	0.01
Pella silty clay loam, 0 to 2 percent slopes	4.16	0.00
Pella silty clay loam, 0 to 2 percent slopes	2.35	0.00
Pella silty clay loam, 0 to 2 percent slopes	7.40	0.01
Pella silty clay loam, 0 to 2 percent slopes	8.75	0.01
Pella silty clay loam, 0 to 2 percent slopes	10.09	0.01
Pella silty clay loam, 0 to 2 percent slopes	1.36	0.00
Pella silty clay loam, 0 to 2 percent slopes	3.40	0.00
Pella silty clay loam, 0 to 2 percent slopes	4.49	0.00
Pella silty clay loam, 0 to 2 percent slopes	9.60	0.01
Pella silty clay loam, 0 to 2 percent slopes	4.55	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.35	0.00
Pella silty clay loam, 0 to 2 percent slopes	2.89	0.00
Pella silty clay loam, 0 to 2 percent slopes	8.75	0.01
Pella silty clay loam, 0 to 2 percent slopes	8.40	0.01
Pella silty clay loam, 0 to 2 percent slopes	3.04	0.00
Pella silty clay loam, 0 to 2 percent slopes	12.33	0.01
Pella silty clay loam, 0 to 2 percent slopes	3.61	0.00
Pella silty clay loam, 0 to 2 percent slopes	3.46	0.00
Pella silty clay loam, 0 to 2 percent slopes	26.66	0.02
Pella silty clay loam, 0 to 2 percent slopes	1.17	0.00
Pella silty clay loam, 0 to 2 percent slopes	3.51	0.00
Pella silty clay loam, 0 to 2 percent slopes	82.33	0.08
Pella silty clay loam, 0 to 2 percent slopes	5.28	0.00
Pella silty clay loam, 0 to 2 percent slopes	19.53	0.02
Pella silty clay loam, 0 to 2 percent slopes	5.11	0.00

Soil Description	Area	Percent Area
Pella silty clay loam 0 to 2 percent slopes	(Acres)	0.01
Pella silty clay loam, 0 to 2 percent slopes	12.55	0.01
Pella sity clay loam, 0 to 2 percent slopes	4 14	0.01
Pella sity clay loam, 0 to 2 percent slopes	0.93	0.00
Pella sity clay loam, 0 to 2 percent slopes	2.00	0.00
Pella sity clay loam, 0 to 2 percent slopes	5.47	0.01
Pella sity clay loam, 0 to 2 percent slopes	1.40	0.00
Pella sity clay loam, 0 to 2 percent slopes	2 30	0.00
Pella sity clay loam, 0 to 2 percent slopes	4.12	0.00
Pella sity clay loam, 0 to 2 percent slopes	1.87	0.00
Pella sity clay loam, 0 to 2 percent slopes	2.86	0.00
Pella sity clay loam, 0 to 2 percent slopes	6.68	0.01
Pella sity clay loam 0 to 2 percent slopes	0.79	0.00
Pella sity clay loam, 0 to 2 percent slopes	17.03	0.02
Pella sity clay loam, 0 to 2 percent slopes	9.01	0.01
Pella silty clay loam, 0 to 2 percent slopes	2.81	0.00
Pella silty clay loam, 0 to 2 percent slopes	3.37	0.00
Pella silty clay loam, 0 to 2 percent slopes	9.29	0.01
Pella silty clay loam, 0 to 2 percent slopes	17.60	0.02
Pella silty clay loam, 0 to 2 percent slopes	3.79	0.00
Pella silty clay loam, 0 to 2 percent slopes	9.66	0.01
Pella silty clay loam, 0 to 2 percent slopes	5.99	0.01
Pella silty clay loam, 0 to 2 percent slopes	3.51	0.00
Pella silty clay loam, 0 to 2 percent slopes	9.46	0.01
Pella silty clay loam, 0 to 2 percent slopes	22.17	0.02
Pella silty clay loam, 0 to 2 percent slopes	13.40	0.01
Pella silty clay loam, 0 to 2 percent slopes	2.24	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.79	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.74	0.00
Pella silty clay loam, 0 to 2 percent slopes	219.04	0.20
Pella silty clay loam, 0 to 2 percent slopes	2.57	0.00
Pella silty clay loam, 0 to 2 percent slopes	11.75	0.01
Pella silty clay loam, 0 to 2 percent slopes	4.42	0.00
Pella silty clay loam, 0 to 2 percent slopes	5.79	0.01
Pella silty clay loam, 0 to 2 percent slopes	6.61	0.01
Pella silty clay loam, 0 to 2 percent slopes	2.90	0.00
Pella silty clay loam, 0 to 2 percent slopes	2.45	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.32	0.00
Pella silty clay loam, 0 to 2 percent slopes	11.01	0.01
Pella silty clay loam, 0 to 2 percent slopes	1.62	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.36	0.00

Soil Description	Area	Percent Area
Pella silty clay loam 0 to 2 percent clopes	(Acres)	(/0)
Pella silty clay loam, 0 to 2 percent slopes	3.38 2.42	0.01
Pella silty clay loam, 0 to 2 percent slopes	2.42	0.00
Pella silty clay loam, 0 to 2 percent slopes	13 /1	0.03
Pella silty clay loam, 0 to 2 percent slopes	1 63	0.01
Pella silty clay loam, 0 to 2 percent slopes	2.82	0.00
Pella silty clay loam () to 2 percent slopes	7 31	0.00
Pella silty clay loam () to 2 percent slopes	0.98	0.01
Pella silty clay loam, 0 to 2 percent slopes	10.40	0.00
Pella silty clay loam () to 2 percent slopes	0.51	0.01
Pella silty clay loam () to 2 percent slopes	0.51	0.00
Pella silty clay loam, 0 to 2 percent slopes	22.35	0.00
Pella silty clay loam, 0 to 2 percent slopes	9 19	0.02
Pella silty clay loam, 0 to 2 percent slopes	3 25	0.01
Pella silty clay loam, 0 to 2 percent slopes	J.25 4 52	0.00
Pella silty clay loam, 0 to 2 percent slopes	8.76	0.00
Pella silty clay loam, 0 to 2 percent slopes	1 74	0.01
Pella silty clay loam, 0 to 2 percent slopes	2 19	0.00
Pella silty clay loam () to 2 percent slopes	3.68	0.00
Pella silty clay loam () to 2 percent slopes	3 22	0.00
Pella silty clay loam, 0 to 2 percent slopes	15 16	0.01
Pella silty clay loam, 0 to 2 percent slopes	1 00	0.00
Pella silty clay loam, 0 to 2 percent slopes	0.79	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.10	0.00
Pella silty clay loam, 0 to 2 percent slopes	5.11	0.00
Pella silty clay loam, 0 to 2 percent slopes	2.02	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.43	0.00
Pella silty clay loam, 0 to 2 percent slopes	1.62	0.00
Pella silty clay loam, 0 to 2 percent slopes	10.02	0.01
Pella silty clay loam. 0 to 2 percent slopes	12.84	0.01
Pella silty clay loam. 0 to 2 percent slopes	5.36	0.00
Pella silty clay loam. 0 to 2 percent slopes	3.36	0.00
Pella silty clay loam, 0 to 2 percent slopes	6.78	0.01
Pella silty clay loam, 0 to 2 percent slopes	0.88	0.00
Pella silty clay loam, 0 to 2 percent slopes	73.60	0.07
Pella silty clay loam, 0 to 2 percent slopes	1.38	0.00
Pella silty clay loam, 0 to 2 percent slopes	8.58	0.01
Pella silty clay loam, 0 to 2 percent slopes	7.61	0.01
Pella silty clay loam, 0 to 2 percent slopes	0.88	0.00
Pella silty clay loam, 0 to 2 percent slopes	0.39	0.00
Pella silty clay loam, 0 to 2 percent slopes	57.61	0.05

Soil Description	Area (Acres)	Percent Area (%)
Pella silty clay loam, 0 to 2 percent slopes	0.71	0.00
Pella silty clay loam, 0 to 2 percent slopes	17.37	0.02
Pella silty clay loam, 0 to 2 percent slopes, undrained	4.84	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	7.78	0.01
Pella silty clay loam, 0 to 2 percent slopes, undrained	8.94	0.01
Pella silty clay loam, 0 to 2 percent slopes, undrained	2.48	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	3.19	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	4.41	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	20.10	0.02
Pella silty clay loam, 0 to 2 percent slopes, undrained	4.16	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	15.38	0.01
Pella silty clay loam, 0 to 2 percent slopes, undrained	28.55	0.03
Pella silty clay loam, 0 to 2 percent slopes, undrained	17.16	0.02
Pella silty clay loam, 0 to 2 percent slopes, undrained	8.76	0.01
Pella silty clay loam, 0 to 2 percent slopes, undrained	2.00	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	5.02	0.00
Pella silty clay loam, 0 to 2 percent slopes, undrained	7.94	0.01
Pella silty clay loam, 0 to 2 percent slopes, undrained	32.75	0.03
Pella silty clay loam, 0 to 2 percent slopes, undrained	24.06	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	9.52	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	11.32	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	0.16	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	2.98	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	16.11	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	2.72	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	7.49	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	5.57	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	4.80	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	5.82	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	14.79	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	4.69	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	2.76	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	11.37	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	4.80	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	52.61	0.05
Pella silty clay loam, cool, 0 to 2 percent slopes	6.35	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	1.46	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	7.99	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	26.56	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	1.88	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	114.50	0.11

Soil Description	Area (Acres)	Percent Area (%)
Pella silty clay loam, cool, 0 to 2 percent slopes	5.05	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	47.97	0.04
Pella silty clay loam, cool, 0 to 2 percent slopes	13.53	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	5.59	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	18.62	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	32.17	0.03
Pella silty clay loam, cool, 0 to 2 percent slopes	8.31	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	15.00	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	0.35	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	1.72	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	11.79	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	16.00	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	11.00	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	23.36	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	8.70	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	7.11	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	17.10	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	3.73	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	3.71	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	1.54	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	8.89	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	5.30	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	8.49	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	12.11	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	3.48	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	6.79	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	7.13	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	1.13	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	2.60	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	2.32	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	8.92	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	1.22	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	5.97	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	9.08	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	5.39	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	29.34	0.03
Pella silty clay loam, cool, 0 to 2 percent slopes	5.68	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	3.19	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	15.31	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	15.23	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	17.84	0.02

Soil Description	Area (Acres)	Percent Area (%)
Pella silty clay loam, cool, 0 to 2 percent slopes	1.45	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	6.01	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	18.80	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	7.65	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	13.05	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	19.27	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	0.24	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	185.26	0.17
Pella silty clay loam, cool, 0 to 2 percent slopes	5.24	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	53.84	0.05
Pella silty clay loam, cool, 0 to 2 percent slopes	189.77	0.18
Pella silty clay loam, cool, 0 to 2 percent slopes	17.97	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	8.44	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	27.39	0.03
Pella silty clay loam, cool, 0 to 2 percent slopes	5.04	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	3.16	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	2.97	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	1.32	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	222.84	0.21
Pella silty clay loam, cool, 0 to 2 percent slopes	8.93	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	3.60	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	24.05	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	18.22	0.02
Pella silty clay loam, cool, 0 to 2 percent slopes	13.77	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	6.66	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	1.88	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	0.21	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	3.92	0.00
Pella silty clay loam, cool, 0 to 2 percent slopes	5.96	0.01
Pella silty clay loam, cool, 0 to 2 percent slopes	22.54	0.02
Peotone silty clay loam, 0 to 2 percent slopes	1.49	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.30	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.83	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.24	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.28	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.28	0.01
Peotone silty clay loam, 0 to 2 percent slopes	10.66	0.01
Peotone silty clay loam, 0 to 2 percent slopes	6.53	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.12	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.41	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.64	0.00

Soil Description	Area	Percent Area
Peotone silty clay loam 0 to 2 percent clopes	(ACIES)	(/0)
Peotone silty clay loam, 0 to 2 percent slopes	1 35	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.96	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2 27	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.48	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.58	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.89	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.21	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.02	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.98	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.55	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.25	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.19	0.00
Peotone silty clay loam, 0 to 2 percent slopes	15.93	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.41	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.60	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.16	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.84	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.41	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.03	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.52	0.00
Peotone silty clay loam, 0 to 2 percent slopes	10.16	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.04	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.07	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.99	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.31	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8.45	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.88	0.01
Peotone silty clay loam, 0 to 2 percent slopes	10.04	0.01
Peotone silty clay loam, 0 to 2 percent slopes	3.13	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.80	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.04	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.14	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.29	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.75	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.63	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.30	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.24	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.49	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.59	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.65	0.00

Soil Description	Area (Acres)	Percent Area (%)
Peotone silty clay loam. 0 to 2 percent slopes	1.74	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.40	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.48	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.62	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.35	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.95	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.74	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.81	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.05	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.00	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.94	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.26	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.38	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.15	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.57	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8.78	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.09	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8.31	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.84	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.46	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.87	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.91	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.19	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.59	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.89	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.29	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.52	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.34	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.17	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.70	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.57	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.22	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.84	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.94	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.58	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.34	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.00	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.87	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.32	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.30	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.76	0.00

Soil Description	Area	Percent Area
Peotone silty clay loam 0 to 2 percent clopes	(Acres)	(/0)
Peotone silty clay loam, 0 to 2 percent slopes	2.02	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.75 / 19	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.88	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.00	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1 46	0.01
Peotone silty clay loam, 0 to 2 percent slopes	4 96	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3 12	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2 53	0.00
Peotone silty clay loam, 0 to 2 percent slopes	9.98	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3 93	0.01
Peotone silty clay loam, 0 to 2 percent slopes	4 12	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8 29	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.06	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8 18	0.01
Peotone silty clay loam, 0 to 2 percent slopes	4 51	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1 30	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4 87	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.09	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.00	0.00
Peotone silty clay loam, 0 to 2 percent slopes	6.21	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.33	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.60	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.37	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.79	0.00
Peotone silty clay loam, 0 to 2 percent slopes	19.26	0.02
Peotone silty clay loam, 0 to 2 percent slopes	2.99	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.96	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.89	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.07	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.31	0.01
Peotone silty clay loam, 0 to 2 percent slopes	13.35	0.01
Peotone silty clay loam, 0 to 2 percent slopes	4.17	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.74	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.54	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.56	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.13	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.13	0.00
Peotone silty clay loam, 0 to 2 percent slopes	6.61	0.01
Peotone silty clay loam, 0 to 2 percent slopes	0.54	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.54	0.00

Soil Description	Area	Percent Area
Peotone silty clay loam 0 to 2 percent clopes	(Acres)	(/0)
Peotone silty clay loam, 0 to 2 percent slopes	0.81	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4 46	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.86	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.04	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.65	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.72	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.85	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.17	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.23	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.52	0.00
Peotone silty clay loam, 0 to 2 percent slopes	9.16	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.76	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.16	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.73	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.47	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.89	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.20	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.78	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.86	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.05	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.43	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.71	0.00
Peotone silty clay loam, 0 to 2 percent slopes	6.22	0.01
Peotone silty clay loam, 0 to 2 percent slopes	0.92	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.98	0.00
Peotone silty clay loam, 0 to 2 percent slopes	6.23	0.01
Peotone silty clay loam, 0 to 2 percent slopes	0.62	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.99	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.97	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.62	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.95	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.52	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.46	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.78	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.53	0.00
Peotone silty clay loam, 0 to 2 percent slopes	8.86	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.98	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.47	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.83	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.18	0.00

Soil Description	Area	Percent Area
Peotone silty clay loam 0 to 2 percent clones		0.01
Peotone silty clay loam, 0 to 2 percent slopes	3.59	0.01
Peotone silty clay loam, 0 to 2 percent slopes	3.35	0.00
Peotone silty clay loam, 0 to 2 percent slopes	21.24	0.02
Peotone silty clay loam, 0 to 2 percent slopes	1 51	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.58	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.45	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.93	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.57	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.41	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.76	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.05	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.40	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.77	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.64	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.07	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.33	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.06	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.50	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.75	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.81	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.87	0.01
Peotone silty clay loam, 0 to 2 percent slopes	0.87	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.93	0.01
Peotone silty clay loam, 0 to 2 percent slopes	0.76	0.00
Peotone silty clay loam, 0 to 2 percent slopes	4.52	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.35	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.83	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.45	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.42	0.00
Peotone silty clay loam, 0 to 2 percent slopes	1.13	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.93	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.37	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.80	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.26	0.00
Peotone silty clay loam, 0 to 2 percent slopes	0.57	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.78	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.02	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.39	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.60	0.00
Peotone silty clay loam, 0 to 2 percent slopes	26.72	0.02
Soil Description	Area	Percent Area
---	-------	--------------
Peotone silty clay loam, 0 to 2 percent slopes	1.29	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.72	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.27	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.68	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.57	0.00
Peotone silty clay loam, 0 to 2 percent slopes	7.43	0.01
Peotone silty clay loam, 0 to 2 percent slopes	59.06	0.05
Peotone silty clay loam, 0 to 2 percent slopes	4.68	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.78	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.36	0.00
Peotone silty clay loam, 0 to 2 percent slopes	6.83	0.01
Peotone silty clay loam, 0 to 2 percent slopes	12.88	0.01
Peotone silty clay loam, 0 to 2 percent slopes	1.60	0.00
Peotone silty clay loam, 0 to 2 percent slopes	10.55	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.31	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.16	0.00
Peotone silty clay loam, 0 to 2 percent slopes	10.61	0.01
Peotone silty clay loam, 0 to 2 percent slopes	16.40	0.02
Peotone silty clay loam, 0 to 2 percent slopes	27.03	0.02
Peotone silty clay loam, 0 to 2 percent slopes	8.06	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.87	0.01
Peotone silty clay loam, 0 to 2 percent slopes	3.67	0.00
Peotone silty clay loam, 0 to 2 percent slopes	24.00	0.02
Peotone silty clay loam, 0 to 2 percent slopes	8.40	0.01
Peotone silty clay loam, 0 to 2 percent slopes	3.08	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.09	0.00
Peotone silty clay loam, 0 to 2 percent slopes	11.91	0.01
Peotone silty clay loam, 0 to 2 percent slopes	7.32	0.01
Peotone silty clay loam, 0 to 2 percent slopes	2.45	0.00
Peotone silty clay loam, 0 to 2 percent slopes	20.09	0.02
Peotone silty clay loam, 0 to 2 percent slopes	3.95	0.00
Peotone silty clay loam, 0 to 2 percent slopes	3.53	0.00
Peotone silty clay loam, 0 to 2 percent slopes	2.12	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.38	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.86	0.01
Peotone silty clay loam, 0 to 2 percent slopes	5.10	0.00
Peotone silty clay loam, 0 to 2 percent slopes	5.21	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	4.84	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.95	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.67	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.77	0.00

Soil Description	Area (Acres)	Percent Area (%)
Peotone silty clay loam, 0 to 2 percent slopes, undrained	5.61	0.01
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.58	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.88	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	1.29	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	4.07	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	2.37	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	25.99	0.02
Peotone silty clay loam, 0 to 2 percent slopes, undrained	1.29	0.00
Peotone silty clay loam, 0 to 2 percent slopes, undrained	3.47	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	6.59	0.01
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.29	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	1.23	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	1.28	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	1.09	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	0.35	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.81	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	1.56	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.83	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.80	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	7.59	0.01
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.69	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	2.76	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	3.87	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	39.21	0.04
Peotone silty clay loam, undrained, 0 to 2 percent slopes	3.61	0.00
Peotone silty clay loam, undrained, 0 to 2 percent slopes	16.41	0.02
Peotone silty clay loam, undrained, 0 to 2 percent slopes	22.20	0.02
Peotone silty clay loam, undrained, 0 to 2 percent slopes	6.43	0.01
Peotone silty clay loam, undrained, 0 to 2 percent slopes	23.54	0.02
Pits, gravel	8.21	0.01
Pits, gravel	264.67	0.24
Pits, gravel	6.92	0.01
Pits, gravel	5.10	0.00
Pits, gravel	10.78	0.01
Pits, gravel	127.80	0.12
Pits, gravel	462.32	0.43
Pits, gravel	195.13	0.18
Pits, gravel	21.31	0.02
Proctor silt loam, 0 to 2 percent slopes	58.88	0.05
Proctor silt loam, 0 to 2 percent slopes	26.59	0.02
Proctor silt loam, 0 to 2 percent slopes	10.37	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Proctor silt loam, 0 to 2 percent slopes	88.74	0.08
Proctor silt loam, 0 to 2 percent slopes	27.93	0.03
Proctor silt loam, 0 to 2 percent slopes	14.00	0.01
Proctor silt loam, 0 to 2 percent slopes	9.81	0.01
Proctor silt loam, 0 to 2 percent slopes	34.10	0.03
Proctor silt loam, 0 to 2 percent slopes	2.24	0.00
Proctor silt loam, 0 to 2 percent slopes	14.62	0.01
Proctor silt loam, 0 to 2 percent slopes	5.85	0.01
Proctor silt loam, 2 to 5 percent slopes	1.96	0.00
Proctor silt loam, 2 to 5 percent slopes	14.30	0.01
Proctor silt loam, 2 to 5 percent slopes	1.03	0.00
Proctor silt loam, 2 to 5 percent slopes	1.86	0.00
Proctor silt loam, 2 to 5 percent slopes	5.46	0.01
Proctor silt loam, 2 to 5 percent slopes	21.34	0.02
Proctor silt loam, 2 to 5 percent slopes	14.85	0.01
Proctor silt loam, 2 to 5 percent slopes	12.86	0.01
Proctor silt loam, 2 to 5 percent slopes	72.07	0.07
Proctor silt loam, 2 to 5 percent slopes	9.47	0.01
Ringwood silt loam, 0 to 2 percent slopes	5.82	0.01
Ringwood silt loam, 0 to 2 percent slopes	9.05	0.01
Ringwood silt loam, 0 to 2 percent slopes	59.55	0.06
Ringwood silt loam, 0 to 2 percent slopes	3.70	0.00
Ringwood silt loam, 0 to 2 percent slopes	2.10	0.00
Ringwood silt loam, 0 to 2 percent slopes	16.57	0.02
Ringwood silt loam, 0 to 2 percent slopes	13.24	0.01
Ringwood silt loam, 0 to 2 percent slopes	37.01	0.03
Ringwood silt loam, 0 to 2 percent slopes	7.40	0.01
Ringwood silt loam, 0 to 2 percent slopes	6.73	0.01
Ringwood silt loam, 0 to 2 percent slopes	9.41	0.01
Ringwood silt loam, 0 to 2 percent slopes	2.76	0.00
Ringwood silt loam, 0 to 2 percent slopes	2.11	0.00
Ringwood silt loam, 0 to 2 percent slopes	9.26	0.01
Ringwood silt loam, 0 to 2 percent slopes	22.66	0.02
Ringwood silt loam, 0 to 2 percent slopes	7.15	0.01
Ringwood silt loam, 0 to 2 percent slopes	4.88	0.00
Ringwood silt loam, 0 to 2 percent slopes	21.36	0.02
Ringwood silt loam, 0 to 2 percent slopes	13.47	0.01
Ringwood silt loam, 0 to 2 percent slopes	23.71	0.02
Ringwood silt loam, 0 to 2 percent slopes	20.77	0.02
Ringwood silt loam, 0 to 2 percent slopes	7.10	0.01
Ringwood silt loam, 0 to 2 percent slopes	5.81	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Ringwood silt loam, U to 2 percent slopes	8.//	0.01
Ringwood silt loam, 0 to 2 percent slopes	3.21	0.00
Ringwood silt loam, 0 to 2 percent slopes	4.79	0.00
Ringwood silt loam, 0 to 2 percent slopes	53.64	0.05
Ringwood silt loam, 0 to 2 percent slopes	29.46	0.03
Ringwood silt loam, 0 to 2 percent slopes	2.97	0.00
Ringwood silt loam, 0 to 2 percent slopes	5.36	0.00
Ringwood silt loam, 0 to 2 percent slopes	2.34	0.00
Ringwood silt loam, 0 to 2 percent slopes	25.76	0.02
Ringwood silt loam, 0 to 2 percent slopes	8.22	0.01
Ringwood silt loam, 0 to 2 percent slopes	6.87	0.01
Ringwood silt loam, 0 to 2 percent slopes	6.56	0.01
Ringwood silt loam, 0 to 2 percent slopes	3.58	0.00
Ringwood silt loam, 0 to 2 percent slopes	3.14	0.00
Ringwood silt loam, 0 to 2 percent slopes	6.87	0.01
Ringwood silt loam, 0 to 2 percent slopes	7.32	0.01
Ringwood silt loam, 0 to 2 percent slopes	48.59	0.04
Ringwood silt loam, 0 to 2 percent slopes	12.21	0.01
Ringwood silt loam, 0 to 2 percent slopes	6.90	0.01
Ringwood silt loam, 0 to 2 percent slopes	3.06	0.00
Ringwood silt loam, 0 to 2 percent slopes	10.41	0.01
Ringwood silt loam, 0 to 2 percent slopes	11.07	0.01
Ringwood silt loam, 0 to 2 percent slopes	12.29	0.01
Ringwood silt loam, 0 to 2 percent slopes	5.85	0.01
Ringwood silt loam, 0 to 2 percent slopes	17.69	0.02
Ringwood silt loam, 2 to 4 percent slopes	1.03	0.00
Ringwood silt loam, 2 to 4 percent slopes	25.44	0.02
Ringwood silt loam, 2 to 4 percent slopes	8.60	0.01
Ringwood silt loam, 2 to 4 percent slopes	13.67	0.01
Ringwood silt loam, 2 to 4 percent slopes	2.45	0.00
Ringwood silt loam, 2 to 4 percent slopes	23.47	0.02
Ringwood silt loam, 2 to 4 percent slopes	33.70	0.03
Ringwood silt loam, 2 to 4 percent slopes	144.11	0.13
Ringwood silt loam, 2 to 4 percent slopes	1281.01	1.18
Ringwood silt loam, 2 to 4 percent slopes	9.88	0.01
Ringwood silt loam, 2 to 4 percent slopes	336.04	0.31
Ringwood silt loam, 2 to 4 percent slopes	84.25	0.08
Ringwood silt loam, 2 to 4 percent slopes	4.73	0.00
Ringwood silt loam, 2 to 4 percent slopes	8.76	0.01
Ringwood silt loam, 2 to 4 percent slopes	14.14	0.01
Ringwood silt loam, 2 to 4 percent slopes	38.38	0.04

Soil Description	Area	Percent Area
	(Acres)	(%)
Ringwood silt loam, 2 to 4 percent slopes	3.37	0.00
Ringwood silt loam, 2 to 4 percent slopes	3.84	0.00
Ringwood silt loam, 2 to 4 percent slopes	24.66	0.02
Ringwood silt loam, 2 to 4 percent slopes	5.62	0.01
Ringwood silt loam, 2 to 4 percent slopes	1.69	0.00
Ringwood silt loam, 2 to 4 percent slopes	20.02	0.02
Ringwood silt loam, 2 to 4 percent slopes	259.14	0.24
Ringwood silt loam, 2 to 4 percent slopes	19.20	0.02
Ringwood silt loam, 2 to 4 percent slopes	9.64	0.01
Ringwood silt loam, 2 to 4 percent slopes	3.19	0.00
Ringwood silt loam, 2 to 4 percent slopes	4.38	0.00
Ringwood silt loam, 2 to 4 percent slopes	21.59	0.02
Ringwood silt loam, 2 to 4 percent slopes	1.24	0.00
Ringwood silt loam, 2 to 4 percent slopes	5.89	0.01
Ringwood silt loam, 2 to 4 percent slopes	1.80	0.00
Ringwood silt loam, 2 to 4 percent slopes	11.32	0.01
Ringwood silt loam, 2 to 4 percent slopes	5.29	0.00
Ringwood silt loam, 2 to 4 percent slopes	38.76	0.04
Ringwood silt loam, 2 to 4 percent slopes	2.39	0.00
Ringwood silt loam, 2 to 4 percent slopes	859.52	0.79
Ringwood silt loam, 2 to 4 percent slopes	3.04	0.00
Ringwood silt loam, 2 to 4 percent slopes	8.51	0.01
Ringwood silt loam, 2 to 4 percent slopes	16.31	0.02
Ringwood silt loam, 2 to 4 percent slopes	1.72	0.00
Ringwood silt loam, 2 to 4 percent slopes	3.63	0.00
Ringwood silt loam, 2 to 4 percent slopes	15.27	0.01
Ringwood silt loam, 2 to 4 percent slopes	12.64	0.01
Ringwood silt loam, 2 to 4 percent slopes	11.29	0.01
Ringwood silt loam, 2 to 4 percent slopes	112.47	0.10
Ringwood silt loam, 2 to 4 percent slopes	0.07	0.00
Ringwood silt loam, 2 to 4 percent slopes	1.18	0.00
Ringwood silt loam, 2 to 4 percent slopes	48.63	0.04
Ringwood silt loam, 2 to 4 percent slopes	7.44	0.01
Ringwood silt loam, 2 to 4 percent slopes	1.06	0.00
Ringwood silt loam, 2 to 4 percent slopes	9.01	0.01
Ringwood silt loam, 2 to 4 percent slopes	0.01	0.00
Ringwood silt loam, 2 to 4 percent slopes	63.49	0.06
Ringwood silt loam, 2 to 4 percent slopes	7.65	0.01
Ringwood silt loam, 2 to 4 percent slopes	6.85	0.01
Ringwood silt loam. 2 to 4 percent slopes	19.03	0.02
Ringwood silt loam, 2 to 4 percent slopes	50.94	0.05

SSURGO Soil Series

Appendix C

Soil Description	Area (Acres)	Percent Area
Ringwood silt loam 2 to 4 percent slopes	3 22	0.00
Ringwood silt loam, 2 to 4 percent slopes	13.34	0.01
Ringwood silt loam, 2 to 4 percent slopes	37.71	0.03
Ringwood silt loam, 2 to 4 percent slopes	24.36	0.02
Ringwood silt loam, 2 to 4 percent slopes	49.72	0.05
Ringwood silt loam, 2 to 4 percent slopes	16.65	0.02
Ringwood silt loam, 2 to 4 percent slopes	8.62	0.01
Ringwood silt loam, 2 to 4 percent slopes	35.72	0.03
Ringwood silt loam, 2 to 4 percent slopes	5.37	0.00
Ringwood silt loam, 2 to 4 percent slopes	3.67	0.00
Ringwood silt loam, 2 to 4 percent slopes	46.98	0.04
Ringwood silt loam, 2 to 4 percent slopes	6.54	0.01
Ringwood silt loam, 2 to 4 percent slopes	9.18	0.01
Rush silt loam, 0 to 2 percent slopes	40.49	0.04
Rush silt loam, 0 to 2 percent slopes	1.50	0.00
Rush silt loam, 0 to 2 percent slopes	2.93	0.00
Rush silt loam, 0 to 2 percent slopes	4.76	0.00
Rush silt loam, 0 to 2 percent slopes	2.76	0.00
Rush silt loam, 0 to 2 percent slopes	7.05	0.01
Rush silt loam, 0 to 2 percent slopes	5.37	0.00
Rush silt loam, 0 to 2 percent slopes	8.21	0.01
Rush silt loam, 0 to 2 percent slopes	2.31	0.00
Rush silt loam, 0 to 2 percent slopes	2.01	0.00
Rush silt loam, 0 to 2 percent slopes	1.56	0.00
Rush silt loam, 0 to 2 percent slopes	5.62	0.01
Rush silt loam, 0 to 2 percent slopes	8.97	0.01
Rush silt loam, 0 to 2 percent slopes	18.68	0.02
Rush silt loam, 0 to 2 percent slopes	2.03	0.00
Rush silt loam, 0 to 2 percent slopes	9.27	0.01
Rush silt loam, 0 to 2 percent slopes	3.13	0.00
Rush silt loam, 0 to 2 percent slopes	3.87	0.00
Rush silt loam, 0 to 2 percent slopes	4.41	0.00
Rush silt loam, 0 to 2 percent slopes	1.17	0.00
Rush silt loam, 0 to 2 percent slopes	18.91	0.02
Rush silt loam, 0 to 2 percent slopes	3.27	0.00
Rush silt loam, 0 to 2 percent slopes	47.68	0.04
Rush silt loam, 0 to 2 percent slopes	3.55	0.00
Rush silt loam, 0 to 2 percent slopes	5.68	0.01
Rush silt loam, 0 to 2 percent slopes	10.53	0.01
Rush silt loam, 0 to 2 percent slopes	6.85	0.01
Rush silt loam, 0 to 2 percent slopes	39.37	0.04

Soil Description	Area (Acres)	Percent Area (%)
Rush silt loam, 0 to 2 percent slopes	14.03	0.01
Rush silt loam, 2 to 4 percent slopes	1.48	0.00
Rush silt loam, 2 to 4 percent slopes	3.19	0.00
Rush silt loam, 2 to 4 percent slopes	12.80	0.01
Rush silt loam, 2 to 4 percent slopes	24.04	0.02
Rush silt loam, 2 to 4 percent slopes	7.24	0.01
Rush silt loam, 2 to 4 percent slopes	1.67	0.00
Rush silt loam, 2 to 4 percent slopes	7.28	0.01
Rush silt loam, 2 to 4 percent slopes	1.50	0.00
Rush silt loam, 2 to 4 percent slopes	3.79	0.00
Rush silt loam, 2 to 4 percent slopes	6.04	0.01
Rush silt loam, 2 to 4 percent slopes	6.84	0.01
Rush silt loam, 2 to 4 percent slopes	16.24	0.02
Rush silt loam, 2 to 4 percent slopes	84.40	0.08
Rush silt loam, 2 to 4 percent slopes	10.59	0.01
Rush silt loam, 2 to 4 percent slopes	7.26	0.01
Rush silt loam, 2 to 4 percent slopes	44.08	0.04
Rush silt loam, 2 to 4 percent slopes	1.47	0.00
Rush silt loam, 2 to 4 percent slopes	5.60	0.01
Rush silt loam, 2 to 4 percent slopes	26.89	0.02
Rush silt loam, 2 to 4 percent slopes	2.94	0.00
Rush silt loam, 2 to 4 percent slopes	19.36	0.02
Rush silt loam, 2 to 4 percent slopes	14.84	0.01
Rush silt loam, 2 to 4 percent slopes	3.29	0.00
Rush silt loam, 2 to 4 percent slopes	23.66	0.02
Rush silt loam, 2 to 4 percent slopes	4.06	0.00
Rush silt loam, 2 to 4 percent slopes	14.80	0.01
Rush silt loam, 2 to 4 percent slopes	5.76	0.01
Rush silt loam, 2 to 4 percent slopes	30.03	0.03
Rush silt loam, 2 to 4 percent slopes	8.52	0.01
Rush silt loam, 2 to 4 percent slopes	2.81	0.00
Rush silt loam, 2 to 4 percent slopes	7.70	0.01
Rush silt loam, 2 to 4 percent slopes	5.21	0.00
Rush silt loam, 2 to 4 percent slopes	10.61	0.01
Rush silt loam, 2 to 4 percent slopes	6.56	0.01
Rush silt loam, 2 to 4 percent slopes	7.58	0.01
Rush silt loam, 2 to 4 percent slopes	25.53	0.02
Rush silt loam, 2 to 4 percent slopes	3.91	0.00
Rush silt loam, 2 to 4 percent slopes	46.05	0.04
Rush silt loam, 2 to 4 percent slopes	4.96	0.00
Rush silt loam, 2 to 4 percent slopes	2.70	0.00

Soil Description	Area (Acres)	Percent Area (%)
Rush silt loam, 2 to 4 percent slopes	9.57	0.01
Rush silt loam, 2 to 4 percent slopes	3.60	0.00
Rush silt loam, 2 to 4 percent slopes	2.56	0.00
Rush silt loam, 2 to 4 percent slopes	3.73	0.00
Rush silt loam, 2 to 4 percent slopes	1.69	0.00
Rush silt loam, 2 to 4 percent slopes	14.98	0.01
Rush silt loam, 2 to 4 percent slopes	1.79	0.00
Rush silt loam, 2 to 4 percent slopes	7.52	0.01
Rush silt loam, 2 to 4 percent slopes	11.47	0.01
Rush silt loam, 2 to 4 percent slopes	5.69	0.01
Rush silt loam, 2 to 4 percent slopes	9.98	0.01
Rush silt loam, 2 to 4 percent slopes	4.70	0.00
Rush silt loam, 2 to 4 percent slopes	3.04	0.00
Rush silt loam, 2 to 4 percent slopes	3.81	0.00
Rush silt loam, 2 to 4 percent slopes	7.90	0.01
Rush silt loam, 2 to 4 percent slopes	1.61	0.00
Rush silt loam, 2 to 4 percent slopes	5.75	0.01
Rush silt loam, 2 to 4 percent slopes	40.38	0.04
Rush silt loam, 2 to 4 percent slopes	4.46	0.00
Rush silt loam, 2 to 4 percent slopes	20.97	0.02
Rush silt loam, 2 to 4 percent slopes	6.33	0.01
Rush silt loam, 2 to 4 percent slopes	1.90	0.00
Rush silt loam, 2 to 4 percent slopes	13.19	0.01
Rush silt loam, 2 to 4 percent slopes	56.66	0.05
Rush silt loam, 2 to 4 percent slopes	19.83	0.02
Rush silt loam, 2 to 4 percent slopes	11.73	0.01
Rush silt loam, 2 to 4 percent slopes	3.06	0.00
Rush silt loam, 2 to 4 percent slopes	4.49	0.00
Rush silt loam, 2 to 4 percent slopes	2.56	0.00
Rush silt loam, 2 to 4 percent slopes	11.35	0.01
Rush silt loam, 2 to 4 percent slopes	34.42	0.03
Rush silt loam, 2 to 4 percent slopes	8.76	0.01
Rush silt loam, 2 to 4 percent slopes	7.84	0.01
Rush silt loam, 2 to 4 percent slopes	2.83	0.00
Rush silt loam, 2 to 4 percent slopes	15.53	0.01
Rush silt loam, 2 to 4 percent slopes	19.67	0.02
Rush silt loam, 2 to 4 percent slopes	5.22	0.00
Rush silt loam, 2 to 4 percent slopes	18.49	0.02
Rush silt loam, 2 to 4 percent slopes	59.53	0.05
Rush silt loam, 2 to 4 percent slopes	19.93	0.02
Rush silt loam, 2 to 4 percent slopes	5.46	0.01

Soil Description	Area (Acres)	Percent Area (%)
Rush silt loam, 2 to 4 percent slopes	2.75	0.00
Rush silt loam, 2 to 4 percent slopes	9.11	0.01
Rush silt loam, 2 to 4 percent slopes	26.17	0.02
Rush silt loam, 2 to 4 percent slopes	2.80	0.00
Rush silt loam, 2 to 4 percent slopes	4.61	0.00
Rush silt loam, 2 to 4 percent slopes	5.37	0.00
Rush silt loam, 2 to 4 percent slopes	17.33	0.02
Rush silt loam, 2 to 4 percent slopes	5.27	0.00
Rush silt loam, 2 to 4 percent slopes	14.69	0.01
Rush silt loam, 2 to 4 percent slopes	12.77	0.01
Rush silt loam, 2 to 4 percent slopes	3.69	0.00
Rush silt loam, 2 to 4 percent slopes	1.03	0.00
Rush silt loam, 2 to 4 percent slopes	3.92	0.00
Rush silt loam, 2 to 4 percent slopes	18.57	0.02
Rush silt loam, 2 to 4 percent slopes	3.77	0.00
Rush silt loam, 2 to 4 percent slopes	4.31	0.00
Rush silt loam, 2 to 4 percent slopes	1.36	0.00
Rush silt loam, 2 to 4 percent slopes	1.78	0.00
Rush silt loam, 2 to 4 percent slopes	11.09	0.01
Rush silt loam, 2 to 4 percent slopes	10.01	0.01
Rush silt loam, 2 to 4 percent slopes	13.36	0.01
Rush silt loam, 2 to 4 percent slopes	11.51	0.01
Rush silt loam, 2 to 4 percent slopes	11.72	0.01
Rush silt loam, 2 to 4 percent slopes	45.56	0.04
Rush silt loam, 2 to 4 percent slopes	21.20	0.02
Rush silt loam, 2 to 4 percent slopes	1.47	0.00
Rush silt loam, 2 to 4 percent slopes	11.73	0.01
Rush silt loam, 2 to 4 percent slopes	2.05	0.00
Rush silt loam, 2 to 4 percent slopes	5.75	0.01
Rush silt loam, 2 to 4 percent slopes	5.40	0.00
Rush silt loam, 2 to 4 percent slopes	39.79	0.04
Rush silt loam, 2 to 4 percent slopes	4.57	0.00
Rush silt loam, 2 to 4 percent slopes	8.22	0.01
Rush silt loam, 2 to 4 percent slopes	13.52	0.01
Rush silt loam, 2 to 4 percent slopes	0.36	0.00
Rush silt loam, 2 to 4 percent slopes	2.43	0.00
Rush silt loam, 2 to 4 percent slopes	12.85	0.01
Rush silt loam, 2 to 4 percent slopes	3.13	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.54	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	10.42	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	3.16	0.00

Soil Description	Area (Acres)	Percent Area (%)
Rush silt loam, 4 to 6 percent slopes, eroded	4.98	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	11.44	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	1.11	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	9.32	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	3.96	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	3.80	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	8.19	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	2.41	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.34	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	17.58	0.02
Rush silt loam, 4 to 6 percent slopes, eroded	2.19	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	2.48	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	5.41	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	9.13	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	6.10	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	11.97	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	0.23	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	3.08	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	1.57	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	6.81	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	1.50	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	3.37	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	6.05	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	2.09	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	8.62	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	4.43	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.50	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.45	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.82	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	4.47	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	3.63	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	10.46	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	11.44	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	1.52	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	15.47	0.01
Rush silt loam, 4 to 6 percent slopes, eroded	0.44	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	1.15	0.00
Rush silt loam, 4 to 6 percent slopes, eroded	11.43	0.01
Sawmill silty clay loam, undrained, 0 to 2 percent slopes, frequently		
flooded	162.69	0.15

Soil Description	Area	Percent Area
Sawmill silty clay loam undrained 0 to 2 percent slopes frequently	(Acres)	(70)
flooded	8.97	0.01
Sawmill silty clay loam, undrained, 0 to 2 percent slopes, frequently		
flooded	69.51	0.06
Sawmill silty clay loam, undrained, 0 to 2 percent slopes, frequently		
flooded	1.94	0.00
Saylesville silt loam, 2 to 4 percent slopes	83.19	0.08
Saylesville silt loam, 2 to 4 percent slopes	31.81	0.03
Saylesville silt loam, 2 to 4 percent slopes	2.84	0.00
Saylesville silt loam, 2 to 4 percent slopes	3.08	0.00
Saylesville silt loam, 2 to 4 percent slopes	72.89	0.07
Saylesville silt loam, 4 to 6 percent slopes, eroded	0.01	0.00
Saylesville silt loam, 4 to 6 percent slopes, eroded	1.15	0.00
Saylesville silt loam, 4 to 6 percent slopes, eroded	4.33	0.00
Selmass loam, 0 to 2 percent slopes	1.63	0.00
Selmass loam, 0 to 2 percent slopes	1.30	0.00
Selmass loam, 0 to 2 percent slopes	2.94	0.00
Selmass loam, 0 to 2 percent slopes	4.04	0.00
Selmass loam, 0 to 2 percent slopes	3.13	0.00
Selmass loam, 0 to 2 percent slopes	2.68	0.00
Selmass loam, 0 to 2 percent slopes	7.20	0.01
Selmass loam, 0 to 2 percent slopes	2.09	0.00
Selmass loam, 0 to 2 percent slopes	0.96	0.00
Selmass loam, 0 to 2 percent slopes	1.38	0.00
Selmass loam, 0 to 2 percent slopes	12.34	0.01
Selmass loam, 0 to 2 percent slopes	2.16	0.00
Selmass loam, 0 to 2 percent slopes	2.58	0.00
Selmass loam, 0 to 2 percent slopes	1.54	0.00
Selmass loam, 0 to 2 percent slopes	3.26	0.00
Selmass loam, 0 to 2 percent slopes	27.75	0.03
Selmass loam, 0 to 2 percent slopes	1.74	0.00
Selmass loam, 0 to 2 percent slopes	4.31	0.00
Selmass loam, 0 to 2 percent slopes, undrained	4.04	0.00
Selmass loam, 0 to 2 percent slopes, undrained	2.91	0.00
Symerton silt loam, 2 to 5 percent slopes	2.79	0.00
Symerton silt loam, 2 to 5 percent slopes	4.02	0.00
Symerton silt loam, 2 to 5 percent slopes	3.62	0.00
Symerton silt loam, 2 to 5 percent slopes	4.52	0.00
Symerton silt loam, 2 to 5 percent slopes	10.14	0.01
Symerton silt loam, 2 to 5 percent slopes	9.65	0.01
Thorp silt loam, 0 to 2 percent slopes	1.23	0.00
Thorp silt loam, 0 to 2 percent slopes	1.76	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Thorp slit loam, 0 to 2 percent slopes	1.15	0.00
Thorp slit loam, 0 to 2 percent slopes	0.88	0.00
Thorp slit loam, 0 to 2 percent slopes	1.14	0.00
Thorp silt loam, 0 to 2 percent slopes	1.47	0.00
Thorp silt loam, 0 to 2 percent slopes	0.82	0.00
Thorp silt loam, 0 to 2 percent slopes	3.53	0.00
Thorp silt loam, 0 to 2 percent slopes	1.04	0.00
Thorp silt loam, 0 to 2 percent slopes	1.87	0.00
Thorp silt loam, 0 to 2 percent slopes	1.56	0.00
Thorp silt loam, 0 to 2 percent slopes	1.22	0.00
Thorp silt loam, 0 to 2 percent slopes	0.61	0.00
Thorp silt loam, 0 to 2 percent slopes	1.56	0.00
Thorp silt loam, 0 to 2 percent slopes	2.55	0.00
Thorp silt loam, 0 to 2 percent slopes	1.75	0.00
Thorp silt loam, 0 to 2 percent slopes	0.86	0.00
Thorp silt loam, 0 to 2 percent slopes	3.83	0.00
Thorp silt loam, 0 to 2 percent slopes	2.50	0.00
Thorp silt loam, 0 to 2 percent slopes	1.26	0.00
Thorp silt loam, 0 to 2 percent slopes	1.79	0.00
Thorp silt loam, 0 to 2 percent slopes	0.56	0.00
Thorp silt loam, 0 to 2 percent slopes	3.13	0.00
Thorp silt loam, 0 to 2 percent slopes	0.78	0.00
Thorp silt loam, 0 to 2 percent slopes	12.36	0.01
Thorp silt loam, 0 to 2 percent slopes	2.47	0.00
Thorp silt loam, 0 to 2 percent slopes	5.63	0.01
Thorp silt loam, 0 to 2 percent slopes	1.44	0.00
Thorp silt loam, 0 to 2 percent slopes	1.32	0.00
Thorp silt loam, 0 to 2 percent slopes	2.09	0.00
Thorp silt loam, 0 to 2 percent slopes	0.93	0.00
Thorp silt loam, 0 to 2 percent slopes	1.59	0.00
Thorp silt loam, 0 to 2 percent slopes	1.20	0.00
Thorp silt loam, 0 to 2 percent slopes	1.96	0.00
Thorp silt loam, 0 to 2 percent slopes	2.24	0.00
Thorp silt loam, 0 to 2 percent slopes	1.48	0.00
Thorp silt loam, 0 to 2 percent slopes	2.99	0.00
Thorp silt loam, 0 to 2 percent slopes	4.83	0.00
Thorp silt loam, 0 to 2 percent slopes	0.64	0.00
Thorp silt loam, 0 to 2 percent slopes	1.15	0.00
Thorp silt loam, 0 to 2 percent slopes	1.95	0.00
Thorp silt loam, 0 to 2 percent slopes	1.63	0.00
Thorp silt loam, 0 to 2 percent slopes	5.80	0.01

Soil Description	Area (Acres)	Percent Area (%)
Thorp silt loam, 0 to 2 percent slopes	0.05	0.00
Thorp silt loam, 0 to 2 percent slopes	4.46	0.00
Thorp silt loam, 0 to 2 percent slopes	1.56	0.00
Thorp silt loam, 0 to 2 percent slopes	0.78	0.00
Thorp silt loam, 0 to 2 percent slopes	4.13	0.00
Thorp silt loam, 0 to 2 percent slopes	3.56	0.00
Thorp silt loam, 0 to 2 percent slopes	1.30	0.00
Troxel silt loam, 0 to 2 percent slopes	6.30	0.01
Troxel silt loam, 0 to 2 percent slopes	1.23	0.00
Troxel silt loam, 0 to 2 percent slopes	8.57	0.01
Troxel silt loam, 0 to 2 percent slopes	1.12	0.00
Troxel silt loam, 0 to 2 percent slopes	0.62	0.00
Troxel silt loam, 0 to 2 percent slopes	1.34	0.00
Troxel silt loam, 0 to 2 percent slopes	1.80	0.00
Troxel silt loam, 0 to 2 percent slopes	1.04	0.00
Troxel silt loam, 0 to 2 percent slopes	0.97	0.00
Troxel silt loam, 0 to 2 percent slopes	1.00	0.00
Troxel silt loam, 0 to 2 percent slopes	4.41	0.00
Troxel silt loam, 0 to 2 percent slopes	1.72	0.00
Troxel silt loam, 0 to 2 percent slopes	1.18	0.00
Troxel silt loam, 0 to 2 percent slopes	3.59	0.00
Troxel silt loam, 0 to 2 percent slopes	2.03	0.00
Troxel silt loam, 0 to 2 percent slopes	0.86	0.00
Troxel silt loam, 0 to 2 percent slopes	1.81	0.00
Troxel silt loam, 0 to 2 percent slopes	1.80	0.00
Troxel silt loam, 0 to 2 percent slopes	0.87	0.00
Troxel silt loam, 0 to 2 percent slopes	1.37	0.00
Troxel silt loam, 0 to 2 percent slopes	3.21	0.00
Troxel silt loam, 0 to 2 percent slopes	1.04	0.00
Troxel silt loam, 0 to 2 percent slopes	1.29	0.00
Troxel silt loam, 0 to 2 percent slopes	2.09	0.00
Troxel silt loam, 0 to 2 percent slopes	0.97	0.00
Troxel silt loam, 0 to 2 percent slopes	15.93	0.01
Troxel silt loam, 0 to 2 percent slopes	5.23	0.00
Troxel silt loam, 0 to 2 percent slopes	4.91	0.00
Troxel silt loam, 0 to 2 percent slopes	1.50	0.00
Troxel silt loam, 0 to 2 percent slopes	0.80	0.00
Troxel silt loam, 0 to 2 percent slopes	2.35	0.00
Troxel silt loam, 0 to 2 percent slopes	0.91	0.00
Troxel silt loam, 0 to 2 percent slopes	0.96	0.00
Troxel silt loam, 0 to 2 percent slopes	1.55	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Troxel silt loam, 0 to 2 percent slopes	1.86	0.00
Troxel silt loam, 0 to 2 percent slopes	0.49	0.00
Troxel silt loam, 0 to 2 percent slopes	3.11	0.00
Troxel silt loam, 0 to 2 percent slopes	0.69	0.00
Troxel silt loam, 0 to 2 percent slopes	1.85	0.00
Troxel silt loam, 0 to 2 percent slopes	1.21	0.00
Troxel silt loam, 0 to 2 percent slopes	1.58	0.00
Troxel silt loam, 0 to 2 percent slopes	1.36	0.00
Troxel silt loam, 0 to 2 percent slopes	2.32	0.00
Troxel silt loam, 0 to 2 percent slopes	2.52	0.00
Troxel silt loam, 0 to 2 percent slopes	0.79	0.00
Troxel silt loam, 0 to 2 percent slopes	1.05	0.00
Troxel silt loam, 0 to 2 percent slopes	3.18	0.00
Troxel silt loam, 0 to 2 percent slopes	1.05	0.00
Troxel silt loam, 0 to 2 percent slopes	0.99	0.00
Troxel silt loam, 0 to 2 percent slopes	0.51	0.00
Troxel silt loam, 0 to 2 percent slopes	1.01	0.00
Troxel silt loam, 0 to 2 percent slopes	3.99	0.00
Troxel silt loam, 0 to 2 percent slopes	8.42	0.01
Troxel silt loam, 0 to 2 percent slopes	2.38	0.00
Troxel silt loam, 0 to 2 percent slopes	4.39	0.00
Troxel silt loam, 0 to 2 percent slopes	1.19	0.00
Troxel silt loam, 0 to 2 percent slopes	0.89	0.00
Troxel silt loam, 0 to 2 percent slopes	1.38	0.00
Troxel silt loam, 0 to 2 percent slopes	2.60	0.00
Troxel silt loam, 0 to 2 percent slopes	1.96	0.00
Troxel silt loam, 0 to 2 percent slopes	1.86	0.00
Troxel silt loam, 0 to 2 percent slopes	1.32	0.00
Troxel silt loam, 0 to 2 percent slopes	1.69	0.00
Troxel silt loam, 0 to 2 percent slopes	1.76	0.00
Troxel silt loam, 0 to 2 percent slopes	1.00	0.00
Troxel silt loam, 0 to 2 percent slopes	1.78	0.00
Troxel silt loam, 0 to 2 percent slopes	3.47	0.00
Troxel silt loam, 0 to 2 percent slopes	6.00	0.01
Troxel silt loam, 0 to 2 percent slopes	9.25	0.01
Troxel silt loam, 0 to 2 percent slopes	15.18	0.01
Troxel silt loam, 0 to 2 percent slopes	2.81	0.00
Troxel silt loam, 0 to 2 percent slopes	1.78	0.00
Troxel silt loam, 0 to 2 percent slopes	5.06	0.00
Troxel silt loam, 0 to 2 percent slopes	1.09	0.00
Troxel silt loam, 0 to 2 percent slopes	1.71	0.00

Soil Description	Area (Acres)	Percent Area (%)
Troxel silt loam, 0 to 2 percent slopes	0.89	0.00
Troxel silt loam, 0 to 2 percent slopes	2.24	0.00
Troxel silt loam, 0 to 2 percent slopes	1.56	0.00
Troxel silt loam, 0 to 2 percent slopes	0.80	0.00
Troxel silt loam, 0 to 2 percent slopes	2.26	0.00
Troxel silt loam, 0 to 2 percent slopes	1.34	0.00
Troxel silt loam, 0 to 2 percent slopes	1.06	0.00
Troxel silt loam, 0 to 2 percent slopes	1.20	0.00
Troxel silt loam, 0 to 2 percent slopes	0.99	0.00
Troxel silt loam, 0 to 2 percent slopes	4.60	0.00
Troxel silt loam, 0 to 2 percent slopes	1.46	0.00
Troxel silt loam, 0 to 2 percent slopes	2.02	0.00
Troxel silt loam, 0 to 2 percent slopes	1.09	0.00
Troxel silt loam, 0 to 2 percent slopes	1.77	0.00
Troxel silt loam, 0 to 2 percent slopes	0.50	0.00
Troxel silt loam, 0 to 2 percent slopes	3.47	0.00
Troxel silt loam. 0 to 2 percent slopes	2.96	0.00
Troxel silt loam, 0 to 2 percent slopes	1.35	0.00
Troxel silt loam, 0 to 2 percent slopes	1.30	0.00
Troxel silt loam, 0 to 2 percent slopes	2.13	0.00
Troxel silt loam, 0 to 2 percent slopes	1.04	0.00
Troxel silt loam, 0 to 2 percent slopes	1.88	0.00
Troxel silt loam, 0 to 2 percent slopes	10.10	0.01
Troxel silt loam, 0 to 2 percent slopes	1.08	0.00
Troxel silt loam, 0 to 2 percent slopes	2.56	0.00
Troxel silt loam, 0 to 2 percent slopes	0.00	0.00
Troxel silt loam, 0 to 2 percent slopes	5.17	0.00
Troxel silt loam, 0 to 2 percent slopes	7.90	0.01
Troxel silt loam, 0 to 2 percent slopes	2.38	0.00
Troxel silt loam, 0 to 2 percent slopes	0.84	0.00
Troxel silt loam, 0 to 2 percent slopes	1.79	0.00
Troxel silt loam, 0 to 2 percent slopes	1.66	0.00
Troxel silt loam, 0 to 2 percent slopes	2.18	0.00
Troxel silt loam, 0 to 2 percent slopes	3.86	0.00
Troxel silt loam, 0 to 2 percent slopes	0.58	0.00
Troxel silt loam, 0 to 2 percent slopes	2.01	0.00
Troxel silt loam, 0 to 2 percent slopes	0.40	0.00
Troxel silt loam, 0 to 2 percent slopes	1.48	0.00
Troxel silt loam, 0 to 2 percent slopes	3.30	0.00
Troxel silt loam, 0 to 2 percent slopes	2.30	0.00
Troxel silt loam, 0 to 2 percent slopes	1.58	0.00

Soil Description	Area (Acres)	Percent Area (%)
Troxel silt loam, 0 to 2 percent slopes	1.19	0.00
Troxel silt loam, 0 to 2 percent slopes	1.89	0.00
Troxel silt loam, 0 to 2 percent slopes	3.60	0.00
Troxel silt loam, 0 to 2 percent slopes	1.26	0.00
Troxel silt loam, 0 to 2 percent slopes	1.47	0.00
Troxel silt loam, 0 to 2 percent slopes	1.39	0.00
Troxel silt loam, 0 to 2 percent slopes	2.08	0.00
Troxel silt loam, 0 to 2 percent slopes	2.50	0.00
Troxel silt loam, 0 to 2 percent slopes	1.44	0.00
Troxel silt loam, 0 to 2 percent slopes	2.06	0.00
Troxel silt loam, 0 to 2 percent slopes	0.85	0.00
Troxel silt loam, 0 to 2 percent slopes	1.12	0.00
Troxel silt loam, 0 to 2 percent slopes	0.62	0.00
Troxel silt loam, 0 to 2 percent slopes	1.71	0.00
Troxel silt loam, 0 to 2 percent slopes	4.73	0.00
Troxel silt loam, 0 to 2 percent slopes	3.89	0.00
Troxel silt loam, 0 to 2 percent slopes	2.46	0.00
Troxel silt loam, 0 to 2 percent slopes	0.66	0.00
Troxel silt loam, 0 to 2 percent slopes	1.05	0.00
Troxel silt loam, 0 to 2 percent slopes	2.44	0.00
Troxel silt loam, 0 to 2 percent slopes	8.62	0.01
Troxel silt loam, 0 to 2 percent slopes	2.38	0.00
Troxel silt loam, 0 to 2 percent slopes	2.30	0.00
Troxel silt loam, 0 to 2 percent slopes	1.08	0.00
Troxel silt loam, 0 to 2 percent slopes	2.64	0.00
Troxel silt loam, 0 to 2 percent slopes	2.28	0.00
Troxel silt loam, 0 to 2 percent slopes	1.19	0.00
Troxel silt loam, 0 to 2 percent slopes	2.08	0.00
Troxel silt loam, 0 to 2 percent slopes	1.92	0.00
Troxel silt loam, 0 to 2 percent slopes	1.54	0.00
Troxel silt loam, 0 to 2 percent slopes	2.18	0.00
Troxel silt loam, 0 to 2 percent slopes	1.24	0.00
Troxel silt loam, 0 to 2 percent slopes	4.14	0.00
Troxel silt loam, 0 to 2 percent slopes	0.98	0.00
Troxel silt loam, 0 to 2 percent slopes	1.17	0.00
Troxel silt loam, 0 to 2 percent slopes	0.01	0.00
Troxel silt loam, 0 to 2 percent slopes	0.64	0.00
Troxel silt loam, 0 to 2 percent slopes	1.20	0.00
Troxel silt loam, 0 to 2 percent slopes	3.98	0.00
Troxel silt loam, 0 to 2 percent slopes	1.28	0.00
Troxel silt loam, 0 to 2 percent slopes	6.61	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Troxel silt loam, 0 to 2 percent slopes	1.47	0.00
Troxel silt loam, 0 to 2 percent slopes	1.54	0.00
Troxel silt loam, 0 to 2 percent slopes	2.31	0.00
Troxel silt loam, 0 to 2 percent slopes	4.92	0.00
Troxel silt loam, 0 to 2 percent slopes	0.54	0.00
Troxel silt loam, 0 to 2 percent slopes	4.09	0.00
Troxel silt loam, 0 to 2 percent slopes	1.83	0.00
Troxel silt loam, 0 to 2 percent slopes	0.18	0.00
Troxel silt loam, 0 to 2 percent slopes	2.98	0.00
Troxel silt loam, 0 to 2 percent slopes	1.45	0.00
Troxel silt loam, 0 to 2 percent slopes	6.12	0.01
Troxel silt loam, 0 to 2 percent slopes	2.41	0.00
Troxel silt loam, 0 to 2 percent slopes	1.10	0.00
Troxel silt loam, 0 to 2 percent slopes	0.72	0.00
Troxel silt loam, 0 to 2 percent slopes	1.82	0.00
Troxel silt loam, 0 to 2 percent slopes	3.11	0.00
Troxel silt loam, 0 to 2 percent slopes	0.96	0.00
Troxel silt loam, 0 to 2 percent slopes	4.37	0.00
Troxel silt loam, 0 to 2 percent slopes	1.31	0.00
Troxel silt loam, 0 to 2 percent slopes	1.49	0.00
Troxel silt loam, 0 to 2 percent slopes	1.06	0.00
Troxel silt loam, 0 to 2 percent slopes	2.66	0.00
Troxel silt loam, 0 to 2 percent slopes	4.82	0.00
Troxel silt loam, 0 to 2 percent slopes	1.98	0.00
Troxel silt loam, 0 to 2 percent slopes	5.91	0.01
Troxel silt loam, 0 to 2 percent slopes	3.05	0.00
Troxel silt loam, 0 to 2 percent slopes	1.02	0.00
Troxel silt loam, 0 to 2 percent slopes	1.58	0.00
Troxel silt loam, 0 to 2 percent slopes	1.38	0.00
Troxel silt loam, 0 to 2 percent slopes	2.28	0.00
Troxel silt loam, 0 to 2 percent slopes	1.29	0.00
Troxel silt loam, 0 to 2 percent slopes	1.08	0.00
Troxel silt loam, 0 to 2 percent slopes	1.31	0.00
Troxel silt loam, 0 to 2 percent slopes	2.16	0.00
Troxel silt loam, 0 to 2 percent slopes	1.13	0.00
Troxel silt loam, 0 to 2 percent slopes	0.94	0.00
Troxel silt loam, 0 to 2 percent slopes	1.87	0.00
Troxel silt loam, 0 to 2 percent slopes	7.71	0.01
Troxel silt loam, 0 to 2 percent slopes	5.95	0.01
Troxel silt loam, 0 to 2 percent slopes	6.58	0.01
Troxel silt loam, 0 to 2 percent slopes	2.67	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Troxel silt loam, 0 to 2 percent slopes	0.93	0.00
Troxel silt loam, 0 to 2 percent slopes	2.23	0.00
Troxel silt loam, 0 to 2 percent slopes	2.35	0.00
Troxel silt loam, 0 to 2 percent slopes	1.71	0.00
Troxel silt loam, 0 to 2 percent slopes	6.45	0.01
Troxel silt loam, 0 to 2 percent slopes	2.13	0.00
Troxel silt loam, 0 to 2 percent slopes	1.38	0.00
Troxel silt loam, 0 to 2 percent slopes	2.57	0.00
Troxel silt loam, 0 to 2 percent slopes	1.95	0.00
Troxel silt loam, 0 to 2 percent slopes	2.77	0.00
Troxel silt loam, 0 to 2 percent slopes	2.33	0.00
Varna silt loam, 2 to 4 percent slopes	4.35	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	3.37	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	7.92	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	29.64	0.03
Varna silt loam, 4 to 6 percent slopes, eroded	9.66	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	6.35	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	10.79	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	5.13	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	8.93	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	12.56	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	1.50	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	1.25	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	15.99	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	4.07	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	0.83	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	1.34	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	4.37	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	1.30	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	2.69	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	7.95	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	8.92	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	31.06	0.03
Varna silt loam, 4 to 6 percent slopes, eroded	1.35	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	2.80	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	2.28	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	4.29	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	7.03	0.01
Varna silt loam, 4 to 6 percent slopes, eroded	1.76	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	22.17	0.02
Varna silt loam, 4 to 6 percent slopes, eroded	1.32	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Varna silt loam, 4 to 6 percent slopes, eroded	1.48	0.00
Varna silt loam, 4 to 6 percent slopes, eroded	2.27	0.00
Virgil silt loam, 0 to 2 percent slopes	2.29	0.00
Virgil silt loam, 0 to 2 percent slopes	1.50	0.00
Virgil silt loam, 0 to 2 percent slopes	22.95	0.02
Virgil silt loam, 0 to 2 percent slopes	2.48	0.00
Virgil silt loam, 0 to 2 percent slopes	1.17	0.00
Virgil silt loam, 0 to 2 percent slopes	4.72	0.00
Virgil silt loam, 0 to 2 percent slopes	4.40	0.00
Virgil silt loam, 0 to 2 percent slopes	14.12	0.01
Virgil silt loam, 0 to 2 percent slopes	6.24	0.01
Virgil silt loam, 0 to 2 percent slopes	4.28	0.00
Virgil silt loam, 0 to 2 percent slopes	2.72	0.00
Virgil silt loam, 0 to 2 percent slopes	2.58	0.00
Virgil silt loam, 0 to 2 percent slopes	0.73	0.00
Virgil silt loam, 0 to 2 percent slopes	6.39	0.01
Virgil silt loam, 0 to 2 percent slopes	3.93	0.00
Virgil silt loam, 0 to 2 percent slopes	1.82	0.00
Virgil silt loam, 0 to 2 percent slopes	3.05	0.00
Virgil silt loam, 0 to 2 percent slopes	3.35	0.00
Virgil silt loam, 0 to 2 percent slopes	1.55	0.00
Virgil silt loam, 0 to 2 percent slopes	0.98	0.00
Virgil silt loam, 0 to 2 percent slopes	6.66	0.01
Virgil silt loam, 0 to 2 percent slopes	2.29	0.00
Virgil silt loam, 0 to 2 percent slopes	2.47	0.00
Virgil silt loam, 0 to 2 percent slopes	4.72	0.00
Virgil silt loam, 0 to 2 percent slopes	4.79	0.00
Virgil silt loam, 0 to 2 percent slopes	2.11	0.00
Virgil silt loam, 0 to 2 percent slopes	2.79	0.00
Virgil silt loam, 0 to 2 percent slopes	2.89	0.00
Virgil silt loam, 0 to 2 percent slopes	2.00	0.00
Virgil silt loam, 0 to 2 percent slopes	3.86	0.00
Virgil silt loam, 0 to 2 percent slopes	7.09	0.01
Virgil silt loam, 0 to 2 percent slopes	2.14	0.00
Virgil silt loam, 0 to 2 percent slopes	6.58	0.01
Virgil silt loam, 0 to 2 percent slopes	1.49	0.00
Virgil silt loam, 0 to 2 percent slopes	2.80	0.00
Virgil silt loam, 0 to 2 percent slopes	2.13	0.00
Virgil silt loam, 0 to 2 percent slopes	28.59	0.03
Virgil silt loam, 0 to 2 percent slopes	20.80	0.02
Virgil silt loam, 0 to 2 percent slopes	6.50	0.01

Soil Description	Area (Acres)	Percent Area (%)
Virgil silt loam, 0 to 2 percent slopes	9.75	0.01
Virgil silt loam, 0 to 2 percent slopes	0.97	0.00
Virgil silt loam, 0 to 2 percent slopes	1.84	0.00
Virgil silt loam, 0 to 2 percent slopes	2.57	0.00
Virgil silt loam, 0 to 2 percent slopes	1.57	0.00
Virgil silt loam, 0 to 2 percent slopes	8.02	0.01
Virgil silt loam, 0 to 2 percent slopes	4.71	0.00
Virgil silt loam, 0 to 2 percent slopes	5.23	0.00
Virgil silt loam, 0 to 2 percent slopes	0.73	0.00
Virgil silt loam, 0 to 2 percent slopes	3.91	0.00
Virgil silt loam, 0 to 2 percent slopes	3.59	0.00
Virgil silt loam, 0 to 2 percent slopes	4.58	0.00
Virgil silt loam, 0 to 2 percent slopes	3.30	0.00
Virgil silt loam, 0 to 2 percent slopes	17.81	0.02
Virgil silt loam, 0 to 2 percent slopes	3.77	0.00
Virgil silt loam, 0 to 2 percent slopes	2.14	0.00
Virgil silt loam, 0 to 2 percent slopes	1.91	0.00
Virgil silt loam, 0 to 2 percent slopes	7.44	0.01
Virgil silt loam, 0 to 2 percent slopes	2.47	0.00
Virgil silt loam, 0 to 2 percent slopes	6.40	0.01
Virgil silt loam, 0 to 2 percent slopes	2.89	0.00
Virgil silt loam, 0 to 2 percent slopes	1.68	0.00
Virgil silt loam, 0 to 2 percent slopes	6.91	0.01
Virgil silt loam, 0 to 2 percent slopes	2.51	0.00
Virgil silt loam, 0 to 2 percent slopes	7.38	0.01
Virgil silt loam, 0 to 2 percent slopes	7.96	0.01
Virgil silt loam, 0 to 2 percent slopes	6.20	0.01
Virgil silt loam, 0 to 2 percent slopes	4.71	0.00
Virgil silt loam, 0 to 2 percent slopes	1.81	0.00
Virgil silt loam, 0 to 2 percent slopes	8.88	0.01
Virgil silt loam, 0 to 2 percent slopes	3.14	0.00
Virgil silt loam, 0 to 2 percent slopes	1.34	0.00
Virgil silt loam, 0 to 2 percent slopes	2.69	0.00
Virgil silt loam, 0 to 2 percent slopes	1.13	0.00
Virgil silt loam, 0 to 2 percent slopes	11.14	0.01
Virgil silt loam, 0 to 2 percent slopes	1.69	0.00
Virgil silt loam, 0 to 2 percent slopes	2.18	0.00
Virgil silt loam, 0 to 2 percent slopes	3.51	0.00
Virgil silt loam, 0 to 2 percent slopes	3.78	0.00
Virgil silt loam, 0 to 2 percent slopes	2.11	0.00
Virgil silt loam, 0 to 2 percent slopes	4.73	0.00

Soil Description	Area (Acres)	Percent Area (%)
Virgil silt loam, 0 to 2 percent slopes	7.06	0.01
Virgil silt loam, 0 to 2 percent slopes	4.68	0.00
Virgil silt loam, 0 to 2 percent slopes	2.26	0.00
Virgil silt loam, 0 to 2 percent slopes	6.27	0.01
Virgil silt loam, 0 to 2 percent slopes	4.89	0.00
Virgil silt loam, 0 to 2 percent slopes	0.97	0.00
Virgil silt loam, 0 to 2 percent slopes	1.46	0.00
Virgil silt loam, 0 to 2 percent slopes	12.37	0.01
Virgil silt loam, 0 to 2 percent slopes	44.75	0.04
Virgil silt loam, 0 to 2 percent slopes	3.92	0.00
Virgil silt loam, 0 to 2 percent slopes	3.70	0.00
Virgil silt loam, 0 to 2 percent slopes	5.53	0.01
Virgil silt loam, 0 to 2 percent slopes	0.45	0.00
Virgil silt loam, 0 to 2 percent slopes	2.78	0.00
Virgil silt loam, 0 to 2 percent slopes	2.28	0.00
Virgil silt loam, 0 to 2 percent slopes	3.42	0.00
Virgil silt loam, 0 to 2 percent slopes	3.04	0.00
Virgil silt loam, 0 to 2 percent slopes	2.96	0.00
Virgil silt loam, 0 to 2 percent slopes	4.09	0.00
Virgil silt loam, 0 to 2 percent slopes	3.34	0.00
Virgil silt loam, 0 to 2 percent slopes	16.47	0.02
Virgil silt loam, 0 to 2 percent slopes	8.53	0.01
Virgil silt loam, 0 to 2 percent slopes	4.80	0.00
Virgil silt loam, 0 to 2 percent slopes	8.03	0.01
Virgil silt loam, 0 to 2 percent slopes	1.81	0.00
Virgil silt loam, 0 to 2 percent slopes	0.62	0.00
Virgil silt loam, 0 to 2 percent slopes	1.35	0.00
Virgil silt loam, 0 to 2 percent slopes	3.05	0.00
Virgil silt loam, 0 to 2 percent slopes	1.95	0.00
Virgil silt loam, 0 to 2 percent slopes	8.59	0.01
Virgil silt loam, 0 to 2 percent slopes	3.81	0.00
Virgil silt loam, 0 to 2 percent slopes	8.38	0.01
Virgil silt loam, 0 to 2 percent slopes	4.58	0.00
Virgil silt loam, 0 to 2 percent slopes	1.75	0.00
Virgil silt loam, 0 to 2 percent slopes	12.02	0.01
Virgil silt loam, 0 to 2 percent slopes	1.16	0.00
Virgil silt loam, 0 to 2 percent slopes	1.06	0.00
Virgil silt loam, 0 to 2 percent slopes	5.89	0.01
Virgil silt loam, 0 to 2 percent slopes	4.37	0.00
Virgil silt loam, 0 to 2 percent slopes	3.26	0.00
Virgil silt loam, 0 to 2 percent slopes	5.37	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Virgil silt loam, 0 to 2 percent slopes	11.32	0.01
Virgil silt loam, 0 to 2 percent slopes	2.58	0.00
Warsaw loam, 0 to 2 percent slopes	28.00	0.03
Warsaw loam, 0 to 2 percent slopes	9.29	0.01
Warsaw loam, 0 to 2 percent slopes	0.68	0.00
Warsaw loam, 0 to 2 percent slopes	4.51	0.00
Warsaw loam, 0 to 2 percent slopes	5.64	0.01
Warsaw loam, 0 to 2 percent slopes	2.35	0.00
Warsaw loam, 0 to 2 percent slopes	3.75	0.00
Warsaw loam, 0 to 2 percent slopes	7.44	0.01
Warsaw loam, 0 to 2 percent slopes	6.42	0.01
Warsaw loam, 0 to 2 percent slopes	13.42	0.01
Warsaw loam, 0 to 2 percent slopes	165.91	0.15
Warsaw loam, 2 to 4 percent slopes	21.77	0.02
Warsaw loam, 2 to 4 percent slopes	2.46	0.00
Warsaw loam, 2 to 4 percent slopes	35.92	0.03
Warsaw loam, 2 to 4 percent slopes	9.99	0.01
Warsaw loam, 2 to 4 percent slopes	1.69	0.00
Warsaw loam, 2 to 4 percent slopes	5.10	0.00
Warsaw loam, 2 to 4 percent slopes	2.59	0.00
Warsaw loam, 2 to 4 percent slopes	4.93	0.00
Warsaw loam, 2 to 4 percent slopes	57.97	0.05
Warsaw loam, 2 to 4 percent slopes	1.34	0.00
Warsaw loam, 2 to 4 percent slopes	2.88	0.00
Warsaw loam, 2 to 4 percent slopes	14.41	0.01
Warsaw loam, 2 to 4 percent slopes	1.10	0.00
Warsaw loam, 2 to 4 percent slopes	4.12	0.00
Warsaw loam, 2 to 4 percent slopes	2.80	0.00
Warsaw loam, 2 to 4 percent slopes	51.15	0.05
Warsaw loam, 2 to 4 percent slopes	2.78	0.00
Warsaw loam, 2 to 4 percent slopes	20.69	0.02
Warsaw loam, 2 to 4 percent slopes	22.19	0.02
Warsaw loam, 2 to 4 percent slopes	8.21	0.01
Warsaw loam, 2 to 4 percent slopes	10.64	0.01
Warsaw loam, 2 to 4 percent slopes	2.20	0.00
Warsaw loam, 2 to 4 percent slopes	23.30	0.02
Warsaw loam, 2 to 4 percent slopes	3.08	0.00
Warsaw loam, 2 to 4 percent slopes	3.48	0.00
Warsaw loam, 2 to 4 percent slopes	80.38	0.07
Warsaw loam, 2 to 4 percent slopes	10.81	0.01
Warsaw loam, 2 to 4 percent slopes	10.58	0.01

Soil Description	Area (Acres)	Percent Area (%)
Warsaw loam, 2 to 4 percent slopes	2.17	0.00
Warsaw loam, 2 to 4 percent slopes	4.21	0.00
Warsaw loam, 2 to 4 percent slopes	5.20	0.00
Warsaw loam, 2 to 4 percent slopes	20.81	0.02
Warsaw loam, 2 to 4 percent slopes	3.27	0.00
Warsaw loam, 2 to 4 percent slopes	3.59	0.00
Warsaw loam, 2 to 4 percent slopes	3.12	0.00
Warsaw loam, 2 to 4 percent slopes	15.55	0.01
Warsaw loam, 2 to 4 percent slopes	1.28	0.00
Warsaw loam, 2 to 4 percent slopes	3.65	0.00
Warsaw loam, 2 to 4 percent slopes	1.50	0.00
Warsaw loam, 2 to 4 percent slopes	23.80	0.02
Warsaw loam, 2 to 4 percent slopes	4.41	0.00
Warsaw loam, 2 to 4 percent slopes	30.63	0.03
Warsaw loam, 2 to 4 percent slopes	6.61	0.01
Warsaw loam, 2 to 4 percent slopes	32.53	0.03
Warsaw loam, 2 to 4 percent slopes	86.04	0.08
Warsaw loam, 2 to 4 percent slopes	1.34	0.00
Warsaw loam, 2 to 4 percent slopes	2.54	0.00
Warsaw loam, 2 to 4 percent slopes	25.42	0.02
Warsaw loam, 2 to 4 percent slopes	3.03	0.00
Warsaw loam, 2 to 4 percent slopes	11.06	0.01
Warsaw loam, 2 to 4 percent slopes	105.80	0.10
Warsaw loam, 2 to 4 percent slopes	20.54	0.02
Warsaw loam, 2 to 4 percent slopes	2.14	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	5.83	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	13.66	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	11.38	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	14.45	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	2.20	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	2.17	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	85.93	0.08
Warsaw loam, 4 to 6 percent slopes, eroded	7.41	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	20.00	0.02
Warsaw loam, 4 to 6 percent slopes, eroded	6.74	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	25.44	0.02
Warsaw loam, 4 to 6 percent slopes, eroded	217.71	0.20
Warsaw loam, 4 to 6 percent slopes, eroded	16.27	0.02
Warsaw loam, 4 to 6 percent slopes, eroded	0.46	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	7.49	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	4.74	0.00

Soil Description	Area (Acres)	Percent Area (%)
Warsaw loam, 4 to 6 percent slopes, eroded	10.85	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	5.33	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	3.37	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	8.68	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	3.55	0.00
Warsaw loam, 4 to 6 percent slopes, eroded	8.64	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	23.11	0.02
Warsaw loam, 4 to 6 percent slopes, eroded	69.12	0.06
Warsaw loam, 4 to 6 percent slopes, eroded	102.03	0.09
Warsaw loam, 4 to 6 percent slopes, eroded	5.64	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	11.34	0.01
Warsaw loam, 4 to 6 percent slopes, eroded	6.28	0.01
Water	240.99	0.22
Water	1.60	0.00
Water	0.64	0.00
Water	1.30	0.00
Water	2.14	0.00
Water	0.43	0.00
Water	3.48	0.00
Water	1.82	0.00
Water	8.37	0.01
Water	0.35	0.00
Water	0.66	0.00
Water	1.66	0.00
Water	0.62	0.00
Water	0.46	0.00
Water	0.81	0.00
Water	7.06	0.01
Water	0.95	0.00
Water	0.78	0.00
Water	0.64	0.00
Water	0.54	0.00
Water	0.63	0.00
Water	1.15	0.00
Water	0.42	0.00
Water	0.45	0.00
Water	0.42	0.00
Water	0.19	0.00
Water	0.59	0.00
Water	0.44	0.00
Water	6.31	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Water	0.28	0.00
Water	0.43	0.00
Water	2.19	0.00
Water	0.44	0.00
Water	9.11	0.01
Water	0.59	0.00
Water	0.51	0.00
Water	1.14	0.00
Water	11.49	0.01
Water	1.08	0.00
Water	0.88	0.00
Water	2.62	0.00
Water	0.55	0.00
Water	0.64	0.00
Water	6.44	0.01
Water	0.21	0.00
Water	2.28	0.00
Water	0.51	0.00
Water	0.40	0.00
Water	0.93	0.00
Water	1.83	0.00
Water	2.25	0.00
Water	0.30	0.00
Water	0.53	0.00
Water	0.48	0.00
Water	0.71	0.00
Water	4.54	0.00
Water	0.55	0.00
Water	4.72	0.00
Water	0.39	0.00
Water	2.47	0.00
Water	0.25	0.00
Water	0.48	0.00
Water	0.27	0.00
Water	0.71	0.00
Water	0.46	0.00
Water	0.50	0.00
Water	0.16	0.00
Water	0.28	0.00
Water	0.88	0.00
Water	5.81	0.01

Soil Description	Area	Percent Area
	(Acres)	(%)
Water	0.58	0.00
Water	0.87	0.00
Water	1.15	0.00
Water	0.12	0.00
Water	0.68	0.00
Water	0.45	0.00
Water	1.58	0.00
Water	0.56	0.00
Water	1.38	0.00
Water	20.11	0.02
Water	1.67	0.00
Water	0.35	0.00
Water	62.92	0.06
Water	1.63	0.00
Water	4.30	0.00
Water	1.36	0.00
Water	5.17	0.00
Water	0.87	0.00
Water	3.37	0.00
Water	0.57	0.00
Water	1.00	0.00
Water	0.57	0.00
Water	0.43	0.00
Water	1.44	0.00
Water	1.91	0.00
Water	0.34	0.00
Water	7.73	0.01
Water	0.21	0.00
Water	0.40	0.00
Water	0.69	0.00
Water	0.41	0.00
Water	1.32	0.00
Water	1.40	0.00
Water	0.49	0.00
Water	0.27	0.00
Water	2.11	0.00
Water	0.33	0.00
Water	0.54	0.00
Water	0.16	0.00
Water	0.81	0.00
Water	48.08	0.04

Soil Description	Area (Acres)	Percent Area (%)
Water	1.60	0.00
Water	0.49	0.00
Water	5.74	0.01
Water	0.40	0.00
Water	0.28	0.00
Water	6.81	0.01
Water	0.43	0.00
Water	0.78	0.00
Water	0.70	0.00
Water	0.31	0.00
Water	0.63	0.00
Water	0.63	0.00
Water	4.36	0.00
Water	27.86	0.03
Water	1.75	0.00
Water	0.30	0.00
Water	0.59	0.00
Water	4.53	0.00
Water	1.09	0.00
Water	0.47	0.00
Water	0.59	0.00
Water	1.24	0.00
Water	0.78	0.00
Water	0.41	0.00
Water	0.89	0.00
Water	1.51	0.00
Water	0.62	0.00
Water	0.42	0.00
Water	0.57	0.00
Water	3.46	0.00
Water	0.32	0.00
Water	1.47	0.00
Water	0.34	0.00
Water	0.32	0.00
Water	0.32	0.00
Water	0.48	0.00
Water	0.84	0.00
Water	1.38	0.00
Water	0.23	0.00
Water	0.23	0.00
Water	0.73	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Water	1.52	0.00
Water	1.52	0.00
Water	0.74	0.00
Water	0.79	0.00
Water	3.13	0.00
Water	9.34	0.01
Water	1.08	0.00
Water	0.39	0.00
Water	6.78	0.01
Water	0.50	0.00
Water	0.78	0.00
Water	4.60	0.00
Water	0.37	0.00
Water	0.88	0.00
Water	0.54	0.00
Water	0.30	0.00
Water	0.50	0.00
Water	2.11	0.00
Water	0.33	0.00
Water	1.11	0.00
Water	3.03	0.00
Water	1.38	0.00
Water	0.05	0.00
Water	0.80	0.00
Water	1.13	0.00
Water	3.55	0.00
Water	3.48	0.00
Water	25.40	0.02
Water	0.19	0.00
Water	0.51	0.00
Water	0.36	0.00
Water	0.27	0.00
Water	33.86	0.03
Water	13.80	0.01
Water	19.87	0.02
Water	0.35	0.00
Water	9.48	0.01
Water	0.40	0.00
Water	1.06	0.00
Water	30.76	0.03
Water	0.28	0.00

Soil Description	Area (Acres)	Percent Area (%)
Water	0.98	0.00
Water	1.86	0.00
Water	0.50	0.00
Water	0.37	0.00
Water	0.74	0.00
Water	0.62	0.00
Water	0.99	0.00
Water	0.40	0.00
Water	0.56	0.00
Water	4.69	0.00
Water	2.79	0.00
Water	3.95	0.00
Water	1.05	0.00
Water	4.53	0.00
Water	1042.79	0.96
Water	0.38	0.00
Water	5.96	0.01
Water	0.95	0.00
Water	8.91	0.01
Water	0.83	0.00
Water	24.75	0.02
Water	12.55	0.01
Water	0.48	0.00
Water	0.96	0.00
Water	0.20	0.00
Water	2.67	0.00
Water	1.38	0.00
Water	0.62	0.00
Water	0.66	0.00
Water	0.54	0.00
Water	1.67	0.00
Water	0.81	0.00
Water	131.15	0.12
Water	1.99	0.00
Water	1.09	0.00
Water	0.29	0.00
Water	1.50	0.00
Water	0.18	0.00
Water	0.20	0.00
Water	0.56	0.00
Water	2.60	0.00

Soil Description	Area (Acres)	Percent Area (%)
Water	1.50	0.00
Water	59.70	0.06
Water	3.08	0.00
Water	21.49	0.02
Water	0.06	0.00
Water	0.55	0.00
Water	5.53	0.01
Water	0.87	0.00
Water	1.12	0.00
Water	1.03	0.00
Water	0.50	0.00
Water	1.39	0.00
Water	1.44	0.00
Water	2.64	0.00
Water	0.57	0.00
Water	0.74	0.00
Water	1.59	0.00
Water	1.45	0.00
Water	0.68	0.00
Water	0.50	0.00
Water	51.88	0.05
Water	1.18	0.00
Water	0.31	0.00
Water	0.73	0.00
Water	0.58	0.00
Water	0.33	0.00
Water	0.39	0.00
Water	1.67	0.00
Water	0.31	0.00
Water	0.28	0.00
Water	0.33	0.00
Water	0.24	0.00
Water	37.92	0.04
Water	0.42	0.00
Water	1.85	0.00
Water	36.58	0.03
Water	0.47	0.00
Water	1.24	0.00
Water	3.65	0.00
Water	16.34	0.02
Water	1.32	0.00

Soil Description	Area	Percent Area
Wator		(//)
Water	0.44	0.00
Water	0.74	0.00
Water	1.04	0.00
Water	1.04	0.00
Water	1.55	0.00
Water	0.94	0.00
Water	0.21	0.00
Water	1.09	0.00
Water	0.45	0.00
Water	0.35	0.00
Water	0.44	0.00
Water	0.56	0.00
Water	0.35	0.00
Water	0.91	0.00
Water	0.69	0.00
Water	1.11	0.00
Water	0.65	0.00
Water	0.38	0.00
Water	0.72	0.00
Water	0.48	0.00
Water	0.68	0.00
Water	0.68	0.00
Water	0.24	0.00
Water	0.37	0.00
Water	6.84	0.01
Water	1.97	0.00
Water	0.23	0.00
Water	1.40	0.00
Water	0.46	0.00
Water	0.86	0.00
Water	0.70	0.00
Water	1.35	0.00
Water	1.26	0.00
Water	15.14	0.01
Water	12.71	0.01
Water	0.21	0.00
Water	0.93	0.00
Water	2.84	0.00
Water	0.52	0.00
Water	19.66	0.02
Water	1.34	0.00

Soil Description	Area (Acres)	Percent Area (%)
Water	2.31	0.00
Water	0.66	0.00
Water	6.53	0.01
Water	0.25	0.00
Water	2.86	0.00
Water	2.07	0.00
Water	7.28	0.01
Water	24.01	0.02
Water	4.41	0.00
Water	1.66	0.00
Water	1.77	0.00
Water	1.69	0.00
Water	0.73	0.00
Water	1.65	0.00
Water	2.58	0.00
Water	9.36	0.01
Water	3.35	0.00
Water	4.98	0.00
Water	5.35	0.00
Water	1.17	0.00
Water	2.25	0.00
Water	9.92	0.01
Water	1.26	0.00
Water	2.56	0.00
Water	1.40	0.00
Water	0.85	0.00
Water	4.07	0.00
Water	1.45	0.00
Water	3.01	0.00
Water	1.29	0.00
Water	20.83	0.02
Water	1.56	0.00
Water	1.78	0.00
Water	1.58	0.00
Water	1.65	0.00
Water	3.94	0.00
Water	4.98	0.00
Water	2.35	0.00
Water	1.99	0.00
Water	3.11	0.00
Water	2.80	0.00

Soil Description Area	Percent Area	
	(Acres)	(%)
Water	0.73	0.00
Water	5.62	0.01
Water	5.65	0.01
Water	3.63	0.00
Water	1.18	0.00
Water	4.28	0.00
Water	3.39	0.00
Water	4.12	0.00
Water	1.33	0.00
Water	2.56	0.00
Water	65.85	0.06
Water	1.82	0.00
Water	1.28	0.00
Water	1.05	0.00
Water	1.56	0.00
Water	1.10	0.00
Water	0.55	0.00
Water	0.75	0.00
Water	1.86	0.00
Water	16.36	0.02
Water	2.09	0.00
Water	6.58	0.01
Water	5.57	0.01
Water	4.77	0.00
Water	1.64	0.00
Water	1.44	0.00
Water	1.63	0.00
Water	1.51	0.00
Water	1.72	0.00
Water	8.16	0.01
Water	1.13	0.00
Water	0.80	0.00
Water	1.81	0.00
Water	8.74	0.01
Water	1.27	0.00
Water	1.95	0.00
Water	1.54	0.00
Water	377.28	0.35
Water	6.30	0.01
Water	1.23	0.00
Water	298.30	0.28

Soil Description	Area	Percent Area
	(Acres)	(%)
Water	8.87	0.01
Water	2.76	0.00
Water	1.71	0.00
Water	2.42	0.00
Water	1.33	0.00
Water	3.89	0.00
Water	1.22	0.00
Water	7.37	0.01
Water	3.21	0.00
Water	4.22	0.00
Water	1.54	0.00
Water	27.75	0.03
Water	1.76	0.00
Water	1.33	0.00
Water	2.17	0.00
Water	2.12	0.00
Water	13.68	0.01
Water	6.72	0.01
Water	2.07	0.00
Water	230.10	0.21
Water	1.26	0.00
Water	1.22	0.00
Water	25.67	0.02
Water	3.19	0.00
Water	1.31	0.00
Water	12.97	0.01
Water	2.11	0.00
Water	1.03	0.00
Water	14.16	0.01
Water	36.11	0.03
Water	12.67	0.01
Water	5.49	0.01
Water	2.78	0.00
Water	39.20	0.04
Water	0.78	0.00
Water	0.96	0.00
Water	4.07	0.00
Water	0.13	0.00
Water	2.10	0.00
Water	1.14	0.00
Water	1.56	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Water	0.70	0.00
Water	0.89	0.00
Water	3.57	0.00
Water	8.61	0.01
Water	1.28	0.00
Water	1.56	0.00
Water	1.82	0.00
Water	1.69	0.00
Water	1.31	0.00
Water	2.15	0.00
Water	22.39	0.02
Water	1.80	0.00
Water	1.75	0.00
Water	6.40	0.01
Water	2.72	0.00
Water	3.53	0.00
Water	2.06	0.00
Water	2.02	0.00
Water	87.45	0.08
Water	21.31	0.02
Water	1.82	0.00
Water	4.46	0.00
Water	63.74	0.06
Water	0.80	0.00
Water	2.54	0.00
Water	2.18	0.00
Water	2.27	0.00
Water	18.65	0.02
Water	2.24	0.00
Water	7.30	0.01
Water	1.20	0.00
Water	6.94	0.01
Water	3.50	0.00
Water	0.89	0.00
Water	0.89	0.00
Water	1.17	0.00
Water	1.37	0.00
Water	1.22	0.00
Water	3.42	0.00
Water	1.15	0.00
Water	1.10	0.00

Soil Description Area	Area	Percent Area
	(Acres)	(%)
Water	1.13	0.00
Water	9.83	0.01
Water	0.85	0.00
Water	0.97	0.00
Water	2.12	0.00
Water	1.41	0.00
Water	2.37	0.00
Water	1.74	0.00
Water	2.95	0.00
Water	6.59	0.01
Water	42.36	0.04
Water	1.13	0.00
Water	2.54	0.00
Water	1.46	0.00
Water	3.74	0.00
Water	2.33	0.00
Water	4.01	0.00
Water	3.04	0.00
Water	2.11	0.00
Water	1.46	0.00
Water	2.80	0.00
Water	10.27	0.01
Water	18.31	0.02
Water	60.42	0.06
Water	1.89	0.00
Water	0.64	0.00
Water	0.95	0.00
Water	19.14	0.02
Water	1.00	0.00
Water	32.32	0.03
Water	4.33	0.00
Water	3.88	0.00
Water	1.39	0.00
Water	209.31	0.19
Water	3.69	0.00
Water	0.87	0.00
Water	3.35	0.00
Water	6.84	0.01
Water	6.41	0.01
Water	1.33	0.00
Water	22.66	0.02
Soil Description	Area (Acres)	Percent Area (%)
------------------	-----------------	---------------------
Water	0.93	0.00
Water	1.94	0.00
Water	0.63	0.00
Water	8.13	0.01
Water	40.02	0.04
Water	0.82	0.00
Water	6.93	0.01
Water	6.00	0.01
Water	1.28	0.00
Water	0.88	0.00
Water	1.14	0.00
Water	1.70	0.00
Water	0.80	0.00
Water	3.31	0.00
Water	1.09	0.00
Water	0.80	0.00
Water	2.88	0.00
Water	0.84	0.00
Water	2.03	0.00
Water	3.74	0.00
Water	1.31	0.00
Water	4.34	0.00
Water	13.83	0.01
Water	31.31	0.03
Water	1.53	0.00
Water	3.48	0.00
Water	6.25	0.01
Water	1.10	0.00
Water	1.08	0.00
Water	3.54	0.00
Water	2.65	0.00
Water	2.07	0.00
Water	2.08	0.00
Water	2.64	0.00
Water	1.00	0.00
Water	1.00	0.00
Water	1.30	0.00
Water	1.52	0.00
Water	6.77	0.01
Water	1.93	0.00
Water	1.34	0.00

Soil Description Area	Area	Percent Area
Soli Description	(Acres)	(%)
Water	2.92	0.00
Water	2.19	0.00
Water	1.95	0.00
Water	1.25	0.00
Water	65.44	0.06
Water	3.07	0.00
Water	2.94	0.00
Water	1.97	0.00
Water	14.29	0.01
Water	1.38	0.00
Water	2.41	0.00
Water	14.90	0.01
Water	8.18	0.01
Water	1.31	0.00
Water	9.07	0.01
Water	130.17	0.12
Water	6.31	0.01
Water	51.52	0.05
Water	17.81	0.02
Water	13.22	0.01
Water	2.25	0.00
Water	3.40	0.00
Water	1.70	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	5.16	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.94	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	12.77	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	14.34	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.79	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.70	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.67	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.79	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	13.48	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	5.13	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.94	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	4.31	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	5.89	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	23.64	0.02
Wauconda and Beecher silt loams, 0 to 2 percent slopes	9.53	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	0.87	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.37	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.68	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Wauconda and Beecher silt loams, 0 to 2 percent slopes	3.78	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.45	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.37	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.39	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.91	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.10	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.38	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.47	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.75	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	7.70	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.44	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	4.58	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	3.07	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.34	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.58	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	6.48	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	5.50	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.13	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	1.41	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	8.41	0.01
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.09	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	3.65	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	32.69	0.03
Wauconda and Beecher silt loams, 0 to 2 percent slopes	0.63	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	3.13	0.00
Wauconda and Beecher silt loams, 0 to 2 percent slopes	2.85	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	2.78	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	7.64	0.01
Wauconda and Beecher silt loams, 2 to 4 percent slopes	1.62	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	0.47	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	2.37	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	5.71	0.01
Wauconda and Beecher silt loams, 2 to 4 percent slopes	1.73	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	19.38	0.02
Wauconda and Beecher silt loams, 2 to 4 percent slopes	1.58	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	0.92	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	3.40	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	4.61	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	1.55	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	12.92	0.01
Wauconda and Beecher silt loams, 2 to 4 percent slopes	2.14	0.00

Soil Deceription	Area	Percent Area
Soli Description	(Acres)	(%)
Wauconda and Beecher silt loams, 2 to 4 percent slopes	5.51	0.01
Wauconda and Beecher silt loams, 2 to 4 percent slopes	4.83	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	15.20	0.01
Wauconda and Beecher silt loams, 2 to 4 percent slopes	3.08	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	3.26	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	1.03	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	2.28	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	4.60	0.00
Wauconda and Beecher silt loams, 2 to 4 percent slopes	2.45	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	11.26	0.01
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	1.67	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	5.60	0.01
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	21.11	0.02
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	6.13	0.01
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	223.99	0.21
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	1.65	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	4.58	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	12.80	0.01
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	9.94	0.01
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	0.36	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	4.91	0.00
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	121.22	0.11
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	60.28	0.06
Wauconda and Frankfort silt loams, 0 to 2 percent slopes	4.94	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.97	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.35	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.72	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	7.58	0.01
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	12.20	0.01
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	42.30	0.04
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.44	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.25	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.96	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.92	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.24	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	1.08	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.85	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	30.75	0.03
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.48	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	3.75	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	7.14	0.01

Soil Description	Area	Percent Area
Mausanda and Frankfort silt learns, 2 to 4 percent clones	(Acres)	(70)
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.80	0.00
Wauconda and Frankfort silt loams, 2 to 4 percent slopes	2.72	0.01
Wauconda silt loam 0 to 2 percent slopes	2.38	0.00
Wauconda silt loam, 0 to 2 percent slopes	0.11	0.01
Wauconda silt loam, 0 to 2 percent slopes	5.57	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.52	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.13	0.00
Wauconda silt loam, 0 to 2 percent slopes	3.50	0.00
Wauconda silt loam, 0 to 2 percent slopes	21.00	0.00
Wauconda silt loam, 0 to 2 percent slopes	21.03	0.02
Wauconda silt loam, 0 to 2 percent slopes	17.21	0.02
Wauconda silt loam, 0 to 2 percent slopes	1.27	0.00
Wauconda silt loam, 0 to 2 percent slopes	17.06	0.02
Wauconda silt loam, 0 to 2 percent slopes	17.90	0.02
Wauconda silt loam, 0 to 2 percent slopes	12.01	0.01
Wauconda silt loam, 0 to 2 percent slopes	0.96	0.00
Wauconda silt loam, 0 to 2 percent slopes	21.95	0.02
Wauconda silt loam, 0 to 2 percent slopes	2.55	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.22	0.00
Wauconda silt loam, 0 to 2 percent slopes	9.70	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.77	0.00
Wauconda silt loam, 0 to 2 percent slopes	16.13	0.01
Wauconda silt loam, 0 to 2 percent slopes	1.95	0.00
Wauconda silt loam, 0 to 2 percent slopes	16.67	0.02
Wauconda silt loam, 0 to 2 percent slopes	8.78	0.01
Wauconda silt loam, 0 to 2 percent slopes	13.86	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.66	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.39	0.00
Wauconda silt loam, 0 to 2 percent slopes	1.51	0.00
Wauconda silt loam, 0 to 2 percent slopes	5.86	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.99	0.00
Wauconda silt loam, 0 to 2 percent slopes	7.60	0.01
Wauconda silt loam, 0 to 2 percent slopes	5.67	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.76	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.40	0.00
Wauconda silt loam, 0 to 2 percent slopes	9.17	0.01
Wauconda silt loam, 0 to 2 percent slopes	8.92	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.56	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.14	0.00
Wauconda silt loam, 0 to 2 percent slopes	1.14	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.68	0.00

Soil Description	Area	Percent Area
	(Acres)	(%)
Wauconda silt loam, 0 to 2 percent slopes	2.16	0.00
Wauconda silt loam, 0 to 2 percent slopes	3.32	0.00
Wauconda silt loam, 0 to 2 percent slopes	17.27	0.02
Wauconda silt loam, 0 to 2 percent slopes	4.11	0.00
Wauconda silt loam, 0 to 2 percent slopes	6.06	0.01
Wauconda silt loam, 0 to 2 percent slopes	3.62	0.00
Wauconda silt loam, 0 to 2 percent slopes	3.00	0.00
Wauconda silt loam, 0 to 2 percent slopes	17.12	0.02
Wauconda silt loam, 0 to 2 percent slopes	0.77	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.10	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.89	0.00
Wauconda silt loam, 0 to 2 percent slopes	23.63	0.02
Wauconda silt loam, 0 to 2 percent slopes	4.91	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.04	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.21	0.00
Wauconda silt loam, 0 to 2 percent slopes	7.98	0.01
Wauconda silt loam, 0 to 2 percent slopes	22.28	0.02
Wauconda silt loam, 0 to 2 percent slopes	1.02	0.00
Wauconda silt loam, 0 to 2 percent slopes	3.56	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.68	0.00
Wauconda silt loam, 0 to 2 percent slopes	0.94	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.17	0.00
Wauconda silt loam, 0 to 2 percent slopes	1.24	0.00
Wauconda silt loam, 0 to 2 percent slopes	3.83	0.00
Wauconda silt loam, 0 to 2 percent slopes	12.13	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.73	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.43	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.69	0.00
Wauconda silt loam, 0 to 2 percent slopes	5.40	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.52	0.00
Wauconda silt loam, 0 to 2 percent slopes	4.25	0.00
Wauconda silt loam, 0 to 2 percent slopes	6.58	0.01
Wauconda silt loam, 0 to 2 percent slopes	6.43	0.01
Wauconda silt loam, 0 to 2 percent slopes	2.61	0.00
Wauconda silt loam, 0 to 2 percent slopes	31.52	0.03
Wauconda silt loam, 0 to 2 percent slopes	1.43	0.00
Wauconda silt loam, 0 to 2 percent slopes	2.56	0.00
Wauconda silt loam, 0 to 2 percent slopes	5.86	0.01
Wauconda silt loam, 0 to 2 percent slopes	10.35	0.01
Wauconda silt loam, 0 to 2 percent slopes	8.51	0.01
Wauconda silt loam, 0 to 2 percent slopes	9.27	0.01

Soil Description	Area (Acres)	Percent Area (%)
Wauconda silt loam, 0 to 2 percent slopes	8.29	0.01
Wauconda silt loam, 0 to 2 percent slopes	7.48	0.01
Wauconda silt loam, 2 to 4 percent slopes	2.64	0.00
Wauconda silt loam, 2 to 4 percent slopes	1.63	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.46	0.00
Wauconda silt loam, 2 to 4 percent slopes	4.25	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.16	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.37	0.00
Wauconda silt loam, 2 to 4 percent slopes	1.98	0.00
Wauconda silt loam, 2 to 4 percent slopes	1.24	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.04	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.66	0.00
Wauconda silt loam, 2 to 4 percent slopes	3.51	0.00
Waupecan silt loam, 0 to 2 percent slopes	5.91	0.01
Waupecan silt loam, 0 to 2 percent slopes	2.04	0.00
Waupecan silt loam, 0 to 2 percent slopes	5.33	0.00
Waupecan silt loam, 0 to 2 percent slopes	21.66	0.02
Waupecan silt loam, 0 to 2 percent slopes	2.70	0.00
Waupecan silt loam, 0 to 2 percent slopes	4.35	0.00
Waupecan silt loam, 0 to 2 percent slopes	1.52	0.00
Waupecan silt loam, 0 to 2 percent slopes	1.07	0.00
Waupecan silt loam, 0 to 2 percent slopes	0.03	0.00
Waupecan silt loam, 0 to 2 percent slopes	137.81	0.13
Waupecan silt loam, 0 to 2 percent slopes	1.59	0.00
Waupecan silt loam, 0 to 2 percent slopes	4.98	0.00
Waupecan silt loam, 0 to 2 percent slopes	7.08	0.01
Waupecan silt loam, 0 to 2 percent slopes	11.34	0.01
Waupecan silt loam, 0 to 2 percent slopes	4.23	0.00
Waupecan silt loam, 0 to 2 percent slopes	0.25	0.00
Waupecan silt loam, 0 to 2 percent slopes	3.20	0.00
Waupecan silt loam, 0 to 2 percent slopes	19.21	0.02
Waupecan silt loam, 0 to 2 percent slopes	0.33	0.00
Waupecan silt loam, 0 to 2 percent slopes	4.46	0.00
Waupecan silt loam, 0 to 2 percent slopes	8.13	0.01
Waupecan silt loam, 0 to 2 percent slopes	1.64	0.00
Waupecan silt loam, 0 to 2 percent slopes	7.94	0.01
Waupecan silt loam, 0 to 2 percent slopes	2.78	0.00
Waupecan silt loam, 0 to 2 percent slopes	1.22	0.00
Waupecan silt loam, 0 to 2 percent slopes	1.87	0.00
Waupecan silt loam, 0 to 2 percent slopes	26.31	0.02
Waupecan silt loam, 0 to 2 percent slopes	11.19	0.01

Soil Description	Area	Percent Area
Waynacan silt loam. O to 2 percent slapes	(Acres)	(70)
Waupecan silt loam 0 to 2 percent slopes	9.40	0.01
Waupecan silt loam 0 to 2 percent slopes	9.20	0.00
Waupecan silt loam, 0 to 2 percent slopes	9.90	0.01
Waupecan silt loam, 0 to 2 percent slopes	1.17	0.00
Waupecan silt loam 0 to 2 percent slopes	15.49	0.01
Waupecan silt loam, 0 to 2 percent slopes	107.25	0.00
Waupecan silt loam, 0 to 2 percent slopes	107.23	0.10
Waupecan silt loam, 0 to 2 percent slopes	7 85	0.01
Waupecan silt loam, 2 to 4 percent slopes	/19 93	0.01
Waupecan silt loam, 2 to 4 percent slopes	15.69	0.03
Waupecan silt loam, 2 to 4 percent slopes	14.70	0.01
Waupecan silt loam, 2 to 4 percent slopes	4 59	0.01
Waupecan silt loam, 2 to 4 percent slopes	10.83	0.00
Waupecan silt loam, 2 to 4 percent slopes	5.79	0.01
Waupecan silt loam, 2 to 4 percent slopes	14.06	0.01
Waupecan silt loam, 2 to 4 percent slopes	3.26	0.00
Waupecan silt loam, 2 to 4 percent slopes	2.94	0.00
Waupecan silt loam, 2 to 4 percent slopes	1.20	0.00
Waupecan silt loam, 2 to 4 percent slopes	9.04	0.01
Waupecan silt loam, 2 to 4 percent slopes	6.14	0.01
Waupecan silt loam, 2 to 4 percent slopes	59.48	0.05
Waupecan silt loam, 2 to 4 percent slopes	16.97	0.02
Waupecan silt loam, 2 to 4 percent slopes	243.22	0.22
Waupecan silt loam, 2 to 4 percent slopes	7.57	0.01
Waupecan silt loam, 2 to 4 percent slopes	9.91	0.01
Waupecan silt loam, 2 to 4 percent slopes	13.68	0.01
Waupecan silt loam, 2 to 4 percent slopes	7.15	0.01
Waupecan silt loam, 2 to 4 percent slopes	6.96	0.01
Waupecan silt loam, 2 to 4 percent slopes	3.27	0.00
Waupecan silt loam, 2 to 4 percent slopes	2.01	0.00
Waupecan silt loam, 2 to 4 percent slopes	47.45	0.04
Waupecan silt loam, 2 to 4 percent slopes	1.75	0.00
Waupecan silt loam, 2 to 4 percent slopes	2.51	0.00
Waupecan silt loam, 2 to 4 percent slopes	3.99	0.00
Waupecan silt loam, 2 to 4 percent slopes	3.02	0.00
Waupecan silt loam, 2 to 4 percent slopes	8.37	0.01
Waupecan silt loam, 2 to 4 percent slopes	20.08	0.02
Waupecan silt loam, 2 to 4 percent slopes	1.71	0.00
Waupecan silt loam, 2 to 4 percent slopes	3.45	0.00
Waupecan silt loam, 2 to 4 percent slopes	11.28	0.01

Soil Description	Area	Percent Area
Waungcan silt loam 2 to 4 percent slopes	(ACIES)	(/0)
Waupecan silt loam, 2 to 4 percent slopes	13 27	0.00
Waupecan silt loam, 2 to 4 percent slopes	0.74	0.00
Waupecan silt loam, 2 to 4 percent slopes	6.42	0.01
Waupecan silt loam, 2 to 4 percent slopes	25.28	0.02
Waupecan silt loam, 2 to 4 percent slopes	1.41	0.00
Waupecan silt loam, 2 to 4 percent slopes	5.46	0.01
Waupecan silt loam, 2 to 4 percent slopes	14.31	0.01
Waupecan silt loam, 2 to 4 percent slopes	3.22	0.00
Waupecan silt loam, 2 to 4 percent slopes	5.67	0.01
Waupecan silt loam, 2 to 4 percent slopes	42.29	0.04
Waupecan silt loam, 2 to 4 percent slopes	9.32	0.01
Waupecan silt loam, 2 to 4 percent slopes	0.63	0.00
Waupecan silt loam, 2 to 4 percent slopes	13.65	0.01
Waupecan silt loam, 2 to 4 percent slopes	4.11	0.00
Waupecan silt loam, 2 to 4 percent slopes	11.05	0.01
Waupecan silt loam, 2 to 4 percent slopes	1.43	0.00
Waupecan silt loam, 2 to 4 percent slopes	105.67	0.10
Waupecan silt loam, 2 to 4 percent slopes	19.60	0.02
Waupecan silt loam, 2 to 4 percent slopes	6.73	0.01
Waupecan silt loam, 2 to 4 percent slopes	4.07	0.00
Will loam, 0 to 2 percent slopes	3.08	0.00
Will loam, 0 to 2 percent slopes	25.58	0.02
Will loam, 0 to 2 percent slopes	7.33	0.01
Will loam, 0 to 2 percent slopes	3.88	0.00
Will loam, 0 to 2 percent slopes	1.91	0.00
Will loam, 0 to 2 percent slopes	12.61	0.01
Will loam, 0 to 2 percent slopes	1.01	0.00
Will loam, 0 to 2 percent slopes	2.07	0.00
Will loam, 0 to 2 percent slopes	5.28	0.00
Will loam, 0 to 2 percent slopes	8.84	0.01
Will loam, 0 to 2 percent slopes	6.12	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	1.80	0.00
Zurich and Nappanee silt loams, 2 to 4 percent slopes	9.12	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	9.28	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	8.00	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	1.98	0.00
Zurich and Nappanee silt loams, 2 to 4 percent slopes	1.10	0.00
Zurich and Nappanee silt loams, 2 to 4 percent slopes	10.36	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	7.90	0.01
Zurich and Nappanee silt loams, 2 to 4 percent slopes	8.67	0.01

Soil Description	Area	Percent Area
· · · · · · · · · · · · · · · · · · ·	(Acres)	(%)
Zurich and Nappanee silt loams, 2 to 4 percent slopes	1.84	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.11	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	8.31	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	33.08	0.03
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	19.21	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	8.23	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	22.68	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	23.11	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.77	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.33	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	12.37	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	18.02	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	25.30	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	18.17	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.92	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	11.56	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	19.34	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.78	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	6.93	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.46	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.20	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.63	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	37.62	0.03
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	5.28	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.35	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	6.44	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.31	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	5.78	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.25	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	58.91	0.05
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.25	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.50	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.86	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	58.26	0.05
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.76	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	103.04	0.10
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	6.93	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.01	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	12.55	0.01
Zurich and Ozaukee silt loams. 2 to 4 percent slopes	21.64	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	43.78	0.04

Soil Description	Area	Percent Area
	(Acres)	(%)
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	16.32	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.31	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	13.31	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.76	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	5.95	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.41	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.14	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	36.51	0.03
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.57	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.99	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	22.27	0.02
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	6.68	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	80.91	0.07
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.86	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.45	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	67.60	0.06
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	9.78	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.42	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.88	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.33	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.73	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	42.52	0.04
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.80	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.94	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.30	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.03	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	13.49	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.70	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.06	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	7.20	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.58	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.91	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	78.06	0.07
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	5.74	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.82	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.81	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.86	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.57	0.00
Zurich and Ozaukee silt loams. 2 to 4 percent slopes	13.91	0.01
Zurich and Ozaukee silt loams. 2 to 4 percent slopes	4.49	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.08	0.00

Soil Description	Area	Percent Area
Zurich and Ozaukas silt learns, 2 to 4 percent clanes	(Acres)	(%)
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.01	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	10.49	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	6.05	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.95	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	4.04	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	1.45	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	0.74	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	12.07	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	10.00	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	3.99	0.00
Zurich and Ozaukee slit loams, 2 to 4 percent slopes	22.32	0.02
Zurich and Ozaukee slit loams, 2 to 4 percent slopes	3.24	0.00
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	30.32	0.03
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	9.57	0.01
Zurich and Ozaukee silt loams, 2 to 4 percent slopes	2.75	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	0.70	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.29	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	7.05	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	4.57	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	5.81	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	5.92	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	8.15	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	4.15	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	0.95	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.35	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	0.97	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	34.75	0.03
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.24	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	9.92	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.53	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.45	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.44	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.27	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	13.49	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	0.71	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	11.55	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	7.32	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	8.80	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	6.56	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.94	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.37	0.00

Soil Description	Area	Percent Area
Zurich and Ozaukee silt loams A to 6 percent slopes, eroded	1.80	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, croded	8.76	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	15.56	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	15.25	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.27	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	13.87	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.85	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.34	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.34	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	11.04	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	4.87	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	12.13	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.38	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	49.57	0.05
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.34	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	4.45	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	6.15	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.31	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.12	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.52	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.14	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.17	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.02	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.78	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	8.71	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	12.32	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.90	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	5.43	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	10.02	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.82	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	5.27	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	4.57	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	48.60	0.04
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	3.52	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	2.92	0.00
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	15.42	0.01
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	22.97	0.02
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	20.47	0.02
Zurich and Ozaukee silt loams, 4 to 6 percent slopes, eroded	1.67	0.00
Zurich silt loam, 0 to 2 percent slopes	15.07	0.01
Zurich silt loam, 0 to 2 percent slopes	4.91	0.00

Soil Description	Area (Acres)	Percent Area (%)			
Zurich silt loam, 0 to 2 percent slopes	1.52	0.00			
Zurich silt loam, 0 to 2 percent slopes	0.00	0.00			
Zurich silt loam, 0 to 2 percent slopes	5.17	0.00			
Zurich silt loam, 0 to 2 percent slopes	4.13	0.00			
Zurich silt loam, 0 to 2 percent slopes	1.76	0.00			
Zurich silt loam, 0 to 2 percent slopes	25.96	0.02			
Zurich silt loam, 0 to 2 percent slopes	5.68	0.01			
Zurich silt loam, 0 to 2 percent slopes	13.36	0.01			
Zurich silt loam, 0 to 2 percent slopes	24.55	0.02			
Zurich silt loam, 0 to 2 percent slopes	3.55	0.00			
Zurich silt loam, 0 to 2 percent slopes	6.13	0.01			
Zurich silt loam, 0 to 2 percent slopes	3.93	0.00			
Zurich silt loam, 0 to 2 percent slopes	4.62	0.00			
Zurich silt loam, 0 to 2 percent slopes	10.16	0.01			
Zurich silt loam, 0 to 2 percent slopes	4.35	0.00			
Zurich silt loam, 0 to 2 percent slopes	1.89	0.00			
Zurich silt loam, 0 to 2 percent slopes	11.11	0.01			
Zurich silt loam, 0 to 2 percent slopes	1.17	0.00			
Zurich silt loam, 0 to 2 percent slopes	7.90	0.01			
Zurich silt loam, 0 to 2 percent slopes	1.90	0.00			
Zurich silt loam, 0 to 2 percent slopes	0.89	0.00			
Zurich silt loam, 0 to 2 percent slopes	15.86	0.01			
Zurich silt loam, 0 to 2 percent slopes	6.17	0.01			
Zurich silt loam, 0 to 2 percent slopes	3.92	0.00			
Zurich silt loam, 0 to 2 percent slopes	1.54	0.00			
Zurich silt loam, 0 to 2 percent slopes	14.97	0.01			
Zurich silt loam, 0 to 2 percent slopes	4.38	0.00			
Zurich silt loam, 0 to 2 percent slopes	8.53	0.01			
Zurich silt loam, 0 to 2 percent slopes	2.41	0.00			
Zurich silt loam, 0 to 2 percent slopes	1.33	0.00			
Zurich silt loam, 0 to 2 percent slopes	14.50	0.01			
Zurich silt loam, 0 to 2 percent slopes	10.44	0.01			
Zurich silt loam, 0 to 2 percent slopes	6.88	0.01			
Zurich silt loam, 2 to 4 percent slopes	4.79	0.00			
Zurich silt loam, 2 to 4 percent slopes	4.70	0.00			
Zurich silt loam, 2 to 4 percent slopes	2.63	0.00			
Zurich silt loam, 2 to 4 percent slopes	2.13	0.00			
Zurich silt loam, 2 to 4 percent slopes	3.13	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.37	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.33	0.00			
Zurich silt loam, 2 to 4 percent slopes	0.67	0.00			

Soil Description	Area (Acres)	Percent Area (%)			
Zurich silt loam, 2 to 4 percent slopes	3.56	0.00			
Zurich silt loam, 2 to 4 percent slopes	7.02	0.01			
Zurich silt loam, 2 to 4 percent slopes	1.61	0.00			
Zurich silt loam, 2 to 4 percent slopes	2.85	0.00			
Zurich silt loam, 2 to 4 percent slopes	2.94	0.00			
Zurich silt loam, 2 to 4 percent slopes	0.00	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.77	0.00			
Zurich silt loam, 2 to 4 percent slopes	0.89	0.00			
Zurich silt loam, 2 to 4 percent slopes	25.19	0.02			
Zurich silt loam, 2 to 4 percent slopes	4.57	0.00			
Zurich silt loam, 2 to 4 percent slopes	9.55	0.01			
Zurich silt loam, 2 to 4 percent slopes	2.69	0.00			
Zurich silt loam, 2 to 4 percent slopes	0.77	0.00			
Zurich silt loam, 2 to 4 percent slopes	4.17	0.00			
Zurich silt loam, 2 to 4 percent slopes	6.61	0.01			
Zurich silt loam, 2 to 4 percent slopes	3.74	0.00			
Zurich silt loam, 2 to 4 percent slopes	22.11	0.02			
Zurich silt loam, 2 to 4 percent slopes	1.22	0.00			
Zurich silt loam, 2 to 4 percent slopes	15.66	0.01			
Zurich silt loam, 2 to 4 percent slopes	1.72	0.00			
Zurich silt loam, 2 to 4 percent slopes	10.20	0.01			
Zurich silt loam, 2 to 4 percent slopes	5.86	0.01			
Zurich silt loam, 2 to 4 percent slopes	5.24	0.00			
Zurich silt loam, 2 to 4 percent slopes	6.47	0.01			
Zurich silt loam, 2 to 4 percent slopes	49.98	0.05			
Zurich silt loam, 2 to 4 percent slopes	0.68	0.00			
Zurich silt loam, 2 to 4 percent slopes	4.01	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.69	0.00			
Zurich silt loam, 2 to 4 percent slopes	13.33	0.01			
Zurich silt loam, 2 to 4 percent slopes	0.80	0.00			
Zurich silt loam, 2 to 4 percent slopes	12.41	0.01			
Zurich silt loam, 2 to 4 percent slopes	65.85	0.06			
Zurich silt loam, 2 to 4 percent slopes	0.88	0.00			
Zurich silt loam, 2 to 4 percent slopes	5.45	0.01			
Zurich silt loam, 2 to 4 percent slopes	5.79	0.01			
Zurich silt loam, 2 to 4 percent slopes	2.45	0.00			
Zurich silt loam, 2 to 4 percent slopes	27.17	0.03			
Zurich silt loam, 2 to 4 percent slopes	2.77	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.03	0.00			
Zurich silt loam, 2 to 4 percent slopes	1.72	0.00			
Zurich silt loam, 2 to 4 percent slopes	11.37	0.01			

Soil Description	Area	Percent Area		
	(Acres)	(%)		
Zurich silt loam, 2 to 4 percent slopes	3.33	0.00		
Zurich silt loam, 2 to 4 percent slopes	5.36	0.00		
Zurich silt loam, 2 to 4 percent slopes	4.81	0.00		
Zurich silt loam, 2 to 4 percent slopes	1.29	0.00		
Zurich silt loam, 2 to 4 percent slopes	5.46	0.01		
Zurich silt loam, 2 to 4 percent slopes	12.84	0.01		
Zurich silt loam, 2 to 4 percent slopes	6.67	0.01		
Zurich silt loam, 2 to 4 percent slopes	16.53	0.02		
Zurich silt loam, 2 to 4 percent slopes	15.32	0.01		
Zurich silt loam, 2 to 4 percent slopes	11.91	0.01		
Zurich silt loam, 2 to 4 percent slopes	18.77	0.02		
Zurich silt loam, 2 to 4 percent slopes	4.06	0.00		
Zurich silt loam, 2 to 4 percent slopes	9.81	0.01		
Zurich silt loam, 2 to 4 percent slopes	1.30	0.00		
Zurich silt loam, 2 to 4 percent slopes	9.31	0.01		
Zurich silt loam, 2 to 4 percent slopes	2.47	0.00		
Zurich silt loam, 2 to 4 percent slopes	1.55	0.00		
Zurich silt loam, 2 to 4 percent slopes	15.60	0.01		
Zurich silt loam, 2 to 4 percent slopes	3.44	0.00		
Zurich silt loam, 2 to 4 percent slopes	3.08	0.00		
Zurich silt loam, 2 to 4 percent slopes	6.36	0.01		
Zurich silt loam, 2 to 4 percent slopes	10.07	0.01		
Zurich silt loam, 2 to 4 percent slopes	1.65	0.00		
Zurich silt loam, 2 to 4 percent slopes	2.21	0.00		
Zurich silt loam, 2 to 4 percent slopes	2.12	0.00		
Zurich silt loam, 2 to 4 percent slopes	6.18	0.01		
Zurich silt loam, 2 to 4 percent slopes	0.76	0.00		
Zurich silt loam, 2 to 4 percent slopes	2.27	0.00		
Zurich silt loam, 2 to 4 percent slopes	10.93	0.01		
Zurich silt loam, 2 to 4 percent slopes	3.03	0.00		
Zurich silt loam, 2 to 4 percent slopes	8.09	0.01		
Zurich silt loam, 2 to 4 percent slopes	1.77	0.00		
Zurich silt loam, 2 to 4 percent slopes	2.84	0.00		
Zurich silt loam, 2 to 4 percent slopes	4.62	0.00		
Zurich silt loam, 2 to 4 percent slopes	1.57	0.00		
Zurich silt loam, 2 to 4 percent slopes	22.07	0.02		
Zurich silt loam. 2 to 4 percent slopes	28.50	0.03		
Zurich silt loam, 2 to 4 percent slopes	4.43	0.00		
Zurich silt loam. 2 to 4 percent slopes	3.58	0.00		
Zurich silt loam, 2 to 4 percent slopes	3.73	0.00		
Zurich silt loam, 2 to 4 percent slopes	1.00	0.00		

Soil Description	Area	Percent Area
	(Acres)	(%)
Zurich silt loam, 2 to 4 percent slopes	7.98	0.01
Zurich silt loam, 2 to 4 percent slopes	2.15	0.00
Zurich silt loam, 2 to 4 percent slopes	1.38	0.00
Zurich silt loam, 2 to 4 percent slopes	3.61	0.00
Zurich silt loam, 2 to 4 percent slopes	19.71	0.02
Zurich silt loam, 2 to 4 percent slopes	3.48	0.00
Zurich silt loam, 2 to 4 percent slopes	2.30	0.00
Zurich silt loam, 2 to 4 percent slopes	4.66	0.00
Zurich silt loam, 2 to 4 percent slopes	39.32	0.04
Zurich silt loam, 2 to 4 percent slopes	12.11	0.01
Zurich silt loam, 2 to 4 percent slopes	10.05	0.01
Zurich silt loam, 2 to 4 percent slopes	8.08	0.01
Zurich silt loam, 2 to 4 percent slopes	5.10	0.00
Zurich silt loam, 2 to 4 percent slopes	0.79	0.00
Zurich silt loam, 2 to 4 percent slopes	3.08	0.00
Zurich silt loam, 2 to 4 percent slopes	1.02	0.00
Zurich silt loam, 2 to 4 percent slopes	35.05	0.03
Zurich silt loam, 2 to 4 percent slopes	2.55	0.00
Zurich silt loam, 2 to 4 percent slopes	5.02	0.00
Zurich silt loam, 2 to 4 percent slopes	16.26	0.02
Zurich silt loam, 2 to 4 percent slopes	6.80	0.01
Zurich silt loam, 2 to 4 percent slopes	3.19	0.00
Zurich silt loam, 2 to 4 percent slopes	2.27	0.00
Zurich silt loam, 2 to 4 percent slopes	3.42	0.00
Zurich silt loam, 2 to 4 percent slopes	25.51	0.02
Zurich silt loam, 2 to 4 percent slopes	1.49	0.00
Zurich silt loam, 2 to 4 percent slopes	7.95	0.01
Zurich silt loam, 2 to 4 percent slopes	4.31	0.00
Zurich silt loam, 2 to 4 percent slopes	1.47	0.00
Zurich silt loam, 2 to 4 percent slopes	5.26	0.00
Zurich silt loam, 2 to 4 percent slopes	1.32	0.00
Zurich silt loam, 2 to 4 percent slopes	0.91	0.00
Zurich silt loam, 2 to 4 percent slopes	2.55	0.00
Zurich silt loam, 2 to 4 percent slopes	14.32	0.01
Zurich silt loam, 2 to 4 percent slopes	4.15	0.00
Zurich silt loam, 2 to 4 percent slopes	5.98	0.01
Zurich silt loam, 2 to 4 percent slopes	16.30	0.02
Zurich silt loam, 2 to 4 percent slopes	30.85	0.03
Zurich silt loam, 2 to 4 percent slopes	14.76	0.01
Zurich silt loam, 2 to 4 percent slopes	8.58	0.01
Zurich silt loam, 2 to 4 percent slopes	2.51	0.00

Zurich silt loam, 2 to 4 percent slopes(%)	0.00 0.01
Zurich silt loam, 2 to 4 percent slopes 3.27	0.00
	0.01
Zurich silt loam, 2 to 4 percent slopes 14.54	0.04
Zurich silt loam, 2 to 4 percent slopes 6.22	0.01
Zurich silt loam, 2 to 4 percent slopes 3.01	0.00
Zurich silt loam, 2 to 4 percent slopes 2.96	0.00
Zurich silt loam, 2 to 4 percent slopes 10.69	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 2.26	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded7.58	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded1.51	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded9.03	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded7.80	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded2.15	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 1.88	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 20.79	0.02
Zurich silt loam, 4 to 6 percent slopes, eroded 9.16	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 4.95	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 6.06	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 1.44	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 11.34	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 7.86	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 3.57	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 0.60	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 2.60	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 41.38	0.04
Zurich silt loam, 4 to 6 percent slopes, eroded 2.55	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 0.00	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 2.21	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 3.85	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 6.27	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 1.10	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 11.06	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 2.10	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 1.71	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 6.81	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 1.28	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 1.48	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 2.17	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 11 24	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 2 81	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded 10.03	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded 10.15	0.01

Soil Description	Area	Percent Area
Zurich silt loam 4 to 6 percent slopes eroded	(Acres)	(<i>/</i> 0)
Zurich silt loam 4 to 6 percent slopes, eroded	1 18	0.01
Zurich silt loam, 4 to 6 percent slopes, croded	11.10	0.00
Zurich silt loam, 4 to 6 percent slopes, croded	1 23	0.01
Zurich silt loam, 4 to 6 percent slopes, croded	19.23	0.02
Zurich silt loam, 4 to 6 percent slopes, eroded	1.83	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	1.84	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	1.69	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	1.54	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	0.89	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	8.00	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	1.33	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	4.71	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	12.71	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	5.07	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	9.34	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	4.34	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	2.45	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	10.25	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	28.34	0.03
Zurich silt loam, 4 to 6 percent slopes, eroded	4.52	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	2.57	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	7.93	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	3.66	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	1.57	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	4.31	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	3.11	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	8.67	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	4.98	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	29.91	0.03
Zurich silt loam, 4 to 6 percent slopes, eroded	2.21	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	0.78	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	17.68	0.02
Zurich silt loam, 4 to 6 percent slopes, eroded	11.70	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	13.13	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	7.50	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	1.91	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	5.76	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	2.55	0.00
Zurich silt loam, 4 to 6 percent slopes, eroded	5.48	0.01
Zurich silt loam, 4 to 6 percent slopes, eroded	5.45	0.01

Soil Description	Area	Percent Area			
Zurich silt loam 4 to 6 percent slopes eroded	(Acres)	(/0)			
Zurich silt loam 4 to 6 percent slopes, eroded	2.92	0.00			
Zurich silt loam, 4 to 6 percent slopes, croded	20.20	0.02			
Zurich silt loam, 4 to 6 percent slopes, croded	6.46	0.01			
Zurich silt loam, 4 to 6 percent slopes, croded	0.40	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.38	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	5.94	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	6.30	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	10.59	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	3.36	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	1.47	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	8.09	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	14.84	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	17.41	0.02			
Zurich silt loam, 4 to 6 percent slopes, eroded	1.15	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	4.28	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	3.93	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.09	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.76	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	1.11	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	4.88	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.44	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	5.90	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	3.87	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.54	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.10	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	28.11	0.03			
Zurich silt loam, 4 to 6 percent slopes, eroded	1.14	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	3.43	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.16	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	3.94	0.00			
Zurich silt loam, 4 to 6 percent slopes, eroded	8.85	0.01			
Zurich silt loam, 4 to 6 percent slopes, eroded	54.41	0.05			
Zurich silt loam, 4 to 6 percent slopes, eroded	2.60	0.00			
Zurich silt loam, 6 to 12 percent slopes, eroded	33.59	0.03			
Zurich silt loam, 6 to 12 percent slopes, eroded	3.95	0.00			
Zurich silt loam, 6 to 12 percent slopes, eroded	1.95	0.00			
Zurich silt loam, 6 to 12 percent slopes, eroded	20.42	0.02			
Zurich silt loam, 6 to 12 percent slopes, eroded	11.59	0.01			
Zurich silt loam, 6 to 12 percent slopes, eroded	8.27	0.01			
Zurich silt loam, 6 to 12 percent slopes, eroded	2.36	0.00			

Soil Description	Area	Percent Area
Zurich silt loam 6 to 12 percent slopes, eroded	(Acres)	(/0)
Zurich silt loam, 6 to 12 percent slopes, eroded	90.58	0.00
Zurich silt loam, 6 to 12 percent slopes, croded	3 29	0.00
Zurich silt loam, 6 to 12 percent slopes, croded	8.66	0.00
Zurich silt loam, 6 to 12 percent slopes, croded	2.56	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	6.62	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	9.37	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	15.91	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	3.45	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	1.25	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	5.79	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	2.10	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	2.61	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	6.95	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	1.13	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	13.94	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	2.61	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	2.30	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	7.59	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	4.20	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	1.18	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	2.94	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	5.20	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	20.31	0.02
Zurich silt loam, 6 to 12 percent slopes, eroded	16.31	0.02
Zurich silt loam, 6 to 12 percent slopes, eroded	3.42	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	6.93	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	5.90	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	6.51	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	4.98	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	3.24	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	10.96	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	1.76	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	5.76	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	5.19	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	1.79	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	4.57	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	46.71	0.04
Zurich silt loam, 6 to 12 percent slopes, eroded	2.92	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	3.03	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	3.93	0.00

Soil Description	Area (Acres)	Percent Area (%)
Zurich silt loam, 6 to 12 percent slopes, eroded	20.95	0.02
Zurich silt loam, 6 to 12 percent slopes, eroded	5.79	0.01
Zurich silt loam, 6 to 12 percent slopes, eroded	4.35	0.00
Zurich silt loam, 6 to 12 percent slopes, eroded	17.70	0.02
Zurich silt loam, 6 to 12 percent slopes, eroded	1.34	0.00

Appendix D

Historical Water Quality Data

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
	FOX RIVER	2003-01-03		Chloride	145.00	mg/L	
	FOX RIVER	2003-03-14		Chloride	656.00	mg/L	
	FOX RIVER	2003-04-10		Chloride	414.00	mg/L	
	FOX RIVER	2003-05-22		Chloride	32.30	mg/L	
	FOX RIVER	2003-06-24		Chloride	239.00	mg/L	
	FOX RIVER	2003-08-06		Chloride	103.00	mg/L	
	FOX RIVER	2003-09-05		Chloride	194.00	mg/L	
	FOX RIVER	2003-10-15		Chloride	125.00	mg/L	
	FOX RIVER	2003-11-24		Chloride	94.20	mg/L	
	FOX RIVER	2004-03-22		Chloride	91.50	mg/L	
	FOX RIVER	2004-04-22		Chloride	98.90	mg/L	
	FOX RIVER	2004-05-20		Chloride	74.60	mg/L	
	FOX RIVER	2004-07-16		Chloride	78.20	mg/L	
	FOX RIVER	2004-08-06		Chloride	89.30	mg/L	
	FOX RIVER	2004-09-22		Chloride	87.90	mg/L	
	FOX RIVER	2004-11-03		Chloride	86.40	mg/L	
	FOX RIVER	2004-12-27		Chloride	112.00	mg/L	
	FOX RIVER	2005-02-16		Chloride	88.90	mg/L	
	FOX RIVER	2005-03-17		Chloride	95.20	mg/L	
	FOX RIVER	2005-04-22		Chloride	92.70	mg/L	
	FOX RIVER	2005-05-25		Chloride	106.00	mg/L	
	FOX RIVER	2005-06-29		Chloride	121.00	mg/L	
	FOX RIVER	2005-08-16		Chloride	146.00	mg/L	
	FOX RIVER	2005-09-22		Chloride	150.00	mg/L	
	FOX RIVER	2005-10-19		Chloride	160.00	mg/L	
	FOX RIVER	2005-10-19		Chloride	160.00	mg/L	
	FOX RIVER	2005-11-14		Chloride	179.00	mg/L	
	FOX RIVER	2006-02-10		Chloride	302.00	mg/L	
	FOX RIVER	2006-03-22		Chloride	98.40	mg/L	
	FOX RIVER	2006-04-26		Chloride	122.00	mg/L	
	FOX RIVER	2006-09-01		Chloride	126.00	mg/L	
	FOX RIVER	2006-11-01		Chloride	92.80	mg/L	
	FOX RIVER	2006-12-14		Chloride	93.70	mg/L	
	FOX RIVER			Solids, Total Suspended (TSS)	55.00	mg/L	
	FOX RIVER			Solids, Total Suspended (TSS)	5.33	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,1,1,2-Tetrachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,1,1,2-Tetrachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,1,2,2-Tetrachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,1,2,2-Tetrachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,1-Dichloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,1-Dichloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,1-Dichloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,1-Dichloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,1-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,1-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2,3-Trichloropropane	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-05-22	12:00	1,2,3-Trichloropropane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2,4,5-Tetrachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,2,4,5-Tetrachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2,4-Trichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,2,4-Trichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2-Dibromoethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,2-Dibromoethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,2-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,2-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,2-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,3-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,3-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,3-Dichloropropane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,3-Dichloropropane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,3-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,3-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,4-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,4-Dichlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1,4-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1,4-Dinitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1-Chlorophthalene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1-Chlorophthalene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	1-phthylamine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	1-phthylamine	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,2-Dichloropropane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,2-Dichloropropane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,2-Oxybis(1-chloropropane)	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,2-Oxybis(1-chloropropane)	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,3,4,6-Tetrachlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,3,4,6-Tetrachlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4,5-Trichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4,5-Trichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4,6-Trichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4,6-Trichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4-Dichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4-Dichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4-Dimethylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4-Dimethylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4-Dinitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4-Dinitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,4-Dinitrotoluene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,4-Dinitrotoluene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,6-Dichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2,6-Dichlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2,6-Dinitrotoluene	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-05-22	12:00	2,6-Dinitrotoluene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Butanone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Butanone	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Chlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Chlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Chlorophthalene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Chlorophthalene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Hexanone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Hexanone	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Methylphthalene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Methylphthalene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Nitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Nitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-phthylamine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-phthylamine	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	2-Picoline	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	2-Picoline	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	3,3-Dichlorobenzidine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	3,3-Dichlorobenzidine	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	3-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	3-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4,6-Dinitro-2-methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4,6-Dinitro-2-methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Bromophenyl phenyl ether	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Bromophenyl phenyl ether	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Chloro-3-methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Chloro-3-methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Chloroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Chloroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Chlorophenyl phenyl ether	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Chlorophenyl phenyl ether	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Methyl-2-pentanone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Methyl-2-pentanone	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Methylphenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Nitroaniline	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Nitrobiphenyl	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Nitrobiphenyl	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	4-Nitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	4-Nitrophenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	5-Nitroacephthene	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-05-22	12:00	5-Nitroacephthene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	7,12-Dimethylbenzo(a)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	7,12-Dimethylbenzo(a)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Acephthene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Acephthene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Acephthylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Acephthylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Acetone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Acetone	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Acetophenone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Acetophenone	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Alkalinity, total	240	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Alkalinity, total	230	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Alkalinity, total	200	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Alkalinity, total	235	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Alkalinity, total	260	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Alkalinity, total	325	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Alkalinity, total	220	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Alkalinity, total	225	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Alkalinity, total	240	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Alkalinity, total	245	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Alkalinity, total	225	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Alkalinity, total	220	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Alkalinity, total	250	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Alkalinity, total	260	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Alkalinity, total	280	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Alkalinity, total	260	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Alkalinity, total	255	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Alkalinity, total	220	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Alkalinity, total	230	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Alkalinity, total	225	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Alkalinity, total	175	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Alkalinity, total	195	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Alkalinity, total	205	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Alkalinity, total	200	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Alkalinity, total	235	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Alkalinity, total	265	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Alkalinity, total	250	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Alkalinity, total	170	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Alkalinity, total	185	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Alkalinity, total	225	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Alkalinity, total	215	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Alkalinity, total	235	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Alkalinity, total	220	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Alkalinity, total	245	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Alkalinity, total	265	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-07-01	11:40	Aluminum	NA	ug/L	-
DT-22	FOX RIVER	2008-07-01	11:40	Aluminum	543	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Aluminum	7.75	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Aluminum	370	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Aluminum	189	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Aluminum	71.2	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Aluminum	5.62	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Aluminum	384	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Aluminum	87.8	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Aluminum	200	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Aluminum	242	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Aluminum	123	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Aluminum	9	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Aluminum	157	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Aluminum	41.2	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Aluminum	202	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Aluminum	186	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Aluminum	5.38	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Aluminum	189	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Aluminum	19.7	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Aluminum	17.5	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Aluminum	200	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Aluminum	5.58	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Aluminum	49.6	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Aluminum	173	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Aluminum	17.8	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Aluminum	286	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Aluminum	275	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Aluminum	178	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Aluminum	9.78	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Aluminum	71	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Aluminum	64.7	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Aluminum	64.6	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Aluminum	62.9	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-04-20	12:30	Aluminum	182	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Aluminum	270	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Aluminum	120	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Aluminum	481	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Aluminum	114	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Aluminum	36	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Aluminum	355	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Aluminum	82.6	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Aluminum	159	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Aluminum	34.4	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Aluminum	165	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Aluminum	12.3	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Aluminum	156	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Aluminum	167	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Aluminum	220	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Aluminum	107	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Aluminum	13.3	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Aluminum	204	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Aluminum	17.6	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Aluminum	195	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Aluminum	8.25	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Aluminum	179	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Aluminum	3.67	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Aluminum	59.4	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Aluminum	29.1	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Aluminum	85.9	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Aluminum	9.33	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Aluminum	122	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Aluminum	11	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Aluminum	185	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Aluminum	16	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Aluminum	339	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Aluminum	5.59	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Aluminum	343	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-07-02	10:49	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Aluminum	387	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Aluminum	19.7	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Aluminum	248	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Aluminum	141	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Aluminum	51.9	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Aluminum	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Aluminum	49.8	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Anthracene	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Arsenic	4.53	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Arsenic	4.5	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Arsenic	15.8	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Arsenic	28.7	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Arsenic	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Arsenic	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Arsenic	1.87	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Arsenic	2.84	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Arsenic	4.32	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Arsenic	3.26	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Arsenic	1.27	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Arsenic	1.66	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Arsenic	5.04	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Arsenic	5.34	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Arsenic	2.09	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Arsenic	2.8	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Arsenic	1.86	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Arsenic	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-04-27	12:45	Arsenic	2.47	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Arsenic	3.82	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Arsenic	2.82	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Arsenic	2.52	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Arsenic	3.23	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Arsenic	3.25	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Arsenic	1.14	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Arsenic	2.94	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Arsenic	5.61	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Arsenic	3.61	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Arsenic	3.56	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Arsenic	2.97	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Arsenic	4.26	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Arsenic	4.91	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Arsenic	4	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Arsenic	7.16	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Arsenic	6.32	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Arsenic	3.87	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Arsenic	2.48	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Arsenic	1.53	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Arsenic	2.3	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Arsenic	1.68	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Arsenic	1.94	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Arsenic	2.15	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Arsenic	2.6	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Arsenic	2.38	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Arsenic	2.62	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Arsenic	2.82	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-10-03	10:20	Arsenic	1.97	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Arsenic	2.09	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Arsenic	1.74	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Arsenic	1.72	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Arsenic	1.83	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Arsenic	2	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Arsenic	1.76	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Arsenic	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Arsenic	1.91	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Azobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Azobenzene	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Barium	45.2	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Barium	47.7	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Barium	40.8	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Barium	50.8	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Barium	47	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Barium	52.9	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Barium	46.2	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Barium	51.7	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Barium	46.7	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Barium	46.8	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Barium	41.3	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Barium	46.3	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Barium	48.1	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Barium	51	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Barium	39.8	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Barium	43.7	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Barium	33.7	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Barium	37.7	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Barium	41.3	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Barium	48.5	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-06-17	11:00	Barium	49.5	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Barium	53.3	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Barium	47.6	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Barium	51.8	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Barium	51.4	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Barium	53.6	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Barium	46	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Barium	48.4	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Barium	48.8	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Barium	50.2	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Barium	46.6	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Barium	49.2	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Barium	42.8	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Barium	48.2	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Barium	41.2	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Barium	46.9	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Barium	45.7	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Barium	53.9	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Barium	35.1	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Barium	39.2	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Barium	47.2	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Barium	50.6	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Barium	39.8	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Barium	44.1	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Barium	47.3	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Barium	47.8	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Barium	36.1	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Barium	36.9	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Barium	40.5	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Barium	41.8	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Barium	42.4	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Barium	45.2	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Barium	50.2	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Barium	55.4	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Barium	51	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Barium	57.4	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Barium	48.9	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Barium	55.4	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Barium	41.3	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Barium	50	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Barium	42.4	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Barium	46.2	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Barium	58.1	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Barium	61.9	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Barium	40.1	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Barium	43.3	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-04-23	12:04	Barium	44.8	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Barium	53.8	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Barium	42.2	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Barium	45.3	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Barium	48	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Barium	59.1	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Barium	52.9	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Barium	64.4	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Barium	41	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Barium	51.6	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Barium	41.9	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Barium	50	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Barium	49.2	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Barium	56.9	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Barium	54.1	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Barium	62.3	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Barium	49.4	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Barium	54.9	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Barium	54.6	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Barium	62.6	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Barium	54	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Barium	57.9	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Barium	35.8	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Barium	38.5	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Barium	31.6	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Barium	42.1	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Barium	56.2	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Barium	60.1	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Barium	41.2	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Barium	51.9	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Barium	54.3	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Barium	59	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Barium	45.2	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Barium	59.3	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Barium	53.5	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Barium	62.6	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Barium	51.1	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Barium	54.1	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Benzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Benzo(a)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzo(a)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Benzo(a)pyrene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzo(a)pyrene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Benzo(b)fluoranthene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzo(b)fluoranthene	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	Benzo(g,h,i)perylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzo(g,h,i)perylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Benzo(k)fluoranthene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Benzo(k)fluoranthene	NA	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Beryllium	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Beryllium	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Beryllium	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Beryllium	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Beryllium	0.43	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Beryllium	0.5	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Beryllium	0.13	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Beryllium	0.34	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Beryllium	0.13	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Beryllium	0.14	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Beryllium	0.12	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Beryllium	0.15	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Beryllium	0.28	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Beryllium	0.23	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Beryllium	0.19	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Beryllium	0.24	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-01-24	12:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Beryllium	0.65	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Beryllium	0.66	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Beryllium	0.14	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Beryllium	0.49	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Beryllium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bis(2-chloroethoxy)methane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bis(2-chloroethoxy)methane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bis(2-chloroethyl)ether	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bis(2-chloroethyl)ether	NA	ug/L	
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	-------	----------------------------	--------	-------	-------
DT-22	FOX RIVER	2013-04-30	11:05	Bis(2-ethylhexyl)phthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bis(2-ethylhexyl)phthalate	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Boron	47.8	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Boron	46.8	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Boron	27.1	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Boron	21.5	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Boron	45	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Boron	43.3	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Boron	43.7	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Boron	42.7	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Boron	43.2	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Boron	41.7	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Boron	38.1	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Boron	39.7	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Boron	41.2	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Boron	41.6	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Boron	35.7	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Boron	36.6	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Boron	33	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Boron	33.9	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Boron	45.8	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Boron	46.4	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Boron	48.2	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Boron	48.4	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Boron	54.6	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Boron	54.6	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Boron	51.8	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Boron	49.9	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Boron	38.5	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Boron	40.9	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Boron	28.3	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Boron	27.9	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Boron	38.6	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Boron	41.8	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Boron	22	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Boron	24.3	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Boron	27.5	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Boron	32	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Boron	52.6	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Boron	74.9	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Boron	32.8	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Boron	33	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Boron	62.4	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Boron	65.7	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Boron	52.6	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Boron	48.5	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-12-15	11:20	Boron	54	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Boron	54	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Boron	32.1	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Boron	33.4	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Boron	52.4	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Boron	44.1	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Boron	17.7	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Boron	22.1	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Boron	36.6	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Boron	37.1	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Boron	54	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Boron	55.8	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Boron	65.4	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Boron	56.3	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Boron	42	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Boron	44.2	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Boron	39.1	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Boron	40.4	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Boron	39.9	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Boron	42.8	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Boron	49	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Boron	36.9	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Boron	41.3	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Boron	42.7	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Boron	48.8	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Boron	49.8	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Boron	53.8	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Boron	57.9	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Boron	64.9	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Boron	66.9	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Boron	65.8	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Boron	67.3	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Boron	79	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Boron	80.9	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Boron	76	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Boron	79.8	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Boron	77	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Boron	78.3	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Boron	51.9	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Boron	53.7	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Boron	62.8	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Boron	59.4	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Boron	54	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Boron	57.2	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Boron	30	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Boron	19.4	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	Boron	42.1	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Boron	25.8	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Boron	41.5	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Boron	46.7	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Boron	40.7	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Boron	42.8	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Boron	48.5	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Boron	49	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Boron	51.4	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Boron	53.3	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Boron	49.8	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Boron	51.6	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Boron	46.5	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Boron	45.5	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bromobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bromobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bromochloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bromochloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bromodichloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bromodichloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bromoform	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bromoform	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Bromomethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Bromomethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Butyl benzyl phthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Butyl benzyl phthalate	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Cadmium	0.4	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Cadmium	1.14	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Cadmium	0.54	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Cadmium	0.35	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Cadmium	0.33	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Cadmium	0.51	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Cadmium	0.27	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Cadmium	1.16	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Cadmium	1.16	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Cadmium	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-06-17	11:00	Cadmium	0.99	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Cadmium	1.18	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Cadmium	0.65	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Cadmium	1.08	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Cadmium	1.68	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Cadmium	1.59	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Cadmium	0.44	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Cadmium	0.44	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Cadmium	0.54	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Cadmium	0.55	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Cadmium	0.46	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Cadmium	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-04-23	12:04	Cadmium	0.22	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Cadmium	0.43	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Cadmium	0.31	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Cadmium	0.53	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Cadmium	0.24	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Cadmium	0.23	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Cadmium	0.28	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Cadmium	0.83	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Cadmium	0.49	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Cadmium	0.72	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Cadmium	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Calcium	60900	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Calcium	79200	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Calcium	58400	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Calcium	63000	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Calcium	61900	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Calcium	65400	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Calcium	64800	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Calcium	63700	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-12-29	12:25	Calcium	63600	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Calcium	64600	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Calcium	77300	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Calcium	80900	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Calcium	60600	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Calcium	62500	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Calcium	50400	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Calcium	52400	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Calcium	63000	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Calcium	64800	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Calcium	63900	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Calcium	66800	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Calcium	45000	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Calcium	51900	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Calcium	53600	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Calcium	53200	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Calcium	68300	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Calcium	70000	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Calcium	84400	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Calcium	82200	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Calcium	76300	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Calcium	77800	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Calcium	68900	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Calcium	72300	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Calcium	63000	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Calcium	68300	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Calcium	53300	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Calcium	59000	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Calcium	46900	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Calcium	49100	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Calcium	55900	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Calcium	58200	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Calcium	63100	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Calcium	66600	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Calcium	82100	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Calcium	80500	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Calcium	65200	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Calcium	64000	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Calcium	62500	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Calcium	60200	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Calcium	68200	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Calcium	69600	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Calcium	61100	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Calcium	65300	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Calcium	49300	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Calcium	49400	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-09-06	11:45	Calcium	48100	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Calcium	54200	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Calcium	57300	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Calcium	60900	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Calcium	66200	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Calcium	68800	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Calcium	83300	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Calcium	86000	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Calcium	75100	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Calcium	74900	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Calcium	62300	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Calcium	67200	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Calcium	58200	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Calcium	61600	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Calcium	46000	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Calcium	54400	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Calcium	51700	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Calcium	60300	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Calcium	28300	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Calcium	33600	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Calcium	34600	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Calcium	39700	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Calcium	41100	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Calcium	46500	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Calcium	41000	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Calcium	45800	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Calcium	56000	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Calcium	57600	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Calcium	67300	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Calcium	68900	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Calcium	80000	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Calcium	82800	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Calcium	56000	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Calcium	57800	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Calcium	56000	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Calcium	57600	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Calcium	65300	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Calcium	73600	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Calcium	58200	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Calcium	68000	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Calcium	60900	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Calcium	64100	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Calcium	53300	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Calcium	53800	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Calcium	61200	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Calcium	64000	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-12-04	11:39	Calcium	79500	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Calcium	86500	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Carbazole	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Carbazole	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Carbon disulfide	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Carbon disulfide	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Carbon tetrachloride	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Carbon tetrachloride	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Carbon, organic	7.57	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Carbon, organic	9.11	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Carbon, organic	8	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Carbon, organic	7.16	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Carbon, organic	6.64	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Carbon, organic	5.73	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Carbon, organic	5.16	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Carbon, organic	6.04	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Carbon, organic	7.81	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Carbon, organic	7.17	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Carbon, organic	6.89	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Carbon, organic	7.01	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Carbon, organic	6.62	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Carbon, organic	7.61	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Carbon, organic	6.45	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Carbon, organic	6.39	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Carbon, organic	4.69	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Carbon, organic	6.82	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Carbon, organic	7.46	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Carbon, organic	8.87	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Carbon, organic	7.39	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Carbon, organic	6.16	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Carbon, organic	5.45	mg/L	
DT-22	FOX RIVER	2008-05-21	11:15	Chloride	106	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Chloride	71.6	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Chloride	80.4	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Chloride	86.7	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Chloride	942	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Chloride	101	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Chloride	120	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Chloride	89.6	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Chloride	73.7	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chloride	76.5	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Chloride	89.1	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chloride	104	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chloride	106	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Chloride	74.8	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Chloride	103	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-02-03	11:35	Chloride	160	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Chloride	114	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Chloride	94	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chloride	98.7	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chloride	63.1	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chloride	101	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chloride	111	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chloride	128	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Chloride	103	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chloride	78.2	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chloride	89.5	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chloride	105	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chloride	107	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chloride	110	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chloride	107	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chloride	108	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chloride	136	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Chloride	115	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Chloride	103	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Chloride	107	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Chloride	121	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Chloride	124	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Chloride	136	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Chloride	137	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Chloride	157	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Chloride	154	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Chloride	155	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Chloride	151	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Chloride	166	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Chloride	114	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chloride	84.5	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chloride	105	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Chloride	62.6	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Chloride	96.5	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Chloride	117	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Chloride	120	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Chloride	116	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chloroform	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chloroform	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chloromethane	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Chlorophyll a, corrected for pheophytin	13.3	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-07-01	11:40	Chlorophyll a, corrected for pheophytin	78.2	ug/L	1 ft
DT-22	FOX RIVER	2008-08-05	11:25	Chlorophyll a, corrected for pheophytin	75.9	ug/L	1 ft
DT-22	FOX RIVER	2008-09-23	11:35	Chlorophyll a, corrected for pheophytin	83	ug/L	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Chlorophyll a, corrected for pheophytin	4.82	ug/L	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Chlorophyll a, corrected for pheophytin	13.3	ug/L	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Chlorophyll a, corrected for pheophytin	30.4	ug/L	1 ft
DT-22	FOX RIVER	2009-05-06	12:25	Chlorophyll a, corrected for pheophytin	21.2	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chlorophyll a, corrected for pheophytin	7.09	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Chlorophyll a, corrected for pheophytin	7.1	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chlorophyll a, corrected for pheophytin	32	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chlorophyll a, corrected for pheophytin	19.2	ug/L	1 ft
DT-22	FOX RIVER	2009-11-04	12:50	Chlorophyll a, corrected for pheophytin	7.48	ug/L	1 ft
DT-22	FOX RIVER	2009-12-16	11:40	Chlorophyll a, corrected for pheophytin	5.72	ug/L	1 ft
DT-22	FOX RIVER	2010-02-03	11:35	Chlorophyll a, corrected for pheophytin	3.56	ug/L	1 ft
DT-22	FOX RIVER	2010-03-10	13:40	Chlorophyll a, corrected for pheophytin	18.7	ug/L	1 ft
DT-22	FOX RIVER	2010-04-27	12:45	Chlorophyll a, corrected for pheophytin	6.41	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chlorophyll a, corrected for pheophytin	34	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chlorophyll a, corrected for pheophytin	31	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chlorophyll a, corrected for pheophytin	69.4	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chlorophyll a, corrected for pheophytin	11.6	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chlorophyll a, corrected for pheophytin	11.2	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Chlorophyll a, corrected for pheophytin	1.07	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chlorophyll a, corrected for pheophytin	46.5	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chlorophyll a, corrected for pheophytin	35.2	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chlorophyll a, corrected for pheophytin	124	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chlorophyll a, corrected for pheophytin	121	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chlorophyll a, corrected for pheophytin	101	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chlorophyll a, corrected for pheophytin	56.1	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chlorophyll a, corrected for pheophytin	40	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chlorophyll a, corrected for pheophytin	6.41	ug/L	1 ft
DT-22	FOX RIVER	2012-02-22	11:45	Chlorophyll a, corrected for pheophytin	11.2	ug/L	1 ft
DT-22	FOX RIVER	2012-04-23	12:04	Chlorophyll a, corrected for pheophytin	76.5	ug/L	1 ft
DT-22	FOX RIVER	2012-05-15	12:34	Chlorophyll a, corrected for pheophytin	57	ug/L	1 ft
DT-22	FOX RIVER	2012-06-11	15:14	Chlorophyll a, corrected for pheophytin	113	ug/L	1 ft
DT-22	FOX RIVER	2012-06-28	11:05	Chlorophyll a, corrected for pheophytin	145	ug/L	1 ft
DT-22	FOX RIVER	2012-07-26	10:45	Chlorophyll a, corrected for pheophytin	205	ug/L	1 ft
DT-22	FOX RIVER	2012-07-31	13:49	Chlorophyll a, corrected for pheophytin	231	ug/L	1 ft
DT-22	FOX RIVER	2012-09-11	12:24	Chlorophyll a, corrected for pheophytin	222	ug/L	1 ft
DT-22	FOX RIVER	2012-10-03	10:20	Chlorophyll a, corrected for pheophytin	200	ug/L	1 ft
DT-22	FOX RIVER	2012-11-08	12:10	Chlorophyll a, corrected for pheophytin	42.7	ug/L	1 ft
DT-22	FOX RIVER	2012-12-13	11:15	Chlorophyll a, corrected for pheophytin	41.8	ug/L	1 ft
DT-22	FOX RIVER	2013-01-29	12:10	Chlorophyll a, corrected for pheophytin	46.7	ug/L	1 ft
DT-22	FOX RIVER	2013-03-20	12:24	Chlorophyll a, corrected for pheophytin	14.2	ug/L	1 ft
DT-22	FOX RIVER	2013-04-30	11:05	Chlorophyll a, corrected for pheophytin	58.7	ug/L	1 ft
DT-22	FOX RIVER	2013-05-22	12:00	Chlorophyll a, corrected for pheophytin	92.6	ug/L	1 ft
DT-22	FOX RIVER	2013-07-02	10:49	Chlorophyll a, corrected for pheophytin	56.1	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-08-08	11:09	Chlorophyll a, corrected for pheophytin	110	ug/L	1 ft
DT-22	FOX RIVER	2013-09-25	12:00	Chlorophyll a, corrected for pheophytin	124	ug/L	1 ft
DT-22	FOX RIVER	2013-10-28	12:14	Chlorophyll a, corrected for pheophytin	41.7	ug/L	1 ft
DT-22	FOX RIVER	2013-12-04	11:39	Chlorophyll a, corrected for pheophytin	8.01	ug/L	1 ft
DT-22	FOX RIVER	2002-07-11		Chlorophyll a, uncorrected for pheophytin	147	ug/L	ft
DT-22	FOX RIVER	2003-01-07		Chlorophyll a, uncorrected for pheophytin	58.3	ug/L	ft
DT-22	FOX RIVER	2003-01-07		Chlorophyll a, uncorrected for pheophytin	27.1	ug/L	ft
DT-22	FOX RIVER	2003-03-18		Chlorophyll a, uncorrected for pheophytin	42.3	ug/L	ft
DT-22	FOX RIVER	2003-04-01		Chlorophyll a, uncorrected for pheophytin	108.6	ug/L	ft
DT-22	FOX RIVER	2003-04-15		Chlorophyll a, uncorrected for pheophytin	183	ug/L	ft
DT-22	FOX RIVER	2003-04-29		Chlorophyll a, uncorrected for pheophytin	109.2	ug/L	ft
DT-22	FOX RIVER	2003-05-13		Chlorophyll a, uncorrected for pheophytin	55.6	ug/L	ft
DT-22	FOX RIVER	2003-05-27		Chlorophyll a, uncorrected for pheophytin	42.4	ug/L	ft
DT-22	FOX RIVER	2003-06-10		Chlorophyll a, uncorrected for pheophytin	65	ug/L	ft
DT-22	FOX RIVER	2003-06-24		Chlorophyll a, uncorrected for pheophytin	131.2	ug/L	ft
DT-22	FOX RIVER	2003-07-22		Chlorophyll a, uncorrected for pheophytin	101	ug/L	ft
DT-22	FOX RIVER	2003-08-05		Chlorophyll a, uncorrected for pheophytin	116.4	ug/L	ft
DT-22	FOX RIVER	2003-08-05		Chlorophyll a, uncorrected for pheophytin	105.4	ug/L	ft
DT-22	FOX RIVER	2003-08-19		Chlorophyll a, uncorrected for pheophytin	152.3	ug/L	ft
DT-22	FOX RIVER	2003-08-19		Chlorophyll a, uncorrected for pheophytin	149.2	ug/L	ft
DT-22	FOX RIVER	2003-09-02		Chlorophyll a, uncorrected for pheophytin	239.4	ug/L	ft
DT-22	FOX RIVER	2003-09-02		Chlorophyll a, uncorrected for pheophytin	213	ug/L	ft
DT-22	FOX RIVER	2003-09-16		Chlorophyll a, uncorrected for pheophytin	165.6	ug/L	ft
DT-22	FOX RIVER	2003-09-16		Chlorophyll a, uncorrected for pheophytin	161.8	ug/L	ft
DT-22	FOX RIVER	2003-09-30		Chlorophyll a, uncorrected for pheophytin	123.2	ug/L	ft
DT-22	FOX RIVER	2003-10-14		Chlorophyll a, uncorrected for pheophytin	267.8	ug/L	ft
DT-22	FOX RIVER	2003-10-28		Chlorophyll a, uncorrected for pheophytin	86.2	ug/L	ft
DT-22	FOX RIVER	2003-11-25		Chlorophyll a, uncorrected for pheophytin	79	ug/L	ft
DT-22	FOX RIVER	2003-12-09		Chlorophyll a, uncorrected for pheophytin	60.5	ug/L	ft
DT-22	FOX RIVER	2004-03-30		Chlorophyll a, uncorrected for pheophytin	103.8	ug/L	ft
DT-22	FOX RIVER	2004-04-13		Chlorophyll a, uncorrected for pheophytin	94.8	ug/L	ft
DT-22	FOX RIVER	2004-04-27		Chlorophyll a, uncorrected for pheophytin	91.6	ug/L	ft
DT-22	FOX RIVER	2004-05-18		Chlorophyll a, uncorrected for pheophytin	50.8	ug/L	ft
DT-22	FOX RIVER	2004-05-18		Chlorophyll a, uncorrected for pheophytin	44.8	ug/L	ft
DT-22	FOX RIVER	2004-06-15		Chlorophyll a, uncorrected for pheophytin	97.6	ug/L	ft
DT-22	FOX RIVER	2004-07-20		Chlorophyll a, uncorrected for pheophytin	74.4	ug/L	ft
DT-22	FOX RIVER	2004-08-17		Chlorophyll a, uncorrected for pheophytin	181.6	ug/L	ft
DT-22	FOX RIVER	2004-09-21		Chlorophyll a, uncorrected for pheophytin	165.8	ug/L	ft
DT-22	FOX RIVER	2004-11-16		Chlorophyll a, uncorrected for pheophytin	91.8	ug/L	ft
DT-22	FOX RIVER	2004-11-16		Chlorophyll a, uncorrected for pheophytin	86.1	ug/L	ft
DT-22	FOX RIVER	2005-02-16		Chlorophyll a, uncorrected for pheophytin	5.55	ug/L	ft
DT-22	FOX RIVER	2005-03-17		Chlorophyll a, uncorrected for pheophytin	19	ug/L	ft
DT-22	FOX RIVER	2005-04-22		Chlorophyll a, uncorrected for pheophytin	112	ug/L	ft
DT-22	FOX RIVER	2005-04-27		Chlorophyll a, uncorrected for pheophytin	109.8	ug/L	ft
DT-22	FOX RIVER	2005-05-25		Chlorophyll a, uncorrected for pheophytin	4.14	ug/L	ft
DT-22	FOX RIVER	2005-06-21		Chlorophyll a, uncorrected for pheophytin	96	ug/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2005-06-29		Chlorophyll a, uncorrected for pheophytin	107	ug/L	ft
DT-22	FOX RIVER	2005-08-16		Chlorophyll a, uncorrected for pheophytin	272.2	ug/L	ft
DT-22	FOX RIVER	2005-08-16		Chlorophyll a, uncorrected for pheophytin	246	ug/L	ft
DT-22	FOX RIVER	2005-09-20		Chlorophyll a, uncorrected for pheophytin	295	ug/L	ft
DT-22	FOX RIVER	2005-09-22		Chlorophyll a, uncorrected for pheophytin	362	ug/L	ft
DT-22	FOX RIVER	2005-10-19		Chlorophyll a, uncorrected for pheophytin	81.7	ug/L	ft
DT-22	FOX RIVER	2005-11-14		Chlorophyll a, uncorrected for pheophytin	12.5	ug/L	ft
DT-22	FOX RIVER	2005-11-15		Chlorophyll a, uncorrected for pheophytin	13.4	ug/L	ft
DT-22	FOX RIVER	2006-01-17		Chlorophyll a, uncorrected for pheophytin	18	ug/L	ft
DT-22	FOX RIVER	2006-03-21		Chlorophyll a, uncorrected for pheophytin	24.2	ug/L	ft
DT-22	FOX RIVER	2006-04-18		Chlorophyll a, uncorrected for pheophytin	76.8	ug/L	ft
DT-22	FOX RIVER	2006-05-16		Chlorophyll a, uncorrected for pheophytin	52.2	ug/L	ft
DT-22	FOX RIVER	2006-06-20		Chlorophyll a, uncorrected for pheophytin	152	ug/L	ft
DT-22	FOX RIVER	2006-07-18		Chlorophyll a, uncorrected for pheophytin	104.4	ug/L	ft
DT-22	FOX RIVER	2006-09-19		Chlorophyll a, uncorrected for pheophytin	138	ug/L	ft
DT-22	FOX RIVER	2006-10-17		Chlorophyll a, uncorrected for pheophytin	28.6	ug/L	ft
DT-22	FOX RIVER	2006-11-21		Chlorophyll a, uncorrected for pheophytin	96.2	ug/L	ft
DT-22	FOX RIVER	2007-06-19		Chlorophyll a, uncorrected for pheophytin	135.6	ug/L	ft
DT-22	FOX RIVER	2007-06-19		Chlorophyll a, uncorrected for pheophytin	128.2	ug/L	ft
DT-22	FOX RIVER	2007-09-18		Chlorophyll a, uncorrected for pheophytin	195.4	ug/L	ft
DT-22	FOX RIVER	2007-09-18		Chlorophyll a, uncorrected for pheophytin	178.8	ug/L	ft
DT-22	FOX RIVER	2008-05-20		Chlorophyll a, uncorrected for pheophytin	44	ug/L	ft
DT-22	FOX RIVER	2008-05-20		Chlorophyll a, uncorrected for pheophytin	37.4	ug/L	ft
DT-22	FOX RIVER	2008-05-21	11:15	Chlorophyll a, uncorrected for pheophytin	14.3	ug/L	1 ft
DT-22	FOX RIVER	2008-06-17		Chlorophyll a, uncorrected for pheophytin	68	ug/L	ft
DT-22	FOX RIVER	2008-06-17		Chlorophyll a, uncorrected for pheophytin	64	ug/L	ft
DT-22	FOX RIVER	2008-07-01	11:40	Chlorophyll a, uncorrected for pheophytin	86.8	ug/L	1 ft
DT-22	FOX RIVER	2008-08-05	11:25	Chlorophyll a, uncorrected for pheophytin	83.6	ug/L	1 ft
DT-22	FOX RIVER	2008-08-19		Chlorophyll a, uncorrected for pheophytin	114.4	ug/L	ft
DT-22	FOX RIVER	2008-09-16		Chlorophyll a, uncorrected for pheophytin	88.9	ug/L	ft
DT-22	FOX RIVER	2008-09-23	11:35	Chlorophyll a, uncorrected for pheophytin	91.2	ug/L	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Chlorophyll a, uncorrected for pheophytin	5.11	ug/L	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Chlorophyll a, uncorrected for pheophytin	15.1	ug/L	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Chlorophyll a, uncorrected for pheophytin	32.8	ug/L	1 ft
DT-22	FOX RIVER	2009-05-06	12:25	Chlorophyll a, uncorrected for pheophytin	26.5	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chlorophyll a, uncorrected for pheophytin	8.29	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Chlorophyll a, uncorrected for pheophytin	9.42	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chlorophyll a, uncorrected for pheophytin	34.1	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chlorophyll a, uncorrected for pheophytin	22.2	ug/L	1 ft
DT-22	FOX RIVER	2009-11-04	12:50	Chlorophyll a, uncorrected for pheophytin	8.69	ug/L	1 ft
DT-22	FOX RIVER	2009-12-16	11:40	Chlorophyll a, uncorrected for pheophytin	6.2	ug/L	1 ft
DT-22	FOX RIVER	2010-02-03	11:35	Chlorophyll a, uncorrected for pheophytin	3.82	ug/L	1 ft
DT-22	FOX RIVER	2010-03-10	13:40	Chlorophyll a, uncorrected for pheophytin	20.6	ug/L	1 ft
DT-22	FOX RIVER	2010-04-27	12:45	Chlorophyll a, uncorrected for pheophytin	9.13	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chlorophyll a, uncorrected for pheophytin	44	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chlorophyll a, uncorrected for pheophytin	35.5	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-09-28	12:40	Chlorophyll a, uncorrected for pheophytin	73.7	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chlorophyll a, uncorrected for pheophytin	13.7	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chlorophyll a, uncorrected for pheophytin	11.4	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Chlorophyll a, uncorrected for pheophytin	1.67	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chlorophyll a, uncorrected for pheophytin	50.2	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chlorophyll a, uncorrected for pheophytin	38.5	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chlorophyll a, uncorrected for pheophytin	139	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chlorophyll a, uncorrected for pheophytin	137	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chlorophyll a, uncorrected for pheophytin	111	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chlorophyll a, uncorrected for pheophytin	63	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chlorophyll a, uncorrected for pheophytin	44.4	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chlorophyll a, uncorrected for pheophytin	7.53	ug/L	1 ft
DT-22	FOX RIVER	2012-02-22	11:45	Chlorophyll a, uncorrected for pheophytin	12.8	ug/L	1 ft
DT-22	FOX RIVER	2012-04-23	12:04	Chlorophyll a, uncorrected for pheophytin	81.1	ug/L	1 ft
DT-22	FOX RIVER	2012-05-15	12:34	Chlorophyll a, uncorrected for pheophytin	63.1	ug/L	1 ft
DT-22	FOX RIVER	2012-06-11	15:14	Chlorophyll a, uncorrected for pheophytin	110	ug/L	1 ft
DT-22	FOX RIVER	2012-06-28	11:05	Chlorophyll a, uncorrected for pheophytin	149	ug/L	1 ft
DT-22	FOX RIVER	2012-07-26	10:45	Chlorophyll a, uncorrected for pheophytin	254	ug/L	1 ft
DT-22	FOX RIVER	2012-07-31	13:49	Chlorophyll a, uncorrected for pheophytin	268	ug/L	1 ft
DT-22	FOX RIVER	2012-09-11	12:24	Chlorophyll a, uncorrected for pheophytin	244	ug/L	1 ft
DT-22	FOX RIVER	2012-10-03	10:20	Chlorophyll a, uncorrected for pheophytin	216	ug/L	1 ft
DT-22	FOX RIVER	2012-11-08	12:10	Chlorophyll a, uncorrected for pheophytin	42.2	ug/L	1 ft
DT-22	FOX RIVER	2012-12-13	11:15	Chlorophyll a, uncorrected for pheophytin	41.5	ug/L	1 ft
DT-22	FOX RIVER	2013-01-29	12:10	Chlorophyll a, uncorrected for pheophytin	46.8	ug/L	1 ft
DT-22	FOX RIVER	2013-03-20	12:24	Chlorophyll a, uncorrected for pheophytin	15.2	ug/L	1 ft
DT-22	FOX RIVER	2013-04-30	11:05	Chlorophyll a, uncorrected for pheophytin	60.4	ug/L	1 ft
DT-22	FOX RIVER	2013-05-22	12:00	Chlorophyll a, uncorrected for pheophytin	106	ug/L	1 ft
DT-22	FOX RIVER	2013-07-02	10:49	Chlorophyll a, uncorrected for pheophytin	61.5	ug/L	1 ft
DT-22	FOX RIVER	2013-08-08	11:09	Chlorophyll a, uncorrected for pheophytin	128	ug/L	1 ft
DT-22	FOX RIVER	2013-09-25	12:00	Chlorophyll a, uncorrected for pheophytin	131	ug/L	1 ft
DT-22	FOX RIVER	2013-10-28	12:14	Chlorophyll a, uncorrected for pheophytin	44.5	ug/L	1 ft
DT-22	FOX RIVER	2013-12-04	11:39	Chlorophyll a, uncorrected for pheophytin	8.89	ug/L	1 ft
DT-22	FOX RIVER	2011-03-02	12:10	Chlorophyll b	1.65	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chlorophyll b	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chlorophyll b	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chlorophyll b	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chlorophyll b	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chlorophyll b	0.89	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chlorophyll b	0.59	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chlorophyll b	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-02-22	11:45	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-04-23	12:04	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-05-15	12:34	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-06-11	15:14	Chlorophyll b	3.68	ug/L	1 ft
DT-22	FOX RIVER	2012-06-28	11:05	Chlorophyll b	5.02	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-07-26	10:45	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-07-31	13:49	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-09-11	12:24	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-10-03	10:20	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-11-08	12:10	Chlorophyll b	0.66	ug/L	1 ft
DT-22	FOX RIVER	2012-12-13	11:15	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-01-29	12:10	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-03-20	12:24	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-04-30	11:05	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-05-22	12:00	Chlorophyll b	1.75	ug/L	1 ft
DT-22	FOX RIVER	2013-07-02	10:49	Chlorophyll b	1.01	ug/L	1 ft
DT-22	FOX RIVER	2013-08-08	11:09	Chlorophyll b	1.32	ug/L	1 ft
DT-22	FOX RIVER	2013-09-25	12:00	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-10-28	12:14	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-12-04	11:39	Chlorophyll b	NA	ug/L	1 ft
DT-22	FOX RIVER	2011-03-02	12:10	Chlorophyll c	2.59	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chlorophyll c	7.56	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chlorophyll c	5.36	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chlorophyll c	12.4	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chlorophyll c	10.4	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chlorophyll c	8.18	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chlorophyll c	6.39	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chlorophyll c	6.12	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chlorophyll c	0.96	ug/L	1 ft
DT-22	FOX RIVER	2012-02-22	11:45	Chlorophyll c	1.58	ug/L	1 ft
DT-22	FOX RIVER	2012-04-23	12:04	Chlorophyll c	11.3	ug/L	1 ft
DT-22	FOX RIVER	2012-05-15	12:34	Chlorophyll c	7.71	ug/L	1 ft
DT-22	FOX RIVER	2012-06-11	15:14	Chlorophyll c	9.36	ug/L	1 ft
DT-22	FOX RIVER	2012-06-28	11:05	Chlorophyll c	5.18	ug/L	1 ft
DT-22	FOX RIVER	2012-07-26	10:45	Chlorophyll c	19.2	ug/L	1 ft
DT-22	FOX RIVER	2012-07-31	13:49	Chlorophyll c	20.1	ug/L	1 ft
DT-22	FOX RIVER	2012-09-11	12:24	Chlorophyll c	13.4	ug/L	1 ft
DT-22	FOX RIVER	2012-10-03	10:20	Chlorophyll c	6.92	ug/L	1 ft
DT-22	FOX RIVER	2012-11-08	12:10	Chlorophyll c	1.24	ug/L	1 ft
DT-22	FOX RIVER	2012-12-13	11:15	Chlorophyll c	2.68	ug/L	1 ft
DT-22	FOX RIVER	2013-01-29	12:10	Chlorophyll c	2.8	ug/L	1 ft
DT-22	FOX RIVER	2013-03-20	12:24	Chlorophyll c	1.27	ug/L	1 ft
DT-22	FOX RIVER	2013-04-30	11:05	Chlorophyll c	1.82	ug/L	1 ft
DT-22	FOX RIVER	2013-05-22	12:00	Chlorophyll c	10.2	ug/L	1 ft
DT-22	FOX RIVER	2013-07-02	10:49	Chlorophyll c	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-08-08	11:09	Chlorophyll c	7.29	ug/L	1 ft
DT-22	FOX RIVER	2013-09-25	12:00	Chlorophyll c	9.8	ug/L	1 ft
DT-22	FOX RIVER	2013-10-28	12:14	Chlorophyll c	3.58	ug/L	1 ft
DT-22	FOX RIVER	2013-12-04	11:39	Chlorophyll c	0.95	ug/L	1 ft
DT-22	FOX RIVER	2008-05-21	11:15	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-07-01	11:40	Chlorophyll-b	NA	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-08-05	11:25	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-09-23	11:35	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-05-06	12:25	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-11-04	12:50	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-12-16	11:40	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-02-03	11:35	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-03-10	13:40	Chlorophyll-b	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-04-27	12:45	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chlorophyll-b	0.6	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chlorophyll-b	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Chlorophyll-c	1.92	ug/L	1 ft
DT-22	FOX RIVER	2008-07-01	11:40	Chlorophyll-c	15.3	ug/L	1 ft
DT-22	FOX RIVER	2008-08-05	11:25	Chlorophyll-c	9.79	ug/L	1 ft
DT-22	FOX RIVER	2008-09-23	11:35	Chlorophyll-c	19.8	ug/L	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Chlorophyll-c	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Chlorophyll-c	2.55	ug/L	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Chlorophyll-c	5.77	ug/L	1 ft
DT-22	FOX RIVER	2009-05-06	12:25	Chlorophyll-c	3.02	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chlorophyll-c	1	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Chlorophyll-c	1.17	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chlorophyll-c	3.32	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chlorophyll-c	3.11	ug/L	1 ft
DT-22	FOX RIVER	2009-11-04	12:50	Chlorophyll-c	0.64	ug/L	1 ft
DT-22	FOX RIVER	2009-12-16	11:40	Chlorophyll-c	0.81	ug/L	1 ft
DT-22	FOX RIVER	2010-02-03	11:35	Chlorophyll-c	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-03-10	13:40	Chlorophyll-c	3.31	ug/L	1 ft
DT-22	FOX RIVER	2010-04-27	12:45	Chlorophyll-c	0.92	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chlorophyll-c	4.17	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chlorophyll-c	4.47	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chlorophyll-c	4.89	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chlorophyll-c	1.44	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chlorophyll-c	1.44	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Chromium	1.02	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Chromium	1.12	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Chromium	1.02	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Chromium	2.34	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-08-05	11:25	Chromium	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Chromium	0.66	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Chromium	0.36	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Chromium	0.66	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Chromium	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Chromium	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Chromium	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Chromium	0.79	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Chromium	0.51	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Chromium	0.79	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Chromium	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Chromium	0.56	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Chromium	1.23	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Chromium	1.74	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chromium	0.93	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Chromium	1.69	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Chromium	0.87	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Chromium	0.88	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chromium	0.86	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Chromium	1.01	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Chromium	1.77	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Chromium	1.78	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Chromium	1.7	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Chromium	1.79	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Chromium	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Chromium	1.37	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Chromium	2.12	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Chromium	1.15	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Chromium	1.42	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chromium	0.69	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Chromium	1.01	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Chromium	0.41	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chromium	0.52	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Chromium	1.07	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Chromium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chromium	0.41	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Chromium	0.93	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chromium	4	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Chromium	1.39	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-05-17	11:50	Chromium	0.92	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Chromium	0.91	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chromium	3.07	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Chromium	7.8	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Chromium	0.62	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Chromium	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chromium	0.58	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Chromium	0.67	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Chromium	0.66	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Chromium	0.8	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Chromium	0.34	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Chromium	0.72	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Chromium	0.78	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Chromium	1.66	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Chromium	0.41	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Chromium	0.31	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Chromium	0.72	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Chromium	0.79	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Chromium	0.71	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Chromium	1.42	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Chromium	0.65	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Chromium	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Chromium	1.49	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chromium	2.33	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chromium	2.86	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chromium	1.92	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Chromium	0.5	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Chromium	2.63	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-08-08	11:09	Chromium	2.91	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Chromium	2.01	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Chromium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Chromium	3.03	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Chromium	3.5	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Chromium	2.35	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Chromium	4.1	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Chrysene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Chrysene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	cis-1,3-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	cis-1,3-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Cobalt	0.76	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Cobalt	0.56	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Cobalt	1.5	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Cobalt	1.38	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Cobalt	0.4	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Cobalt	0.3	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Cobalt	0.49	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Cobalt	1.17	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Cobalt	0.61	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Cobalt	0.42	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Cobalt	0.26	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Cobalt	0.85	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Cobalt	0.98	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Cobalt	0.52	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Cobalt	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Cobalt	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Cobalt	0.42	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Cobalt	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Cobalt	0.68	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Cobalt	1.16	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Cobalt	3.05	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Cobalt	3.3	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Cobalt	1.48	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Cobalt	0.66	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Cobalt	0.53	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Cobalt	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-04-27	12:45	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Cobalt	0.39	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Cobalt	0.5	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Cobalt	0.49	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Cobalt	0.35	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Cobalt	3.17	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Cobalt	3.29	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Cobalt	1	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Cobalt	1.18	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Cobalt	1.73	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Cobalt	2.17	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Cobalt	1.11	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Cobalt	2.13	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Cobalt	2.01	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Cobalt	0.92	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Cobalt	0.7	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Cobalt	1.33	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Cobalt	1.51	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Cobalt	0.66	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Cobalt	0.64	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Cobalt	0.62	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Cobalt	0.56	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Cobalt	1.18	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Cobalt	0.3	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Cobalt	0.8	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Cobalt	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-10-03	10:20	Cobalt	1.42	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Cobalt	0.68	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Cobalt	0.8	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Cobalt	0.34	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Cobalt	1.02	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Cobalt	1.21	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Cobalt	0.91	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Cobalt	1.05	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Cobalt	0.5	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Cobalt	0.94	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Cobalt	0.74	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Cobalt	1.81	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Cobalt	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Cobalt	1.54	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Cobalt	1.1	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Cobalt	1.13	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Cobalt	1.12	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Copper	1.44	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Copper	3.01	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Copper	3.38	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Copper	4.03	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Copper	3.88	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Copper	4.07	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Copper	1.34	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Copper	1.47	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Copper	3.35	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Copper	4.52	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Copper	3.43	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Copper	4.03	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Copper	2.58	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Copper	3.54	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Copper	1.09	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Copper	2.1	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Copper	1.13	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Copper	2.31	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Copper	4.49	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Copper	5.93	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-08-19	11:35	Copper	4.18	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Copper	4.83	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Copper	3.3	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Copper	4.33	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Copper	2.85	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Copper	3.56	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Copper	0.9	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Copper	1.51	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Copper	2.62	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Copper	2.37	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Copper	2.22	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Copper	1.83	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Copper	3.86	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Copper	4.49	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Copper	5.39	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Copper	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Copper	3.93	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Copper	5.61	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Copper	4.29	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Copper	2.57	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Copper	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Copper	2.6	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Copper	2.91	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Copper	2.9	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Copper	1.04	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Copper	2.88	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Copper	5.65	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Copper	6.23	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-05-15	12:34	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Copper	3.96	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Copper	5.6	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Copper	6.23	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Copper	9.02	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Copper	4.98	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Copper	5.53	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Copper	0.87	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Copper	0.95	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Copper	6.08	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Copper	6.7	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Copper	6.86	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Copper	5.68	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Copper	1.3	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Copper	1.04	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Copper	4.66	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Copper	1.25	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Copper	6.31	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Copper	1.01	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Copper	2.14	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Copper	0.47	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Copper	6.01	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Copper	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Copper	0.33	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Copper	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Cyanide	0.007	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Cyanide	0.004	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-06-17	11:00	Cyanide	0.009	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Cyanide	NA	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Cyanide	0.003	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Cyanide	0.004	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Cyanide	0.004	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Cyanide	0.002	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Cyanide	0.002	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Cyanide	0.004	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Cyanide	0.003	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Cyanide	0.003	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Cyanide	0.006	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Cyanide	0.003	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Cyanide	0.003	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Cyanide	0.005	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Cyanide	NA	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dibenzo(a,h)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dibenzo(a,h)anthracene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dibenzofuran	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dibenzofuran	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	Dibromochloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dibromochloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dibromomethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dibromomethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dichloroethane, 1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dichloroethane, 1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dichloroethene, trans-1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dichloroethene, trans-1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dichloroethylene, cis-1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dichloroethylene, cis-1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dichloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dichloromethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dichloropropane, 1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dichloropropane, 1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Diethylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Diethylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dimethylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dimethylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Di-n-butylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Di-n-butylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Di-n-octylphthalate	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Di-n-octylphthalate	0.44	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Diphenylamine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Diphenylamine	NA	ug/L	
DT-22	FOX RIVER	1964-06-02		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-22	FOX RIVER	1964-06-02		Dissolved oxygen (DO)	11.9	mg/L	ft
DT-22	FOX RIVER	1964-06-09		Dissolved oxygen (DO)	12	mg/L	ft
DT-22	FOX RIVER	1964-06-17		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-22	FOX RIVER	1964-06-17		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-22	FOX RIVER	1964-06-23		Dissolved oxygen (DO)	6.3	mg/L	ft
DT-22	FOX RIVER	1964-06-23		Dissolved oxygen (DO)	6.3	mg/L	ft
DT-22	FOX RIVER	1967-08-31		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	1967-10-25		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	1967-12-19		Dissolved oxygen (DO)	20.2	mg/L	ft
DT-22	FOX RIVER	1969-05-21		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-22	FOX RIVER	1969-07-01		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-22	FOX RIVER	1969-08-19		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-22	FOX RIVER	1969-12-17		Dissolved oxygen (DO)	18.3	mg/L	ft
DT-22	FOX RIVER	1970-07-27		Dissolved oxygen (DO)	6.9	mg/L	ft
DT-22	FOX RIVER	1970-08-10		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	1970-08-31		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	1970-09-28		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-22	FOX RIVER	1970-10-26		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-22	FOX RIVER	1970-11-30		Dissolved oxygen (DO)	15.5	mg/L	ft
DT-22	FOX RIVER	1971-04-12		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-22	FOX RIVER	1971-05-17		Dissolved oxygen (DO)	10.6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1971-06-16		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1971-07-29		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-22	FOX RIVER	1971-09-08		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-22	FOX RIVER	1971-10-14		Dissolved oxygen (DO)	8.8	mg/L	ft
DT-22	FOX RIVER	1971-11-09		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-22	FOX RIVER	1972-01-06		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-22	FOX RIVER	1972-03-07		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-22	FOX RIVER	1972-03-22		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	1972-04-11		Dissolved oxygen (DO)	18.2	mg/L	ft
DT-22	FOX RIVER	1972-05-03		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	1972-06-06		Dissolved oxygen (DO)	6.1	mg/L	ft
DT-22	FOX RIVER	1972-07-05		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-22	FOX RIVER	1972-08-14		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	1972-09-19		Dissolved oxygen (DO)	6.3	mg/L	ft
DT-22	FOX RIVER	1972-10-05		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-22	FOX RIVER	1972-11-14		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1972-12-11		Dissolved oxygen (DO)	15.9	mg/L	ft
DT-22	FOX RIVER	1973-01-17		Dissolved oxygen (DO)	11.7	mg/L	ft
DT-22	FOX RIVER	1973-03-07		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-22	FOX RIVER	1973-03-23		Dissolved oxygen (DO)	13.7	mg/L	ft
DT-22	FOX RIVER	1973-04-06		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1973-05-02		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	1973-06-06		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-22	FOX RIVER	1973-07-11		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-22	FOX RIVER	1973-08-07		Dissolved oxygen (DO)	5.2	mg/L	ft
DT-22	FOX RIVER	1973-09-12		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	1973-10-04		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-22	FOX RIVER	1973-11-14		Dissolved oxygen (DO)	18.6	mg/L	ft
DT-22	FOX RIVER	1973-12-12		Dissolved oxygen (DO)	14.7	mg/L	ft
DT-22	FOX RIVER	1974-01-17		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-22	FOX RIVER	1974-02-14		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	1974-06-20		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-22	FOX RIVER	1974-08-22		Dissolved oxygen (DO)	6.2	mg/L	ft
DT-22	FOX RIVER	1974-10-18		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-22	FOX RIVER	1974-11-14		Dissolved oxygen (DO)	14.5	mg/L	ft
DT-22	FOX RIVER	1975-01-16		Dissolved oxygen (DO)	15.5	mg/L	ft
DT-22	FOX RIVER	1975-01-28		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	1975-03-12		Dissolved oxygen (DO)	17.4	mg/L	ft
DT-22	FOX RIVER	1975-04-18		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1975-06-17		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-22	FOX RIVER	1975-07-07		Dissolved oxygen (DO)	6.8	mg/L	ft
DT-22	FOX RIVER	1975-07-29		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-22	FOX RIVER	1975-09-04		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	1975-10-01		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-22	FOX RIVER	1975-11-12		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-22	FOX RIVER	1975-12-04		Dissolved oxygen (DO)	14.3	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1976-02-02		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-22	FOX RIVER	1976-03-17		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	1976-04-20		Dissolved oxygen (DO)	15.1	mg/L	ft
DT-22	FOX RIVER	1976-05-25		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-22	FOX RIVER	1976-08-19		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	1976-10-18		Dissolved oxygen (DO)	13.7	mg/L	ft
DT-22	FOX RIVER	1979-08-14		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-22	FOX RIVER	1979-09-06		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-22	FOX RIVER	1979-11-05		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Dissolved oxygen (DO)	17.1	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Dissolved oxygen (DO)	14.1	mg/L	ft
DT-22	FOX RIVER	1980-03-05		Dissolved oxygen (DO)	13.8	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-22	FOX RIVER	1980-05-08		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1980-06-12		Dissolved oxygen (DO)	9.3	mg/L	ft
DT-22	FOX RIVER	1980-07-09		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-22	FOX RIVER	1980-08-11		Dissolved oxygen (DO)	6.9	mg/L	ft
DT-22	FOX RIVER	1980-09-15		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-22	FOX RIVER	1980-10-06		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-22	FOX RIVER	1980-12-17		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	1981-05-07		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	1981-06-24		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Dissolved oxygen (DO)	7	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	1982-03-09		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Dissolved oxygen (DO)	9.7	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Dissolved oxygen (DO)	8	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Dissolved oxygen (DO)	9.7	mg/L	ft
DT-22	FOX RIVER	1982-09-28		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Dissolved oxygen (DO)	11.9	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-22	FOX RIVER	1983-02-23		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Dissolved oxygen (DO)	12	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Dissolved oxygen (DO)	9.3	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1983-11-21		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Dissolved oxygen (DO)	11.9	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Dissolved oxygen (DO)	11.9	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Dissolved oxygen (DO)	17	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Dissolved oxygen (DO)	14	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-22	FOX RIVER	1985-03-26		Dissolved oxygen (DO)	11.7	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-22	FOX RIVER	1985-11-08		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-22	FOX RIVER	1986-01-02		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Dissolved oxygen (DO)	12	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-22	FOX RIVER	1987-07-07		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1987-10-20		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Dissolved oxygen (DO)	11.7	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Dissolved oxygen (DO)	12	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Dissolved oxygen (DO)	12	mg/L	tt
DT-22	FOX RIVER	1988-08-10		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Dissolved oxygen (DO)	11.8	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Dissolved oxygen (DO)	14.9	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1989-01-05		Dissolved oxygen (DO)	14.9	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Dissolved oxygen (DO)	13	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Dissolved oxygen (DO)	11	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Dissolved oxygen (DO)	12.5	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Dissolved oxygen (DO)	9.7	mg/L	ft
DT-22	FOX RIVER	1990-07-02		Dissolved oxygen (DO)	9.04	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Dissolved oxygen (DO)	8.75	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Dissolved oxygen (DO)	8.55	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Dissolved oxygen (DO)	11.15	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Dissolved oxygen (DO)	12.03	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Dissolved oxygen (DO)	13.35	mg/L	ft
DT-22	FOX RIVER	1991-03-04		Dissolved oxygen (DO)	10.94	mg/L	ft
DT-22	FOX RIVER	1991-04-16		Dissolved oxygen (DO)	9.86	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Dissolved oxygen (DO)	7.83	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Dissolved oxygen (DO)	8.32	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Dissolved oxygen (DO)	8.77	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Dissolved oxygen (DO)	9.99	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Dissolved oxygen (DO)	11.96	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Dissolved oxygen (DO)	12.81	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Dissolved oxygen (DO)	9.86	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Dissolved oxygen (DO)	13.32	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Dissolved oxygen (DO)	8.27	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Dissolved oxygen (DO)	9.88	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Dissolved oxygen (DO)	11.14	mg/L	ft
DT-22	FOX RIVER	1992-11-06		Dissolved oxygen (DO)	10.26	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Dissolved oxygen (DO)	10.45	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Dissolved oxygen (DO)	11.19	mg/L	ft
DT-22	FOX RIVER	1993-03-08		Dissolved oxygen (DO)	10.62	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Dissolved oxygen (DO)	10.29	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Dissolved oxygen (DO)	9.01	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Dissolved oxygen (DO)	6.26	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Dissolved oxygen (DO)	10.33	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Dissolved oxygen (DO)	10.07	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Dissolved oxygen (DO)	9.69	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Dissolved oxygen (DO)	12.29	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Dissolved oxygen (DO)	10.94	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Dissolved oxygen (DO)	11.64	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Dissolved oxygen (DO)	11.1	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1994-04-26		Dissolved oxygen (DO)	11.02	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Dissolved oxygen (DO)	8.32	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Dissolved oxygen (DO)	9.22	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Dissolved oxygen (DO)	10.37	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Dissolved oxygen (DO)	12.33	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Dissolved oxygen (DO)	11.67	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Dissolved oxygen (DO)	13.43	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Dissolved oxygen (DO)	11.04	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Dissolved oxygen (DO)	11.81	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Dissolved oxygen (DO)	9.42	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Dissolved oxygen (DO)	10.83	mg/L	ft
DT-22	FOX RIVER	1995-09-06		Dissolved oxygen (DO)	9.78	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Dissolved oxygen (DO)	10.25	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Dissolved oxygen (DO)	12.25	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Dissolved oxygen (DO)	14.27	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Dissolved oxygen (DO)	13.78	mg/L	ft
DT-22	FOX RIVER	1996-05-01		Dissolved oxygen (DO)	12.89	mg/L	ft
DT-22	FOX RIVER	1996-06-05		Dissolved oxygen (DO)	9.51	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Dissolved oxygen (DO)	11.25	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Dissolved oxygen (DO)	6.1	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Dissolved oxygen (DO)	13.3	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Dissolved oxygen (DO)	13.49	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Dissolved oxygen (DO)	15.12	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Dissolved oxygen (DO)	13.25	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Dissolved oxygen (DO)	11.41	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Dissolved oxygen (DO)	11.97	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Dissolved oxygen (DO)	9.58	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Dissolved oxygen (DO)	12.42	mg/L	ft
DT-22	FOX RIVER	1998-02-04		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Dissolved oxygen (DO)	14.41	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Dissolved oxygen (DO)	10.75	mg/L	ft
DT-22	FOX RIVER	1998-06-01		Dissolved oxygen (DO)	7.65	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Dissolved oxygen (DO)	11.62	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Dissolved oxygen (DO)	7.74	mg/L	ft
DT-22	FOX RIVER	1998-09-24		Dissolved oxygen (DO)	12.58	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Dissolved oxygen (DO)	13.03	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Dissolved oxygen (DO)	13.94	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Dissolved oxygen (DO)	13.26	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Dissolved oxygen (DO)	10.56	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Dissolved oxygen (DO)	9.74	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Dissolved oxygen (DO)	10.87	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1999-11-30		Dissolved oxygen (DO)	13.02	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Dissolved oxygen (DO)	11.55	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Dissolved oxygen (DO)	15.05	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Dissolved oxygen (DO)	14.05	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	2000-06-05		Dissolved oxygen (DO)	6.92	mg/L	ft
DT-22	FOX RIVER	2000-06-12		Dissolved oxygen (DO)	6.45	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Dissolved oxygen (DO)	9.92	mg/L	ft
DT-22	FOX RIVER	2000-07-06		Dissolved oxygen (DO)	9.14	mg/L	ft
DT-22	FOX RIVER	2000-07-10		Dissolved oxygen (DO)	7.05	mg/L	ft
DT-22	FOX RIVER	2000-07-18		Dissolved oxygen (DO)	7.97	mg/L	ft
DT-22	FOX RIVER	2000-07-24		Dissolved oxygen (DO)	8.54	mg/L	ft
DT-22	FOX RIVER	2000-07-31		Dissolved oxygen (DO)	5.57	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-22	FOX RIVER	2000-09-05		Dissolved oxygen (DO)	6.67	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Dissolved oxygen (DO)	10.05	mg/L	ft
DT-22	FOX RIVER	2000-09-11		Dissolved oxygen (DO)	6.16	mg/L	ft
DT-22	FOX RIVER	2000-09-18		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-22	FOX RIVER	2000-09-25		Dissolved oxygen (DO)	8.73	mg/L	ft
DT-22	FOX RIVER	2000-09-29		Dissolved oxygen (DO)	8.39	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Dissolved oxygen (DO)	12.02	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Dissolved oxygen (DO)	13.11	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Dissolved oxygen (DO)	13.91	mg/L	ft
DT-22	FOX RIVER	2001-05-23		Dissolved oxygen (DO)	9.03	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Dissolved oxygen (DO)	9.73	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Dissolved oxygen (DO)	9.74	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Dissolved oxygen (DO)	11.03	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Dissolved oxygen (DO)	17.7	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Dissolved oxygen (DO)	14.89	mg/L	ft
DT-22	FOX RIVER	2002-04-11		Dissolved oxygen (DO)	12.53	mg/L	ft
DT-22	FOX RIVER	2002-05-13		Dissolved oxygen (DO)	12.01	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Dissolved oxygen (DO)	7.09	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Dissolved oxygen (DO)	7.63	mg/L	ft
DT-22	FOX RIVER	2002-08-23		Dissolved oxygen (DO)	6	mg/L	ft
DT-22	FOX RIVER	2002-10-01		Dissolved oxygen (DO)	7.28	mg/L	ft
DT-22	FOX RIVER	2002-11-12		Dissolved oxygen (DO)	10.51	mg/L	ft
DT-22	FOX RIVER	2003-01-03		Dissolved oxygen (DO)	14.21	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	9.77	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	20.1	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	8.45	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	6.3	mg/L	ft
DT-22	FOX RIVER	2003-03-14		Dissolved oxygen (DO)	18.38	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	8.4	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	6.4	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	13.9	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	6.78	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	11.43	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	17.1	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	11.54	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-22	FOX RIVER	2003-04-10		Dissolved oxygen (DO)	17.15	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	11.03	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	11.06	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	15.3	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	10.35	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	6.85	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	7.63	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	7.87	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	5.9	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.77	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	2003-05-22		Dissolved oxygen (DO)	10.56	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	8.8	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	6.35	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	9.16	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	7.09	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	7.98	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	9.27	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	8.57	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	14.2	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	6.8	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	7.42	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	6.45	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	8.17	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	9.35	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	13.8	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	7.88	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	7.89	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	5.96	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	14	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	14.89	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.56	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	5.89	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	13	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	5.4	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.53	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	12.38	mg/L	ft
DT-22	FOX RIVER	2003-08-06		Dissolved oxygen (DO)	7.38	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	9.3	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	9.83	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	5.25	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	9.76	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	6.77	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	6.9	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	7.7	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	14.8	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	9.42	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	16.2	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	9.57	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	6.2	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	6.43	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	13.7	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	13	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	9.39	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	8.79	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	6.62	mg/L	ft
DT-22	FOX RIVER	2003-09-05		Dissolved oxygen (DO)	9.57	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	7.02	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	9.21	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	8.69	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	9.93	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	9.17	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	7.18	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	9.38	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	8.55	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	7.01	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	14	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	7.76	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	9.02	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	7.38	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	15.3	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	6.1	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	15	mg/L	ft
DT-22	FOX RIVER	2003-10-15		Dissolved oxygen (DO)	11.49	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	12.26	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	9.86	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	2003-11-24		Dissolved oxygen (DO)	11.68	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	11.7	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	8.8	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	20	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	7.16	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	13.46	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	7.23	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	7	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	14.1	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-22	FOX RIVER	2004-03-22		Dissolved oxygen (DO)	18.2	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	9.18	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	10.91	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	8.41	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	19.1	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	12.48	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	7.09	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	10.47	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-22	FOX RIVER	2004-04-22		Dissolved oxygen (DO)	9.84	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	11.22	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	7.97	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	17.4	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	9.67	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	5.8	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	7.07	mg/L	ft
DT-22	FOX RIVER	2004-05-20		Dissolved oxygen (DO)	8.34	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	15.1	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	6.95	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	8.48	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-22	FOX RIVER	2004-07-16		Dissolved oxygen (DO)	7.27	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	8	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	5.8	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	9.5	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	6.61	mg/L	ft
DT-22	FOX RIVER	2004-08-06		Dissolved oxygen (DO)	7.12	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	6.37	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	8.57	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	8.18	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	10.66	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-09-22		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	2004-11-03		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	10.72	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	7.16	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	8.23	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-22	FOX RIVER	2004-12-27		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	2005-02-16		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-22	FOX RIVER	2005-03-17		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-22	FOX RIVER	2005-04-22		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	6.63	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	8	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	15.8	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	18.5	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	13.8	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	10.36	mg/L	ft
DT-22	FOX RIVER	2005-05-25		Dissolved oxygen (DO)	7.01	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	19.1	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	9.04	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	8.38	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	7.44	mg/L	ft
DT-22	FOX RIVER	2005-06-29		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	8.49	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	7.77	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	14	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	15.6	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	10.25	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	9.08	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	6.26	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	5.7	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	7.93	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	7.59	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Dissolved oxygen (DO)	7.55	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Dissolved oxygen (DO)	7.42	mg/L	ft
DT-22	FOX RIVER	2005-11-14		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	9.6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	6.83	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	10.29	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	9.71	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	14.42	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	14.2	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	6.49	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	9.66	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	11.8	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	5	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	6.24	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	15.01	mg/L	ft
DT-22	FOX RIVER	2006-03-22		Dissolved oxygen (DO)	13.68	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	4	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	6.64	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	10.64	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	6.86	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	7	mg/L	ft
DT-22	FOX RIVER	2006-04-26		Dissolved oxygen (DO)	13.22	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	9.97	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	9.91	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	8.84	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	9.61	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	10.38	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	8.71	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	4	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	6.5	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	9.62	mg/L	ft
DT-22	FOX RIVER	2006-09-01		Dissolved oxygen (DO)	8.02	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	9	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	13.82	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	8.01	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	10	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	11.04	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	12.55	mg/L	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	-------	-----------------------	--------	-------	-------
DT-22	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	14	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-22	FOX RIVER	2006-11-01		Dissolved oxygen (DO)	13.02	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	9.66	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	13.66	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	5.8	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	15.94	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	7	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	9.3	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.57	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	11.68	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.05	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.05	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	20	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	5.1	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	12.16	mg/L	ft
DT-22	FOX RIVER	2008-05-21	11:15	Dissolved oxygen (DO)	11.93	mg/L	
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	4.2	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	11.24	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	9.95	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	7.81	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	13.8	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	7.81	mg/L	ft
DT-22	FOX RIVER	2008-07-01	11:40	Dissolved oxygen (DO)	10.2	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Dissolved oxygen (DO)	6.44	mg/L	
DT-22	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	5.9	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	4.4	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	5.49	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	10.57	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	8.03	mg/L	ft
DT-22	FOX RIVER	2008-09-23	11:35	Dissolved oxygen (DO)	9.44	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Dissolved oxygen (DO)	10.92	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Dissolved oxygen (DO)	11.32	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Dissolved oxygen (DO)	11.5	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Dissolved oxygen (DO)	11.36	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-05-06	12:25	Dissolved oxygen (DO)	10.78	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Dissolved oxygen (DO)	9.21	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Dissolved oxygen (DO)	5.65	mg/L	
DT-22	FOX RIVER	2009-09-16	11:42	Dissolved oxygen (DO)	5.97	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Dissolved oxygen (DO)	9.96	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Dissolved oxygen (DO)	14.48	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Dissolved oxygen (DO)	14.36	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Dissolved oxygen (DO)	15.57	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Dissolved oxygen (DO)	8.73	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Dissolved oxygen (DO)	6.38	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Dissolved oxygen (DO)	6.25	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Dissolved oxygen (DO)	9.98	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Dissolved oxygen (DO)	10.31	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Dissolved oxygen (DO)	14.36	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Dissolved oxygen (DO)	14.07	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Dissolved oxygen (DO)	12.35	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Dissolved oxygen (DO)	12.93	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Dissolved oxygen (DO)	16.28	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Dissolved oxygen (DO)	11.45	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Dissolved oxygen (DO)	10.71	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Dissolved oxygen (DO)	11.08	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Dissolved oxygen (DO)	12.37	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Dissolved oxygen (DO)	14.51	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Dissolved oxygen (DO)	13.96	mg/L	
DT-22	FOX RIVER	2012-04-23	12:05	Dissolved oxygen (DO)	13.65	mg/L	
DT-22	FOX RIVER	2012-05-15	12:35	Dissolved oxygen (DO)	11.98	mg/L	
DT-22	FOX RIVER	2012-06-11	15:15	Dissolved oxygen (DO)	12.98	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Dissolved oxygen (DO)	11.45	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Dissolved oxygen (DO)	8.87	mg/L	
DT-22	FOX RIVER	2012-07-31	13:50	Dissolved oxygen (DO)	13.05	mg/L	
DT-22	FOX RIVER	2012-09-11	12:25	Dissolved oxygen (DO)	12.63	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Dissolved oxygen (DO)	11.39	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Dissolved oxygen (DO)	13.21	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Dissolved oxygen (DO)	14.05	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Dissolved oxygen (DO)	17.54	mg/L	
DT-22	FOX RIVER	2013-03-20	12:25	Dissolved oxygen (DO)	12.91	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Dissolved oxygen (DO)	11.85	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Dissolved oxygen (DO)	11.21	mg/L	
DT-22	FOX RIVER	2013-07-02	10:50	Dissolved oxygen (DO)	8.22	mg/L	
DT-22	FOX RIVER	2013-08-08	11:10	Dissolved oxygen (DO)	10.05	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Dissolved oxygen (DO)	11.96	mg/L	
DT-22	FOX RIVER	2013-10-28	12:15	Dissolved oxygen (DO)	12.46	mg/L	
DT-22	FOX RIVER	2013-12-04	11:40	Dissolved oxygen (DO)	12.22	mg/L	
DT-22	FOX RIVER	1964-06-02		Dissolved oxygen saturation	115.957	%	ft
DT-22	FOX RIVER	1964-06-02		Dissolved oxygen saturation	129.348	%	ft
DT-22	FOX RIVER	1964-06-09		Dissolved oxygen saturation	130.435	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1964-06-17		Dissolved oxygen saturation	110	%	ft
DT-22	FOX RIVER	1964-06-17		Dissolved oxygen saturation	120.652	%	ft
DT-22	FOX RIVER	1964-06-23		Dissolved oxygen saturation	68.4782	%	ft
DT-22	FOX RIVER	1964-06-23		Dissolved oxygen saturation	68.4782	%	ft
DT-22	FOX RIVER	1967-08-31		Dissolved oxygen saturation	89.3617	%	ft
DT-22	FOX RIVER	1967-10-25		Dissolved oxygen saturation	86.8852	%	ft
DT-22	FOX RIVER	1967-12-19		Dissolved oxygen saturation	142.253	%	ft
DT-22	FOX RIVER	1969-05-21		Dissolved oxygen saturation	69.2307	%	ft
DT-22	FOX RIVER	1969-07-01		Dissolved oxygen saturation	92.0454	%	ft
DT-22	FOX RIVER	1969-08-19		Dissolved oxygen saturation	109.877	%	ft
DT-22	FOX RIVER	1970-08-10		Dissolved oxygen saturation	116.049	%	ft
DT-22	FOX RIVER	1970-08-31		Dissolved oxygen saturation	110.976	%	ft
DT-22	FOX RIVER	1970-09-28		Dissolved oxygen saturation	83	%	ft
DT-22	FOX RIVER	1970-10-26		Dissolved oxygen saturation	94.2307	%	ft
DT-22	FOX RIVER	1970-11-30		Dissolved oxygen saturation	114.815	%	ft
DT-22	FOX RIVER	1971-04-12		Dissolved oxygen saturation	128.431	%	ft
DT-22	FOX RIVER	1971-05-17		Dissolved oxygen saturation	117.778	%	ft
DT-22	FOX RIVER	1971-06-16		Dissolved oxygen saturation	150	%	ft
DT-22	FOX RIVER	1971-07-29		Dissolved oxygen saturation	111.364	%	ft
DT-22	FOX RIVER	1971-09-08		Dissolved oxygen saturation	89.0244	%	ft
DT-22	FOX RIVER	1971-10-14		Dissolved oxygen saturation	84.6154	%	ft
DT-22	FOX RIVER	1971-11-09		Dissolved oxygen saturation	100	%	ft
DT-22	FOX RIVER	1972-01-06		Dissolved oxygen saturation	91.7808	%	ft
DT-22	FOX RIVER	1972-03-07		Dissolved oxygen saturation	85.2112	%	ft
DT-22	FOX RIVER	1972-04-11		Dissolved oxygen saturation	149.18	%	ft
DT-22	FOX RIVER	1972-05-03		Dissolved oxygen saturation	97.2222	%	ft
DT-22	FOX RIVER	1972-06-06		Dissolved oxygen saturation	70.1149	%	ft
DT-22	FOX RIVER	1972-07-05		Dissolved oxygen saturation	75.5319	%	ft
DT-22	FOX RIVER	1972-08-14		Dissolved oxygen saturation	123.529	%	ft
DT-22	FOX RIVER	1972-09-19		Dissolved oxygen saturation	66.3158	%	ft
DT-22	FOX RIVER	1972-10-05		Dissolved oxygen saturation	81	%	ft
DT-22	FOX RIVER	1972-11-14		Dissolved oxygen saturation	93.8931	%	ft
DT-22	FOX RIVER	1972-12-11		Dissolved oxygen saturation	108.904	%	ft
DT-22	FOX RIVER	1973-01-17		Dissolved oxygen saturation	82.3943	%	ft
DT-22	FOX RIVER	1973-03-07		Dissolved oxygen saturation	82.3529	%	ft
DT-22	FOX RIVER	1973-03-23		Dissolved oxygen saturation	109.6	%	ft
DT-22	FOX RIVER	1973-04-06		Dissolved oxygen saturation	106.034	%	ft
DT-22	FOX RIVER	1973-05-02		Dissolved oxygen saturation	80.7692	%	ft
DT-22	FOX RIVER	1973-06-06		Dissolved oxygen saturation	102.299	%	ft
DT-22	FOX RIVER	1973-07-11		Dissolved oxygen saturation	91.358	%	ft
DT-22	FOX RIVER	1973-08-07		Dissolved oxygen saturation	61.1764	%	ft
DT-22	FOX RIVER	1973-09-12		Dissolved oxygen saturation	120.455	%	ft
DT-22	FOX RIVER	1973-10-04		Dissolved oxygen saturation	90.5263	%	ft
DT-22	FOX RIVER	1973-11-14		Dissolved oxygen saturation	152.459	%	ft
DT-22	FOX RIVER	1973-12-12		Dissolved oxygen saturation	103.521	%	ft
DT-22	FOX RIVER	1974-01-17		Dissolved oxygen saturation	69.7183	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1974-02-14		Dissolved oxygen saturation	68.4931	%	ft
DT-22	FOX RIVER	1974-06-20		Dissolved oxygen saturation	134.444	%	ft
DT-22	FOX RIVER	1974-08-22		Dissolved oxygen saturation	73.8095	%	ft
DT-22	FOX RIVER	1974-10-18		Dissolved oxygen saturation	104.536	%	ft
DT-22	FOX RIVER	1974-11-14		Dissolved oxygen saturation	107.407	%	ft
DT-22	FOX RIVER	1975-01-16		Dissolved oxygen saturation	106.164	%	ft
DT-22	FOX RIVER	1975-01-28		Dissolved oxygen saturation	75.3623	%	ft
DT-22	FOX RIVER	1975-03-12		Dissolved oxygen saturation	128.889	%	ft
DT-22	FOX RIVER	1975-04-18		Dissolved oxygen saturation	113.889	%	ft
DT-22	FOX RIVER	1975-06-17		Dissolved oxygen saturation	81.5217	%	ft
DT-22	FOX RIVER	1975-07-07		Dissolved oxygen saturation	86.0759	%	ft
DT-22	FOX RIVER	1975-07-29		Dissolved oxygen saturation	100	%	ft
DT-22	FOX RIVER	1975-09-04		Dissolved oxygen saturation	96.5909	%	ft
DT-22	FOX RIVER	1975-10-01		Dissolved oxygen saturation	97.1154	%	ft
DT-22	FOX RIVER	1975-11-12		Dissolved oxygen saturation	89.9159	%	ft
DT-22	FOX RIVER	1975-12-04		Dissolved oxygen saturation	103.623	%	ft
DT-22	FOX RIVER	1976-02-02		Dissolved oxygen saturation	70.5479	%	ft
DT-22	FOX RIVER	1976-03-17		Dissolved oxygen saturation	117.188	%	ft
DT-22	FOX RIVER	1976-04-20		Dissolved oxygen saturation	151	%	ft
DT-22	FOX RIVER	1976-05-25		Dissolved oxygen saturation	127.368	%	ft
DT-22	FOX RIVER	1976-08-19		Dissolved oxygen saturation	117.647	%	ft
DT-22	FOX RIVER	1976-10-18		Dissolved oxygen saturation	118.103	%	ft
DT-22	FOX RIVER	1979-08-14		Dissolved oxygen saturation	72.8567	%	ft
DT-22	FOX RIVER	1979-09-06		Dissolved oxygen saturation	108.37	%	ft
DT-22	FOX RIVER	1979-10-17		Dissolved oxygen saturation	111.811	%	ft
DT-22	FOX RIVER	1979-11-05		Dissolved oxygen saturation	104.982	%	ft
DT-22	FOX RIVER	1979-12-18		Dissolved oxygen saturation	117.187	%	ft
DT-22	FOX RIVER	1980-01-07		Dissolved oxygen saturation	96.6282	%	ft
DT-22	FOX RIVER	1980-03-05		Dissolved oxygen saturation	94.5833	%	ft
DT-22	FOX RIVER	1980-04-09		Dissolved oxygen saturation	102.558	%	ft
DT-22	FOX RIVER	1980-05-08		Dissolved oxygen saturation	118.318	%	ft
DT-22	FOX RIVER	1980-06-12		Dissolved oxygen saturation	98.974	%	ft
DT-22	FOX RIVER	1980-07-09		Dissolved oxygen saturation	79.7938	%	ft
DT-22	FOX RIVER	1980-08-11		Dissolved oxygen saturation	81.2139	%	ft
DT-22	FOX RIVER	1980-09-15		Dissolved oxygen saturation	87.2641	%	ft
DT-22	FOX RIVER	1980-10-06		Dissolved oxygen saturation	104.548	%	ft
DT-22	FOX RIVER	1980-12-17		Dissolved oxygen saturation	94.4183	%	ft
DT-22	FOX RIVER	1981-02-20		Dissolved oxygen saturation	55.7448	%	ft
DT-22	FOX RIVER	1981-03-06		Dissolved oxygen saturation	71.7895	%	ft
DT-22	FOX RIVER	1981-04-02		Dissolved oxygen saturation	81.2864	%	ft
DT-22	FOX RIVER	1981-05-07		Dissolved oxygen saturation	99.1008	%	ft
DT-22	FOX RIVER	1981-06-24		Dissolved oxygen saturation	80.4749	%	ft
DT-22	FOX RIVER	1981-07-06		Dissolved oxygen saturation	82.3917	%	ft
DT-22	FOX RIVER	1981-08-28		Dissolved oxygen saturation	91.7958	%	ft
DT-22	FOX RIVER	1981-10-28		Dissolved oxygen saturation	123.01	%	ft
DT-22	FOX RIVER	1981-11-24		Dissolved oxygen saturation	97.7601	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1982-03-09		Dissolved oxygen saturation	80.3432	%	ft
DT-22	FOX RIVER	1982-03-24		Dissolved oxygen saturation	69.4909	%	ft
DT-22	FOX RIVER	1982-06-03		Dissolved oxygen saturation	102.145	%	ft
DT-22	FOX RIVER	1982-07-13		Dissolved oxygen saturation	97.6038	%	ft
DT-22	FOX RIVER	1982-07-28		Dissolved oxygen saturation	114.154	%	ft
DT-22	FOX RIVER	1982-09-28		Dissolved oxygen saturation	82.3909	%	ft
DT-22	FOX RIVER	1982-10-13		Dissolved oxygen saturation	97.2162	%	ft
DT-22	FOX RIVER	1982-12-01		Dissolved oxygen saturation	100.048	%	ft
DT-22	FOX RIVER	1983-01-19		Dissolved oxygen saturation	67.6407	%	ft
DT-22	FOX RIVER	1983-02-23		Dissolved oxygen saturation	100.044	%	ft
DT-22	FOX RIVER	1983-04-06		Dissolved oxygen saturation	80.4934	%	ft
DT-22	FOX RIVER	1983-04-27		Dissolved oxygen saturation	141.224	%	ft
DT-22	FOX RIVER	1983-06-01		Dissolved oxygen saturation	117.689	%	ft
DT-22	FOX RIVER	1983-08-03		Dissolved oxygen saturation	92.6356	%	ft
DT-22	FOX RIVER	1983-09-19		Dissolved oxygen saturation	89.0445	%	ft
DT-22	FOX RIVER	1983-10-04		Dissolved oxygen saturation	98.9826	%	ft
DT-22	FOX RIVER	1983-11-21		Dissolved oxygen saturation	62.4314	%	ft
DT-22	FOX RIVER	1984-01-17		Dissolved oxygen saturation	81.5657	%	ft
DT-22	FOX RIVER	1984-02-06		Dissolved oxygen saturation	81.5885	%	ft
DT-22	FOX RIVER	1984-03-20		Dissolved oxygen saturation	111.65	%	ft
DT-22	FOX RIVER	1984-04-25		Dissolved oxygen saturation	110.135	%	ft
DT-22	FOX RIVER	1984-06-07		Dissolved oxygen saturation	202.46	%	ft
DT-22	FOX RIVER	1984-07-16		Dissolved oxygen saturation	112.243	%	ft
DT-22	FOX RIVER	1984-08-23		Dissolved oxygen saturation	87.8243	%	ft
DT-22	FOX RIVER	1984-10-04		Dissolved oxygen saturation	94.3935	%	ft
DT-22	FOX RIVER	1984-11-14		Dissolved oxygen saturation	95.3563	%	ft
DT-22	FOX RIVER	1985-01-09		Dissolved oxygen saturation	95.9429	%	ft
DT-22	FOX RIVER	1985-03-04		Dissolved oxygen saturation	76.8125	%	ft
DT-22	FOX RIVER	1985-03-26		Dissolved oxygen saturation	95.9435	%	ft
DT-22	FOX RIVER	1985-05-07		Dissolved oxygen saturation	130.99	%	ft
DT-22	FOX RIVER	1985-06-13		Dissolved oxygen saturation	94.8903	%	ft
DT-22	FOX RIVER	1985-07-15		Dissolved oxygen saturation	151.284	%	ft
DT-22	FOX RIVER	1985-08-08		Dissolved oxygen saturation	121.055	%	ft
DT-22	FOX RIVER	1985-10-15		Dissolved oxygen saturation	126.994	%	ft
DT-22	FOX RIVER	1985-11-08		Dissolved oxygen saturation	88.568	%	ft
DT-22	FOX RIVER	1986-01-02		Dissolved oxygen saturation	78.1349	%	ft
DT-22	FOX RIVER	1986-02-26		Dissolved oxygen saturation	107.637	%	ft
DT-22	FOX RIVER	1986-03-26		Dissolved oxygen saturation	98.3984	%	ft
DT-22	FOX RIVER	1986-05-06		Dissolved oxygen saturation	113.885	%	ft
DT-22	FOX RIVER	1986-06-16		Dissolved oxygen saturation	85.2738	%	ft
DT-22	FOX RIVER	1986-07-23		Dissolved oxygen saturation	103.746	%	ft
DT-22	FOX RIVER	1986-08-28		Dissolved oxygen saturation	115.268	%	ft
DT-22	FOX RIVER	1986-10-10		Dissolved oxygen saturation	73.1697	%	ft
DT-22	FOX RIVER	1986-12-09		Dissolved oxygen saturation	95.701	%	ft
DT-22	FOX RIVER	1987-01-14		Dissolved oxygen saturation	101.468	%	ft
DT-22	FOX RIVER	1987-02-11		Dissolved oxygen saturation	108.515	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1987-04-10		Dissolved oxygen saturation	143.469	%	ft
DT-22	FOX RIVER	1987-05-05		Dissolved oxygen saturation	119.857	%	ft
DT-22	FOX RIVER	1987-07-07		Dissolved oxygen saturation	92.7263	%	ft
DT-22	FOX RIVER	1987-08-12		Dissolved oxygen saturation	107.466	%	ft
DT-22	FOX RIVER	1987-09-25		Dissolved oxygen saturation	126.867	%	ft
DT-22	FOX RIVER	1987-10-20		Dissolved oxygen saturation	100.052	%	ft
DT-22	FOX RIVER	1987-11-20		Dissolved oxygen saturation	89.3664	%	ft
DT-22	FOX RIVER	1988-01-14		Dissolved oxygen saturation	74.7088	%	ft
DT-22	FOX RIVER	1988-02-22		Dissolved oxygen saturation	82.2425	%	ft
DT-22	FOX RIVER	1988-03-24		Dissolved oxygen saturation	103.413	%	ft
DT-22	FOX RIVER	1988-05-27		Dissolved oxygen saturation	122.89	%	ft
DT-22	FOX RIVER	1988-07-22		Dissolved oxygen saturation	146.431	%	ft
DT-22	FOX RIVER	1988-08-10		Dissolved oxygen saturation	139.222	%	ft
DT-22	FOX RIVER	1988-09-27		Dissolved oxygen saturation	131.215	%	ft
DT-22	FOX RIVER	1988-10-27		Dissolved oxygen saturation	109.929	%	ft
DT-22	FOX RIVER	1988-12-07		Dissolved oxygen saturation	108.046	%	ft
DT-22	FOX RIVER	1989-01-05		Dissolved oxygen saturation	102.149	%	ft
DT-22	FOX RIVER	1989-02-14		Dissolved oxygen saturation	73.356	%	ft
DT-22	FOX RIVER	1989-04-10		Dissolved oxygen saturation	104.068	%	ft
DT-22	FOX RIVER	1989-05-05		Dissolved oxygen saturation	106.795	%	ft
DT-22	FOX RIVER	1989-06-13		Dissolved oxygen saturation	78.9417	%	ft
DT-22	FOX RIVER	1989-09-21		Dissolved oxygen saturation	113.393	%	ft
DT-22	FOX RIVER	1989-10-23		Dissolved oxygen saturation	98.341	%	ft
DT-22	FOX RIVER	1989-11-14		Dissolved oxygen saturation	94.8983	%	ft
DT-22	FOX RIVER	1990-01-26		Dissolved oxygen saturation	101.501	%	ft
DT-22	FOX RIVER	1990-03-05		Dissolved oxygen saturation	111.205	%	ft
DT-22	FOX RIVER	1990-04-12		Dissolved oxygen saturation	102.521	%	ft
DT-22	FOX RIVER	1990-05-18		Dissolved oxygen saturation	93.3159	%	ft
DT-22	FOX RIVER	1990-07-02		Dissolved oxygen saturation	107.674	%	ft
DT-22	FOX RIVER	1990-07-24		Dissolved oxygen saturation	104.219	%	ft
DT-22	FOX RIVER	1990-09-04		Dissolved oxygen saturation	101.84	%	ft
DT-22	FOX RIVER	1990-10-26		Dissolved oxygen saturation	98.7449	%	ft
DT-22	FOX RIVER	1990-12-10		Dissolved oxygen saturation	91.89	%	ft
DT-22	FOX RIVER	1991-02-04		Dissolved oxygen saturation	96.8265	%	ft
DT-22	FOX RIVER	1991-03-04		Dissolved oxygen saturation	81.0911	%	ft
DT-22	FOX RIVER	1991-04-16		Dissolved oxygen saturation	88.8693	%	ft
DT-22	FOX RIVER	1991-05-21		Dissolved oxygen saturation	87.0461	%	ft
DT-22	FOX RIVER	1991-06-27		Dissolved oxygen saturation	106.73	%	ft
DT-22	FOX RIVER	1991-08-06		Dissolved oxygen saturation	104.476	%	ft
DT-22	FOX RIVER	1991-10-25		Dissolved oxygen saturation	73.0591	%	ft
DT-22	FOX RIVER	1991-11-12		Dissolved oxygen saturation	76.3109	%	ft
DT-22	FOX RIVER	1991-12-20		Dissolved oxygen saturation	84.2795	%	ft
DT-22	FOX RIVER	1992-01-17		Dissolved oxygen saturation	90.2753	%	ft
DT-22	FOX RIVER	1992-03-02		Dissolved oxygen saturation	78.9374	%	ft
DT-22	FOX RIVER	1992-03-27		Dissolved oxygen saturation	106.641	%	ft
DT-22	FOX RIVER	1992-05-27		Dissolved oxygen saturation	88.0343	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1992-06-22		Dissolved oxygen saturation	105.178	%	ft
DT-22	FOX RIVER	1992-08-18		Dissolved oxygen saturation	123.863	%	ft
DT-22	FOX RIVER	1992-11-06		Dissolved oxygen saturation	80.2177	%	ft
DT-22	FOX RIVER	1992-12-18		Dissolved oxygen saturation	75.7716	%	ft
DT-22	FOX RIVER	1993-01-27		Dissolved oxygen saturation	82.9488	%	ft
DT-22	FOX RIVER	1993-03-08		Dissolved oxygen saturation	81.1198	%	ft
DT-22	FOX RIVER	1993-04-21		Dissolved oxygen saturation	88.7381	%	ft
DT-22	FOX RIVER	1993-05-17		Dissolved oxygen saturation	94.8843	%	ft
DT-22	FOX RIVER	1993-06-14		Dissolved oxygen saturation	73.6761	%	ft
DT-22	FOX RIVER	1993-08-06		Dissolved oxygen saturation	118.789	%	ft
DT-22	FOX RIVER	1993-09-24		Dissolved oxygen saturation	103.879	%	ft
DT-22	FOX RIVER	1993-10-20		Dissolved oxygen saturation	93.2242	%	ft
DT-22	FOX RIVER	1993-12-10		Dissolved oxygen saturation	89.118	%	ft
DT-22	FOX RIVER	1994-01-12		Dissolved oxygen saturation	74.9944	%	ft
DT-22	FOX RIVER	1994-02-09		Dissolved oxygen saturation	82.0541	%	ft
DT-22	FOX RIVER	1994-03-23		Dissolved oxygen saturation	93.3303	%	ft
DT-22	FOX RIVER	1994-04-26		Dissolved oxygen saturation	119.858	%	ft
DT-22	FOX RIVER	1994-06-13		Dissolved oxygen saturation	95.699	%	ft
DT-22	FOX RIVER	1994-07-25		Dissolved oxygen saturation	112.526	%	ft
DT-22	FOX RIVER	1994-09-20		Dissolved oxygen saturation	122.087	%	ft
DT-22	FOX RIVER	1994-11-14		Dissolved oxygen saturation	100.088	%	ft
DT-22	FOX RIVER	1994-12-05		Dissolved oxygen saturation	96.4241	%	ft
DT-22	FOX RIVER	1995-01-17		Dissolved oxygen saturation	84.6416	%	ft
DT-22	FOX RIVER	1995-02-21		Dissolved oxygen saturation	97.4173	%	ft
DT-22	FOX RIVER	1995-03-23		Dissolved oxygen saturation	92.8542	%	ft
DT-22	FOX RIVER	1995-05-04		Dissolved oxygen saturation	111.482	%	ft
DT-22	FOX RIVER	1995-06-13		Dissolved oxygen saturation	100.275	%	ft
DT-22	FOX RIVER	1995-07-25		Dissolved oxygen saturation	133.809	%	ft
DT-22	FOX RIVER	1995-09-06		Dissolved oxygen saturation	116.508	%	ft
DT-22	FOX RIVER	1995-10-11		Dissolved oxygen saturation	100.579	%	ft
DT-22	FOX RIVER	1995-11-21		Dissolved oxygen saturation	90.8356	%	ft
DT-22	FOX RIVER	1996-01-24		Dissolved oxygen saturation	100.601	%	ft
DT-22	FOX RIVER	1996-02-28		Dissolved oxygen saturation	102.912	%	ft
DT-22	FOX RIVER	1996-04-15		Dissolved oxygen saturation	115.899	%	ft
DT-22	FOX RIVER	1996-05-01		Dissolved oxygen saturation	111.218	%	ft
DT-22	FOX RIVER	1996-06-05		Dissolved oxygen saturation	100.156	%	ft
DT-22	FOX RIVER	1996-08-12		Dissolved oxygen saturation	134.015	%	ft
DT-22	FOX RIVER	1996-08-28		Dissolved oxygen saturation	71.8165	%	ft
DT-22	FOX RIVER	1996-10-02		Dissolved oxygen saturation	89.0767	%	ft
DT-22	FOX RIVER	1996-11-19		Dissolved oxygen saturation	98.6113	%	ft
DT-22	FOX RIVER	1997-01-07		Dissolved oxygen saturation	92.4935	%	ft
DT-22	FOX RIVER	1997-02-18		Dissolved oxygen saturation	106.582	%	ft
DT-22	FOX RIVER	1997-03-26		Dissolved oxygen saturation	103.599	%	ft
DT-22	FOX RIVER	1997-05-28		Dissolved oxygen saturation	111.949	%	ft
DT-22	FOX RIVER	1997-07-11		Dissolved oxygen saturation	108.111	%	ft
DT-22	FOX RIVER	1997-09-11		Dissolved oxygen saturation	133.119	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1997-11-06		Dissolved oxygen saturation	78.6024	%	ft
DT-22	FOX RIVER	1997-12-15		Dissolved oxygen saturation	85.1619	%	ft
DT-22	FOX RIVER	1998-02-04		Dissolved oxygen saturation	89.7303	%	ft
DT-22	FOX RIVER	1998-03-16		Dissolved oxygen saturation	101.578	%	ft
DT-22	FOX RIVER	1998-04-09		Dissolved oxygen saturation	95.209	%	ft
DT-22	FOX RIVER	1998-06-01		Dissolved oxygen saturation	87.9888	%	ft
DT-22	FOX RIVER	1998-07-06		Dissolved oxygen saturation	136.786	%	ft
DT-22	FOX RIVER	1998-08-10		Dissolved oxygen saturation	94.3902	%	ft
DT-22	FOX RIVER	1998-09-24		Dissolved oxygen saturation	133.935	%	ft
DT-22	FOX RIVER	1998-11-23		Dissolved oxygen saturation	101.879	%	ft
DT-22	FOX RIVER	1998-12-17		Dissolved oxygen saturation	103.366	%	ft
DT-22	FOX RIVER	2010-04-27	12:45	Dissolved oxygen saturation	85	%	
DT-22	FOX RIVER	2010-06-10	12:20	Dissolved oxygen saturation	74	%	
DT-22	FOX RIVER	2010-08-05	12:55	Dissolved oxygen saturation	79	%	
DT-22	FOX RIVER	2010-09-28	12:40	Dissolved oxygen saturation	107	%	
DT-22	FOX RIVER	2010-11-09	11:15	Dissolved oxygen saturation	86	%	
DT-22	FOX RIVER	2010-12-15	11:20	Dissolved oxygen saturation	99	%	
DT-22	FOX RIVER	2011-03-02	12:10	Dissolved oxygen saturation	99	%	
DT-22	FOX RIVER	2011-04-20	12:30	Dissolved oxygen saturation	98	%	
DT-22	FOX RIVER	2011-05-17	11:50	Dissolved oxygen saturation	123	%	
DT-22	FOX RIVER	2011-06-28	11:08	Dissolved oxygen saturation	194	%	
DT-22	FOX RIVER	2011-07-19	11:30	Dissolved oxygen saturation	154	%	
DT-22	FOX RIVER	2011-09-06	11:45	Dissolved oxygen saturation	119	%	
DT-22	FOX RIVER	2011-10-27	12:40	Dissolved oxygen saturation	101	%	
DT-22	FOX RIVER	2011-12-01	11:30	Dissolved oxygen saturation	91	%	
DT-22	FOX RIVER	2012-01-24	12:20	Dissolved oxygen saturation	100	%	
DT-22	FOX RIVER	2012-02-22	11:45	Dissolved oxygen saturation	106	%	
DT-22	FOX RIVER	2012-04-23	12:05	Dissolved oxygen saturation	127	%	
DT-22	FOX RIVER	2012-05-15	12:35	Dissolved oxygen saturation	133.3	%	
DT-22	FOX RIVER	2012-06-11	15:15	Dissolved oxygen saturation	163.4	%	
DT-22	FOX RIVER	2012-06-28	11:05	Dissolved oxygen saturation	145.1	%	
DT-22	FOX RIVER	2012-07-26	10:45	Dissolved oxygen saturation	116.4	%	
DT-22	FOX RIVER	2012-07-31	13:50	Dissolved oxygen saturation	172.8	%	
DT-22	FOX RIVER	2012-09-11	12:25	Dissolved oxygen saturation	145.4	%	
DT-22	FOX RIVER	2012-10-03	10:20	Dissolved oxygen saturation	119.8	%	
DT-22	FOX RIVER	2012-11-08	12:10	Dissolved oxygen saturation	108.1	%	
DT-22	FOX RIVER	2012-12-13	11:15	Dissolved oxygen saturation	103.2	%	
DT-22	FOX RIVER	2013-01-29	12:10	Dissolved oxygen saturation	124.6	%	
DT-22	FOX RIVER	2013-03-20	12:25	Dissolved oxygen saturation	90.7	%	
DT-22	FOX RIVER	2013-04-30	11:05	Dissolved oxygen saturation	118.8	%	
DT-22	FOX RIVER	2013-05-22	12:00	Dissolved oxygen saturation	130.2	%	
DT-22	FOX RIVER	2013-07-02	10:50	Dissolved oxygen saturation	94.9	%	
DT-22	FOX RIVER	2013-08-08	11:10	Dissolved oxygen saturation	123.5	%	
DT-22	FOX RIVER	2013-09-25	12:00	Dissolved oxygen saturation	130.2	%	
DT-22	FOX RIVER	2013-10-28	12:15	Dissolved oxygen saturation	105	%	
DT-22	FOX RIVER	2013-12-04	11:40	Dissolved oxygen saturation	93.4	%	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	Ethyl methanesulfote	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Ethyl methanesulfote	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Ethylbenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Ethylbenzene	NA	ug/L	
DT-22	FOX RIVER	1999-05-26		Fecal coliform	19	Col/100ml	ft
DT-22	FOX RIVER	1999-07-26		Fecal coliform	20	Col/100ml	ft
DT-22	FOX RIVER	1999-09-21		Fecal coliform	50	Col/100ml	ft
DT-22	FOX RIVER	1999-10-20		Fecal coliform	31	Col/100ml	ft
DT-22	FOX RIVER	2000-05-09		Fecal coliform	120	Col/100ml	ft
DT-22	FOX RIVER	2000-06-05		Fecal coliform	150	Col/100ml	ft
DT-22	FOX RIVER	2000-06-12		Fecal coliform	520	Col/100ml	ft
DT-22	FOX RIVER	2000-06-16		Fecal coliform	2492	Col/100ml	ft
DT-22	FOX RIVER	2000-06-19		Fecal coliform	50	Col/100ml	ft
DT-22	FOX RIVER	2000-06-26		Fecal coliform	350	Col/100ml	ft
DT-22	FOX RIVER	2000-06-27		Fecal coliform	80	Col/100ml	ft
DT-22	FOX RIVER	2000-07-06		Fecal coliform	220	Col/100ml	ft
DT-22	FOX RIVER	2000-07-10		Fecal coliform	1067	Col/100ml	ft
DT-22	FOX RIVER	2000-07-18		Fecal coliform	100	Col/100ml	ft
DT-22	FOX RIVER	2000-07-24		Fecal coliform	183	Col/100ml	ft
DT-22	FOX RIVER	2000-07-31		Fecal coliform	620	Col/100ml	ft
DT-22	FOX RIVER	2000-08-02		Fecal coliform	217	Col/100ml	ft
DT-22	FOX RIVER	2000-09-05		Fecal coliform	140	Col/100ml	ft
DT-22	FOX RIVER	2000-09-07		Fecal coliform	20	Col/100ml	ft
DT-22	FOX RIVER	2000-09-11		Fecal coliform	1266	Col/100ml	ft
DT-22	FOX RIVER	2000-09-18		Fecal coliform	560	Col/100ml	ft
DT-22	FOX RIVER	2000-09-25		Fecal coliform	4900	Col/100ml	ft
DT-22	FOX RIVER	2000-09-29		Fecal coliform	150	Col/100ml	ft
DT-22	FOX RIVER	2001-10-26		Fecal coliform	590	Col/100ml	ft
DT-22	FOX RIVER	2002-05-13		Fecal coliform	120	Col/100ml	ft
DT-22	FOX RIVER	2002-05-14		Fecal coliform	220	col/100ml	ft
DT-22	FOX RIVER	2002-05-14		Fecal coliform	72	col/100ml	ft
DT-22	FOX RIVER	2002-05-14		Fecal coliform	80	col/100ml	ft
DT-22	FOX RIVER	2002-05-14		Fecal coliform	14	col/100ml	ft
DT-22	FOX RIVER	2002-05-28		Fecal coliform	1100	col/100ml	ft
DT-22	FOX RIVER	2002-05-28		Fecal coliform	164	col/100ml	ft
DT-22	FOX RIVER	2002-05-28		Fecal coliform	24	col/100ml	ft
DT-22	FOX RIVER	2002-05-28		Fecal coliform	220	col/100ml	ft
DT-22	FOX RIVER	2002-06-11		Fecal coliform	150	col/100ml	ft
DT-22	FOX RIVER	2002-06-11		Fecal coliform	136	col/100ml	ft
DT-22	FOX RIVER	2002-06-13		Fecal coliform	70	Col/100ml	ft
DT-22	FOX RIVER	2002-06-25		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2002-06-25		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2002-06-25		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2002-07-01		Fecal coliform	60	col/100ml	ft
DT-22	FOX RIVER	2002-07-01		Fecal coliform	198	col/100ml	ft
DT-22	FOX RIVER	2002-07-01		Fecal coliform	120	col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2002-07-01		Fecal coliform	430	col/100ml	ft
DT-22	FOX RIVER	2002-07-02		Fecal coliform	19	col/100ml	ft
DT-22	FOX RIVER	2002-07-02		Fecal coliform	50	col/100ml	ft
DT-22	FOX RIVER	2002-07-02		Fecal coliform	180	col/100ml	ft
DT-22	FOX RIVER	2002-07-02		Fecal coliform	200	col/100ml	ft
DT-22	FOX RIVER	2002-07-09		Fecal coliform	200	col/100ml	ft
DT-22	FOX RIVER	2002-07-09		Fecal coliform	60	col/100ml	ft
DT-22	FOX RIVER	2002-07-09		Fecal coliform	90	col/100ml	ft
DT-22	FOX RIVER	2002-07-09		Fecal coliform	350	col/100ml	ft
DT-22	FOX RIVER	2002-07-23		Fecal coliform	700	col/100ml	ft
DT-22	FOX RIVER	2002-07-23		Fecal coliform	60	col/100ml	ft
DT-22	FOX RIVER	2002-07-23		Fecal coliform	210	col/100ml	ft
DT-22	FOX RIVER	2002-07-23		Fecal coliform	17	col/100ml	ft
DT-22	FOX RIVER	2002-08-06		Fecal coliform	1160	col/100ml	ft
DT-22	FOX RIVER	2002-08-06		Fecal coliform	150	col/100ml	ft
DT-22	FOX RIVER	2002-08-06		Fecal coliform	50	col/100ml	ft
DT-22	FOX RIVER	2002-08-06		Fecal coliform	91	col/100ml	ft
DT-22	FOX RIVER	2002-08-20		Fecal coliform	300	col/100ml	ft
DT-22	FOX RIVER	2002-08-20		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2002-08-20		Fecal coliform	130	col/100ml	ft
DT-22	FOX RIVER	2002-08-20		Fecal coliform	11	col/100ml	ft
DT-22	FOX RIVER	2002-08-23		Fecal coliform	588	Col/100ml	ft
DT-22	FOX RIVER	2002-09-03		Fecal coliform	380	col/100ml	ft
DT-22	FOX RIVER	2002-09-03		Fecal coliform	190	col/100ml	ft
DT-22	FOX RIVER	2002-09-17		Fecal coliform	590	col/100ml	ft
DT-22	FOX RIVER	2002-09-17		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2002-09-17		Fecal coliform	680	col/100ml	ft
DT-22	FOX RIVER	2002-10-01		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2002-10-01		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2002-10-01		Fecal coliform	40	Col/100ml	ft
DT-22	FOX RIVER	2002-10-15		Fecal coliform	50	col/100ml	ft
DT-22	FOX RIVER	2002-10-15		Fecal coliform	96	col/100ml	ft
DT-22	FOX RIVER	2002-10-15		Fecal coliform	40	col/100ml	ft
DT-22	FOX RIVER	2002-10-29		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2002-10-29		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2002-10-29		Fecal coliform	13	col/100ml	ft
DT-22	FOX RIVER	2002-10-29		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2003-03-14		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2003-04-08		Fecal coliform	30	Col/100ml	ft
DT-22	FOX RIVER	2003-05-13		Fecal coliform	70	col/100ml	ft
DT-22	FOX RIVER	2003-05-13		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2003-05-22		Fecal coliform	25	Col/100ml	ft
DT-22	FOX RIVER	2003-05-27		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2003-05-27		Fecal coliform	40	col/100ml	ft
DT-22	FOX RIVER	2003-06-10		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2003-06-10		Fecal coliform	90	col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-06-24		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2003-06-24		Fecal coliform	20	Col/100ml	ft
DT-22	FOX RIVER	2003-07-08		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2003-07-08		Fecal coliform	0	col/100ml	ft
DT-22	FOX RIVER	2003-07-22		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2003-07-22		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2003-08-05		Fecal coliform	34	col/100ml	ft
DT-22	FOX RIVER	2003-08-05		Fecal coliform	390	col/100ml	ft
DT-22	FOX RIVER	2003-08-05		Fecal coliform	80	col/100ml	ft
DT-22	FOX RIVER	2003-08-05		Fecal coliform	100	col/100ml	ft
DT-22	FOX RIVER	2003-08-05		Fecal coliform	340	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	34	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	160	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	80	col/100ml	ft
DT-22	FOX RIVER	2003-08-19		Fecal coliform	8	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	100	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	22	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	160	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	40	col/100ml	ft
DT-22	FOX RIVER	2003-09-02		Fecal coliform	19	col/100ml	ft
DT-22	FOX RIVER	2003-09-05		Fecal coliform	440	Col/100ml	ft
DT-22	FOX RIVER	2003-09-16		Fecal coliform	110	col/100ml	ft
DT-22	FOX RIVER	2003-09-16		Fecal coliform	27	col/100ml	ft
DT-22	FOX RIVER	2003-09-16		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2003-09-16		Fecal coliform	1250	col/100ml	ft
DT-22	FOX RIVER	2003-09-16		Fecal coliform	50	col/100ml	ft
DT-22	FOX RIVER	2003-09-30		Fecal coliform	40	col/100ml	ft
DT-22	FOX RIVER	2003-09-30		Fecal coliform	11	col/100ml	ft
DT-22	FOX RIVER	2003-09-30		Fecal coliform	440	col/100ml	ft
DT-22	FOX RIVER	2003-10-14		Fecal coliform	80	col/100ml	ft
DT-22	FOX RIVER	2003-10-14		Fecal coliform	0	col/100ml	ft
DT-22	FOX RIVER	2003-10-15		Fecal coliform	127	Col/100ml	ft
DT-22	FOX RIVER	2003-10-28		Fecal coliform	80	col/100ml	ft
DT-22	FOX RIVER	2003-10-28		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2004-03-22		Fecal coliform	40	Col/100ml	ft
DT-22	FOX RIVER	2004-04-22		Fecal coliform	50	Col/100ml	ft
DT-22	FOX RIVER	2004-05-18		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2004-05-18		Fecal coliform	607	col/100ml	ft
DT-22	FOX RIVER	2004-05-18		Fecal coliform	713	col/100ml	ft
DT-22	FOX RIVER	2004-05-18		Fecal coliform	100	col/100ml	ft
DT-22	FOX RIVER	2004-05-18		Fecal coliform	120	col/100ml	ft
DT-22	FOX RIVER	2004-05-20		Fecal coliform	220	Col/100ml	ft
DT-22	FOX RIVER	2004-06-15		Fecal coliform	50	col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-06-15		Fecal coliform	490	col/100ml	ft
DT-22	FOX RIVER	2004-06-15		Fecal coliform	44	col/100ml	ft
DT-22	FOX RIVER	2004-07-16		Fecal coliform	480	Col/100ml	ft
DT-22	FOX RIVER	2004-07-20		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2004-07-20		Fecal coliform	28	col/100ml	ft
DT-22	FOX RIVER	2004-07-20		Fecal coliform	732	col/100ml	ft
DT-22	FOX RIVER	2004-08-06		Fecal coliform	107	Col/100ml	ft
DT-22	FOX RIVER	2004-08-17		Fecal coliform	8	col/100ml	ft
DT-22	FOX RIVER	2004-08-17		Fecal coliform	310	col/100ml	ft
DT-22	FOX RIVER	2004-09-21		Fecal coliform	7	col/100ml	ft
DT-22	FOX RIVER	2004-09-21		Fecal coliform	1170	col/100ml	ft
DT-22	FOX RIVER	2004-09-21		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2004-09-22		Fecal coliform	13	Col/100ml	ft
DT-22	FOX RIVER	2004-12-27		Fecal coliform	50	Col/100ml	ft
DT-22	FOX RIVER	2005-05-25		Fecal coliform	56	Col/100ml	ft
DT-22	FOX RIVER	2005-06-21		Fecal coliform	31	col/100ml	ft
DT-22	FOX RIVER	2005-06-21		Fecal coliform	190	col/100ml	ft
DT-22	FOX RIVER	2005-06-21		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2005-06-29		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2005-07-19		Fecal coliform	1190	col/100ml	ft
DT-22	FOX RIVER	2005-07-19		Fecal coliform	580	col/100ml	ft
DT-22	FOX RIVER	2005-08-15		Fecal coliform	56	Col/100ml	ft
DT-22	FOX RIVER	2005-08-16		Fecal coliform	16	col/100ml	ft
DT-22	FOX RIVER	2005-08-16		Fecal coliform	140	col/100ml	ft
DT-22	FOX RIVER	2005-08-16		Fecal coliform	170	col/100ml	ft
DT-22	FOX RIVER	2005-09-20		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2005-09-20		Fecal coliform	82	col/100ml	ft
DT-22	FOX RIVER	2005-09-22		Fecal coliform	30	Col/100ml	ft
DT-22	FOX RIVER	2005-10-19		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2006-05-16		Fecal coliform	15	col/100ml	ft
DT-22	FOX RIVER	2006-05-16		Fecal coliform	1570	col/100ml	ft
DT-22	FOX RIVER	2006-05-16		Fecal coliform	30	col/100ml	ft
DT-22	FOX RIVER	2006-06-20		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2006-06-20		Fecal coliform	180	col/100ml	ft
DT-22	FOX RIVER	2006-06-20		Fecal coliform	1800	col/100ml	ft
DT-22	FOX RIVER	2006-07-18		Fecal coliform	84	col/100ml	ft
DT-22	FOX RIVER	2006-07-18		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2006-07-18		Fecal coliform	150	col/100ml	ft
DT-22	FOX RIVER	2006-09-01		Fecal coliform	60	Col/100ml	ft
DT-22	FOX RIVER	2006-09-19		Fecal coliform	60	col/100ml	ft
DT-22	FOX RIVER	2006-09-19		Fecal coliform	50	col/100ml	ft
DT-22	FOX RIVER	2006-10-17		Fecal coliform	10	col/100ml	ft
DT-22	FOX RIVER	2006-10-17		Fecal coliform	420	col/100ml	ft
DT-22	FOX RIVER	2006-10-17		Fecal coliform	20	col/100ml	ft
DT-22	FOX RIVER	2007-05-22		Fecal coliform	44	Col/100ml	ft
DT-22	FOX RIVER	2007-06-19		Fecal coliform	852	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2007-07-10		Fecal coliform	30	Col/100ml	ft
DT-22	FOX RIVER	2007-09-18		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2007-09-18		Fecal coliform	50	Col/100ml	ft
DT-22	FOX RIVER	2008-05-20		Fecal coliform	3	Col/100ml	ft
DT-22	FOX RIVER	2008-05-21		Fecal coliform	30	Col/100ml	ft
DT-22	FOX RIVER	2008-06-17		Fecal coliform	41	Col/100ml	ft
DT-22	FOX RIVER	2008-07-01		Fecal coliform	30	Col/100ml	ft
DT-22	FOX RIVER	2008-08-05		Fecal coliform	160	Col/100ml	ft
DT-22	FOX RIVER	2008-08-19		Fecal coliform	23	Col/100ml	ft
DT-22	FOX RIVER	2008-09-16		Fecal coliform	290	Col/100ml	ft
DT-22	FOX RIVER	2008-09-16		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2008-09-16		Fecal coliform	128	Col/100ml	ft
DT-22	FOX RIVER	2008-09-23		Fecal coliform	2300	Col/100ml	ft
DT-22	FOX RIVER	2009-05-06		Fecal coliform	20	Col/100ml	ft
DT-22	FOX RIVER	2009-05-20		Fecal coliform	20	Col/100ml	ft
DT-22	FOX RIVER	2009-05-27		Fecal coliform	270	Col/100ml	ft
DT-22	FOX RIVER	2009-06-04		Fecal coliform	27	Col/100ml	ft
DT-22	FOX RIVER	2009-06-11		Fecal coliform	88	Col/100ml	ft
DT-22	FOX RIVER	2009-06-17		Fecal coliform	120	Col/100ml	ft
DT-22	FOX RIVER	2009-08-19		Fecal coliform	33	Col/100ml	ft
DT-22	FOX RIVER	2009-08-27		Fecal coliform	93	Col/100ml	ft
DT-22	FOX RIVER	2009-09-02		Fecal coliform	150	Col/100ml	ft
DT-22	FOX RIVER	2009-09-09		Fecal coliform	27	Col/100ml	ft
DT-22	FOX RIVER	2009-09-16		Fecal coliform	10	Col/100ml	ft
DT-22	FOX RIVER	2011-05-17	11:50	Fecal coliform	20	cfu/100ml	
DT-22	FOX RIVER	2011-06-28	11:08	Fecal coliform	820	cfu/100ml	
DT-22	FOX RIVER	2011-07-19	11:30	Fecal coliform	47	cfu/100ml	
DT-22	FOX RIVER	2011-09-06	11:45	Fecal coliform	33	cfu/100ml	
DT-22	FOX RIVER	2011-10-27	12:40	Fecal coliform	13	cfu/100ml	
DT-22	FOX RIVER	2012-05-15	12:35	Fecal coliform	33	cfu/100ml	
DT-22	FOX RIVER	2012-06-28	11:05	Fecal coliform	33	cfu/100ml	
DT-22	FOX RIVER	2012-07-26	10:45	Fecal coliform	200	cfu/100ml	
DT-22	FOX RIVER	2012-09-11	12:25	Fecal coliform	27	cfu/100ml	
DT-22	FOX RIVER	2013-04-30	11:05	Fecal coliform	30	cfu/100ml	
DT-22	FOX RIVER	2013-05-22	12:00	Fecal coliform	35	cfu/100ml	
DT-22	FOX RIVER	2013-07-02	10:50	Fecal coliform	1300	cfu/100ml	
DT-22	FOX RIVER	2013-08-08	11:10	Fecal coliform	8400	cfu/100ml	
DT-22	FOX RIVER	2013-09-25	12:00	Fecal coliform	67	cfu/100ml	
DT-22	FOX RIVER	2013-10-28	12:15	Fecal coliform	40	cfu/100ml	
DT-22	FOX RIVER	2013-04-30	11:05	Fluoranthene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Fluoranthene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Fluorene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Fluorene	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Fluoride	0.19	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Fluoride	0.21	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Fluoride	0.24	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-07-01	11:40	Hardness, Ca + Mg	341000	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Hardness, Ca + Mg	299000	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Hardness, Ca + Mg	312000	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Hardness, Ca + Mg	311000	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Hardness, Ca + Mg	290000	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Hardness, Ca + Mg	363000	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Hardness, Ca + Mg	283000	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Hardness, Ca + Mg	237000	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Hardness, Ca + Mg	304000	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Hardness, Ca + Mg	316000	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Hardness, Ca + Mg	288000	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Hardness, Ca + Mg	291000	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Hardness, Ca + Mg	327000	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Hardness, Ca + Mg	379000	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Hardness, Ca + Mg	364000	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Hardness, Ca + Mg	347000	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Hardness, Ca + Mg	331000	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Hardness, Ca + Mg	296000	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Hardness, Ca + Mg	220000	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Hardness, Ca + Mg	305000	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Hardness, Ca + Mg	336000	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Hardness, Ca + Mg	384000	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Hardness, Ca + Mg	293000	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Hardness, Ca + Mg	276000	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Hardness, Ca + Mg	316000	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Hardness, Ca + Mg	326000	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Hardness, Ca + Mg	262000	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Hardness, Ca + Mg	282000	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Hardness, Ca + Mg	313000	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Hardness, Ca + Mg	326000	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Hardness, Ca + Mg	386000	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Hardness, Ca + Mg	351000	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Hardness, Ca + Mg	320000	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Hardness, Ca + Mg	299000	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Hardness, Ca + Mg	288000	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Hardness, Ca + Mg	323000	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Hardness, Ca + Mg	236000	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Hardness, Ca + Mg	261000	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Hardness, Ca + Mg	280000	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Hardness, Ca + Mg	282000	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Hardness, Ca + Mg	316000	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Hardness, Ca + Mg	359000	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Hardness, Ca + Mg	401000	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Hardness, Ca + Mg	258000	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hardness, Ca + Mg	251000	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hardness, Ca + Mg	337000	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-07-02	10:49	Hardness, Ca + Mg	296000	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Hardness, Ca + Mg	311000	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Hardness, Ca + Mg	293000	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Hardness, Ca + Mg	331000	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Hardness, Ca + Mg	401000	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hexachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hexachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hexachlorobutadiene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hexachlorobutadiene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hexachlorocyclopentadiene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hexachlorocyclopentadiene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hexachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hexachloroethane	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Hexachloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Hexachloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Indeno(1,2,3-cd)pyrene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Indeno(1,2,3-cd)pyrene	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Inorganic nitrogen (nitrate and nitrite)	3.08	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Inorganic nitrogen (nitrate and nitrite)	1.34	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Inorganic nitrogen (nitrate and nitrite)	0.947	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Inorganic nitrogen (nitrate and nitrite)	0.348	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Inorganic nitrogen (nitrate and nitrite)	0.176	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Inorganic nitrogen (nitrate and nitrite)	0.609	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Inorganic nitrogen (nitrate and nitrite)	1.07	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Inorganic nitrogen (nitrate and nitrite)	1.69	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Inorganic nitrogen (nitrate and nitrite)	2.55	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Inorganic nitrogen (nitrate and nitrite)	1.03	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Inorganic nitrogen (nitrate and nitrite)	0.789	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Inorganic nitrogen (nitrate and nitrite)	0.159	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Inorganic nitrogen (nitrate and nitrite)	0.191	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Inorganic nitrogen (nitrate and nitrite)	0.136	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Inorganic nitrogen (nitrate and nitrite)	0.812	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Inorganic nitrogen (nitrate and nitrite)	1.1	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Inorganic nitrogen (nitrate and nitrite)	2.68	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Inorganic nitrogen (nitrate and nitrite)	2.56	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Inorganic nitrogen (nitrate and nitrite)	1.33	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Inorganic nitrogen (nitrate and nitrite)	0.233	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Inorganic nitrogen (nitrate and nitrite)	1.17	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Inorganic nitrogen (nitrate and nitrite)	0.063	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Inorganic nitrogen (nitrate and nitrite)	0.818	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Inorganic nitrogen (nitrate and nitrite)	2.05	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-05-21	11:15	Iron	11.4	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Iron	271	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Iron	40.4	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Iron	1510	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Iron	32.3	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Iron	712	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Iron	19.2	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Iron	345	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Iron	14	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Iron	196	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Iron	39.1	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Iron	723	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Iron	78.9	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Iron	319	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Iron	22	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Iron	460	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Iron	21	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Iron	419	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Iron	6.1	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Iron	274	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Iron	11.4	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Iron	301	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Iron	20.7	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Iron	429	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Iron	20	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Iron	395	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Iron	23.5	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Iron	296	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Iron	11.7	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Iron	130	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Iron	24.1	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Iron	416	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Iron	18.8	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Iron	272	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Iron	14.2	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Iron	476	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Iron	21	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Iron	434	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Iron	46.8	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Iron	534	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Iron	10.8	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Iron	272	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Iron	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Iron	138	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Iron	18.5	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Iron	110	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-03-02	12:10	Iron	29.4	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Iron	229	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Iron	24.7	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Iron	291	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Iron	32.9	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Iron	289	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Iron	6.8	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Iron	483	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Iron	61.2	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Iron	425	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Iron	11.9	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Iron	438	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Iron	12.1	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Iron	231	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Iron	13.6	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Iron	345	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Iron	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Iron	169	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Iron	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Iron	192	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Iron	8.7	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Iron	554	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Iron	3.18	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Iron	319	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Iron	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Iron	442	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Iron	7.32	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Iron	616	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Iron	3.27	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Iron	407	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Iron	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Iron	397	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Iron	41.8	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Iron	441	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Iron	5.06	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Iron	376	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Iron	8.65	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Iron	159	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Iron	8.39	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Iron	177	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Iron	12	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Iron	245	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Iron	31.9	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Iron	368	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Iron	44.4	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Iron	519	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-05-22	12:00	Iron	4.36	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Iron	609	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Iron	37.6	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Iron	754	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Iron	6.77	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Iron	449	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Iron	6.05	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Iron	292	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Iron	7.79	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Iron	128	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Iron	18.1	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Iron	179	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Isodrin	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Isodrin	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Isophorone	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Isophorone	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Isopropylbenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Isopropylbenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Isosafrole	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Isosafrole	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Lead	2.92	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Lead	0.75	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Lead	2.81	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Lead	1.62	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Lead	1.42	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Lead	2.18	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Lead	1.28	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Lead	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Lead	1.99	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Lead	3.47	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Lead	4.26	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Lead	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Lead	0.84	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Lead	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Lead	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Lead	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Lead	1.44	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Lead	2.04	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Lead	5.8	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-11-04	12:50	Lead	2.45	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Lead	5.99	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Lead	1.42	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Lead	2.11	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Lead	1.89	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Lead	4.3	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Lead	2.18	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Lead	3.37	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Lead	5.17	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Lead	1.65	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Lead	2.8	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Lead	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Lead	6.37	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Lead	5.1	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Lead	0.99	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Lead	6.67	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Lead	8.04	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Lead	2.96	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Lead	9.2	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Lead	7.47	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Lead	8.84	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Lead	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Lead	2.5	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Lead	2.99	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Lead	1.29	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Lead	7.27	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Lead	3.33	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Lead	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-06-28	11:05	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Lead	1.87	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Lead	0.72	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Lead	1.03	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Lead	2.71	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Lead	3.04	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Lead	4.55	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Lead	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Lead	6.78	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Lead	10.5	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Lead	7.87	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Lead	7.03	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Lead	2.04	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Lead	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Lead	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Magnesium	28900	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Magnesium	34700	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Magnesium	34700	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Magnesium	34500	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Magnesium	36100	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Magnesium	36200	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Magnesium	38000	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Magnesium	36900	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Magnesium	31200	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Magnesium	31100	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Magnesium	37700	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Magnesium	39100	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Magnesium	30300	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Magnesium	30900	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-05-06	12:25	Magnesium	25300	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Magnesium	25800	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Magnesium	33800	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Magnesium	34500	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Magnesium	36500	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Magnesium	36200	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Magnesium	35100	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Magnesium	38400	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Magnesium	40100	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Magnesium	38500	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Magnesium	36000	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Magnesium	36900	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Magnesium	41700	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Magnesium	42100	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Magnesium	40200	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Magnesium	41300	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Magnesium	38100	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Magnesium	40400	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Magnesium	36600	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Magnesium	38900	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Magnesium	33900	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Magnesium	36200	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Magnesium	23700	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Magnesium	23700	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Magnesium	38100	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Magnesium	38700	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Magnesium	38300	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Magnesium	41100	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Magnesium	45800	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Magnesium	44300	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Magnesium	32800	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Magnesium	32400	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Magnesium	32000	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Magnesium	30400	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Magnesium	34400	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Magnesium	34500	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Magnesium	38200	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Magnesium	39500	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Magnesium	35100	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Magnesium	33600	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Magnesium	33800	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Magnesium	35600	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Magnesium	37300	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Magnesium	39000	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Magnesium	36800	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Magnesium	37600	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-01-24	12:20	Magnesium	40200	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Magnesium	41700	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Magnesium	45400	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Magnesium	39900	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Magnesium	35900	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Magnesium	37000	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Magnesium	33800	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Magnesium	35100	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Magnesium	34100	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Magnesium	37000	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Magnesium	40000	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Magnesium	41800	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Magnesium	37000	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Magnesium	37000	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Magnesium	38500	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Magnesium	39400	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Magnesium	39000	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Magnesium	39800	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Magnesium	40200	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Magnesium	40700	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Magnesium	41500	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Magnesium	41900	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Magnesium	44800	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Magnesium	45500	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Magnesium	45500	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Magnesium	47200	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Magnesium	26200	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Magnesium	27600	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Magnesium	24900	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Magnesium	26000	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Magnesium	33500	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Magnesium	37100	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Magnesium	28100	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Magnesium	30600	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Magnesium	37400	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Magnesium	36600	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Magnesium	38900	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Magnesium	38500	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Magnesium	40000	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Magnesium	41500	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Magnesium	41400	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Magnesium	44800	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Manganese	4.18	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Manganese	39	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Manganese	5.85	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Manganese	141	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-08-05	11:25	Manganese	14.3	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Manganese	98.6	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Manganese	3.73	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Manganese	50.6	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Manganese	9.13	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Manganese	20.3	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Manganese	42.1	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Manganese	73	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Manganese	64.1	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Manganese	72.4	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Manganese	12.3	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Manganese	43.2	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Manganese	4.81	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Manganese	34.8	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Manganese	18.9	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Manganese	40.7	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Manganese	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Manganese	49.8	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Manganese	16.9	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Manganese	63.5	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Manganese	23.6	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Manganese	50.7	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Manganese	10.9	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Manganese	24	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Manganese	17.3	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Manganese	21.6	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Manganese	28.7	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Manganese	40.9	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Manganese	43.9	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Manganese	53.9	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Manganese	26.6	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Manganese	53	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Manganese	18.1	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Manganese	67.4	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Manganese	7.57	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Manganese	60.6	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Manganese	4.34	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Manganese	49.4	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Manganese	4	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Manganese	19.3	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Manganese	10.4	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Manganese	18.9	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Manganese	26.2	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Manganese	34	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Manganese	5.01	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Manganese	38.9	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-05-17	11:50	Manganese	8.7	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Manganese	42.7	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Manganese	8.57	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Manganese	84.9	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Manganese	14	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Manganese	114	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Manganese	3.91	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Manganese	77.2	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Manganese	5.91	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Manganese	50.6	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Manganese	3.67	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Manganese	27	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Manganese	20.3	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Manganese	32.5	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Manganese	9.96	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Manganese	30.1	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Manganese	7.11	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Manganese	83.4	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Manganese	2.94	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Manganese	52.6	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Manganese	2.72	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Manganese	87.6	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Manganese	3.12	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Manganese	118	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Manganese	2.51	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Manganese	86.1	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Manganese	3.12	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Manganese	83.5	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Manganese	11.7	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Manganese	86.4	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Manganese	3.31	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Manganese	95.9	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Manganese	3.13	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Manganese	38.2	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Manganese	5.68	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Manganese	35.6	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Manganese	9.27	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Manganese	24.7	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Manganese	18.4	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Manganese	34.1	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Manganese	16.5	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Manganese	39.2	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Manganese	4.06	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Manganese	91.4	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Manganese	7.03	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Manganese	79.3	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-08-08	11:09	Manganese	3.3	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Manganese	97.4	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Manganese	3.09	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Manganese	75	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Manganese	5.94	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Manganese	28.4	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Manganese	13.5	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Manganese	21.8	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Mestranol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Mestranol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Methyl methanesulfote	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Methyl methanesulfote	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	MTBE, Methyl tertiary butyl ether	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	MTBE, Methyl tertiary butyl ether	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Nickel	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Nickel	1.11	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Nickel	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Nickel	1.23	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Nickel	1.12	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Nickel	1.8	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Nickel	0.46	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Nickel	1.19	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Nickel	2.04	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Nickel	1.93	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Nickel	0.62	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Nickel	1.09	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Nickel	0.65	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Nickel	0.69	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Nickel	0.73	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Nickel	0.68	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Nickel	2.83	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Nickel	2.86	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Nickel	0.75	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Nickel	0.88	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Nickel	1.48	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Nickel	1.85	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Nickel	1.78	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Nickel	2.49	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Nickel	0.52	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Nickel	1.05	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Nickel	1.22	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Nickel	1.87	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Nickel	2.42	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Nickel	2.77	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Nickel	2.6	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Nickel	2.75	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-03-10	13:40	Nickel	0.98	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Nickel	0.96	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Nickel	1.08	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Nickel	1.24	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Nickel	2.22	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Nickel	2.55	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Nickel	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Nickel	0.71	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Nickel	1	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Nickel	1.1	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Nickel	1.18	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Nickel	1.23	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Nickel	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Nickel	0.45	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Nickel	1.25	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Nickel	0.61	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Nickel	1.26	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Nickel	0.57	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Nickel	0.66	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Nickel	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Nickel	0.81	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Nickel	0.44	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Nickel	0.79	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Nickel	0.93	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Nickel	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Nickel	0.54	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Nickel	1.24	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Nickel	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Nickel	0.88	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Nickel	0.98	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Nickel	1.62	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Nickel	1.5	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Nickel	1.67	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Nickel	0.63	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Nickel	1.33	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Nickel	1.37	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Nickel	1.43	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-09-11	12:24	Nickel	1.21	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Nickel	2.11	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Nickel	1.18	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Nickel	0.87	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Nickel	1.14	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Nickel	0.67	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Nickel	0.74	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Nickel	0.76	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Nickel	1.34	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Nickel	1.64	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Nickel	0.63	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Nickel	1.27	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Nickel	0.72	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Nickel	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Nickel	0.92	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Nickel	2.49	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Nickel	0.54	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Nickel	2.2	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Nickel	1.3	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Nickel	1.42	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Nickel	0.64	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Nickel	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Nickel	0.66	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Nickel	1.31	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Nickel	1.19	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Nickel	0.85	ug/L	
DT-22	FOX RIVER	1964-06-17		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1964-06-23		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1967-08-31		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1967-10-25		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1967-12-19		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1969-05-21		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1970-09-28		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1970-11-30		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1970-12-21		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1971-04-12		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1972-01-06		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1972-03-07		Nitrite (NO2) + Nitrate (NO3) as N	1.7	mg/L	ft
DT-22	FOX RIVER	1972-03-22		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1972-04-11		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1972-05-03		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-22	FOX RIVER	1972-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1972-07-05		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1972-08-14		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1972-09-19		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-22	FOX RIVER	1972-10-05		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1972-11-14		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1972-12-11		Nitrite (NO2) + Nitrate (NO3) as N	1.6	mg/L	ft
DT-22	FOX RIVER	1973-01-17		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1973-03-07		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-22	FOX RIVER	1973-03-23		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-22	FOX RIVER	1973-04-06		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22	FOX RIVER	1973-05-02		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1973-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1973-07-11		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1973-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.7	mg/L	ft
DT-22	FOX RIVER	1973-12-12		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-22	FOX RIVER	1974-01-17		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1974-02-14		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	1974-06-20		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1974-08-22		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1974-10-18		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1975-01-16		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1975-01-28		Nitrite (NO2) + Nitrate (NO3) as N	1.6	mg/L	ft
DT-22	FOX RIVER	1975-03-12		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1975-04-18		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1975-06-17		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1975-07-07		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1975-07-29		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1975-09-04		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1975-10-01		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1975-11-12		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1975-12-04		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1976-02-02		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	1976-03-17		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1976-10-18		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1979-08-14		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1979-09-06		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1979-11-05		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1980-03-05		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Nitrite (NO2) + Nitrate (NO3) as N	0.7	mg/L	ft
DT-22	FOX RIVER	1980-05-08		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1980-06-12		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-22		1980-07-09		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	tt
DT-22		1980-08-11		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	tt
DT-22	FOX RIVER	1980-09-15		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22		1980-10-06		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	π
DT-22	FOX RIVER	1980-12-17		NITRITE (NO2) + NITRATE (NO3) as N	3	mg/L	rt

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1981-01-20		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Nitrite (NO2) + Nitrate (NO3) as N	12	mg/L	ft
DT-22	FOX RIVER	1981-05-07		Nitrite (NO2) + Nitrate (NO3) as N	6.5	mg/L	ft
DT-22	FOX RIVER	1981-06-24		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Nitrite (NO2) + Nitrate (NO3) as N	5.3	mg/L	ft
DT-22	FOX RIVER	1981-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	1982-03-09		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Nitrite (NO2) + Nitrate (NO3) as N	3.1	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1982-09-28		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Nitrite (NO2) + Nitrate (NO3) as N	3.2	mg/L	ft
DT-22	FOX RIVER	1983-02-23		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1983-11-21		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Nitrite (NO2) + Nitrate (NO3) as N	3.1	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1985-03-26		Nitrite (NO2) + Nitrate (NO3) as N	1.7	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Nitrite (NO2) + Nitrate (NO3) as N	27	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Nitrite (NO2) + Nitrate (NO3) as N	0.7	mg/L	ft
DT-22	FOX RIVER	1985-11-08		Nitrite (NO2) + Nitrate (NO3) as N	2.9	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1986-01-02		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Nitrite (NO2) + Nitrate (NO3) as N	2.7	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Nitrite (NO2) + Nitrate (NO3) as N	1.7	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Nitrite (NO2) + Nitrate (NO3) as N	0.7	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-22	FOX RIVER	1987-07-07		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1987-10-20		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1988-08-10		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1989-01-05		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1990-07-02		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Nitrite (NO2) + Nitrate (NO3) as N	0.7	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1991-03-04		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1991-04-16		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Nitrite (NO2) + Nitrate (NO3) as N	0.9	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Nitrite (NO2) + Nitrate (NO3) as N	8.5	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Nitrite (NO2) + Nitrate (NO3) as N	3.2	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1992-11-06		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Nitrite (NO2) + Nitrate (NO3) as N	2.9	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Nitrite (NO2) + Nitrate (NO3) as N	3	mg/L	ft
DT-22	FOX RIVER	1993-03-08		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Nitrite (NO2) + Nitrate (NO3) as N	1.7	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Nitrite (NO2) + Nitrate (NO3) as N	3.1	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-22	FOX RIVER	1994-04-26		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Nitrite (NO2) + Nitrate (NO3) as N	2.7	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Nitrite (NO2) + Nitrate (NO3) as N	1.6	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Nitrite (NO2) + Nitrate (NO3) as N	2.9	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1995-09-06		Nitrite (NO2) + Nitrate (NO3) as N	0.08	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Nitrite (NO2) + Nitrate (NO3) as N	0.56	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Nitrite (NO2) + Nitrate (NO3) as N	3.1	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Nitrite (NO2) + Nitrate (NO3) as N	3.9	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Nitrite (NO2) + Nitrate (NO3) as N	1.04	mg/L	ft
DT-22	FOX RIVER	1996-05-01		Nitrite (NO2) + Nitrate (NO3) as N	1.71	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1996-06-05		Nitrite (NO2) + Nitrate (NO3) as N	2.7	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.12	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Nitrite (NO2) + Nitrate (NO3) as N	0.48	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Nitrite (NO2) + Nitrate (NO3) as N	1.15	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Nitrite (NO2) + Nitrate (NO3) as N	1.64	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Nitrite (NO2) + Nitrate (NO3) as N	0.44	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Nitrite (NO2) + Nitrate (NO3) as N	0.11	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Nitrite (NO2) + Nitrate (NO3) as N	0.81	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Nitrite (NO2) + Nitrate (NO3) as N	1.48	mg/L	ft
DT-22	FOX RIVER	1998-02-04		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Nitrite (NO2) + Nitrate (NO3) as N	2.04	mg/L	ft
DT-22	FOX RIVER	1998-06-01		Nitrite (NO2) + Nitrate (NO3) as N	0.53	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Nitrite (NO2) + Nitrate (NO3) as N	0.25	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1998-09-24		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Nitrite (NO2) + Nitrate (NO3) as N	2.03	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Nitrite (NO2) + Nitrate (NO3) as N	1.83	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Nitrite (NO2) + Nitrate (NO3) as N	1.73	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Nitrite (NO2) + Nitrate (NO3) as N	1.23	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Nitrite (NO2) + Nitrate (NO3) as N	0.46	mg/L	ft
DT-22	FOX RIVER	1999-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Nitrite (NO2) + Nitrate (NO3) as N	0.67	mg/L	ft
DT-22	FOX RIVER	1999-11-30		Nitrite (NO2) + Nitrate (NO3) as N	0.82	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Nitrite (NO2) + Nitrate (NO3) as N	0.54	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.78	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Nitrite (NO2) + Nitrate (NO3) as N	0.43	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Nitrite (NO2) + Nitrate (NO3) as N	0.35	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Nitrite (NO2) + Nitrate (NO3) as N	0.17	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Nitrite (NO2) + Nitrate (NO3) as N	1.62	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	2001-05-23		Nitrite (NO2) + Nitrate (NO3) as N	0.79	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Nitrite (NO2) + Nitrate (NO3) as N	1.21	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Nitrite (NO2) + Nitrate (NO3) as N	1.46	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Nitrite (NO2) + Nitrate (NO3) as N	2.5	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Nitrite (NO2) + Nitrate (NO3) as N	2.9	mg/L	ft
DT-22	FOX RIVER	2002-04-11		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2002-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.63	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.46	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrite (NO2) + Nitrate (NO3) as N	0.214	mg/L	ft
DT-22	FOX RIVER	2004-03-22		Nitrite (NO2) + Nitrate (NO3) as N	2.98	mg/L	ft
DT-22	FOX RIVER	2004-04-22		Nitrite (NO2) + Nitrate (NO3) as N	1.32	mg/L	ft
DT-22	FOX RIVER	2004-05-20		Nitrite (NO2) + Nitrate (NO3) as N	2.64	mg/L	ft
DT-22	FOX RIVER	2004-08-06		Nitrite (NO2) + Nitrate (NO3) as N	0.01	mg/L	ft
DT-22	FOX RIVER	2004-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	2004-11-03		Nitrite (NO2) + Nitrate (NO3) as N	0.68	mg/L	ft
DT-22	FOX RIVER	2004-12-27		Nitrite (NO2) + Nitrate (NO3) as N	2.03	mg/L	ft
DT-22	FOX RIVER	2005-02-16		Nitrite (NO2) + Nitrate (NO3) as N	2.46	mg/L	ft
DT-22	FOX RIVER	2005-03-17		Nitrite (NO2) + Nitrate (NO3) as N	1.57	mg/L	ft
DT-22	FOX RIVER	2005-04-22		Nitrite (NO2) + Nitrate (NO3) as N	0.31	mg/L	ft
DT-22	FOX RIVER	2005-05-25		Nitrite (NO2) + Nitrate (NO3) as N	0.54	mg/L	ft
DT-22	FOX RIVER	2005-06-29		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrite (NO2) + Nitrate (NO3) as N	0.005	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.025	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Nitrite (NO2) + Nitrate (NO3) as N	0.47	mg/L	ft
DT-22	FOX RIVER	2005-11-14		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrite (NO2) + Nitrate (NO3) as N	0.045	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrite (NO2) + Nitrate (NO3) as N	0.11	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-22	FOX RIVER	2013-04-30	11:05	Nitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Nitrobenzene	NA	ug/L	
DT-22	FOX RIVER	1974-10-18		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1974-11-14		Nitrogen, ammonia as N	0.75	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1979-08-14		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	1979-09-06		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1979-11-05		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-22	FOX RIVER	1980-03-05		Nitrogen, ammonia as N	0.45	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1980-05-08		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1980-06-12		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	1980-07-09		Nitrogen, ammonia as N	0.39	mg/L	ft
DT-22	FOX RIVER	1980-08-11		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-22	FOX RIVER	1980-09-15		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1980-10-06		Nitrogen, ammonia as N	0.01	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1980-12-17		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	1981-01-20		Nitrogen, ammonia as N	0.51	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Nitrogen, ammonia as N	0.36	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1981-05-07		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1981-06-24		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Nitrogen, ammonia as N	0.49	mg/L	ft
DT-22	FOX RIVER	1981-07-21		Nitrogen, ammonia as N	0.22	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1982-03-09		Nitrogen, ammonia as N	0.7	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Nitrogen, ammonia as N	0.37	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1982-09-28		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	1983-02-23		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1983-11-21		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Nitrogen, ammonia as N	0.76	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Nitrogen, ammonia as N	0.78	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Nitrogen, ammonia as N	0.25	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Nitrogen, ammonia as N	0.25	mg/L	ft
DT-22	FOX RIVER	1985-03-26		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Nitrogen, ammonia as N	0.02	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1985-11-08		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-22	FOX RIVER	1986-01-02		Nitrogen, ammonia as N	0.48	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Nitrogen, ammonia as N	0.27	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Nitrogen, ammonia as N	0.34	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Nitrogen, ammonia as N	0.39	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Nitrogen, ammonia as N	0.22	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1987-07-07		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1987-10-20		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Nitrogen, ammonia as N	0.31	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Nitrogen, ammonia as N	0.37	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1988-08-10		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Nitrogen, ammonia as N	0.44	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Nitrogen, ammonia as N	0.67	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	1989-01-05		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Nitrogen, ammonia as N	0.4	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Nitrogen, ammonia as N	0.42	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1990-07-02		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Nitrogen, ammonia as N	0.6	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Nitrogen, ammonia as N	0.31	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Nitrogen, ammonia as N	0.36	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1991-03-04		Nitrogen, ammonia as N	0.4	mg/L	ft
DT-22	FOX RIVER	1991-04-16		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Nitrogen, ammonia as N	0.25	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Nitrogen, ammonia as N	0.45	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Nitrogen, ammonia as N	0.39	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1992-11-06		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-22	FOX RIVER	1993-03-08		Nitrogen, ammonia as N	0.31	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Nitrogen, ammonia as N	0.32	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1994-04-26		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Nitrogen, ammonia as N	0.01	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1995-09-06		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Nitrogen, ammonia as N	0.005	mg/L	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	------------------------	--------	-------	-------
DT-22	FOX RIVER	1996-05-01		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	1996-06-05		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Nitrogen, ammonia as N	0.43	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Nitrogen, ammonia as N	0.59	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-22	FOX RIVER	1998-02-04		Nitrogen, ammonia as N	0.28	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	1998-06-01		Nitrogen, ammonia as N	0.28	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-22	FOX RIVER	1998-09-24		Nitrogen, ammonia as N	0.39	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Nitrogen, ammonia as N	0.4	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Nitrogen, ammonia as N	0.37	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Nitrogen, ammonia as N	0.27	mg/L	ft
DT-22	FOX RIVER	1999-08-23		Nitrogen, ammonia as N	0.33	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Nitrogen, ammonia as N	0.77	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Nitrogen, ammonia as N	0.33	mg/L	ft
DT-22	FOX RIVER	1999-11-30		Nitrogen, ammonia as N	0.27	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2001-05-23		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Nitrogen, ammonia as N	0.005	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2002-04-11		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-05-13		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Nitrogen, ammonia as N	0.005	mg/L	ft
DT-22	FOX RIVER	2002-08-23		Nitrogen, ammonia as N	0.22	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.034	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.666	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.157	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.033	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.27	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.31	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.165	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.023	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	1.53	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.043	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.155	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.099	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.054	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.039	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.33	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.112	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.069	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.036	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.023	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.26	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.01	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.033	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.367	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.045	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.174	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.32	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.119	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.046	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.6	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.049	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.28	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.595	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.157	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.34	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.228	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.35	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.036	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.022	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.141	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.025	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.037	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.032	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.056	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.098	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.591	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.191	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.034	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.503	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.161	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.044	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.087	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.68	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.146	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.184	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.132	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.131	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.22	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.089	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.023	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.023	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.091	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.18	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.099	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.073	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.43	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.131	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.035	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Nitrogen, ammonia as N	0.27	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Nitrogen, ammonia as N	0.86	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Nitrogen, ammonia as N	0.179	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.07	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.57	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.103	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.067	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.063	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.038	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.18	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.363	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.032	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.18	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	1	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.034	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.4	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.038	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.012	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.3	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-22	FOX RIVER	2008-05-21	11:15	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.024	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2008-07-01	11:40	Nitrogen, ammonia as N	0.042	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Nitrogen, ammonia as N	0.212	mg/L	
DT-22	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.38	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.01	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.078	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.027	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-22	FOX RIVER	2008-09-23	11:35	Nitrogen, ammonia as N	0.045	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Nitrogen, ammonia as N	0.243	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Nitrogen, ammonia as N	0.33	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Nitrogen, ammonia as N	0.454	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Nitrogen, ammonia as N	0.0483	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Nitrogen, ammonia as N	0.0802	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Nitrogen, ammonia as N	0.281	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Nitrogen, ammonia as N	0.154	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Nitrogen, ammonia as N	0.476	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Nitrogen, ammonia as N	0.162	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Nitrogen, ammonia as N	0.0425	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Nitrogen, ammonia as N	0.136	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Nitrogen, ammonia as N	0.218	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Nitrogen, ammonia as N	0.172	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Nitrogen, ammonia as N	0.325	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Nitrogen, ammonia as N	0.09	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Nitrogen, ammonia as N	0.15	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Nitrogen, ammonia as N	0.03	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-09-06	11:45	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Nitrogen, ammonia as N	0.14	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Nitrogen, ammonia as N	0.06	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Nitrogen, ammonia as N	0.22	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Nitrogen, ammonia as N	0.16	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Nitrogen, ammonia as N	0.14	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Nitrogen, ammonia as N	NA	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Nitrogen, ammonia as N	0.08	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Nitrogen, ammonia as N	0.05	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Nitrogen, ammonia as N	0.37	mg/L	
DT-22	FOX RIVER	1979-07-26		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1980-03-05		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1980-06-12		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1980-07-09		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	1980-08-11		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1980-09-15		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1980-10-06		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1980-12-17		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1981-01-20		Nitrogen, Kjeldahl	0.9	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Nitrogen, Kjeldahl	1.45	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Nitrogen, Kjeldahl	2.9	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1981-07-21		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Nitrogen, Kjeldahl	1	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1982-03-09		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Nitrogen, Kjeldahl	1.56	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Nitrogen, Kjeldahl	2.38	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Nitrogen, Kjeldahl	2.5	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Nitrogen, Kjeldahl	1.34	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Nitrogen, Kjeldahl	1.14	mg/L	ft
DT-22	FOX RIVER	1983-02-23		Nitrogen, Kjeldahl	0.83	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Nitrogen, Kjeldahl	1.29	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Nitrogen, Kjeldahl	3.4	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Nitrogen, Kjeldahl	2.8	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1983-11-21		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Nitrogen, Kjeldahl	0.75	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Nitrogen, Kjeldahl	1.86	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Nitrogen, Kjeldahl	2.89	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Nitrogen, Kjeldahl	2.9	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Nitrogen, Kjeldahl	3.2	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Nitrogen, Kjeldahl	0.9	mg/L	ft
DT-22	FOX RIVER	1985-03-26		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Nitrogen, Kjeldahl	3.3	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Nitrogen, Kjeldahl	2.5	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Nitrogen, Kjeldahl	3.3	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1985-11-08		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Nitrogen, Kjeldahl	2.5	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Nitrogen, Kjeldahl	2.6	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Nitrogen, Kjeldahl	0.8	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Nitrogen, Kjeldahl	0.8	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Nitrogen, Kjeldahl	0.8	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Nitrogen, Kjeldahl	1.5	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1987-07-07		Nitrogen, Kjeldahl	2.6	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Nitrogen, Kjeldahl	2.6	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	1987-10-20		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Nitrogen, Kjeldahl	2.5	mg/L	ft
DT-22	FOX RIVER	1988-08-10		Nitrogen, Kjeldahl	4.5	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Nitrogen, Kjeldahl	3.4	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Nitrogen, Kjeldahl	2.8	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1989-01-05		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1990-07-02		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Nitrogen, Kjeldahl	2.7	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Nitrogen, Kjeldahl	2.8	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1991-03-04		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1991-04-16		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Nitrogen, Kjeldahl	0.8	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Nitrogen, Kjeldahl	2.3	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1992-11-06		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1993-03-08		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Nitrogen, Kjeldahl	0.6	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1994-04-26		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Nitrogen, Kjeldahl	2.9	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Nitrogen, Kjeldahl	1.6	mg/L	ft
DT-22	FOX RIVER	1995-09-06		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Nitrogen, Kjeldahl	0.74	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Nitrogen, Kjeldahl	1.71	mg/L	ft
DT-22	FOX RIVER	1996-05-01		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1996-06-05		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Nitrogen, Kjeldahl	0.89	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Nitrogen, Kjeldahl	1.63	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Nitrogen, Kjeldahl	1.74	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Nitrogen, Kjeldahl	1.54	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Nitrogen, Kjeldahl	0.05	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1998-02-04		Nitrogen, Kjeldahl	1.1	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1998-06-01		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Nitrogen, Kjeldahl	1.2	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Nitrogen, Kjeldahl	0.59	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Nitrogen, Kjeldahl	0.97	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Nitrogen, Kjeldahl	0.64	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Nitrogen, Kjeldahl	0.69	mg/L	ft
DT-22	FOX RIVER	1999-08-23		Nitrogen, Kjeldahl	0.53	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Nitrogen, Kjeldahl	0.91	mg/L	ft
DT-22	FOX RIVER	1999-11-30		Nitrogen, Kjeldahl	0.69	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Nitrogen, Kjeldahl	0.3	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Nitrogen, Kjeldahl	0.77	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Nitrogen, Kjeldahl	0.75	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Nitrogen, Kjeldahl	0.85	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Nitrogen, Kjeldahl	1.19	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Nitrogen, Kjeldahl	2.04	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Nitrogen, Kjeldahl	1.42	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Nitrogen, Kjeldahl	1.17	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Nitrogen, Kjeldahl	0.99	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Nitrogen, Kjeldahl	0.89	mg/L	ft
DT-22	FOX RIVER	2001-05-23		Nitrogen, Kjeldahl	0.97	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Nitrogen, Kjeldahl	1.92	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Nitrogen, Kjeldahl	3.07	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Nitrogen, Kjeldahl	1.54	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Nitrogen, Kjeldahl	0.95	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Nitrogen, Kjeldahl	1.91	mg/L	ft
DT-22	FOX RIVER	2002-04-11		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-22	FOX RIVER	2002-05-13		Nitrogen, Kjeldahl	1.44	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Nitrogen, Kjeldahl	4.37	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, Kjeldahl	1.12	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Nitrogen, Kjeldahl	1.58	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Nitrogen, Kjeldahl	1.08	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Nitrogen, Kjeldahl	1.62	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Nitrogen, Kjeldahl	2.02	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Nitrogen, Kjeldahl	2.22	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Nitrogen, Kjeldahl	1.48	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Nitrogen, Kjeldahl	1.47	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Nitrogen, Kjeldahl	1.81	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Nitrogen, Kjeldahl	1.99	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Nitrogen, Kjeldahl	2.07	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-08-05		Nitrogen, Kjeldahl	2.27	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, Kjeldahl	2.5	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Nitrogen, Kjeldahl	2.53	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, Kjeldahl	3.09	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Nitrogen, Kjeldahl	3.112	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	1.85	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	3.12	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	2.88	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	1.01	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Nitrogen, Kjeldahl	2.67	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, Kjeldahl	2.69	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Nitrogen, Kjeldahl	1.35	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, Kjeldahl	1.99	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, Kjeldahl	2.84	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Nitrogen, Kjeldahl	1.34	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, Kjeldahl	0.86	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Nitrogen, Kjeldahl	1	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, Kjeldahl	2.47	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Nitrogen, Kjeldahl	1.23	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Nitrogen, Kjeldahl	1.66	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, Kjeldahl	1.55	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Nitrogen, Kjeldahl	1.54	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Nitrogen, Kjeldahl	1.75	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Nitrogen, Kjeldahl	2.16	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Nitrogen, Kjeldahl	2.21	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Nitrogen, Kjeldahl	2.25	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, Kjeldahl	1.34	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Nitrogen, Kjeldahl	1.58	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Nitrogen, Kjeldahl	1.75	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Nitrogen, Kjeldahl	1.66	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Nitrogen, Kjeldahl	3.65	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Nitrogen, Kjeldahl	5.1	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Nitrogen, Kjeldahl	2.96	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Nitrogen, Kjeldahl	4.21	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Nitrogen, Kjeldahl	2	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Nitrogen, Kjeldahl	1.25	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Nitrogen, Kjeldahl	1.81	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Nitrogen, Kjeldahl	1.48	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Nitrogen, Kjeldahl	1.7	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Nitrogen, Kjeldahl	2.2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2006-09-19		Nitrogen, Kjeldahl	1.85	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Nitrogen, Kjeldahl	1.63	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Nitrogen, Kjeldahl	1.44	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, Kjeldahl	2.05	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Nitrogen, Kjeldahl	2.05	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, Kjeldahl	2.11	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Nitrogen, Kjeldahl	2.11	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, Kjeldahl	1.05	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Nitrogen, Kjeldahl	1.05	mg/L	ft
DT-22	FOX RIVER	2008-05-21	11:15	Nitrogen, Kjeldahl	1.13	mg/L	
DT-22	FOX RIVER	2008-06-17		Nitrogen, Kjeldahl	1.43	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Nitrogen, Kjeldahl	1.43	mg/L	ft
DT-22	FOX RIVER	2008-07-01	11:40	Nitrogen, Kjeldahl	1.55	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Nitrogen, Kjeldahl	1.61	mg/L	
DT-22	FOX RIVER	2008-08-19		Nitrogen, Kjeldahl	1.51	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Nitrogen, Kjeldahl	1.52	mg/L	ft
DT-22	FOX RIVER	2008-09-23	11:35	Nitrogen, Kjeldahl	1.28	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Nitrogen, Kjeldahl	0.858	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Nitrogen, Kjeldahl	0.465	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Nitrogen, Kjeldahl	0.653	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Nitrogen, Kjeldahl	0.976	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Nitrogen, Kjeldahl	0.788	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Nitrogen, Kjeldahl	0.841	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Nitrogen, Kjeldahl	0.926	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Nitrogen, Kjeldahl	1.14	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Nitrogen, Kjeldahl	0.871	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Nitrogen, Kjeldahl	0.974	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Nitrogen, Kjeldahl	0.669	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Nitrogen, Kjeldahl	0.362	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Nitrogen, Kjeldahl	0.464	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Nitrogen, Kjeldahl	0.588	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Nitrogen, Kjeldahl	1.08	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Nitrogen, Kjeldahl	0.898	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Nitrogen, Kjeldahl	1.14	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Nitrogen, Kjeldahl	0.856	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Nitrogen, Kjeldahl	0.573	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Nitrogen, Kjeldahl	1.07	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Nitrogen, Kjeldahl	0.365	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Nitrogen, Kjeldahl	0.759	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Nitrogen, Kjeldahl	1.88	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Nitrogen, Kjeldahl	1.74	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Nitrogen, Kjeldahl	1.94	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Nitrogen, Kjeldahl	1.33	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Nitrogen, Kjeldahl	1.03	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Nitrogen, Kjeldahl	0.608	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Nitrogen, Kieldahl	0.423	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-04-23	12:04	Nitrogen, Kjeldahl	1.16	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Nitrogen, Kjeldahl	1.12	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Nitrogen, Kjeldahl	2.29	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Nitrogen, Kjeldahl	2.57	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Nitrogen, Kjeldahl	2.7	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Nitrogen, Kjeldahl	3.02	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Nitrogen, Kjeldahl	3	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Nitrogen, Kjeldahl	2.86	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Nitrogen, Kjeldahl	1.02	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Nitrogen, Kjeldahl	0.944	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Nitrogen, Kjeldahl	0.864	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Nitrogen, Kjeldahl	0.983	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Nitrogen, Kjeldahl	1.07	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Nitrogen, Kjeldahl	1.55	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Nitrogen, Kjeldahl	1.31	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Nitrogen, Kjeldahl	2.09	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Nitrogen, Kjeldahl	1.96	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Nitrogen, Kjeldahl	1.02	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Nitrogen, Kjeldahl	0.8	mg/L	
DT-22	FOX RIVER	2008-05-21	11:15	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.644	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.229	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.44	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.59	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.836	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	2.24	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	1.97	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	1.34	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.686	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.998	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.468	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.664	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	1.68	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	2.14	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	2.29	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	1.96	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.716	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.578	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.208	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.399	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	2.79	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	N-nitrosodi-n-butylamine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	N-nitrosodi-n-butylamine	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	N-nitrosodi-n-propylamine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	N-nitrosodi-n-propylamine	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	N-nitrosopiperidine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	N-nitrosopiperidine	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Organic carbon	6.84	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Organic carbon	6.78	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Organic carbon	7.3	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Organic carbon	7.38	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Organic carbon	8.88	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Organic carbon	7.51	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Organic carbon	6.44	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Organic carbon	6.22	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Organic carbon	5.03	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Organic carbon	5.49	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Organic carbon	6.76	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Organic carbon	8.11	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Organic carbon	8.36	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Organic carbon	8.77	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Organic carbon	9.32	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Organic carbon	8.99	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Organic carbon	11.9	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Organic carbon	13.8	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Organic carbon	9.08	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Organic carbon	6.69	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Organic carbon	6.9	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Organic carbon	7.53	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Organic carbon	8.72	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Organic carbon	8.6	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Organic carbon	10.2	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Organic carbon	9.11	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Organic carbon	8.63	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Organic carbon	4.51	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Organic carbon	6.93	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	o-Xylene, mixt. with m-xylene and p-xylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	o-Xylene, mixt. with m-xylene and p-xylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	p-Dimethylaminoazobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	p-Dimethylaminoazobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Pentachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Pentachlorobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Pentachloronitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Pentachloronitrobenzene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Pentachlorophenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Pentachlorophenol	NA	ug/L	
DT-22	FOX RIVER	1964-06-02		рН	8.4	SU	ft
DT-22	FOX RIVER	1964-06-02		рН	8.5	SU	ft
DT-22	FOX RIVER	1964-06-09		рН	8.6	SU	ft
DT-22	FOX RIVER	1964-06-17		рН	8.3	SU	ft
DT-22	FOX RIVER	1964-06-17		pH	8.3	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1964-06-23		рН	8.2	SU	ft
DT-22	FOX RIVER	1964-06-23		рН	8.2	SU	ft
DT-22	FOX RIVER	1967-08-31		рН	8.8	SU	ft
DT-22	FOX RIVER	1967-10-25		рН	8.7	SU	ft
DT-22	FOX RIVER	1967-12-19		рН	8.9	SU	ft
DT-22	FOX RIVER	1969-05-21		рН	8.2	SU	ft
DT-22	FOX RIVER	1969-07-01		рН	8.7	SU	ft
DT-22	FOX RIVER	1969-08-19		рН	8.4	SU	ft
DT-22	FOX RIVER	1969-12-17		рН	8.5	SU	ft
DT-22	FOX RIVER	1970-07-06		рН	8.5	SU	ft
DT-22	FOX RIVER	1970-07-27		рН	8.5	SU	ft
DT-22	FOX RIVER	1970-08-10		рН	8.7	SU	ft
DT-22	FOX RIVER	1970-08-31		рН	8.8	SU	ft
DT-22	FOX RIVER	1970-09-28		рН	8.2	SU	ft
DT-22	FOX RIVER	1970-10-26		рН	8.5	SU	ft
DT-22	FOX RIVER	1970-11-30		рН	8.3	SU	ft
DT-22	FOX RIVER	1970-12-21		рН	8.3	SU	ft
DT-22	FOX RIVER	1971-04-12		рН	8.5	SU	ft
DT-22	FOX RIVER	1971-05-17		рН	8.5	SU	ft
DT-22	FOX RIVER	1971-06-16		рН	8.7	SU	ft
DT-22	FOX RIVER	1971-07-29		рН	9	SU	ft
DT-22	FOX RIVER	1971-09-08		рН	8.8	SU	ft
DT-22	FOX RIVER	1971-10-14		рН	8.3	SU	ft
DT-22	FOX RIVER	1971-11-09		рН	8.7	SU	ft
DT-22	FOX RIVER	1972-01-06		рН	8.1	SU	ft
DT-22	FOX RIVER	1972-03-07		рН	8.1	SU	ft
DT-22	FOX RIVER	1972-03-22		рН	7.8	SU	ft
DT-22	FOX RIVER	1972-04-11		рН	9	SU	ft
DT-22	FOX RIVER	1972-05-03		рН	8.9	SU	ft
DT-22	FOX RIVER	1972-06-06		рН	7.8	SU	ft
DT-22	FOX RIVER	1972-07-05		рН	8.4	SU	ft
DT-22	FOX RIVER	1972-08-14		рН	8.7	SU	ft
DT-22	FOX RIVER	1972-09-19		рН	8.3	SU	ft
DT-22	FOX RIVER	1972-10-05		рН	8.2	SU	ft
DT-22	FOX RIVER	1972-11-14		рН	8.3	SU	ft
DT-22	FOX RIVER	1972-12-11		рН	8.4	SU	ft
DT-22	FOX RIVER	1973-01-17		рН	7.8	SU	ft
DT-22	FOX RIVER	1973-03-07		рН	8.5	SU	ft
DT-22	FOX RIVER	1973-03-23		рН	8.6	SU	ft
DT-22	FOX RIVER	1973-04-06		рН	8.7	SU	ft
DT-22	FOX RIVER	1973-05-02		рН	8.3	SU	ft
DT-22	FOX RIVER	1973-06-06		рН	8.6	SU	ft
DT-22	FOX RIVER	1973-07-11		рН	8.6	SU	ft
DT-22	FOX RIVER	1973-08-07		рН	8.6	SU	ft
DT-22	FOX RIVER	1973-09-12		рН	8.7	SU	ft
DT-22	FOX RIVER	1973-10-04		рН	8.7	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1973-11-14		рН	8.6	SU	ft
DT-22	FOX RIVER	1973-12-12		рН	8.6	SU	ft
DT-22	FOX RIVER	1974-01-17		рН	8.2	SU	ft
DT-22	FOX RIVER	1974-02-14		рН	8.3	SU	ft
DT-22	FOX RIVER	1974-06-20		рН	8.6	SU	ft
DT-22	FOX RIVER	1974-08-22		рН	7.9	SU	ft
DT-22	FOX RIVER	1974-10-18		рН	8.7	SU	ft
DT-22	FOX RIVER	1975-01-16		рН	8.1	SU	ft
DT-22	FOX RIVER	1975-01-28		рН	8.4	SU	ft
DT-22	FOX RIVER	1975-03-12		рН	8.6	SU	ft
DT-22	FOX RIVER	1975-04-18		рН	8.2	SU	ft
DT-22	FOX RIVER	1975-06-17		рН	8.3	SU	ft
DT-22	FOX RIVER	1975-07-07		рН	7.8	SU	ft
DT-22	FOX RIVER	1975-07-29		рН	8.2	SU	ft
DT-22	FOX RIVER	1975-09-04		рН	9	SU	ft
DT-22	FOX RIVER	1975-10-01		рН	8.5	SU	ft
DT-22	FOX RIVER	1975-11-12		рН	8.5	SU	ft
DT-22	FOX RIVER	1975-12-04		рН	8.6	SU	ft
DT-22	FOX RIVER	1976-02-02		рН	8.3	SU	ft
DT-22	FOX RIVER	1976-03-17		рН	8.5	SU	ft
DT-22	FOX RIVER	1976-04-20		рН	8.5	SU	ft
DT-22	FOX RIVER	1976-05-25		рН	8.7	SU	ft
DT-22	FOX RIVER	1976-08-19		рН	8.7	SU	ft
DT-22	FOX RIVER	1976-10-18		рН	8.7	SU	ft
DT-22	FOX RIVER	1979-07-26		рН	8.5	SU	ft
DT-22	FOX RIVER	1979-08-14		рН	8.3	SU	ft
DT-22	FOX RIVER	1979-09-06		рН	8.4	SU	ft
DT-22	FOX RIVER	1979-10-17		рН	8.8	SU	ft
DT-22	FOX RIVER	1979-11-05		рН	8.5	SU	ft
DT-22	FOX RIVER	1979-12-18		рН	8.4	SU	ft
DT-22	FOX RIVER	1980-01-07		рН	8.6	SU	ft
DT-22	FOX RIVER	1980-03-05		рН	8	SU	ft
DT-22	FOX RIVER	1980-04-09		рН	8.2	SU	ft
DT-22	FOX RIVER	1980-05-08		рН	8.7	SU	ft
DT-22	FOX RIVER	1980-06-12		рН	8.2	SU	ft
DT-22	FOX RIVER	1980-07-09		рН	7.8	SU	ft
DT-22	FOX RIVER	1980-08-11		рН	8.1	SU	ft
DT-22	FOX RIVER	1980-09-15		рН	7.8	SU	ft
DT-22	FOX RIVER	1980-10-06		рН	8.7	SU	ft
DT-22	FOX RIVER	1980-12-17		рН	8.3	SU	ft
DT-22	FOX RIVER	1980-12-17		рН	8.7	SU	ft
DT-22	FOX RIVER	1981-01-20		рН	8.2	SU	ft
DT-22	FOX RIVER	1981-02-20		рН	8	SU	ft
DT-22	FOX RIVER	1981-02-20		рН	8.6	SU	ft
DT-22	FOX RIVER	1981-03-06		рН	8	SU	ft
DT-22	FOX RIVER	1981-03-06		рН	8.6	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1981-04-02		рН	8.2	SU	ft
DT-22	FOX RIVER	1981-04-02		рН	8.6	SU	ft
DT-22	FOX RIVER	1981-05-07		рН	8	SU	ft
DT-22	FOX RIVER	1981-05-07		рН	8.5	SU	ft
DT-22	FOX RIVER	1981-06-24		рН	8	SU	ft
DT-22	FOX RIVER	1981-06-24		рН	8.4	SU	ft
DT-22	FOX RIVER	1981-07-06		рН	7.7	SU	ft
DT-22	FOX RIVER	1981-07-06		рН	8.3	SU	ft
DT-22	FOX RIVER	1981-07-21		рН	8.6	SU	ft
DT-22	FOX RIVER	1981-08-28		рН	8.3	SU	ft
DT-22	FOX RIVER	1981-10-28		рН	8.5	SU	ft
DT-22	FOX RIVER	1981-11-24		рН	7.5	SU	ft
DT-22	FOX RIVER	1982-03-09		рН	7	SU	ft
DT-22	FOX RIVER	1982-03-24		рН	7.3	SU	ft
DT-22	FOX RIVER	1982-06-03		рН	7.7	SU	ft
DT-22	FOX RIVER	1982-07-13		рН	8.3	SU	ft
DT-22	FOX RIVER	1982-07-28		рН	7.9	SU	ft
DT-22	FOX RIVER	1982-09-28		рН	8.1	SU	ft
DT-22	FOX RIVER	1982-10-13		рН	7.9	SU	ft
DT-22	FOX RIVER	1982-12-01		рН	7.8	SU	ft
DT-22	FOX RIVER	1983-01-19		рН	7.2	SU	ft
DT-22	FOX RIVER	1983-02-23		рН	7	SU	ft
DT-22	FOX RIVER	1983-04-06		рН	7.1	SU	ft
DT-22	FOX RIVER	1983-04-27		рН	8	SU	ft
DT-22	FOX RIVER	1983-06-01		рН	7.8	SU	ft
DT-22	FOX RIVER	1983-08-03		рН	8.1	SU	ft
DT-22	FOX RIVER	1983-09-19		рН	7.2	SU	ft
DT-22	FOX RIVER	1983-10-04		рН	7.5	SU	ft
DT-22	FOX RIVER	1983-11-21		рН	9.7	SU	ft
DT-22	FOX RIVER	1984-01-17		рН	7.5	SU	ft
DT-22	FOX RIVER	1984-02-06		рН	7.1	SU	ft
DT-22	FOX RIVER	1984-03-20		рН	7.7	SU	ft
DT-22	FOX RIVER	1984-04-25		рН	8.1	SU	ft
DT-22	FOX RIVER	1984-06-07		рН	8.1	SU	ft
DT-22	FOX RIVER	1984-07-16		рН	8	SU	ft
DT-22	FOX RIVER	1984-08-23		рН	7.6	SU	ft
DT-22	FOX RIVER	1984-10-04		рН	8	SU	ft
DT-22	FOX RIVER	1984-11-14		рН	7.9	SU	ft
DT-22	FOX RIVER	1985-01-09		рН	7.5	SU	ft
DT-22	FOX RIVER	1985-03-04		рН	6.5	SU	ft
DT-22	FOX RIVER	1985-03-26		рН	7.8	SU	ft
DT-22	FOX RIVER	1985-05-07		рН	8.3	SU	ft
DT-22	FOX RIVER	1985-06-13		рН	8.2	SU	ft
DT-22	FOX RIVER	1985-07-15		рН	7.4	SU	ft
DT-22	FOX RIVER	1985-08-08		рН	7.7	SU	ft
DT-22	FOX RIVER	1985-10-15		рН	7.8	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1985-11-08		рН	7.4	SU	ft
DT-22	FOX RIVER	1986-01-02		рН	7.4	SU	ft
DT-22	FOX RIVER	1986-02-26		рН	7.9	SU	ft
DT-22	FOX RIVER	1986-03-26		рН	7.6	SU	ft
DT-22	FOX RIVER	1986-05-06		рН	8.5	SU	ft
DT-22	FOX RIVER	1986-06-16		рН	7.7	SU	ft
DT-22	FOX RIVER	1986-07-23		рН	7.7	SU	ft
DT-22	FOX RIVER	1986-08-28		рН	8	SU	ft
DT-22	FOX RIVER	1986-10-10		рН	7.9	SU	ft
DT-22	FOX RIVER	1986-12-09		рН	7.8	SU	ft
DT-22	FOX RIVER	1987-01-14		рН	7.4	SU	ft
DT-22	FOX RIVER	1987-02-11		рН	7.6	SU	ft
DT-22	FOX RIVER	1987-04-10		рН	8.1	SU	ft
DT-22	FOX RIVER	1987-05-05		рН	8.1	SU	ft
DT-22	FOX RIVER	1987-07-07		рН	8.3	SU	ft
DT-22	FOX RIVER	1987-08-12		рН	8.5	SU	ft
DT-22	FOX RIVER	1987-09-25		рН	8.2	SU	ft
DT-22	FOX RIVER	1987-10-20		рН	8.1	SU	ft
DT-22	FOX RIVER	1987-11-20		рН	8.3	SU	ft
DT-22	FOX RIVER	1988-01-14		рН	7.2	SU	ft
DT-22	FOX RIVER	1988-02-22		рН	7	SU	ft
DT-22	FOX RIVER	1988-03-24		рН	7.6	SU	ft
DT-22	FOX RIVER	1988-05-27		рН	8.2	SU	ft
DT-22	FOX RIVER	1988-07-22		рН	8.5	SU	ft
DT-22	FOX RIVER	1988-08-10		рН	8	SU	ft
DT-22	FOX RIVER	1988-09-27		рН	8.2	SU	ft
DT-22	FOX RIVER	1988-10-27		рН	8.2	SU	ft
DT-22	FOX RIVER	1988-12-07		рН	8.2	SU	ft
DT-22	FOX RIVER	1989-01-05		рН	7.9	SU	ft
DT-22	FOX RIVER	1989-02-14		рН	7.7	SU	ft
DT-22	FOX RIVER	1989-04-10		рН	8.3	SU	ft
DT-22	FOX RIVER	1989-05-05		рН	8.3	SU	ft
DT-22	FOX RIVER	1989-06-13		рН	7.4	SU	ft
DT-22	FOX RIVER	1989-09-21		рН	8.5	SU	ft
DT-22	FOX RIVER	1989-10-23		рН	8	SU	ft
DT-22	FOX RIVER	1989-11-14		рН	8.3	SU	ft
DT-22	FOX RIVER	1990-01-26		рН	7.7	SU	ft
DT-22	FOX RIVER	1990-03-05		рН	8.6	SU	ft
DT-22	FOX RIVER	1990-04-12		рН	8.4	SU	ft
DT-22	FOX RIVER	1990-05-18		рН	8.1	SU	ft
DT-22	FOX RIVER	1990-07-02		рН	8.22	SU	ft
DT-22	FOX RIVER	1990-07-24		рН	8.51	SU	ft
DT-22	FOX RIVER	1990-09-04		pH	8.26	SU	ft
DT-22	FOX RIVER	1990-10-26		pH	8.36	SU	ft
DT-22	FOX RIVER	1990-12-10		рН	8.05	SU	ft
DT-22	FOX RIVER	1991-02-04		рН	7.87	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1991-03-04		рН	7.99	SU	ft
DT-22	FOX RIVER	1991-04-16		рН	8.48	SU	ft
DT-22	FOX RIVER	1991-05-21		рН	8.42	SU	ft
DT-22	FOX RIVER	1991-06-27		рН	8.64	SU	ft
DT-22	FOX RIVER	1991-08-06		рН	8.65	SU	ft
DT-22	FOX RIVER	1991-10-25		рН	8	SU	ft
DT-22	FOX RIVER	1991-11-12		рН	7.88	SU	ft
DT-22	FOX RIVER	1991-12-20		рН	7.97	SU	ft
DT-22	FOX RIVER	1992-01-17		рН	7.93	SU	ft
DT-22	FOX RIVER	1992-03-02		рН	8.08	SU	ft
DT-22	FOX RIVER	1992-03-27		рН	8.32	SU	ft
DT-22	FOX RIVER	1992-05-27		рН	7.27	SU	ft
DT-22	FOX RIVER	1992-06-22		рН	7.98	SU	ft
DT-22	FOX RIVER	1992-08-18		рН	8.27	SU	ft
DT-22	FOX RIVER	1992-11-06		рН	7.94	SU	ft
DT-22	FOX RIVER	1992-12-18		рН	7.54	SU	ft
DT-22	FOX RIVER	1993-01-27		рН	7.18	SU	ft
DT-22	FOX RIVER	1993-03-08		рН	7.75	SU	ft
DT-22	FOX RIVER	1993-04-21		рН	7.44	SU	ft
DT-22	FOX RIVER	1993-05-17		рН	8.52	SU	ft
DT-22	FOX RIVER	1993-06-14		рН	7.65	SU	ft
DT-22	FOX RIVER	1993-08-06		рН	8.56	SU	ft
DT-22	FOX RIVER	1993-09-24		рН	7.96	SU	ft
DT-22	FOX RIVER	1993-10-20		рН	8.13	SU	ft
DT-22	FOX RIVER	1993-12-10		рН	8.62	SU	ft
DT-22	FOX RIVER	1994-01-12		рН	7.41	SU	ft
DT-22	FOX RIVER	1994-02-09		рН	7.35	SU	ft
DT-22	FOX RIVER	1994-03-23		рН	8.63	SU	ft
DT-22	FOX RIVER	1994-04-26		рН	8.89	SU	ft
DT-22	FOX RIVER	1994-06-13		рН	7.78	SU	ft
DT-22	FOX RIVER	1994-07-25		рН	8.4	SU	ft
DT-22	FOX RIVER	1994-09-20		рН	7.19	SU	ft
DT-22	FOX RIVER	1994-11-14		рН	8.86	SU	ft
DT-22	FOX RIVER	1994-12-05		рН	8.58	SU	ft
DT-22	FOX RIVER	1995-01-17		рН	8.79	SU	ft
DT-22	FOX RIVER	1995-02-21		рН	7.87	SU	ft
DT-22	FOX RIVER	1995-03-23		рН	9.02	SU	ft
DT-22	FOX RIVER	1995-05-04		рН	9.37	SU	ft
DT-22	FOX RIVER	1995-06-13		рН	9.46	SU	ft
DT-22	FOX RIVER	1995-07-25		рН	8.56	SU	ft
DT-22	FOX RIVER	1995-09-06		pH	8.64	SU	ft
DT-22	FOX RIVER	1995-10-11		рН	8.56	SU	ft
DT-22	FOX RIVER	1995-11-21		pH	8	SU	ft
DT-22	FOX RIVER	1996-01-24		pH	7.73	SU	ft
DT-22	FOX RIVER	1996-02-28		рН	8.25	SU	ft
DT-22	FOX RIVER	1996-04-15		рН	8.33	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1996-05-01		рН	8.45	SU	ft
DT-22	FOX RIVER	1996-06-05		рН	8.31	SU	ft
DT-22	FOX RIVER	1996-08-12		рН	8.49	SU	ft
DT-22	FOX RIVER	1996-08-28		рН	8.3	SU	ft
DT-22	FOX RIVER	1996-10-02		рН	8.55	SU	ft
DT-22	FOX RIVER	1996-11-19		рН	8.29	SU	ft
DT-22	FOX RIVER	1997-01-07		рН	7.9	SU	ft
DT-22	FOX RIVER	1997-02-18		рН	7.96	SU	ft
DT-22	FOX RIVER	1997-03-26		рН	8.29	SU	ft
DT-22	FOX RIVER	1997-05-28		рН	8.74	SU	ft
DT-22	FOX RIVER	1997-07-11		рН	8.52	SU	ft
DT-22	FOX RIVER	1997-09-11		рН	8.77	SU	ft
DT-22	FOX RIVER	1997-11-06		рН	7.85	SU	ft
DT-22	FOX RIVER	1997-12-15		рН	8.43	SU	ft
DT-22	FOX RIVER	1998-02-04		рН	8.02	SU	ft
DT-22	FOX RIVER	1998-03-16		рН	8.29	SU	ft
DT-22	FOX RIVER	1998-04-09		рН	7.93	SU	ft
DT-22	FOX RIVER	1998-06-01		рН	8.16	SU	ft
DT-22	FOX RIVER	1998-07-06		рН	8.5	SU	ft
DT-22	FOX RIVER	1998-08-10		рН	8.4	SU	ft
DT-22	FOX RIVER	1998-09-24		рН	8.8	SU	ft
DT-22	FOX RIVER	1998-11-23		рН	8.48	SU	ft
DT-22	FOX RIVER	1998-12-17		рН	8.05	SU	ft
DT-22	FOX RIVER	1999-03-18		рН	8.3	SU	ft
DT-22	FOX RIVER	1999-05-26		рН	8.56	SU	ft
DT-22	FOX RIVER	1999-06-25		рН	8.34	SU	ft
DT-22	FOX RIVER	1999-09-21		рН	8.49	SU	ft
DT-22	FOX RIVER	1999-10-20		рН	8.37	SU	ft
DT-22	FOX RIVER	1999-11-30		рН	8.29	SU	ft
DT-22	FOX RIVER	2000-01-06		рН	8.12	SU	ft
DT-22	FOX RIVER	2000-02-22		рН	7.93	SU	ft
DT-22	FOX RIVER	2000-04-11		рН	8.6	SU	ft
DT-22	FOX RIVER	2000-05-09		рН	8.27	SU	ft
DT-22	FOX RIVER	2000-06-05		рН	7.77	SU	ft
DT-22	FOX RIVER	2000-06-12		рН	8.09	SU	ft
DT-22	FOX RIVER	2000-06-27		рН	8.44	SU	ft
DT-22	FOX RIVER	2000-07-06		рН	8.25	SU	ft
DT-22	FOX RIVER	2000-07-10		рН	8.16	SU	ft
DT-22	FOX RIVER	2000-07-18		рН	8.36	SU	ft
DT-22	FOX RIVER	2000-07-24		рН	8.35	SU	ft
DT-22	FOX RIVER	2000-07-31		рН	7.98	SU	ft
DT-22	FOX RIVER	2000-08-02		рН	7.91	SU	ft
DT-22	FOX RIVER	2000-09-05		рН	8.27	SU	ft
DT-22	FOX RIVER	2000-09-07		рН	8.3	SU	ft
DT-22	FOX RIVER	2000-09-11		рН	8.34	SU	ft
DT-22	FOX RIVER	2000-09-18		рН	8.28	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2000-09-25		рН	7.87	SU	ft
DT-22	FOX RIVER	2000-09-29		рН	8.36	SU	ft
DT-22	FOX RIVER	2000-11-13		рН	8.17	SU	ft
DT-22	FOX RIVER	2001-02-05		рН	7.41	SU	ft
DT-22	FOX RIVER	2001-03-15		рН	8.13	SU	ft
DT-22	FOX RIVER	2001-05-23		рН	8.31	SU	ft
DT-22	FOX RIVER	2001-06-27		рН	8.47	SU	ft
DT-22	FOX RIVER	2001-10-26		рН	8.22	SU	ft
DT-22	FOX RIVER	2001-11-27		рН	8.48	SU	ft
DT-22	FOX RIVER	2002-01-18		рН	7.54	SU	ft
DT-22	FOX RIVER	2002-03-19		рН	8.12	SU	ft
DT-22	FOX RIVER	2002-04-11		рН	8.2	SU	ft
DT-22	FOX RIVER	2002-05-13		рН	8.6	SU	ft
DT-22	FOX RIVER	2002-06-13		рН	7.89	SU	ft
DT-22	FOX RIVER	2002-07-11		рН	8.41	SU	ft
DT-22	FOX RIVER	2002-08-23		рН	8.02	SU	ft
DT-22	FOX RIVER	2002-10-01		рН	8.19	SU	ft
DT-22	FOX RIVER	2002-11-12		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-01-03		рН	8.26	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.57	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.52	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	7.7	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.95	SU	ft
DT-22	FOX RIVER	2003-01-07		рН	8.9	SU	ft
DT-22	FOX RIVER	2003-03-14		рН	8.28	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	8.04	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	8.7	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	9.14	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	8.49	SU	ft
DT-22	FOX RIVER	2003-03-18		рН	7	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.39	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.1	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.51	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.28	SU	ft
DT-22	FOX RIVER	2003-04-01		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-04-10		рН	8.66	SU	ft
DT-22	FOX RIVER	2003-04-15		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-04-15		рН	8.6	SU	ft
DT-22	FOX RIVER	2003-04-15		рН	8.45	SU	ft
DT-22	FOX RIVER	2003-04-15		рН	8.53	SU	ft
DT-22	FOX RIVER	2003-04-29		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-04-29		рН	8.13	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-04-29		рН	8.51	SU	ft
DT-22	FOX RIVER	2003-04-29		рН	8.58	SU	ft
DT-22	FOX RIVER	2003-04-29		рН	8.12	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.19	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.64	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.58	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.45	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.67	SU	ft
DT-22	FOX RIVER	2003-05-13		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-05-22		рН	8.48	SU	ft
DT-22	FOX RIVER	2003-05-27		рН	7.99	SU	ft
DT-22	FOX RIVER	2003-05-27		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-05-27		рН	8.26	SU	ft
DT-22	FOX RIVER	2003-05-27		рН	8.39	SU	ft
DT-22	FOX RIVER	2003-05-27		рН	8.35	SU	ft
DT-22	FOX RIVER	2003-06-10		рН	8.39	SU	ft
DT-22	FOX RIVER	2003-06-10		рН	8.33	SU	ft
DT-22	FOX RIVER	2003-06-10		рН	8.08	SU	ft
DT-22	FOX RIVER	2003-06-10		рН	8.23	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.27	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.35	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.28	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.45	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-06-24		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-07-08		рН	8.21	SU	ft
DT-22	FOX RIVER	2003-07-08		рН	8.6	SU	ft
DT-22	FOX RIVER	2003-07-08		рН	7.4	SU	ft
DT-22	FOX RIVER	2003-07-08		рН	8.65	SU	ft
DT-22	FOX RIVER	2003-07-08		рН	8.7	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	8.19	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	8.84	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	7.83	SU	ft
DT-22	FOX RIVER	2003-07-22		рН	7.37	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	7.8	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.49	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.29	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.76	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.42	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.6	SU	ft
DT-22	FOX RIVER	2003-08-05		рН	8.81	SU	ft
DT-22	FOX RIVER	2003-08-05		pН	7.7	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-08-06		рН	8.43	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.42	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.49	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.53	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.48	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.37	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.36	SU	ft
DT-22	FOX RIVER	2003-08-19		рН	8.25	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.94	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.44	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.6	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.29	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.1	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.44	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.34	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.6	SU	ft
DT-22	FOX RIVER	2003-09-02		рН	8.57	SU	ft
DT-22	FOX RIVER	2003-09-05		рН	8.53	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	7.4	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.58	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.16	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.41	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	7.5	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	7.5	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.4	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.59	SU	ft
DT-22	FOX RIVER	2003-09-16		рН	8.71	SU	ft
DT-22	FOX RIVER	2003-09-30		рН	8.14	SU	ft
DT-22	FOX RIVER	2003-09-30		рН	8.3	SU	ft
DT-22	FOX RIVER	2003-09-30		рН	8.34	SU	ft
DT-22	FOX RIVER	2003-09-30		рН	8.36	SU	ft
DT-22	FOX RIVER	2003-09-30		рН	8.47	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.2	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.65	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.1	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.43	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.28	SU	ft
DT-22	FOX RIVER	2003-10-14		рН	8.25	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-10-15		рН	8.72	SU	ft
DT-22	FOX RIVER	2003-10-28		рН	8.17	SU	ft
DT-22	FOX RIVER	2003-10-28		рН	8.22	SU	ft
DT-22	FOX RIVER	2003-10-28		рН	8	SU	ft
DT-22	FOX RIVER	2003-10-28		рН	8.75	SU	ft
DT-22	FOX RIVER	2003-10-28		рН	9.41	SU	ft
DT-22	FOX RIVER	2003-11-24		рН	7.32	SU	ft
DT-22	FOX RIVER	2003-11-25		рН	8.12	SU	ft
DT-22	FOX RIVER	2003-11-25		рН	8.7	SU	ft
DT-22	FOX RIVER	2003-11-25		рН	8.61	SU	ft
DT-22	FOX RIVER	2003-11-25		рН	7.9	SU	ft
DT-22	FOX RIVER	2003-11-25		рН	8.5	SU	ft
DT-22	FOX RIVER	2003-12-09		рН	8.13	SU	ft
DT-22	FOX RIVER	2003-12-09		рН	8.35	SU	ft
DT-22	FOX RIVER	2003-12-09		рН	8.69	SU	ft
DT-22	FOX RIVER	2003-12-09		рН	8.3	SU	ft
DT-22	FOX RIVER	2004-03-22		рН	8.16	SU	ft
DT-22	FOX RIVER	2004-03-30		рН	8.43	SU	ft
DT-22	FOX RIVER	2004-03-30		рН	7.91	SU	ft
DT-22	FOX RIVER	2004-03-30		рН	8.65	SU	ft
DT-22	FOX RIVER	2004-03-30		рН	8.54	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.61	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.22	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.44	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.1	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.12	SU	ft
DT-22	FOX RIVER	2004-04-13		рН	8.24	SU	ft
DT-22	FOX RIVER	2004-04-22		рН	8.35	SU	ft
DT-22	FOX RIVER	2004-04-27		рН	7.81	SU	ft
DT-22	FOX RIVER	2004-04-27		рН	8.4	SU	ft
DT-22	FOX RIVER	2004-04-27		рН	8.64	SU	ft
DT-22	FOX RIVER	2004-04-27		рН	8.28	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.3	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.24	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.52	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.5	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.17	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.4	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.6	SU	ft
DT-22	FOX RIVER	2004-05-18		рН	8.22	SU	ft
DT-22	FOX RIVER	2004-05-20		рН	8.03	SU	ft
DT-22	FOX RIVER	2004-06-15		рН	8.6	SU	ft
DT-22	FOX RIVER	2004-06-15		рН	8.4	SU	ft
DT-22	FOX RIVER	2004-06-15		рН	8.14	SU	ft
DT-22	FOX RIVER	2004-06-15		рН	8.26	SU	ft
DT-22	FOX RIVER	2004-06-15		рН	8.65	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-06-15		рН	8.2	SU	ft
DT-22	FOX RIVER	2004-07-16		рН	8.25	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.6	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.2	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.57	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.73	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.04	SU	ft
DT-22	FOX RIVER	2004-07-20		рН	8.7	SU	ft
DT-22	FOX RIVER	2004-08-06		рН	8.51	SU	ft
DT-22	FOX RIVER	2004-08-17		рН	8.39	SU	ft
DT-22	FOX RIVER	2004-08-17		рН	8.2	SU	ft
DT-22	FOX RIVER	2004-08-17		рН	8.5	SU	ft
DT-22	FOX RIVER	2004-08-17		рН	8.19	SU	ft
DT-22	FOX RIVER	2004-08-17		рН	8.18	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.33	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.7	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.65	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.4	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.5	SU	ft
DT-22	FOX RIVER	2004-09-21		рН	8.35	SU	ft
DT-22	FOX RIVER	2004-09-22		рН	8.78	SU	ft
DT-22	FOX RIVER	2004-11-03		рН	8.23	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	7.5	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.26	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.35	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.36	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.55	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.45	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.34	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.04	SU	ft
DT-22	FOX RIVER	2004-11-16		рН	8.52	SU	ft
DT-22	FOX RIVER	2004-12-27		рН	7.85	SU	ft
DT-22	FOX RIVER	2005-02-16		рН	7.66	SU	ft
DT-22	FOX RIVER	2005-03-17		рН	8.2	SU	ft
DT-22	FOX RIVER	2005-04-22		рН	8.59	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8.6	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8.57	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8.77	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8.31	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8.3	SU	ft
DT-22	FOX RIVER	2005-04-27		рН	8	SU	ft
DT-22	FOX RIVER	2005-05-25		рН	8.09	SU	ft
DT-22	FOX RIVER	2005-06-21		рН	8.72	SU	ft
DT-22	FOX RIVER	2005-06-21		рН	8.22	SU	ft
DT-22	FOX RIVER	2005-06-21		рН	8.36	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2005-06-21		рН	8.1	SU	ft
DT-22	FOX RIVER	2005-06-21		рН	8.66	SU	ft
DT-22	FOX RIVER	2005-06-21		рН	8.58	SU	ft
DT-22	FOX RIVER	2005-06-29		рН	8.32	SU	ft
DT-22	FOX RIVER	2005-07-19		рН	8.3	SU	ft
DT-22	FOX RIVER	2005-07-19		рН	8.38	SU	ft
DT-22	FOX RIVER	2005-07-19		рН	8.1	SU	ft
DT-22	FOX RIVER	2005-07-19		рН	8.67	SU	ft
DT-22	FOX RIVER	2005-07-19		рН	7.91	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.35	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.93	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.24	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.74	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.1	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.14	SU	ft
DT-22	FOX RIVER	2005-08-16		рН	8.94	SU	ft
DT-22	FOX RIVER	2005-09-20		рН	8.45	SU	ft
DT-22	FOX RIVER	2005-09-20		рН	7.7	SU	ft
DT-22	FOX RIVER	2005-09-20		рН	8.23	SU	ft
DT-22	FOX RIVER	2005-09-20		рН	8.6	SU	ft
DT-22	FOX RIVER	2005-09-20		рН	8.3	SU	ft
DT-22	FOX RIVER	2005-09-22		рН	8.3	SU	ft
DT-22	FOX RIVER	2005-10-19		рН	8.07	SU	ft
DT-22	FOX RIVER	2005-11-14		рН	8.13	SU	ft
DT-22	FOX RIVER	2005-11-15		рН	8.6	SU	ft
DT-22	FOX RIVER	2005-11-15		рН	8.08	SU	ft
DT-22	FOX RIVER	2005-11-15		рН	8.04	SU	ft
DT-22	FOX RIVER	2005-11-15		рН	8.61	SU	ft
DT-22	FOX RIVER	2005-11-15		рН	8.01	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	8.6	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	8.05	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	8.7	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	7.3	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	8.03	SU	ft
DT-22	FOX RIVER	2006-01-17		рН	8.27	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.4	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.57	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.5	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.64	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	7.95	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.35	SU	ft
DT-22	FOX RIVER	2006-03-21		рН	8.26	SU	ft
DT-22	FOX RIVER	2006-03-22		рН	8.42	SU	ft
DT-22	FOX RIVER	2006-04-18		рН	8.32	SU	ft
DT-22	FOX RIVER	2006-04-18		рН	8.21	SU	ft
DT-22	FOX RIVER	2006-04-18		н	7.7	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2006-04-18		рН	7.97	SU	ft
DT-22	FOX RIVER	2006-04-18		рН	8.49	SU	ft
DT-22	FOX RIVER	2006-04-18		рН	8.7	SU	ft
DT-22	FOX RIVER	2006-04-26		рН	8.73	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.34	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.51	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.09	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.47	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.1	SU	ft
DT-22	FOX RIVER	2006-05-16		рН	8.5	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	8.36	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	8.3	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	8.74	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	7.8	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	8.5	SU	ft
DT-22	FOX RIVER	2006-06-20		рН	8.57	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	8.53	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	7.8	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	8.27	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	8.2	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	8.76	SU	ft
DT-22	FOX RIVER	2006-07-18		рН	8.66	SU	ft
DT-22	FOX RIVER	2006-09-01		рН	8.56	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	8.83	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	8.1	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	8.3	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	8.6	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	15.2	SU	ft
DT-22	FOX RIVER	2006-09-19		рН	7.95	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	8.2	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	8.62	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	8.07	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	8.5	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	7.89	SU	ft
DT-22	FOX RIVER	2006-10-17		рН	8.41	SU	ft
DT-22	FOX RIVER	2006-11-01		рН	8.94	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8.5	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8.4	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8.45	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8.51	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8.7	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	7.06	SU	ft
DT-22	FOX RIVER	2006-11-21		рН	8	SU	ft
DT-22	FOX RIVER	2007-06-19		рН	8.3	SU	ft
DT-22	FOX RIVER	2007-06-19		рН	8.54	SU	ft
DT-22	FOX RIVER	2007-06-19		н	8	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2007-06-19		рН	8.02	SU	ft
DT-22	FOX RIVER	2007-06-19		рН	7.8	SU	ft
DT-22	FOX RIVER	2007-06-19		рН	8.02	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	8.5	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	8.7	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	7.99	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	8.49	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	8.6	SU	ft
DT-22	FOX RIVER	2007-09-18		рН	8.5	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	8	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	7.86	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	7.9	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	8.51	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	8.17	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	8.6	SU	ft
DT-22	FOX RIVER	2008-05-20		рН	7.86	SU	ft
DT-22	FOX RIVER	2008-05-21	11:15	рН	8.4		
DT-22	FOX RIVER	2008-06-17		рН	8.45	SU	ft
DT-22	FOX RIVER	2008-06-17		рН	7.9	SU	ft
DT-22	FOX RIVER	2008-06-17		рН	8	SU	ft
DT-22	FOX RIVER	2008-06-17		рН	8.59	SU	ft
DT-22	FOX RIVER	2008-06-17		рН	8.61	SU	ft
DT-22	FOX RIVER	2008-06-17		рН	8.59	SU	ft
DT-22	FOX RIVER	2008-07-01	11:40	рН	8.42		
DT-22	FOX RIVER	2008-08-05	11:25	рН	8.11		
DT-22	FOX RIVER	2008-08-19		рН	8	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	7.96	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	8.46	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	8.6	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	7.93	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	8.15	SU	ft
DT-22	FOX RIVER	2008-08-19		рН	8.5	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	8.12	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	8.63	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	8.79	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	8	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	7.14	SU	ft
DT-22	FOX RIVER	2008-09-16		рН	8.46	SU	ft
DT-22	FOX RIVER	2008-09-23	11:35	рН	8.38		
DT-22	FOX RIVER	2008-10-30	11:50	рН	8.26		
DT-22	FOX RIVER	2008-12-29	12:25	рН	7.69		
DT-22	FOX RIVER	2009-02-09	11:20	рН	7.11		
DT-22	FOX RIVER	2009-03-25	12:05	рН	8.24		
DT-22	FOX RIVER	2009-05-06	12:25	рН	8.22		
DT-22	FOX RIVER	2009-05-27	12:30	рН	8.1		
DT-22	FOX RIVER	2009-06-17	11:00	рН	8		

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-08-19	11:35	рН	7.98		
DT-22	FOX RIVER	2009-09-16	11:42	рН	7.82		
DT-22	FOX RIVER	2009-11-04	12:50	рН	8.17		
DT-22	FOX RIVER	2009-12-16	11:40	рН	8.41		
DT-22	FOX RIVER	2010-02-03	11:35	рН	8.33		
DT-22	FOX RIVER	2010-03-10	13:40	рН	8.18		
DT-22	FOX RIVER	2010-04-27	12:45	рН	8.34		
DT-22	FOX RIVER	2010-06-10	12:20	рН	7.34		
DT-22	FOX RIVER	2010-08-05	12:55	рН	7.77		
DT-22	FOX RIVER	2010-09-28	12:40	рН	7.87		
DT-22	FOX RIVER	2010-11-09	11:15	рН	8.19		
DT-22	FOX RIVER	2010-12-15	11:20	рН	8.47		
DT-22	FOX RIVER	2011-03-02	12:10	рН	7.91		
DT-22	FOX RIVER	2011-04-20	12:30	рН	8.1		
DT-22	FOX RIVER	2011-05-17	11:50	рН	7.37		
DT-22	FOX RIVER	2011-06-28	11:08	рН	7.78		
DT-22	FOX RIVER	2011-07-19	11:30	рН	8.47		
DT-22	FOX RIVER	2011-09-06	11:45	рН	7.94		
DT-22	FOX RIVER	2011-10-27	12:40	рН	7.9		
DT-22	FOX RIVER	2011-12-01	11:30	рН	8.53		
DT-22	FOX RIVER	2012-01-24	12:20	рН	8.04		
DT-22	FOX RIVER	2012-02-22	11:45	рН	8.4		
DT-22	FOX RIVER	2012-04-23	12:05	рН	7.57		
DT-22	FOX RIVER	2012-05-15	12:35	рН	7.94		
DT-22	FOX RIVER	2012-06-11	15:15	рН	8.6		
DT-22	FOX RIVER	2012-06-28	11:05	рН	8.38		
DT-22	FOX RIVER	2012-07-26	10:45	рН	8.39		
DT-22	FOX RIVER	2012-07-31	13:50	рН	8.96		
DT-22	FOX RIVER	2012-09-11	12:25	рН	8.85		
DT-22	FOX RIVER	2012-10-03	10:20	рН	8.76		
DT-22	FOX RIVER	2012-11-08	12:10	рН	8.42		
DT-22	FOX RIVER	2012-12-13	11:15	рН	8.49		
DT-22	FOX RIVER	2013-01-29	12:10	рН	8.68		
DT-22	FOX RIVER	2013-03-20	12:25	рН	8.11		
DT-22	FOX RIVER	2013-04-30	11:05	рН	8.54		
DT-22	FOX RIVER	2013-05-22	12:00	рН	8.53		
DT-22	FOX RIVER	2013-07-02	10:50	рН	7.94		
DT-22	FOX RIVER	2013-08-08	11:10	рН	8.4		
DT-22	FOX RIVER	2013-09-25	12:00	рН	8.59		
DT-22	FOX RIVER	2013-10-28	12:15	рН	8.11		
DT-22	FOX RIVER	2013-12-04	11:40	рН	8.88		
DT-22	FOX RIVER	2013-04-30	11:05	Phecetin	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phecetin	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Phenol	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Phenol	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Phenol	51	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-10-30	11:50	Phenol	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Phenol	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Phenol	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phenol	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Phenols	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Phenols	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Phenols	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Phenols	NA	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Phenols	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Phenols	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Phenols	2.14	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Phenols	2.23	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Phenols	3.44	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Phenols	4.63	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Phenols	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Phenols	3.12	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Phenols	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Phenols	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Phenols	2.35	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Phenols	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Phenols	1.67	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Phenols	2.56	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Phenols	2.01	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Phenols	2.03	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Phenols	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Phenols	5.49	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Phenols	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Phenols	2.51	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Phenols	5.78	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Phenols	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Phenols	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Phenols	2.52	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Phenols	2.74	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Phenols	1.91	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Phenols	2.41	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Phenols	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Phenols	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Phenols	2.04	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Phenols	2.54	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Phenols	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Phenols	2.72	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Phenols	2.69	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Phenols	2.65	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Phenols	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phenols	2.35	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Phenols	2.56	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-08-08	11:09	Phenols	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Phenols	2.43	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Phenols	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Phenols	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Phenthrene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phenthrene	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Pheophytin a	1.17	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Pheophytin a	3.26	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Pheophytin a	3.26	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Pheophytin a	17.7	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Pheophytin a	17.8	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Pheophytin a	11.6	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Pheophytin a	8.1	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Pheophytin a	4.81	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Pheophytin a	1.44	ug/L	1 ft
DT-22	FOX RIVER	2012-02-22	11:45	Pheophytin a	1.87	ug/L	1 ft
DT-22	FOX RIVER	2012-04-23	12:04	Pheophytin a	2.58	ug/L	1 ft
DT-22	FOX RIVER	2012-05-15	12:34	Pheophytin a	6.59	ug/L	1 ft
DT-22	FOX RIVER	2012-06-11	15:14	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-06-28	11:05	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-07-26	10:45	Pheophytin a	66.9	ug/L	1 ft
DT-22	FOX RIVER	2012-07-31	13:49	Pheophytin a	45.2	ug/L	1 ft
DT-22	FOX RIVER	2012-09-11	12:24	Pheophytin a	22.3	ug/L	1 ft
DT-22	FOX RIVER	2012-10-03	10:20	Pheophytin a	13.8	ug/L	1 ft
DT-22	FOX RIVER	2012-11-08	12:10	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2012-12-13	11:15	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-01-29	12:10	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-03-20	12:24	Pheophytin a	0.71	ug/L	1 ft
DT-22	FOX RIVER	2013-04-30	11:05	Pheophytin a	NA	ug/L	1 ft
DT-22	FOX RIVER	2013-05-22	12:00	Pheophytin a	17.1	ug/L	1 ft
DT-22	FOX RIVER	2013-07-02	10:49	Pheophytin a	5.61	ug/L	1 ft
DT-22	FOX RIVER	2013-08-08	11:09	Pheophytin a	23	ug/L	1 ft
DT-22	FOX RIVER	2013-09-25	12:00	Pheophytin a	4.63	ug/L	1 ft
DT-22	FOX RIVER	2013-10-28	12:14	Pheophytin a	2.08	ug/L	1 ft
DT-22	FOX RIVER	2013-12-04	11:39	Pheophytin a	0.96	ug/L	1 ft
DT-22	FOX RIVER	2008-05-21	11:15	Pheophytin-a	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-07-01	11:40	Pheophytin-a	9.22	ug/L	1 ft
DT-22	FOX RIVER	2008-08-05	11:25	Pheophytin-a	7.58	ug/L	1 ft
DT-22	FOX RIVER	2008-09-23	11:35	Pheophytin-a	7.74	ug/L	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Pheophytin-a	NA	ug/L	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Pheophytin-a	2.05	ug/L	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Pheophytin-a	2	ug/L	1 ft
DT-22	FOX RIVER	2009-05-06	12:25	Pheophytin-a	7.27	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Pheophytin-a	1.45	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Pheophytin-a	3.36	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Pheophytin-a	1.23	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-09-16	11:42	Pheophytin-a	3.58	ug/L	1 ft
DT-22	FOX RIVER	2009-11-04	12:50	Pheophytin-a	1.5	ug/L	1 ft
DT-22	FOX RIVER	2009-12-16	11:40	Pheophytin-a	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-02-03	11:35	Pheophytin-a	NA	ug/L	1 ft
DT-22	FOX RIVER	2010-03-10	13:40	Pheophytin-a	1.87	ug/L	1 ft
DT-22	FOX RIVER	2010-04-27	12:45	Pheophytin-a	4.06	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Pheophytin-a	14.1	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Pheophytin-a	5.66	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Pheophytin-a	2.22	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Pheophytin-a	2.76	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Pheophytin-a	NA	ug/L	
DT-22	FOX RIVER	1967-08-31		Phosphorus	0.359	mg/L	ft
DT-22	FOX RIVER	1967-10-25		Phosphorus	0.098	mg/L	ft
DT-22	FOX RIVER	1967-12-19		Phosphorus	0.098	mg/L	ft
DT-22	FOX RIVER	1969-05-21		Phosphorus	0.261	mg/L	ft
DT-22	FOX RIVER	1969-07-01		Phosphorus	0.131	mg/L	ft
DT-22	FOX RIVER	1969-08-19		Phosphorus	0.326	mg/L	ft
DT-22	FOX RIVER	1969-12-17		Phosphorus	0.131	mg/L	ft
DT-22	FOX RIVER	1970-07-06		Phosphorus	0.131	mg/L	ft
DT-22	FOX RIVER	1970-07-27		Phosphorus	0.163	mg/L	ft
DT-22	FOX RIVER	1970-08-10		Phosphorus	0.163	mg/L	ft
DT-22	FOX RIVER	1970-08-31		Phosphorus	0.228	mg/L	ft
DT-22	FOX RIVER	1970-09-28		Phosphorus	0.261	mg/L	ft
DT-22	FOX RIVER	1970-10-26		Phosphorus	0.033	mg/L	ft
DT-22	FOX RIVER	1970-11-30		Phosphorus	0.098	mg/L	ft
DT-22	FOX RIVER	1970-12-21		Phosphorus	0.228	mg/L	ft
DT-22	FOX RIVER	1971-05-17		Phosphorus	0.228	mg/L	ft
DT-22	FOX RIVER	1971-06-16		Phosphorus	0.033	mg/L	ft
DT-22	FOX RIVER	1971-07-29		Phosphorus	0.163	mg/L	ft
DT-22	FOX RIVER	1971-09-08		Phosphorus	0.196	mg/L	ft
DT-22	FOX RIVER	1971-10-14		Phosphorus	0.163	mg/L	ft
DT-22	FOX RIVER	1971-11-09		Phosphorus	0.131	mg/L	ft
DT-22	FOX RIVER	1972-01-06		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1972-03-07		Phosphorus	0.54	mg/L	ft
DT-22	FOX RIVER	1972-03-22		Phosphorus	0.4	mg/L	ft
DT-22	FOX RIVER	1972-04-11		Phosphorus	0.29	mg/L	ft
DT-22	FOX RIVER	1972-05-03		Phosphorus	0.024	mg/L	ft
DT-22	FOX RIVER	1972-06-06		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	1972-07-05		Phosphorus	0.35	mg/L	ft
DT-22	FOX RIVER	1972-08-14		Phosphorus	0.37	mg/L	ft
DT-22	FOX RIVER	1972-09-19		Phosphorus	0.32	mg/L	ft
DT-22	FOX RIVER	1972-10-05		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1972-11-14		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1972-12-11		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1973-01-17		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1973-03-07		Phosphorus	0.2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1973-03-23		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1973-04-06		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1973-05-02		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1973-06-06		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1973-07-11		Phosphorus	0.31	mg/L	ft
DT-22	FOX RIVER	1973-08-07		Phosphorus	0.33	mg/L	ft
DT-22	FOX RIVER	1973-09-12		Phosphorus	0.29	mg/L	ft
DT-22	FOX RIVER	1973-10-04		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	1973-11-14		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1973-12-12		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1974-01-17		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1974-02-14		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1974-06-20		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1974-08-22		Phosphorus	0.3	mg/L	ft
DT-22	FOX RIVER	1974-10-18		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1974-11-14		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1975-01-16		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1975-01-28		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1975-03-12		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1975-04-18		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	1975-06-17		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	1975-07-07		Phosphorus	0.26	mg/L	ft
DT-22	FOX RIVER	1975-07-29		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	1975-09-04		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	1975-10-01		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1975-11-12		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1975-12-04		Phosphorus	1	mg/L	ft
DT-22	FOX RIVER	1976-02-02		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1976-03-17		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1976-04-20		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1976-05-25		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1976-08-19		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	1976-10-18		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	1979-07-26		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1979-08-14		Phosphorus	0.33	mg/L	ft
DT-22	FOX RIVER	1979-09-06		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1979-10-17		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1979-11-05		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1979-11-05		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1979-12-18		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1980-01-07		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1980-03-05		Phosphorus	0.12	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1980-03-05		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1980-04-09		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1980-05-08		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1980-06-12		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1980-07-09		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1980-07-09		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1980-08-11		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1980-08-11		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1980-09-15		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1980-09-15		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1980-10-06		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1980-10-06		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1980-12-17		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1980-12-17		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1981-01-20		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1981-01-20		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1981-02-20		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1981-03-06		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1981-04-02		Phosphorus	0.49	mg/L	ft
DT-22	FOX RIVER	1981-05-07		Phosphorus	0.37	mg/L	ft
DT-22	FOX RIVER	1981-06-24		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1981-06-24		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1981-07-06		Phosphorus	0.29	mg/L	ft
DT-22	FOX RIVER	1981-07-21		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1981-07-21		Phosphorus	0.35	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1981-08-28		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1981-10-28		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1981-11-24		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1982-03-09		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1982-03-09		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1982-03-24		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1982-06-03		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1982-07-13		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1982-07-28		Phosphorus	0.16	mg/L	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	------------	--------	-------	-------
DT-22	FOX RIVER	1982-09-28		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1982-09-28		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1982-10-13		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1982-12-01		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1983-01-19		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1983-02-23		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1983-04-06		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1983-04-27		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1983-06-01		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1983-08-03		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1983-09-19		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1983-10-04		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1983-11-21		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1983-11-21		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1984-01-17		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1984-02-06		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1984-03-20		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1984-04-25		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1984-06-07		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1984-07-16		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1984-08-23		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1984-10-04		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1984-11-14		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1985-01-09		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1985-03-04		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1985-03-26		Phosphorus	0.7	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1985-03-26		Phosphorus	0.83	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1985-05-07		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1985-06-13		Phosphorus	0.31	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1985-07-15		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1985-08-08		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1985-10-15		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1985-11-08		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1985-11-08		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1986-01-02		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1986-01-02		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1986-02-26		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1986-03-26		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1986-05-06		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1986-06-16		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Phosphorus	0.056	mg/L	ft
DT-22	FOX RIVER	1986-07-23		Phosphorus	0.301	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Phosphorus	0.058	mg/L	ft
DT-22	FOX RIVER	1986-08-28		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Phosphorus	0.085	mg/L	ft
DT-22	FOX RIVER	1986-10-10		Phosphorus	0.121	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Phosphorus	0.022	mg/L	ft
DT-22	FOX RIVER	1986-12-09		Phosphorus	0.054	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Phosphorus	0.017	mg/L	ft
DT-22	FOX RIVER	1987-01-14		Phosphorus	0.034	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Phosphorus	0.014	mg/L	ft
DT-22	FOX RIVER	1987-02-11		Phosphorus	0.051	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Phosphorus	0.015	mg/L	ft
DT-22	FOX RIVER	1987-04-10		Phosphorus	0.0739999	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Phosphorus	0.001	mg/L	ft
DT-22	FOX RIVER	1987-05-05		Phosphorus	0.086	mg/L	ft
DT-22	FOX RIVER	1987-07-07		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1987-07-07		Phosphorus	0.179	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1987-08-12		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1987-09-25		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1987-10-20		Phosphorus	0.09	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1987-10-20		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1987-11-20		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1988-01-14		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1988-02-22		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1988-03-24		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1988-05-27		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1988-07-22		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1988-08-10		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1988-08-10		Phosphorus	0.31	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1988-09-27		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1988-10-27		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1988-12-07		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1989-01-05		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1989-01-05		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1989-02-14		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1989-04-10		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1989-05-05		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1989-06-13		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1989-09-21		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1989-10-23		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1989-11-14		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1990-01-26		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1990-03-05		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1990-04-12		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1990-05-18		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1990-07-02		Phosphorus	0.03	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1990-07-02		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1990-07-24		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1990-09-04		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1990-10-26		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1990-12-10		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1991-02-04		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1991-03-04		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1991-03-04		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1991-04-16		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1991-04-16		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1991-05-21		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1991-06-27		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1991-08-06		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1991-10-25		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1991-11-12		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1991-12-20		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1992-01-17		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1992-03-02		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1992-03-27		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1992-05-27		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1992-06-22		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1992-08-18		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1992-11-06		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1992-11-06		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1992-12-18		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1993-01-27		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1993-03-08		Phosphorus	0.07	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1993-03-08		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1993-04-21		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1993-05-17		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1993-06-14		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Phosphorus	0.014	mg/L	ft
DT-22	FOX RIVER	1993-08-06		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1993-09-24		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1993-10-20		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1993-12-10		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1994-01-12		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1994-02-09		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-03-23		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1994-04-26		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-04-26		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-06-13		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-07-25		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-09-20		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-11-14		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1994-12-05		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1995-01-17		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1995-02-21		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1995-03-23		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Phosphorus	0.007	mg/L	ft
DT-22	FOX RIVER	1995-05-04		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1995-06-13		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1995-07-25		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1995-09-06		Phosphorus	0.03	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1995-09-06		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1995-10-11		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1995-11-21		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Phosphorus	0.056	mg/L	ft
DT-22	FOX RIVER	1996-01-24		Phosphorus	0.115	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1996-02-28		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1996-04-15		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1996-05-01		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1996-05-01		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	1996-06-05		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1996-06-05		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1996-08-12		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1996-08-28		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1996-10-02		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1996-11-19		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1997-01-07		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1997-02-18		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Phosphorus	0.001	mg/L	ft
DT-22	FOX RIVER	1997-03-26		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1997-05-28		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1997-07-11		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1997-09-11		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	1997-11-06		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1997-12-15		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1998-02-04		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1998-02-04		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1998-03-16		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1998-04-09		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	1998-06-01		Phosphorus	0.03	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1998-06-01		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1998-07-06		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1998-08-10		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	1998-09-24		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1998-09-24		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1998-11-23		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1998-12-17		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1999-03-18		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	1999-05-26		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1999-06-25		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	1999-08-23		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	1999-08-23		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	1999-09-21		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	1999-10-20		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	1999-11-30		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	1999-11-30		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2000-01-06		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2000-02-22		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2000-04-11		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2000-05-09		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2000-06-27		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2000-08-02		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2000-09-07		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2000-11-13		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2001-02-05		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2001-03-15		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2001-05-23		Phosphorus	0.01	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2001-05-23		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2001-06-27		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2001-10-26		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2001-11-27		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2002-01-18		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2002-03-19		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2002-04-11		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2002-04-11		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	2002-05-13		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2002-05-13		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2002-06-13		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2002-07-11		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2002-08-23		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2002-08-23		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2003-01-07		Phosphorus	0.152	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2003-03-18		Phosphorus	0.26	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2003-04-01		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2003-04-15		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2003-04-29		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2003-05-13		Phosphorus	0.067	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2003-05-27		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2003-06-10		Phosphorus	0.036	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Phosphorus	0.02	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-06-24		Phosphorus	0.045	mg/L	ft
DT-22	FOX RIVER	2003-06-24		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2003-07-08		Phosphorus	0.141	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2003-07-22		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.132	mg/L	ft
DT-22	FOX RIVER	2003-08-05		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.188	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2003-08-19		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.3	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.31	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2003-09-02		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.35	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.143	mg/L	ft
DT-22	FOX RIVER	2003-09-16		Phosphorus	0.26	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2003-09-30		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Phosphorus	0.104	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	2003-10-14		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Phosphorus	0.04	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-10-28		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2003-10-28		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Phosphorus	0.29	mg/L	ft
DT-22	FOX RIVER	2003-11-25		Phosphorus	0.179	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	2003-12-09		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2004-03-22		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2004-03-22		Phosphorus	0.101	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	2004-03-30		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2004-04-13		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Phosphorus	0.152	mg/L	ft
DT-22	FOX RIVER	2004-04-27		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Phosphorus	0.129	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Phosphorus	0.08	mg/L	ft
DT-22	FOX RIVER	2004-05-18		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2004-05-20		Phosphorus	0.012	mg/L	ft
DT-22	FOX RIVER	2004-05-20		Phosphorus	0.125	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2004-06-15		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	2004-07-20		Phosphorus	0.43	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2004-08-17		Phosphorus	0.25	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	2004-09-21		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2004-09-22		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Phosphorus	0.17	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Phosphorus	0	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-11-16		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2004-11-16		Phosphorus	0.102	mg/L	ft
DT-22	FOX RIVER	2005-03-17		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2005-03-17		Phosphorus	0.085	mg/L	ft
DT-22	FOX RIVER	2005-04-22		Phosphorus	0.005	mg/L	ft
DT-22	FOX RIVER	2005-04-22		Phosphorus	0.111	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2005-04-27		Phosphorus	0.27	mg/L	ft
DT-22	FOX RIVER	2005-05-25		Phosphorus	0.091	mg/L	ft
DT-22	FOX RIVER	2005-05-25		Phosphorus	0.154	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Phosphorus	0.24	mg/L	ft
DT-22	FOX RIVER	2005-06-21		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	2005-06-29		Phosphorus	0.023	mg/L	ft
DT-22	FOX RIVER	2005-06-29		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2005-07-19		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Phosphorus	0.177	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Phosphorus	0.38	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Phosphorus	0.019	mg/L	ft
DT-22	FOX RIVER	2005-08-16		Phosphorus	0.368	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Phosphorus	0.41	mg/L	ft
DT-22	FOX RIVER	2005-09-20		Phosphorus	0.145	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2005-09-22		Phosphorus	0.494	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2005-10-19		Phosphorus	0.405	mg/L	ft
DT-22	FOX RIVER	2005-11-14		Phosphorus	0.068	mg/L	ft
DT-22	FOX RIVER	2005-11-14		Phosphorus	0.164	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Phosphorus	0.19	mg/L	ft
DT-22	FOX RIVER	2005-11-15		Phosphorus	0.167	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Phosphorus	0.195	mg/L	ft
DT-22	FOX RIVER	2006-01-17		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Phosphorus	0.13	mg/L	ft
DT-22	FOX RIVER	2006-03-21		Phosphorus	0.158	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2006-04-18		Phosphorus	0.07	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2006-04-18		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Phosphorus	0.34	mg/L	ft
DT-22	FOX RIVER	2006-05-16		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Phosphorus	0.01	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	2006-06-20		Phosphorus	0.074	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Phosphorus	0.29	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	2006-07-18		Phosphorus	0.12	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Phosphorus	0.308	mg/L	ft
DT-22	FOX RIVER	2006-09-19		Phosphorus	0.2	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Phosphorus	0.09	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2006-10-17		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Phosphorus	0.15	mg/L	ft
DT-22	FOX RIVER	2006-11-21		Phosphorus	0.22	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Phosphorus	0.16	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Phosphorus	0.28	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Phosphorus	0.04	mg/L	ft
DT-22	FOX RIVER	2007-06-19		Phosphorus	0.28	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2007-09-18		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Phosphorus	0.224	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Phosphorus	0.03	mg/L	ft
DT-22	FOX RIVER	2008-05-20		Phosphorus	0.11	mg/L	ft
DT-22	FOX RIVER	2008-05-21	11:15	Phosphorus	0.002	mg/L	
DT-22	FOX RIVER	2008-05-21	11:15	Phosphorus	0.092	mg/L	
DT-22	FOX RIVER	2008-06-17		Phosphorus	0.21	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Phosphorus	0.06	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2008-06-17		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2008-07-01	11:40	Phosphorus	0.026	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-07-01	11:40	Phosphorus	0.2	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Phosphorus	0.037	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Phosphorus	0.174	mg/L	
DT-22	FOX RIVER	2008-08-19		Phosphorus	0.05	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Phosphorus	0.18	mg/L	ft
DT-22	FOX RIVER	2008-08-19		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.07	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.02	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.106	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.14	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.1	mg/L	ft
DT-22	FOX RIVER	2008-09-16		Phosphorus	0.23	mg/L	ft
DT-22	FOX RIVER	2008-09-23	11:35	Phosphorus	0.014	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Phosphorus	0.122	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Phosphorus	0.055	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Phosphorus	0.1	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Phosphorus	0.07	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Phosphorus	0.147	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Phosphorus	0.038	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Phosphorus	0.071	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Phosphorus	0.011	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Phosphorus	0.076	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Phosphorus	0.013	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Phosphorus	0.066	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Phosphorus	0.018	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Phosphorus	0.098	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Phosphorus	0.044	mg/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Phosphorus	0.074	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Phosphorus	0.075	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Phosphorus	0.165	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Phosphorus	0.103	mg/L	
DT-22	FOX RIVER	2009-09-16	11:42	Phosphorus	0.174	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Phosphorus	0.043	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Phosphorus	0.078	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Phosphorus	0.038	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Phosphorus	0.077	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Phosphorus	0.044	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Phosphorus	0.071	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Phosphorus	0.035	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Phosphorus	0.071	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Phosphorus	0.022	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Phosphorus	0.069	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Phosphorus	0.029	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Phosphorus	0.116	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Phosphorus	0.049	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Phosphorus	0.131	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-09-28	12:40	Phosphorus	0.017	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Phosphorus	0.144	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Phosphorus	0.043	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Phosphorus	0.09	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Phosphorus	0.056	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Phosphorus	0.099	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Phosphorus	0.062	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Phosphorus	0.094	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Phosphorus	0.008	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Phosphorus	0.089	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Phosphorus	0.018	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Phosphorus	0.082	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Phosphorus	0.012	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Phosphorus	0.167	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Phosphorus	0.025	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Phosphorus	0.214	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Phosphorus	0.035	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Phosphorus	0.234	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Phosphorus	0.017	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Phosphorus	0.154	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Phosphorus	0.011	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Phosphorus	0.08	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Phosphorus	0.039	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Phosphorus	0.073	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Phosphorus	0.026	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Phosphorus	0.059	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Phosphorus	0.012	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Phosphorus	0.122	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Phosphorus	0.006	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Phosphorus	0.117	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Phosphorus	0.018	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Phosphorus	0.204	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Phosphorus	NA	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Phosphorus	0.22	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Phosphorus	0.019	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Phosphorus	0.274	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Phosphorus	0.021	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Phosphorus	0.278	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Phosphorus	0.041	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Phosphorus	0.352	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Phosphorus	0.019	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Phosphorus	0.318	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Phosphorus	0.01	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Phosphorus	0.082	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Phosphorus	0.01	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Phosphorus	0.063	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-01-29	12:10	Phosphorus	0.017	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Phosphorus	0.058	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Phosphorus	0.044	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Phosphorus	0.101	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Phosphorus	0.009	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Phosphorus	0.081	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phosphorus	0.01	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Phosphorus	0.13	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Phosphorus	0.031	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Phosphorus	0.142	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Phosphorus	0.019	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Phosphorus	0.164	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Phosphorus	0.01	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Phosphorus	0.166	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Phosphorus	0.009	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Phosphorus	0.079	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Phosphorus	0.016	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Phosphorus	0.052	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	phthalene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	phthalene	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Potassium	2600	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Potassium	2740	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Potassium	2950	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Potassium	3250	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Potassium	3170	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Potassium	3220	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Potassium	3650	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Potassium	3700	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Potassium	3210	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Potassium	3160	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Potassium	3520	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Potassium	3530	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Potassium	3140	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Potassium	3280	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Potassium	2620	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Potassium	2710	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Potassium	2520	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Potassium	2660	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Potassium	2420	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Potassium	2480	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Potassium	2420	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Potassium	2340	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Potassium	3310	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Potassium	3700	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Potassium	3520	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Potassium	3410	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-11-04	12:50	Potassium	3430	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Potassium	3590	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Potassium	2980	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Potassium	3030	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Potassium	3340	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Potassium	3420	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Potassium	2630	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Potassium	2810	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Potassium	2410	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Potassium	2600	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Potassium	2970	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Potassium	3220	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Potassium	2710	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Potassium	2790	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Potassium	3290	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Potassium	3450	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Potassium	3330	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Potassium	3310	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Potassium	3650	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Potassium	3620	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Potassium	3340	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Potassium	3270	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Potassium	2270	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Potassium	2290	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Potassium	2100	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Potassium	2110	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Potassium	3020	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Potassium	3220	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Potassium	3240	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Potassium	3190	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Potassium	3370	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Potassium	3520	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Potassium	3350	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Potassium	3670	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Potassium	3020	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Potassium	3140	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Potassium	3340	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Potassium	3430	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Potassium	3040	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Potassium	3040	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Potassium	2570	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Potassium	2720	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Potassium	2980	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Potassium	3500	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Potassium	2740	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Potassium	3050	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-06-28	11:05	Potassium	3220	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Potassium	3510	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Potassium	3440	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Potassium	3720	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Potassium	4000	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Potassium	4350	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Potassium	4350	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Potassium	4630	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Potassium	4150	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Potassium	4380	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Potassium	4150	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Potassium	4250	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Potassium	4630	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Potassium	4770	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Potassium	3930	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Potassium	4060	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Potassium	2930	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Potassium	2950	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Potassium	3740	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Potassium	2890	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Potassium	2820	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Potassium	3070	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Potassium	2730	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Potassium	3100	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Potassium	3030	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Potassium	3110	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Potassium	3170	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Potassium	3340	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Potassium	3310	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Potassium	3400	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Potassium	3470	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Potassium	3680	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Promide	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Promide	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Pyrene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Pyrene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Pyridine	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Pyridine	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Safrole	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Safrole	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Selenium	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-07-02	10:49	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Selenium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Selenium	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Silver	0.97	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Silver	1	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Silver	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Silver	NA	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Silver	0.78	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Silver	0.94	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Silver	0.41	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Silver	NA	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Silver	0.43	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Silver	1.08	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Silver	0.44	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Silver	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2010-08-05	12:55	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Silver	0.45	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Silver	0.44	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Silver	4.07	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Silver	0.47	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Silver	3.13	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Silver	3.27	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Silver	0.41	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Silver	0.4	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Silver	NA	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-12-13	11:15	Silver	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Silver	0.49	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Silver	0.77	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Silver	0.74	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Silver	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Silver	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Sodium	48800	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Sodium	48700	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Sodium	35600	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Sodium	36600	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Sodium	41400	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Sodium	39500	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Sodium	49000	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Sodium	47900	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Sodium	45100	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Sodium	44800	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Sodium	48600	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Sodium	48200	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Sodium	52100	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Sodium	53500	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Sodium	44400	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Sodium	43800	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Sodium	35100	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Sodium	36300	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Sodium	43300	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Sodium	43600	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Sodium	39200	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Sodium	36900	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Sodium	47800	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Sodium	53000	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Sodium	54800	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Sodium	52200	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-11-04	12:50	Sodium	40000	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Sodium	39300	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Sodium	52200	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Sodium	51200	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Sodium	64300	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Sodium	66600	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Sodium	53900	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Sodium	55600	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Sodium	44100	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Sodium	46200	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Sodium	46800	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Sodium	50200	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Sodium	29700	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Sodium	28900	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Sodium	50800	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Sodium	52100	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Sodium	53600	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Sodium	54100	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Sodium	63500	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Sodium	62900	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Sodium	51800	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Sodium	51100	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Sodium	46200	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Sodium	43800	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Sodium	45600	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Sodium	45400	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Sodium	56000	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Sodium	57300	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Sodium	55100	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Sodium	51800	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Sodium	56800	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Sodium	56500	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Sodium	55800	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Sodium	56400	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Sodium	50000	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Sodium	50600	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Sodium	74600	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Sodium	75300	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Sodium	63100	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Sodium	59100	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Sodium	51700	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Sodium	54200	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Sodium	52600	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Sodium	52200	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Sodium	54800	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Sodium	58800	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-06-28	11:05	Sodium	64000	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Sodium	65300	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Sodium	65300	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Sodium	66200	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Sodium	71500	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Sodium	71800	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Sodium	80200	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Sodium	81800	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Sodium	82500	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Sodium	84000	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Sodium	82200	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Sodium	81600	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Sodium	81200	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Sodium	82700	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Sodium	93600	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Sodium	94500	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Sodium	63800	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Sodium	54700	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Sodium	37100	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Sodium	42500	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Sodium	51900	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Sodium	56500	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Sodium	33700	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Sodium	36300	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Sodium	51700	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Sodium	53400	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Sodium	59300	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Sodium	60500	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Sodium	62100	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Sodium	60100	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Sodium	59400	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Sodium	58700	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Solids, suspended, volatile	10	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Solids, suspended, volatile	16	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Solids, suspended, volatile	12	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Solids, suspended, volatile	14	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Solids, suspended, volatile	5	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Solids, suspended, volatile	5	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Solids, suspended, volatile	7	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Solids, suspended, volatile	6	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Solids, suspended, volatile	9	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Solids, suspended, volatile	7	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-12-16	11:40	Solids, suspended, volatile	4	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Solids, suspended, volatile	4	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Solids, suspended, volatile	9	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Solids, suspended, volatile	15	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Solids, suspended, volatile	10	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Solids, suspended, volatile	17	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Solids, suspended, volatile	6	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Solids, suspended, volatile	4	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Solids, suspended, volatile	6	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Solids, suspended, volatile	8	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Solids, suspended, volatile	9	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Solids, suspended, volatile	24	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Solids, suspended, volatile	17	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Solids, suspended, volatile	22	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Solids, suspended, volatile	10	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Solids, suspended, volatile	7	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Solids, suspended, volatile	NA	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Solids, suspended, volatile	5	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Solids, suspended, volatile	15	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Solids, suspended, volatile	15	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Solids, suspended, volatile	28	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Solids, suspended, volatile	33	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Solids, suspended, volatile	33	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Solids, suspended, volatile	38	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Solids, suspended, volatile	30	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Solids, suspended, volatile	28	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Solids, suspended, volatile	7	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Solids, suspended, volatile	9	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Solids, suspended, volatile	NA	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Solids, suspended, volatile	5	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Solids, suspended, volatile	14	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Solids, suspended, volatile	16	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Solids, suspended, volatile	13	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Solids, suspended, volatile	22	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Solids, suspended, volatile	20	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Solids, suspended, volatile	6	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Solids, suspended, volatile	6	mg/L	
DT-22	FOX RIVER	2008-05-21	11:15	Solids, Total Suspended (TSS)	23	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Solids, Total Suspended (TSS)	39	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Solids, Total Suspended (TSS)	37	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Solids, Total Suspended (TSS)	25	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Solids, Total Suspended (TSS)	8	mg/L	
DT-22	FOX RIVER	2008-12-29	12:25	Solids, Total Suspended (TSS)	19	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Solids, Total Suspended (TSS)	8	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Solids, Total Suspended (TSS)	18	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-05-06	12:25	Solids, Total Suspended (TSS)	20	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Solids, Total Suspended (TSS)	20	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Solids, Total Suspended (TSS)	13	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Solids, Total Suspended (TSS)	26	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Solids, Total Suspended (TSS)	19	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Solids, Total Suspended (TSS)	11	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Solids, Total Suspended (TSS)	4	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Solids, Total Suspended (TSS)	11	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Solids, Total Suspended (TSS)	5	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Solids, Total Suspended (TSS)	14	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Solids, Total Suspended (TSS)	30	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Solids, Total Suspended (TSS)	23	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Solids, Total Suspended (TSS)	25	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Solids, Total Suspended (TSS)	8	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Solids, Total Suspended (TSS)	4	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Solids, Total Suspended (TSS)	7	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Solids, Total Suspended (TSS)	16	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Solids, Total Suspended (TSS)	23	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Solids, Total Suspended (TSS)	39	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Solids, Total Suspended (TSS)	38	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Solids, Total Suspended (TSS)	39	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Solids, Total Suspended (TSS)	18	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Solids, Total Suspended (TSS)	15	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Solids, Total Suspended (TSS)	6	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Solids, Total Suspended (TSS)	11	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Solids, Total Suspended (TSS)	31	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Solids, Total Suspended (TSS)	28	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Solids, Total Suspended (TSS)	49	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Solids, Total Suspended (TSS)	53	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Solids, Total Suspended (TSS)	68	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Solids, Total Suspended (TSS)	54	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Solids, Total Suspended (TSS)	50	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Solids, Total Suspended (TSS)	47	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Solids, Total Suspended (TSS)	15	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Solids, Total Suspended (TSS)	11	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Solids, Total Suspended (TSS)	6	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Solids, Total Suspended (TSS)	13	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Solids, Total Suspended (TSS)	29	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Solids, Total Suspended (TSS)	41	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Solids, Total Suspended (TSS)	39	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Solids, Total Suspended (TSS)	37	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Solids, Total Suspended (TSS)	35	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Solids, Total Suspended (TSS)	14	mg/L	
DT-22	FOX RIVER	2013-12-04	11:39	Solids, Total Suspended (TSS)	8	mg/L	
DT-22	FOX RIVER	1999-03-18		Specific conductance	730	uS/cm	ft
DT-22	FOX RIVER	1999-05-26		Specific conductance	657	uS/cm	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1999-06-25		Specific conductance	569	uS/cm	ft
DT-22	FOX RIVER	1999-09-21		Specific conductance	715	uS/cm	ft
DT-22	FOX RIVER	1999-10-20		Specific conductance	707	uS/cm	ft
DT-22	FOX RIVER	1999-11-30		Specific conductance	780	uS/cm	ft
DT-22	FOX RIVER	2000-01-06		Specific conductance	862	uS/cm	ft
DT-22	FOX RIVER	2000-02-22		Specific conductance	875	uS/cm	ft
DT-22	FOX RIVER	2000-04-11		Specific conductance	720	uS/cm	ft
DT-22	FOX RIVER	2000-05-09		Specific conductance	7.53	uS/cm	ft
DT-22	FOX RIVER	2000-06-05		Specific conductance	536	uS/cm	ft
DT-22	FOX RIVER	2000-06-12		Specific conductance	591	uS/cm	ft
DT-22	FOX RIVER	2000-06-27		Specific conductance	619	uS/cm	ft
DT-22	FOX RIVER	2000-07-06		Specific conductance	639	uS/cm	ft
DT-22	FOX RIVER	2000-07-10		Specific conductance	605	uS/cm	ft
DT-22	FOX RIVER	2000-07-18		Specific conductance	593	uS/cm	ft
DT-22	FOX RIVER	2000-07-24		Specific conductance	649	uS/cm	ft
DT-22	FOX RIVER	2000-07-31		Specific conductance	658	uS/cm	ft
DT-22	FOX RIVER	2000-08-02		Specific conductance	634	uS/cm	ft
DT-22	FOX RIVER	2000-09-05		Specific conductance	699	uS/cm	ft
DT-22	FOX RIVER	2000-09-07		Specific conductance	684	uS/cm	ft
DT-22	FOX RIVER	2000-09-11		Specific conductance	726	uS/cm	ft
DT-22	FOX RIVER	2000-09-18		Specific conductance	699	uS/cm	ft
DT-22	FOX RIVER	2000-09-25		Specific conductance	599	uS/cm	ft
DT-22	FOX RIVER	2000-09-29		Specific conductance	632	uS/cm	ft
DT-22	FOX RIVER	2000-11-13		Specific conductance	719	uS/cm	ft
DT-22	FOX RIVER	2001-02-05		Specific conductance	918	uS/cm	ft
DT-22	FOX RIVER	2001-03-15		Specific conductance	692	uS/cm	ft
DT-22	FOX RIVER	2001-05-23		Specific conductance	695	uS/cm	ft
DT-22	FOX RIVER	2001-06-27		Specific conductance	651	uS/cm	ft
DT-22	FOX RIVER	2001-10-26		Specific conductance	663	uS/cm	ft
DT-22	FOX RIVER	2001-11-27		Specific conductance	702	uS/cm	ft
DT-22	FOX RIVER	2002-01-18		Specific conductance	792	uS/cm	ft
DT-22	FOX RIVER	2002-03-19		Specific conductance	736	uS/cm	ft
DT-22	FOX RIVER	2002-04-11		Specific conductance	718	uS/cm	ft
DT-22	FOX RIVER	2002-05-13		Specific conductance	684	uS/cm	ft
DT-22	FOX RIVER	2002-06-13		Specific conductance	663	uS/cm	ft
DT-22	FOX RIVER	2002-07-11		Specific conductance	660	uS/cm	ft
DT-22	FOX RIVER	2002-08-23		Specific conductance	668	uS/cm	ft
DT-22	FOX RIVER	2002-10-01		Specific conductance	745	uS/cm	ft
DT-22	FOX RIVER	2002-11-12		Specific conductance	783	uS/cm	ft
DT-22	FOX RIVER	2003-01-03		Specific conductance	818	uS/cm	ft
DT-22	FOX RIVER	2003-03-14		Specific conductance	933	uS/cm	ft
DT-22	FOX RIVER	2003-04-10		Specific conductance	780	uS/cm	ft
DT-22	FOX RIVER	2003-05-22		Specific conductance	795	uS/cm	ft
DT-22	FOX RIVER	2003-06-24		Specific conductance	794	uS/cm	ft
DT-22	FOX RIVER	2003-08-06		Specific conductance	774	uS/cm	ft
DT-22	FOX RIVER	2003-09-05		Specific conductance	794	uS/cm	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-10-15		Specific conductance	829	uS/cm	ft
DT-22	FOX RIVER	2003-11-24		Specific conductance	838	uS/cm	ft
DT-22	FOX RIVER	2004-03-22		Specific conductance	831	uS/cm	ft
DT-22	FOX RIVER	2004-04-22		Specific conductance	803	uS/cm	ft
DT-22	FOX RIVER	2004-05-20		Specific conductance	720	uS/cm	ft
DT-22	FOX RIVER	2004-07-16		Specific conductance	736	uS/cm	ft
DT-22	FOX RIVER	2004-08-06		Specific conductance	732	uS/cm	ft
DT-22	FOX RIVER	2004-09-22		Specific conductance	783	uS/cm	ft
DT-22	FOX RIVER	2004-11-03		Specific conductance	794	uS/cm	ft
DT-22	FOX RIVER	2004-12-27		Specific conductance	808	uS/cm	ft
DT-22	FOX RIVER	2005-02-16		Specific conductance	707	uS/cm	ft
DT-22	FOX RIVER	2005-03-17		Specific conductance	782	uS/cm	ft
DT-22	FOX RIVER	2005-04-22		Specific conductance	760	uS/cm	ft
DT-22	FOX RIVER	2005-05-25		Specific conductance	834	uS/cm	ft
DT-22	FOX RIVER	2005-06-29		Specific conductance	877	uS/cm	ft
DT-22	FOX RIVER	2005-08-16		Specific conductance	809	uS/cm	ft
DT-22	FOX RIVER	2005-09-22		Specific conductance	883	uS/cm	ft
DT-22	FOX RIVER	2005-10-19		Specific conductance	971	uS/cm	ft
DT-22	FOX RIVER	2005-11-14		Specific conductance	946	uS/cm	ft
DT-22	FOX RIVER	2007-06-19		Specific conductance	960	uS/cm	ft
DT-22	FOX RIVER	2007-09-18		Specific conductance	904	uS/cm	ft
DT-22	FOX RIVER	2008-05-20		Specific conductance	890	uS/cm	ft
DT-22	FOX RIVER	2008-05-21	11:15	Specific conductance	811	umho/cm	
DT-22	FOX RIVER	2008-06-17		Specific conductance	509	uS/cm	ft
DT-22	FOX RIVER	2008-07-01	11:40	Specific conductance	697	umho/cm	
DT-22	FOX RIVER	2008-08-05	11:25	Specific conductance	708	umho/cm	
DT-22	FOX RIVER	2008-09-23	11:35	Specific conductance	763	umho/cm	
DT-22	FOX RIVER	2008-10-30	11:50	Specific conductance	796	umho/cm	
DT-22	FOX RIVER	2008-12-29	12:25	Specific conductance	768	umho/cm	
DT-22	FOX RIVER	2009-02-09	11:20	Specific conductance	847	umho/cm	
DT-22	FOX RIVER	2009-03-25	12:05	Specific conductance	722	umho/cm	
DT-22	FOX RIVER	2009-05-06	12:25	Specific conductance	669	umho/cm	
DT-22	FOX RIVER	2009-05-27	12:30	Specific conductance	758	umho/cm	
DT-22	FOX RIVER	2009-06-17	11:00	Specific conductance	754	umho/cm	
DT-22	FOX RIVER	2009-08-19	11:35	Specific conductance	814	umho/cm	
DT-22	FOX RIVER	2009-09-16	11:42	Specific conductance	850	umho/cm	
DT-22	FOX RIVER	2009-11-04	12:50	Specific conductance	772	umho/cm	
DT-22	FOX RIVER	2009-12-16	11:40	Specific conductance	913	umho/cm	
DT-22	FOX RIVER	2010-02-03	11:35	Specific conductance	925	umho/cm	
DT-22	FOX RIVER	2010-03-10	13:40	Specific conductance	915	umho/cm	
DT-22	FOX RIVER	2010-04-27	12:45	Specific conductance	772	umho/cm	
DT-22	FOX RIVER	2010-06-10	12:20	Specific conductance	755	umho/cm	
DT-22	FOX RIVER	2010-08-05	12:55	Specific conductance	588	umho/cm	
DT-22	FOX RIVER	2010-09-28	12:40	Specific conductance	790	umho/cm	
DT-22	FOX RIVER	2010-11-09	11:15	Specific conductance	891	umho/cm	
DT-22	FOX RIVER	2010-12-15	11:20	Specific conductance	1090	umho/cm	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-03-02	12:10	Specific conductance	855	umho/cm	
DT-22	FOX RIVER	2011-04-20	12:30	Specific conductance	770	umho/cm	
DT-22	FOX RIVER	2011-05-17	11:50	Specific conductance	776	umho/cm	
DT-22	FOX RIVER	2011-06-28	11:08	Specific conductance	799	umho/cm	
DT-22	FOX RIVER	2011-07-19	11:30	Specific conductance	817	umho/cm	
DT-22	FOX RIVER	2011-09-06	11:45	Specific conductance	789	umho/cm	
DT-22	FOX RIVER	2011-10-27	12:40	Specific conductance	858	umho/cm	
DT-22	FOX RIVER	2011-12-01	11:30	Specific conductance	871	umho/cm	
DT-22	FOX RIVER	2012-01-24	12:20	Specific conductance	1051	umho/cm	
DT-22	FOX RIVER	2012-02-22	11:45	Specific conductance	918	umho/cm	
DT-22	FOX RIVER	2012-04-23	12:05	Specific conductance	847	umho/cm	
DT-22	FOX RIVER	2012-05-15	12:35	Specific conductance	826	umho/cm	
DT-22	FOX RIVER	2012-06-11	15:15	Specific conductance	851	umho/cm	
DT-22	FOX RIVER	2012-06-28	11:05	Specific conductance	875	umho/cm	
DT-22	FOX RIVER	2012-07-26	10:45	Specific conductance	789	umho/cm	
DT-22	FOX RIVER	2012-07-31	13:50	Specific conductance	813	umho/cm	
DT-22	FOX RIVER	2012-09-11	12:25	Specific conductance	881	umho/cm	
DT-22	FOX RIVER	2012-10-03	10:20	Specific conductance	930	umho/cm	
DT-22	FOX RIVER	2012-11-08	12:10	Specific conductance	981	umho/cm	
DT-22	FOX RIVER	2012-12-13	11:15	Specific conductance	1033	umho/cm	
DT-22	FOX RIVER	2013-01-29	12:10	Specific conductance	1142	umho/cm	
DT-22	FOX RIVER	2013-03-20	12:25	Specific conductance	770.2	umho/cm	
DT-22	FOX RIVER	2013-04-30	11:05	Specific conductance	662	umho/cm	
DT-22	FOX RIVER	2013-05-22	12:00	Specific conductance	781	umho/cm	
DT-22	FOX RIVER	2013-07-02	10:50	Specific conductance	641	umho/cm	
DT-22	FOX RIVER	2013-08-08	11:10	Specific conductance	770.4	umho/cm	
DT-22	FOX RIVER	2013-09-25	12:00	Specific conductance	812.1	umho/cm	
DT-22	FOX RIVER	2013-10-28	12:15	Specific conductance	850.2	umho/cm	
DT-22	FOX RIVER	2013-12-04	11:40	Specific conductance	979	umho/cm	
DT-22	FOX RIVER	2008-07-01	11:40	Strontium	340	ug/L	
DT-22	FOX RIVER	2008-07-01	11:40	Strontium	365	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Strontium	390	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Strontium	401	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Strontium	501	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Strontium	498	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Strontium	546	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Strontium	531	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Strontium	391	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Strontium	395	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Strontium	477	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Strontium	502	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Strontium	350	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Strontium	355	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Strontium	282	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Strontium	292	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Strontium	339	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-05-27	12:30	Strontium	345	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Strontium	345	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Strontium	349	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Strontium	392	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Strontium	430	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Strontium	457	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Strontium	442	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Strontium	408	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Strontium	418	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Strontium	481	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Strontium	538	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Strontium	468	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Strontium	500	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Strontium	519	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Strontium	541	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Strontium	378	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Strontium	408	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Strontium	387	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Strontium	424	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Strontium	292	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Strontium	298	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Strontium	499	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Strontium	515	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Strontium	674	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Strontium	685	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Strontium	840	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Strontium	832	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Strontium	413	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Strontium	407	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Strontium	342	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Strontium	331	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Strontium	359	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Strontium	362	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Strontium	501	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Strontium	527	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Strontium	459	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Strontium	443	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Strontium	387	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Strontium	401	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Strontium	548	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Strontium	571	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Strontium	627	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Strontium	640	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Strontium	639	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Strontium	652	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Strontium	782	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-02-22	11:45	Strontium	786	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Strontium	495	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Strontium	512	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Strontium	516	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Strontium	524	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Strontium	479	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Strontium	525	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Strontium	515	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Strontium	546	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Strontium	368	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Strontium	393	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Strontium	412	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Strontium	428	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Strontium	438	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Strontium	461	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Strontium	505	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Strontium	521	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Strontium	889	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Strontium	892	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Strontium	1120	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Strontium	1150	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Strontium	1040	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Strontium	1050	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Strontium	436	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Strontium	398	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Strontium	190	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Strontium	313	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Strontium	488	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Strontium	517	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Strontium	339	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Strontium	388	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Strontium	533	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Strontium	526	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Strontium	537	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Strontium	583	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Strontium	664	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Strontium	663	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Strontium	742	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Strontium	737	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Styrene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Styrene	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Sulfate	27.1	mg/L	
DT-22	FOX RIVER	2008-07-01	11:40	Sulfate	3.8	mg/L	
DT-22	FOX RIVER	2008-08-05	11:25	Sulfate	10.9	mg/L	
DT-22	FOX RIVER	2008-09-23	11:35	Sulfate	18.2	mg/L	
DT-22	FOX RIVER	2008-10-30	11:50	Sulfate	15.5	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-12-29	12:25	Sulfate	35.7	mg/L	
DT-22	FOX RIVER	2009-02-09	11:20	Sulfate	39.4	mg/L	
DT-22	FOX RIVER	2009-03-25	12:05	Sulfate	24	mg/L	
DT-22	FOX RIVER	2009-05-06	12:25	Sulfate	29.8	mg/L	
DT-22	FOX RIVER	2009-05-27	12:30	Sulfate	27.1	mg/L	
DT-22	FOX RIVER	2009-06-17	11:00	Sulfate	32.6	mg/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Sulfate	25.6	mg/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Sulfate	24.4	mg/L	
DT-22	FOX RIVER	2009-11-04	12:50	Sulfate	44.9	mg/L	
DT-22	FOX RIVER	2009-12-16	11:40	Sulfate	48.5	mg/L	
DT-22	FOX RIVER	2010-02-03	11:35	Sulfate	45.1	mg/L	
DT-22	FOX RIVER	2010-03-10	13:40	Sulfate	30.4	mg/L	
DT-22	FOX RIVER	2010-04-27	12:45	Sulfate	20.7	mg/L	
DT-22	FOX RIVER	2010-06-10	12:20	Sulfate	37.2	mg/L	
DT-22	FOX RIVER	2010-08-05	12:55	Sulfate	19.1	mg/L	
DT-22	FOX RIVER	2010-09-28	12:40	Sulfate	24.3	mg/L	
DT-22	FOX RIVER	2010-11-09	11:15	Sulfate	16.8	mg/L	
DT-22	FOX RIVER	2010-12-15	11:20	Sulfate	43.8	mg/L	
DT-22	FOX RIVER	2011-03-02	12:10	Sulfate	26.7	mg/L	
DT-22	FOX RIVER	2011-04-20	12:30	Sulfate	NA	mg/L	
DT-22	FOX RIVER	2011-05-17	11:50	Sulfate	20.8	mg/L	
DT-22	FOX RIVER	2011-06-28	11:08	Sulfate	28.8	mg/L	
DT-22	FOX RIVER	2011-07-19	11:30	Sulfate	19.2	mg/L	
DT-22	FOX RIVER	2011-09-06	11:45	Sulfate	36.3	mg/L	
DT-22	FOX RIVER	2011-10-27	12:40	Sulfate	19.7	mg/L	
DT-22	FOX RIVER	2011-12-01	11:30	Sulfate	32.3	mg/L	
DT-22	FOX RIVER	2012-01-24	12:20	Sulfate	NA	mg/L	
DT-22	FOX RIVER	2012-02-22	11:45	Sulfate	13	mg/L	
DT-22	FOX RIVER	2012-04-23	12:04	Sulfate	14.9	mg/L	
DT-22	FOX RIVER	2012-05-15	12:34	Sulfate	18.7	mg/L	
DT-22	FOX RIVER	2012-06-11	15:14	Sulfate	28.7	mg/L	
DT-22	FOX RIVER	2012-06-28	11:05	Sulfate	78.2	mg/L	
DT-22	FOX RIVER	2012-07-26	10:45	Sulfate	20.4	mg/L	
DT-22	FOX RIVER	2012-07-31	13:49	Sulfate	15.6	mg/L	
DT-22	FOX RIVER	2012-09-11	12:24	Sulfate	16.9	mg/L	
DT-22	FOX RIVER	2012-10-03	10:20	Sulfate	11.3	mg/L	
DT-22	FOX RIVER	2012-11-08	12:10	Sulfate	1.89	mg/L	
DT-22	FOX RIVER	2012-12-13	11:15	Sulfate	14.8	mg/L	
DT-22	FOX RIVER	2013-01-29	12:10	Sulfate	49.4	mg/L	
DT-22	FOX RIVER	2013-03-20	12:24	Sulfate	29.7	mg/L	
DT-22	FOX RIVER	2013-04-30	11:05	Sulfate	30.1	mg/L	
DT-22	FOX RIVER	2013-05-22	12:00	Sulfate	18.2	mg/L	
DT-22	FOX RIVER	2013-07-02	10:49	Sulfate	11.7	mg/L	
DT-22	FOX RIVER	2013-08-08	11:09	Sulfate	NA	mg/L	
DT-22	FOX RIVER	2013-09-25	12:00	Sulfate	54.4	mg/L	
DT-22	FOX RIVER	2013-10-28	12:14	Sulfate	25	mg/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-12-04	11:39	Sulfate	72.7	mg/L	
DT-22	FOX RIVER	2008-05-21	11:15	Temperature, air	15	deg C	
DT-22	FOX RIVER	2008-07-01	11:40	Temperature, air	27	deg C	
DT-22	FOX RIVER	2008-08-05	11:25	Temperature, air	27	deg C	
DT-22	FOX RIVER	2008-09-23	11:35	Temperature, air	25	deg C	
DT-22	FOX RIVER	2008-10-30	11:50	Temperature, air	13	deg C	
DT-22	FOX RIVER	2008-12-29	12:25	Temperature, air	6	deg C	
DT-22	FOX RIVER	2009-02-09	11:20	Temperature, air	5	deg C	
DT-22	FOX RIVER	2009-03-25	12:05	Temperature, air	6	deg C	
DT-22	FOX RIVER	2009-05-06	12:25	Temperature, air	23	deg C	
DT-22	FOX RIVER	2009-05-27	12:30	Temperature, air	15	deg C	
DT-22	FOX RIVER	2009-06-17	11:00	Temperature, air	16	deg C	
DT-22	FOX RIVER	2009-08-19	11:35	Temperature, air	19	deg C	
DT-22	FOX RIVER	2009-09-16	11:42	Temperature, air	21.1	deg C	
DT-22	FOX RIVER	2009-11-04	12:50	Temperature, air	11	deg C	
DT-22	FOX RIVER	2009-12-16	11:40	Temperature, air	-7	deg C	
DT-22	FOX RIVER	2010-02-03	11:35	Temperature, air	-1	deg C	
DT-22	FOX RIVER	2010-03-10	13:40	Temperature, air	10	deg C	
DT-22	FOX RIVER	2010-04-27	12:45	Temperature, air	13	deg C	
DT-22	FOX RIVER	2010-06-10	12:20	Temperature, air	26	deg C	
DT-22	FOX RIVER	2010-08-05	12:55	Temperature, air	30	deg C	
DT-22	FOX RIVER	2010-09-28	12:40	Temperature, air	22	deg C	
DT-22	FOX RIVER	2010-11-09	11:15	Temperature, air	15	deg C	
DT-22	FOX RIVER	2010-12-15	11:20	Temperature, air	-6	deg C	
DT-22	FOX RIVER	2011-03-02	12:10	Temperature, air	0	deg C	
DT-22	FOX RIVER	2011-04-20	12:30	Temperature, air	4	deg C	
DT-22	FOX RIVER	2011-05-17	11:50	Temperature, air	17	deg C	
DT-22	FOX RIVER	2011-06-28	11:08	Temperature, air	25	deg C	
DT-22	FOX RIVER	2011-07-19	11:30	Temperature, air	34	deg C	
DT-22	FOX RIVER	2011-09-06	11:45	Temperature, air	20	deg C	
DT-22	FOX RIVER	2011-10-27	12:40	Temperature, air	11	deg C	
DT-22	FOX RIVER	2011-12-01	11:30	Temperature, air	5	deg C	
DT-22	FOX RIVER	2012-01-24	12:20	Temperature, air	1	deg C	
DT-22	FOX RIVER	2012-02-22	11:45	Temperature, air	8	deg C	
DT-22	FOX RIVER	2012-04-23	12:05	Temperature, air	15	deg C	
DT-22	FOX RIVER	2012-05-15	12:35	Temperature, air	29	deg C	
DT-22	FOX RIVER	2012-06-11	15:15	Temperature, air	30	deg C	
DT-22	FOX RIVER	2012-06-28	11:05	Temperature, air	35	deg C	
DT-22	FOX RIVER	2012-07-26	10:45	Temperature, air	27	deg C	
DT-22	FOX RIVER	2012-07-31	13:50	Temperature, air	33	deg C	
DT-22	FOX RIVER	2012-09-11	12:25	Temperature, air	26	deg C	
DT-22	FOX RIVER	2012-10-03	10:20	Temperature, air	18	deg C	
DT-22	FOX RIVER	2012-11-08	12:10	Temperature, air	6	deg C	
DT-22	FOX RIVER	2012-12-13	11:15	Temperature, air	8	deg C	
DT-22	FOX RIVER	2013-01-29	12:10	Temperature, air	17	deg C	
DT-22	FOX RIVER	2013-03-20	12:25	Temperature, air	-5	deg C	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-04-30	11:05	Temperature, air	24	deg C	
DT-22	FOX RIVER	2013-05-22	12:00	Temperature, air	19	deg C	
DT-22	FOX RIVER	2013-07-02	10:50	Temperature, air	25	deg C	
DT-22	FOX RIVER	2013-08-08	11:10	Temperature, air	25	deg C	
DT-22	FOX RIVER	2013-09-25	12:00	Temperature, air	22	deg C	
DT-22	FOX RIVER	2013-10-28	12:15	Temperature, air	11	deg C	
DT-22	FOX RIVER	2013-12-04	11:40	Temperature, air	10	deg C	
DT-22	FOX RIVER	2008-05-21	11:15	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2008-05-21	11:15	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2008-07-01	11:40	Temperature, sample	3	deg C	1 ft
DT-22	FOX RIVER	2008-07-01	11:40	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2008-08-05	11:25	Temperature, sample	14	deg C	1 ft
DT-22	FOX RIVER	2008-08-05	11:25	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2008-09-23	11:35	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2008-09-23	11:35	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2008-10-30	11:50	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2008-10-30	11:50	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2008-12-29	12:25	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2008-12-29	12:25	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2009-02-09	11:20	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2009-03-25	12:05	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2009-03-25	12:05	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2009-05-06	12:25	Temperature, sample	0	deg C	
DT-22	FOX RIVER	2009-05-06	12:25	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2009-05-27	12:30	Temperature, sample	0	deg C	1 ft
DT-22	FOX RIVER	2009-05-27	12:30	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2009-06-17	11:00	Temperature, sample	1	deg C	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Temperature, sample	4	deg C	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2009-11-04	12:50	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2009-12-16	11:40	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2010-02-03	11:35	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2010-03-10	13:40	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2010-04-27	12:45	Temperature, sample	5	deg C	
DT-22	FOX RIVER	2010-06-10	12:20	Temperature, sample	6	deg C	
DT-22	FOX RIVER	2010-08-05	12:55	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2010-09-28	12:40	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2010-11-09	11:15	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2010-12-15	11:20	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2011-03-02	12:10	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2011-04-20	12:30	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2011-05-17	11:50	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2011-06-28	11:08	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2011-07-19	11:30	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2011-09-06	11:45	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2011-10-27	12:40	Temperature, sample	1	deg C	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-12-01	11:30	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-01-24	12:20	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2012-02-22	11:45	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2012-04-23	12:04	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2012-05-15	12:34	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2012-06-11	15:14	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-06-28	11:05	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2012-07-26	10:45	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-07-31	13:49	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-09-11	12:24	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2012-10-03	10:20	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-11-08	12:10	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2012-12-13	11:15	Temperature, sample	2	deg C	
DT-22	FOX RIVER	2013-01-29	12:10	Temperature, sample	3	deg C	
DT-22	FOX RIVER	2013-03-20	12:24	Temperature, sample	1	deg C	
DT-22	FOX RIVER	2013-04-30	11:05	Temperature, sample	4	deg C	
DT-22	FOX RIVER	2013-05-22	12:00	Temperature, sample	3	deg C	
DT-22	FOX RIVER	1964-06-02		Temperature, water	18.9	с	ft
DT-22	FOX RIVER	1964-06-02		Temperature, water	20	с	ft
DT-22	FOX RIVER	1964-06-09		Temperature, water	20	с	ft
DT-22	FOX RIVER	1964-06-17		Temperature, water	20.6	с	ft
DT-22	FOX RIVER	1964-06-17		Temperature, water	20	с	ft
DT-22	FOX RIVER	1964-06-23		Temperature, water	20	С	ft
DT-22	FOX RIVER	1964-06-23		Temperature, water	20	С	ft
DT-22	FOX RIVER	1967-08-31		Temperature, water	18.9	С	ft
DT-22	FOX RIVER	1967-10-25		Temperature, water	6.7	с	ft
DT-22	FOX RIVER	1967-12-19		Temperature, water	1.1	С	ft
DT-22	FOX RIVER	1969-05-21		Temperature, water	14.4	С	ft
DT-22	FOX RIVER	1969-07-01		Temperature, water	22.2	С	ft
DT-22	FOX RIVER	1969-08-19		Temperature, water	26.7	с	ft
DT-22	FOX RIVER	1970-07-06		Temperature, water	23.3	С	ft
DT-22	FOX RIVER	1970-08-10		Temperature, water	26.7	С	ft
DT-22	FOX RIVER	1970-08-31		Temperature, water	25.6	С	ft
DT-22	FOX RIVER	1970-09-28		Temperature, water	16.1	С	ft
DT-22	FOX RIVER	1970-10-26		Temperature, water	14.4	С	ft
DT-22	FOX RIVER	1970-11-30		Temperature, water	2.8	С	ft
DT-22	FOX RIVER	1970-12-21		Temperature, water	0.6	С	ft
DT-22	FOX RIVER	1971-04-12		Temperature, water	15	С	ft
DT-22	FOX RIVER	1971-05-17		Temperature, water	21.1	С	ft
DT-22	FOX RIVER	1971-06-16		Temperature, water	25.6	С	ft
DT-22	FOX RIVER	1971-07-29		Temperature, water	22.2	C	ft
DT-22	FOX RIVER	1971-09-08		Temperature, water	26.1	C	ft
DT-22	FOX RIVER	1971-10-14		Temperature, water	13.9	C	ft
DT-22	FOX RIVER	1971-11-09		Temperature, water	3.9	C	ft
0T-22		1972-01-06		I emperature, water	0	Ċ	rt
DT-22	FOX RIVER	1972-03-07		Temperature, water	1.1	C	π

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1972-04-11		Temperature, water	7.2	С	ft
DT-22	FOX RIVER	1972-05-03		Temperature, water	11.7	С	ft
DT-22	FOX RIVER	1972-06-06		Temperature, water	23.3	С	ft
DT-22	FOX RIVER	1972-07-05		Temperature, water	19.4	С	ft
DT-22	FOX RIVER	1972-08-14		Temperature, water	23.9	С	ft
DT-22	FOX RIVER	1972-09-19		Temperature, water	18.3	С	ft
DT-22	FOX RIVER	1972-10-05		Temperature, water	15.6	С	ft
DT-22	FOX RIVER	1972-11-14		Temperature, water	3.9	с	ft
DT-22	FOX RIVER	1972-12-11		Temperature, water	5.00E-04	с	ft
DT-22	FOX RIVER	1973-01-17		Temperature, water	0.6	с	ft
DT-22	FOX RIVER	1973-03-07		Temperature, water	8.3	с	ft
DT-22	FOX RIVER	1973-03-23		Temperature, water	5.6	с	ft
DT-22	FOX RIVER	1973-04-06		Temperature, water	8.9	с	ft
DT-22	FOX RIVER	1973-05-02		Temperature, water	13.9	С	ft
DT-22	FOX RIVER	1973-06-06		Temperature, water	22.8	с	ft
DT-22	FOX RIVER	1973-07-11		Temperature, water	26.7	с	ft
DT-22	FOX RIVER	1973-08-07		Temperature, water	24.4	с	ft
DT-22	FOX RIVER	1973-09-12		Temperature, water	21.7	с	ft
DT-22	FOX RIVER	1973-10-04		Temperature, water	17.8	с	ft
DT-22	FOX RIVER	1973-11-14		Temperature, water	6.7	с	ft
DT-22	FOX RIVER	1973-12-12		Temperature, water	0.6	С	ft
DT-22	FOX RIVER	1974-01-17		Temperature, water	0.6	С	ft
DT-22	FOX RIVER	1974-02-14		Temperature, water	0	С	ft
DT-22	FOX RIVER	1974-06-20		Temperature, water	20.6	С	ft
DT-22	FOX RIVER	1974-08-22		Temperature, water	25	С	ft
DT-22	FOX RIVER	1974-10-18		Temperature, water	10.6	с	ft
DT-22	FOX RIVER	1974-11-14		Temperature, water	2.8	с	ft
DT-22	FOX RIVER	1975-01-16		Temperature, water	0	с	ft
DT-22	FOX RIVER	1975-01-28		Temperature, water	2	с	ft
DT-22	FOX RIVER	1975-03-12		Temperature, water	3	С	ft
DT-22	FOX RIVER	1975-04-18		Temperature, water	12	С	ft
DT-22	FOX RIVER	1975-06-17		Temperature, water	20	С	ft
DT-22	FOX RIVER	1975-07-07		Temperature, water	28	С	ft
DT-22	FOX RIVER	1975-07-29		Temperature, water	26	С	ft
DT-22	FOX RIVER	1975-09-04		Temperature, water	22	С	ft
DT-22	FOX RIVER	1975-10-01		Temperature, water	14.5	С	ft
DT-22	FOX RIVER	1975-11-12		Temperature, water	8.5	С	ft
DT-22	FOX RIVER	1975-12-04		Temperature, water	2	С	ft
DT-22	FOX RIVER	1976-02-02		Temperature, water	0	С	ft
DT-22	FOX RIVER	1976-03-17		Temperature, water	5	С	ft
DT-22	FOX RIVER	1976-04-20		Temperature, water	16.5	C	ft
DT-22	FOX RIVER	1976-05-25		Temperature, water	18	C	rt
DT-22	FOX RIVER	1976-08-19		Temperature, water	24	C	tt
DT-22	FOX RIVER	1976-10-18		Temperature, water	9.5	C	ft
DT-22		19/9-07-26		remperature, water	28		π
DT-22	FOX RIVER	19/9-08-14		remperature, water	20.5	C	rt

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1979-09-06		Temperature, water	25	С	ft
DT-22	FOX RIVER	1979-10-17		Temperature, water	15.5	С	ft
DT-22	FOX RIVER	1979-11-05		Temperature, water	7	С	ft
DT-22	FOX RIVER	1979-12-18		Temperature, water	0	С	ft
DT-22	FOX RIVER	1980-01-07		Temperature, water	0	С	ft
DT-22	FOX RIVER	1980-03-05		Temperature, water	0	С	ft
DT-22	FOX RIVER	1980-04-09		Temperature, water	8	С	ft
DT-22	FOX RIVER	1980-05-08		Temperature, water	14	с	ft
DT-22	FOX RIVER	1980-06-12		Temperature, water	19	с	ft
DT-22	FOX RIVER	1980-07-09		Temperature, water	25	с	ft
DT-22	FOX RIVER	1980-08-11		Temperature, water	24.5	с	ft
DT-22	FOX RIVER	1980-09-15		Temperature, water	19.5	с	ft
DT-22	FOX RIVER	1980-10-06		Temperature, water	11	с	ft
DT-22	FOX RIVER	1980-12-17		Temperature, water	1.5	с	ft
DT-22	FOX RIVER	1981-01-20		Temperature, water	2	с	ft
DT-22	FOX RIVER	1981-02-20		Temperature, water	4	с	ft
DT-22	FOX RIVER	1981-03-06		Temperature, water	4	с	ft
DT-22	FOX RIVER	1981-04-02		Temperature, water	5.5	с	ft
DT-22	FOX RIVER	1981-05-07		Temperature, water	13	с	ft
DT-22	FOX RIVER	1981-06-24		Temperature, water	20	с	ft
DT-22	FOX RIVER	1981-07-06		Temperature, water	24	с	ft
DT-22	FOX RIVER	1981-07-21		Temperature, water	24	с	ft
DT-22	FOX RIVER	1981-08-28		Temperature, water	24.5	с	ft
DT-22	FOX RIVER	1981-10-28		Temperature, water	7.5	с	ft
DT-22	FOX RIVER	1981-11-24		Temperature, water	4	С	ft
DT-22	FOX RIVER	1982-03-09		Temperature, water	1	с	ft
DT-22	FOX RIVER	1982-03-24		Temperature, water	4	с	ft
DT-22	FOX RIVER	1982-06-03		Temperature, water	18.5	с	ft
DT-22	FOX RIVER	1982-07-13		Temperature, water	26	С	ft
DT-22	FOX RIVER	1982-07-28		Temperature, water	24	с	ft
DT-22	FOX RIVER	1982-09-28		Temperature, water	15.5	с	ft
DT-22	FOX RIVER	1982-10-13		Temperature, water	13.5	с	ft
DT-22	FOX RIVER	1982-12-01		Temperature, water	8	с	ft
DT-22	FOX RIVER	1983-01-19		Temperature, water	1	с	ft
DT-22	FOX RIVER	1983-02-23		Temperature, water	5	с	ft
DT-22	FOX RIVER	1983-04-06		Temperature, water	5.5	с	ft
DT-22	FOX RIVER	1983-04-27		Temperature, water	15.5	с	ft
DT-22	FOX RIVER	1983-06-01		Temperature, water	15	с	ft
DT-22	FOX RIVER	1983-08-03		Temperature, water	27	с	ft
DT-22	FOX RIVER	1983-09-19		Temperature, water	16	с	ft
DT-22	FOX RIVER	1983-10-04		Temperature, water	19	с	ft
DT-22	FOX RIVER	1983-11-21		Temperature, water	6.5	с	ft
DT-22	FOX RIVER	1984-01-17		Temperature, water	0	с	ft
DT-22	FOX RIVER	1984-02-06		Temperature, water	0	с	ft
DT-22	FOX RIVER	1984-03-20		Temperature, water	2	с	ft
DT-22	FOX RIVER	1984-04-25		Temperature, water	8.5	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1984-06-07		Temperature, water	25	С	ft
DT-22	FOX RIVER	1984-07-16		Temperature, water	26	С	ft
DT-22	FOX RIVER	1984-08-23		Temperature, water	21	С	ft
DT-22	FOX RIVER	1984-10-04		Temperature, water	13	С	ft
DT-22	FOX RIVER	1984-11-14		Temperature, water	5.5	с	ft
DT-22	FOX RIVER	1985-01-09		Temperature, water	0	с	ft
DT-22	FOX RIVER	1985-03-04		Temperature, water	1	с	ft
DT-22	FOX RIVER	1985-03-26		Temperature, water	7.5	с	ft
DT-22	FOX RIVER	1985-05-07		Temperature, water	17.5	с	ft
DT-22	FOX RIVER	1985-06-13		Temperature, water	17	с	ft
DT-22	FOX RIVER	1985-07-15		Temperature, water	26.5	с	ft
DT-22	FOX RIVER	1985-08-08		Temperature, water	27	с	ft
DT-22	FOX RIVER	1985-10-15		Temperature, water	14	с	ft
DT-22	FOX RIVER	1985-11-08		Temperature, water	7	с	ft
DT-22	FOX RIVER	1986-01-02		Temperature, water	0	с	ft
DT-22	FOX RIVER	1986-02-26		Temperature, water	8	с	ft
DT-22	FOX RIVER	1986-03-26		Temperature, water	7	с	ft
DT-22	FOX RIVER	1986-05-06		Temperature, water	19.5	с	ft
DT-22	FOX RIVER	1986-06-16		Temperature, water	22	с	ft
DT-22	FOX RIVER	1986-07-23		Temperature, water	27	С	ft
DT-22	FOX RIVER	1986-08-28		Temperature, water	20	с	ft
DT-22	FOX RIVER	1986-10-10		Temperature, water	12.5	с	ft
DT-22	FOX RIVER	1986-12-09		Temperature, water	2	с	ft
DT-22	FOX RIVER	1987-01-14		Temperature, water	1	с	ft
DT-22	FOX RIVER	1987-02-11		Temperature, water	1.5	С	ft
DT-22	FOX RIVER	1987-04-10		Temperature, water	13	с	ft
DT-22	FOX RIVER	1987-05-05		Temperature, water	13.5	с	ft
DT-22	FOX RIVER	1987-07-07		Temperature, water	26.5	с	ft
DT-22	FOX RIVER	1987-08-12		Temperature, water	27.5	с	ft
DT-22	FOX RIVER	1987-09-25		Temperature, water	17.5	с	ft
DT-22	FOX RIVER	1987-10-20		Temperature, water	12	с	ft
DT-22	FOX RIVER	1987-11-20		Temperature, water	4.5	с	ft
DT-22	FOX RIVER	1988-01-14		Temperature, water	0	с	ft
DT-22	FOX RIVER	1988-02-22		Temperature, water	0.5	с	ft
DT-22	FOX RIVER	1988-03-24		Temperature, water	8.5	с	ft
DT-22	FOX RIVER	1988-05-27		Temperature, water	20	с	ft
DT-22	FOX RIVER	1988-07-22		Temperature, water	26	с	ft
DT-22	FOX RIVER	1988-08-10		Temperature, water	19.6	с	ft
DT-22	FOX RIVER	1988-09-27		Temperature, water	21	с	ft
DT-22	FOX RIVER	1988-10-27		Temperature, water	7	с	ft
DT-22	FOX RIVER	1988-12-07		Temperature, water	1.9	с	ft
DT-22	FOX RIVER	1989-01-05		Temperature, water	0.5	с	ft
DT-22	FOX RIVER	1989-02-14		Temperature, water	0.3	с	ft
DT-22	FOX RIVER	1989-04-10		Temperature, water	6.5	с	ft
DT-22	FOX RIVER	1989-05-05		Temperature, water	13.9	с	ft
DT-22	FOX RIVER	1989-06-13		Temperature, water	20.7	с	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	--------------------	--------	-------	-------
DT-22	FOX RIVER	1989-09-21		Temperature, water	21.2	С	ft
DT-22	FOX RIVER	1989-10-23		Temperature, water	8.7	С	ft
DT-22	FOX RIVER	1989-11-14		Temperature, water	9	С	ft
DT-22	FOX RIVER	1990-01-26		Temperature, water	0.9	С	ft
DT-22	FOX RIVER	1990-03-05		Temperature, water	2.9	С	ft
DT-22	FOX RIVER	1990-04-12		Temperature, water	7	С	ft
DT-22	FOX RIVER	1990-05-18		Temperature, water	14.1	с	ft
DT-22	FOX RIVER	1990-07-02		Temperature, water	25.27	с	ft
DT-22	FOX RIVER	1990-07-24		Temperature, water	24.6	с	ft
DT-22	FOX RIVER	1990-09-04		Temperature, water	24.92	с	ft
DT-22	FOX RIVER	1990-10-26		Temperature, water	9.7	с	ft
DT-22	FOX RIVER	1990-12-10		Temperature, water	3.99	с	ft
DT-22	FOX RIVER	1991-02-04		Temperature, water	2.24	с	ft
DT-22	FOX RIVER	1991-03-04		Temperature, water	3.33	с	ft
DT-22	FOX RIVER	1991-04-16		Temperature, water	11.38	с	ft
DT-22	FOX RIVER	1991-05-21		Temperature, water	21	с	ft
DT-22	FOX RIVER	1991-06-27		Temperature, water	28.51	с	ft
DT-22	FOX RIVER	1991-08-06		Temperature, water	24.56	с	ft
DT-22	FOX RIVER	1991-10-25		Temperature, water	16.42	с	ft
DT-22	FOX RIVER	1991-11-12		Temperature, water	3.58	С	ft
DT-22	FOX RIVER	1991-12-20		Temperature, water	1.45	с	ft
DT-22	FOX RIVER	1992-01-17		Temperature, water	1	С	ft
DT-22	FOX RIVER	1992-03-02		Temperature, water	6.45	с	ft
DT-22	FOX RIVER	1992-03-27		Temperature, water	5.77	с	ft
DT-22	FOX RIVER	1992-05-27		Temperature, water	18.57	с	ft
DT-22	FOX RIVER	1992-06-22		Temperature, water	19.26	с	ft
DT-22	FOX RIVER	1992-08-18		Temperature, water	21.34	с	ft
DT-22	FOX RIVER	1992-11-06		Temperature, water	5.03	с	ft
DT-22	FOX RIVER	1992-12-18		Temperature, water	2.47	с	ft
DT-22	FOX RIVER	1993-01-27		Temperature, water	3.02	с	ft
DT-22	FOX RIVER	1993-03-08		Temperature, water	3.65	с	ft
DT-22	FOX RIVER	1993-04-21		Temperature, water	8.99	с	ft
DT-22	FOX RIVER	1993-05-17		Temperature, water	17.89	с	ft
DT-22	FOX RIVER	1993-06-14		Temperature, water	23.56	с	ft
DT-22	FOX RIVER	1993-08-06		Temperature, water	22.58	с	ft
DT-22	FOX RIVER	1993-09-24		Temperature, water	16.87	с	ft
DT-22	FOX RIVER	1993-10-20		Temperature, water	14.03	с	ft
DT-22	FOX RIVER	1993-12-10		Temperature, water	2.38	с	ft
DT-22	FOX RIVER	1994-01-12		Temperature, water	0.35	с	ft
DT-22	FOX RIVER	1994-02-09		Temperature, water	0.53	с	ft
DT-22	FOX RIVER	1994-03-23		Temperature, water	8.17	с	ft
DT-22	FOX RIVER	1994-04-26		Temperature, water	19.9	с	ft
DT-22	FOX RIVER	1994-06-13		Temperature, water	23.33	с	ft
DT-22	FOX RIVER	1994-07-25		Temperature, water	26.49	с	ft
DT-22	FOX RIVER	1994-09-20		Temperature, water	23.77	с	ft
DT-22	FOX RIVER	1994-11-14		Temperature, water	11.78	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	1994-12-05		Temperature, water	5.24	С	ft
DT-22	FOX RIVER	1995-01-17		Temperature, water	1.51	С	ft
DT-22	FOX RIVER	1995-02-21		Temperature, water	2.27	С	ft
DT-22	FOX RIVER	1995-03-23		Temperature, water	7.79	С	ft
DT-22	FOX RIVER	1995-05-04		Temperature, water	12.83	с	ft
DT-22	FOX RIVER	1995-06-13		Temperature, water	19.47	с	ft
DT-22	FOX RIVER	1995-07-25		Temperature, water	26.59	с	ft
DT-22	FOX RIVER	1995-09-06		Temperature, water	25.04	с	ft
DT-22	FOX RIVER	1995-10-11		Temperature, water	14.66	с	ft
DT-22	FOX RIVER	1995-11-21		Temperature, water	2.84	с	ft
DT-22	FOX RIVER	1996-01-24		Temperature, water	0.8	с	ft
DT-22	FOX RIVER	1996-02-28		Temperature, water	0.8	с	ft
DT-22	FOX RIVER	1996-04-15		Temperature, water	7.89	с	ft
DT-22	FOX RIVER	1996-05-01		Temperature, water	8.52	с	ft
DT-22	FOX RIVER	1996-06-05		Temperature, water	17.59	с	ft
DT-22	FOX RIVER	1996-08-12		Temperature, water	25	с	ft
DT-22	FOX RIVER	1996-08-28		Temperature, water	24.03	с	ft
DT-22	FOX RIVER	1996-10-02		Temperature, water	16.41	с	ft
DT-22	FOX RIVER	1996-11-19		Temperature, water	2.57	с	ft
DT-22	FOX RIVER	1997-01-07		Temperature, water	0.21	с	ft
DT-22	FOX RIVER	1997-02-18		Temperature, water	1.32	с	ft
DT-22	FOX RIVER	1997-03-26		Temperature, water	4.6	с	ft
DT-22	FOX RIVER	1997-05-28		Temperature, water	14.73	с	ft
DT-22	FOX RIVER	1997-07-11		Temperature, water	23.35	с	ft
DT-22	FOX RIVER	1997-09-11		Temperature, water	21.04	с	ft
DT-22	FOX RIVER	1997-11-06		Temperature, water	7.15	с	ft
DT-22	FOX RIVER	1997-12-15		Temperature, water	0.38	с	ft
DT-22	FOX RIVER	1998-02-04		Temperature, water	2.66	с	ft
DT-22	FOX RIVER	1998-03-16		Temperature, water	1.38	с	ft
DT-22	FOX RIVER	1998-04-09		Temperature, water	9.52	с	ft
DT-22	FOX RIVER	1998-06-01		Temperature, water	23.28	с	ft
DT-22	FOX RIVER	1998-07-06		Temperature, water	24.46	с	ft
DT-22	FOX RIVER	1998-08-10		Temperature, water	26.44	с	ft
DT-22	FOX RIVER	1998-09-24		Temperature, water	19.25	с	ft
DT-22	FOX RIVER	1998-11-23		Temperature, water	5.26	с	ft
DT-22	FOX RIVER	1998-12-17		Temperature, water	2.61	с	ft
DT-22	FOX RIVER	1999-03-18		Temperature, water	6.61	с	ft
DT-22	FOX RIVER	1999-05-26		Temperature, water	16.1	с	ft
DT-22	FOX RIVER	1999-06-25		Temperature, water	25.61	с	ft
DT-22	FOX RIVER	1999-09-21		Temperature, water	17.45	с	ft
DT-22	FOX RIVER	1999-10-20		Temperature, water	11.89	с	ft
DT-22	FOX RIVER	1999-11-30		Temperature, water	2.44	с	ft
DT-22	FOX RIVER	2000-01-06		Temperature, water	0.39	с	ft
DT-22	FOX RIVER	2000-02-22		Temperature, water	3.5	С	ft
DT-22	FOX RIVER	2000-04-11		Temperature, water	7.09	с	ft
DT-22	FOX RIVER	2000-05-09		Temperature, water	22.08	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2000-06-05		Temperature, water	17.51	С	ft
DT-22	FOX RIVER	2000-06-12		Temperature, water	22.41	С	ft
DT-22	FOX RIVER	2000-06-27		Temperature, water	24.09	С	ft
DT-22	FOX RIVER	2000-07-06		Temperature, water	25.07	С	ft
DT-22	FOX RIVER	2000-07-10		Temperature, water	24.56	С	ft
DT-22	FOX RIVER	2000-07-18		Temperature, water	25.4	С	ft
DT-22	FOX RIVER	2000-07-24		Temperature, water	22.96	с	ft
DT-22	FOX RIVER	2000-07-31		Temperature, water	23.27	с	ft
DT-22	FOX RIVER	2000-08-02		Temperature, water	24.35	с	ft
DT-22	FOX RIVER	2000-09-05		Temperature, water	22.04	с	ft
DT-22	FOX RIVER	2000-09-07		Temperature, water	21.82	с	ft
DT-22	FOX RIVER	2000-09-11		Temperature, water	24.21	с	ft
DT-22	FOX RIVER	2000-09-18		Temperature, water	18.76	С	ft
DT-22	FOX RIVER	2000-09-25		Temperature, water	14.34	с	ft
DT-22	FOX RIVER	2000-09-29		Temperature, water	15.16	С	ft
DT-22	FOX RIVER	2000-11-13		Temperature, water	6.25	с	ft
DT-22	FOX RIVER	2001-02-05		Temperature, water	-0.05	с	ft
DT-22	FOX RIVER	2001-03-15		Temperature, water	2.29	С	ft
DT-22	FOX RIVER	2001-05-23		Temperature, water	17.3	с	ft
DT-22	FOX RIVER	2001-06-27		Temperature, water	25.9	с	ft
DT-22	FOX RIVER	2001-10-26		Temperature, water	7.23	с	ft
DT-22	FOX RIVER	2001-11-27		Temperature, water	7.62	с	ft
DT-22	FOX RIVER	2002-01-18		Temperature, water	0.26	с	ft
DT-22	FOX RIVER	2002-03-19		Temperature, water	4.76	с	ft
DT-22	FOX RIVER	2002-04-11		Temperature, water	9.48	С	ft
DT-22	FOX RIVER	2002-05-13		Temperature, water	11.8	С	ft
DT-22	FOX RIVER	2002-06-13		Temperature, water	22.11	С	ft
DT-22	FOX RIVER	2002-07-11		Temperature, water	24.89	С	ft
DT-22	FOX RIVER	2002-08-23		Temperature, water	23.39	С	ft
DT-22	FOX RIVER	2002-10-01		Temperature, water	20	С	ft
DT-22	FOX RIVER	2002-11-12		Temperature, water	8.72	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	1.4	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	25.39	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	0.2	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	16	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	0.1	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	22.2	С	ft
DT-22	FOX RIVER	2003-01-07		Temperature, water	5.6	С	ft
DT-22	FOX RIVER	2003-03-18		Temperature, water	10	С	ft
DT-22	FOX RIVER	2003-03-18		Temperature, water	26.8	С	ft
DT-22	FOX RIVER	2003-03-18		Temperature, water	25.5	с	ft
DT-22	FOX RIVER	2003-03-18		Temperature, water	6.8	с	ft
DT-22	FOX RIVER	2003-03-18		Temperature, water	26.95	с	ft
DT-22	FOX RIVER	2003-04-01		Temperature, water	7.4	с	ft
DT-22	FOX RIVER	2003-04-01		Temperature, water	27.08	С	ft
DT-22	FOX RIVER	2003-04-01		Temperature, water	12.7	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-04-01		Temperature, water	16.1	с	ft
DT-22	FOX RIVER	2003-04-01		Temperature, water	18.7	с	ft
DT-22	FOX RIVER	2003-04-15		Temperature, water	13.9	с	ft
DT-22	FOX RIVER	2003-04-15		Temperature, water	26.95	с	ft
DT-22	FOX RIVER	2003-04-15		Temperature, water	3.1	с	ft
DT-22	FOX RIVER	2003-04-15		Temperature, water	12.8	с	ft
DT-22	FOX RIVER	2003-04-29		Temperature, water	14.6	с	ft
DT-22	FOX RIVER	2003-04-29		Temperature, water	13	с	ft
DT-22	FOX RIVER	2003-04-29		Temperature, water	0.4	с	ft
DT-22	FOX RIVER	2003-04-29		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-04-29		Temperature, water	26.86	с	ft
DT-22	FOX RIVER	2003-05-13		Temperature, water	18.3	с	ft
DT-22	FOX RIVER	2003-05-13		Temperature, water	7.1	с	ft
DT-22	FOX RIVER	2003-05-13		Temperature, water	14.8	с	ft
DT-22	FOX RIVER	2003-05-13		Temperature, water	13.9	с	ft
DT-22	FOX RIVER	2003-05-13		Temperature, water	26.69	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	26.36	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	19	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	17.8	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	23.9	с	ft
DT-22	FOX RIVER	2003-05-27		Temperature, water	0.4	с	ft
DT-22	FOX RIVER	2003-06-10		Temperature, water	24.1	с	ft
DT-22	FOX RIVER	2003-06-10		Temperature, water	26.1	с	ft
DT-22	FOX RIVER	2003-06-10		Temperature, water	19.7	с	ft
DT-22	FOX RIVER	2003-06-10		Temperature, water	17.2	с	ft
DT-22	FOX RIVER	2003-06-10		Temperature, water	23.8	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	22	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	-3	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	0.3	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	23.9	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	25.85	с	ft
DT-22	FOX RIVER	2003-06-24		Temperature, water	26	с	ft
DT-22	FOX RIVER	2003-07-08		Temperature, water	10.1	с	ft
DT-22	FOX RIVER	2003-07-08		Temperature, water	4.3	с	ft
DT-22	FOX RIVER	2003-07-08		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-07-08		Temperature, water	25.68	с	ft
DT-22	FOX RIVER	2003-07-08		Temperature, water	7	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	0.9	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	17.4	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	18.7	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	24.6	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	25.64	с	ft
DT-22	FOX RIVER	2003-07-22		Temperature, water	8.8	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	14.1	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	23.7	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-08-05		Temperature, water	24.2	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	25.85	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	5.9	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	21.2	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	6.6	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	11.6	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	24.7	с	ft
DT-22	FOX RIVER	2003-08-05		Temperature, water	25.93	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	27.7	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	26.65	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	25.4	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	0.6	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	9.5	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	16.2	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	25.5	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	26.61	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	1	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	15.4	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	23.4	с	ft
DT-22	FOX RIVER	2003-08-19		Temperature, water	8.5	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	26.48	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	20.6	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	0.4	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	20.7	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	16.7	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	5.5	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	13.2	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	11	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	7	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	0.3	С	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	17.3	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	20.5	С	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	26.48	с	ft
DT-22	FOX RIVER	2003-09-02		Temperature, water	20.6	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	20.1	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	21.2	С	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	10	С	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	26.53	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	0.3	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	15	С	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	17.9	С	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	0.3	С	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	20.3	с	ft
DT-22	FOX RIVER	2003-09-16		Temperature, water	26.48	С	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2003-09-30		Temperature, water	3.6	С	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	31.7	С	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	24.5	С	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	26.31	С	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	0.1	с	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	11	с	ft
DT-22	FOX RIVER	2003-09-30		Temperature, water	13.4	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	25.98	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	26.8	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	15.6	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	0	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	19	с	ft
DT-22	FOX RIVER	2003-10-14		Temperature, water	8.9	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	13.2	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	25.55	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	3.5	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	23.6	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	22.8	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	9.4	с	ft
DT-22	FOX RIVER	2003-10-28		Temperature, water	18	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	10.6	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	2.3	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	25.4	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	17.4	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	3.6	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	25.17	с	ft
DT-22	FOX RIVER	2003-11-25		Temperature, water	20	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	7.5	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	13.2	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	11.4	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	3.2	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	25.09	с	ft
DT-22	FOX RIVER	2003-12-09		Temperature, water	25	с	ft
DT-22	FOX RIVER	2004-03-30		Temperature, water	27.33	с	ft
DT-22	FOX RIVER	2004-03-30		Temperature, water	27.4	С	ft
DT-22	FOX RIVER	2004-03-30		Temperature, water	0	с	ft
DT-22	FOX RIVER	2004-03-30		Temperature, water	4	с	ft
DT-22	FOX RIVER	2004-03-30		Temperature, water	12.1	С	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	22.3	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	27.2	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	5.2	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	25	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	12.7	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	8.5	с	ft
DT-22	FOX RIVER	2004-04-13		Temperature, water	0.5	с	ft
DT-22	FOX RIVER	2004-04-27		Temperature, water	11.9	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2004-04-27		Temperature, water	21.5	С	ft
DT-22	FOX RIVER	2004-04-27		Temperature, water	0.1	С	ft
DT-22	FOX RIVER	2004-04-27		Temperature, water	22.9	С	ft
DT-22	FOX RIVER	2004-04-27		Temperature, water	26.69	С	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	13.8	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	17	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	19.5	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	26.36	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	16	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	26.19	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	0.11	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	1.3	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	7.7	с	ft
DT-22	FOX RIVER	2004-05-18		Temperature, water	4	с	ft
DT-22	FOX RIVER	2004-06-15		Temperature, water	26.1	с	ft
DT-22	FOX RIVER	2004-06-15		Temperature, water	0.5	с	ft
DT-22	FOX RIVER	2004-06-15		Temperature, water	23.9	с	ft
DT-22	FOX RIVER	2004-06-15		Temperature, water	8.3	с	ft
DT-22	FOX RIVER	2004-06-15		Temperature, water	0.1	с	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	19.5	с	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	24.7	с	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	25.6	с	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	5.4	С	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	4.6	С	ft
DT-22	FOX RIVER	2004-07-20		Temperature, water	6.6	С	ft
DT-22	FOX RIVER	2004-08-17		Temperature, water	27.6	С	ft
DT-22	FOX RIVER	2004-08-17		Temperature, water	13.5	С	ft
DT-22	FOX RIVER	2004-08-17		Temperature, water	0	С	ft
DT-22	FOX RIVER	2004-08-17		Temperature, water	26.1	С	ft
DT-22	FOX RIVER	2004-09-21		Temperature, water	22.7	С	ft
DT-22	FOX RIVER	2004-09-21		Temperature, water	26.99	с	ft
DT-22	FOX RIVER	2004-09-21		Temperature, water	20.7	С	ft
DT-22	FOX RIVER	2004-09-21		Temperature, water	0.5	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	7	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	27.71	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	6.4	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	11.3	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	27.8	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	16.5	С	ft
DT-22	FOX RIVER	2004-11-16		Temperature, water	26.95	с	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	4	С	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	11.2	С	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	0	С	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	24	С	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	26.27	С	ft
DT-22	FOX RIVER	2005-04-27		Temperature, water	20.5	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2005-06-21		Temperature, water	22.7	с	ft
DT-22	FOX RIVER	2005-06-21		Temperature, water	24.7	с	ft
DT-22	FOX RIVER	2005-06-21		Temperature, water	26.69	с	ft
DT-22	FOX RIVER	2005-06-21		Temperature, water	1	с	ft
DT-22	FOX RIVER	2005-06-21		Temperature, water	19	с	ft
DT-22	FOX RIVER	2005-06-21		Temperature, water	24.5	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	0	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	27.37	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	28	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	0.8	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	3	с	ft
DT-22	FOX RIVER	2005-07-19		Temperature, water	27.7	с	ft
DT-22	FOX RIVER	2005-08-16		Temperature, water	13.4	с	ft
DT-22	FOX RIVER	2005-08-16		Temperature, water	24.5	с	ft
DT-22	FOX RIVER	2005-08-16		Temperature, water	1	с	ft
DT-22	FOX RIVER	2005-08-16		Temperature, water	16.85	с	ft
DT-22	FOX RIVER	2005-08-16		Temperature, water	27.03	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	5.7	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	7.1	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	26.78	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	27.2	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	21.6	с	ft
DT-22	FOX RIVER	2005-09-20		Temperature, water	18	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	7.59	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	15.6	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	2	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	26.31	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	0.3	с	ft
DT-22	FOX RIVER	2005-11-15		Temperature, water	0.9	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	1	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	26.1	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	6.3	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	0	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	2.5	с	ft
DT-22	FOX RIVER	2006-01-17		Temperature, water	11.8	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	0	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	2.9	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	3.8	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	25.01	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	14	с	ft
DT-22	FOX RIVER	2006-03-21		Temperature, water	23.3	с	ft
DT-22	FOX RIVER	2006-04-18		Temperature, water	24.96	с	ft
DT-22	FOX RIVER	2006-04-18		Temperature, water	25	с	ft
DT-22	FOX RIVER	2006-04-18		Temperature, water	9.5	с	ft
DT-22	FOX RIVER	2006-04-18		Temperature, water	15.1	с	ft
DT-22	FOX RIVER	2006-04-18		Temperature, water	13.4	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2006-04-18		Temperature, water	26.9	С	ft
DT-22	FOX RIVER	2006-05-16		Temperature, water	8	С	ft
DT-22	FOX RIVER	2006-05-16		Temperature, water	11	С	ft
DT-22	FOX RIVER	2006-05-16		Temperature, water	8.4	С	ft
DT-22	FOX RIVER	2006-05-16		Temperature, water	13.45	с	ft
DT-22	FOX RIVER	2006-05-16		Temperature, water	25.81	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	0.9	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	27.3	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	17.9	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	2.2	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	24.1	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	27.2	с	ft
DT-22	FOX RIVER	2006-06-20		Temperature, water	3.38	с	ft
DT-22	FOX RIVER	2006-07-18		Temperature, water	29.3	с	ft
DT-22	FOX RIVER	2006-07-18		Temperature, water	28.7	с	ft
DT-22	FOX RIVER	2006-07-18		Temperature, water	19.2	с	ft
DT-22	FOX RIVER	2006-07-18		Temperature, water	27.3	с	ft
DT-22	FOX RIVER	2006-07-18		Temperature, water	12.8	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	11.1	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	18.7	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	24.3	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	28.55	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	16.6	с	ft
DT-22	FOX RIVER	2006-09-19		Temperature, water	22.6	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	9.4	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	17.8	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	10	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	16.5	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	4.4	с	ft
DT-22	FOX RIVER	2006-10-17		Temperature, water	27.75	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	26.82	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	24.2	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	4	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	0.8	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	27.5	с	ft
DT-22	FOX RIVER	2006-11-21		Temperature, water	10	с	ft
DT-22	FOX RIVER	2007-06-19		Temperature, water	27.71	с	ft
DT-22	FOX RIVER	2007-06-19		Temperature, water	23.5	с	ft
DT-22	FOX RIVER	2007-06-19		Temperature, water	21.4	с	ft
DT-22	FOX RIVER	2007-06-19		Temperature, water	23.8	с	ft
DT-22	FOX RIVER	2007-09-18		Temperature, water	18.35	с	ft
DT-22	FOX RIVER	2007-09-18		Temperature, water	16.8	с	ft
DT-22	FOX RIVER	2007-09-18		Temperature, water	27.03	с	ft
DT-22	FOX RIVER	2007-09-18		Temperature, water	18.35	с	ft
DT-22	FOX RIVER	2008-05-20		Temperature, water	27.29	с	ft
DT-22	FOX RIVER	2008-05-20		Temperature, water	13.75	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-05-20		Temperature, water	22.9	с	ft
DT-22	FOX RIVER	2008-05-20		Temperature, water	0	с	ft
DT-22	FOX RIVER	2008-05-20		Temperature, water	26.4	с	ft
DT-22	FOX RIVER	2008-05-21	11:15	Temperature, water	15.86	deg C	
DT-22	FOX RIVER	2008-06-17		Temperature, water	27.2	с	ft
DT-22	FOX RIVER	2008-06-17		Temperature, water	21.4	с	ft
DT-22	FOX RIVER	2008-06-17		Temperature, water	26.6	с	ft
DT-22	FOX RIVER	2008-06-17		Temperature, water	7.8	с	ft
DT-22	FOX RIVER	2008-06-17		Temperature, water	25	с	ft
DT-22	FOX RIVER	2008-06-17		Temperature, water	21.4	с	ft
DT-22	FOX RIVER	2008-07-01	11:40	Temperature, water	23.09	deg C	
DT-22	FOX RIVER	2008-08-05	11:25	Temperature, water	25.74	deg C	
DT-22	FOX RIVER	2008-08-19		Temperature, water	25.93	с	ft
DT-22	FOX RIVER	2008-08-19		Temperature, water	15.2	с	ft
DT-22	FOX RIVER	2008-08-19		Temperature, water	24.73	с	ft
DT-22	FOX RIVER	2008-08-19		Temperature, water	26.8	с	ft
DT-22	FOX RIVER	2008-08-19		Temperature, water	25.3	с	ft
DT-22	FOX RIVER	2008-09-16		Temperature, water	11.9	с	ft
DT-22	FOX RIVER	2008-09-16		Temperature, water	15	с	ft
DT-22	FOX RIVER	2008-09-16		Temperature, water	25.43	с	ft
DT-22	FOX RIVER	2008-09-16		Temperature, water	18.45	с	ft
DT-22	FOX RIVER	2008-09-23	11:35	Temperature, water	21.87	deg C	
DT-22	FOX RIVER	2008-10-30	11:50	Temperature, water	7.1	deg C	
DT-22	FOX RIVER	2008-12-29	12:25	Temperature, water	0.35	deg C	
DT-22	FOX RIVER	2009-02-09	11:20	Temperature, water	0.17	deg C	
DT-22	FOX RIVER	2009-03-25	12:05	Temperature, water	7.66	deg C	
DT-22	FOX RIVER	2009-05-06	12:25	Temperature, water	15.92	deg C	
DT-22	FOX RIVER	2009-05-27	12:30	Temperature, water	18.06	deg C	
DT-22	FOX RIVER	2009-06-17	11:00	Temperature, water	20.45	deg C	
DT-22	FOX RIVER	2009-08-19	11:35	Temperature, water	24.82	deg C	
DT-22	FOX RIVER	2009-09-16	11:42	Temperature, water	23.1	deg C	
DT-22	FOX RIVER	2009-11-04	12:50	Temperature, water	8.32	deg C	
DT-22	FOX RIVER	2009-12-16	11:40	Temperature, water	-0.23	deg C	
DT-22	FOX RIVER	2010-02-03	11:35	Temperature, water	-0.01	deg C	
DT-22	FOX RIVER	2010-03-10	13:40	Temperature, water	3.46	deg C	
DT-22	FOX RIVER	2010-04-27	12:45	Temperature, water	13.26	deg C	
DT-22	FOX RIVER	2010-06-10	12:20	Temperature, water	22.07	deg C	
DT-22	FOX RIVER	2010-08-05	12:55	Temperature, water	26.53	deg C	
DT-22	FOX RIVER	2010-09-28	12:40	Temperature, water	17.36	deg C	
DT-22	FOX RIVER	2010-11-09	11:15	Temperature, water	7.22	deg C	
DT-22	FOX RIVER	2010-12-15	11:20	Temperature, water	-0.09	deg C	
DT-22	FOX RIVER	2011-03-02	12:10	Temperature, water	1.1	deg C	
DT-22	FOX RIVER	2011-04-20	12:30	Temperature, water	5.16	deg C	
DT-22	FOX RIVER	2011-05-17	11:50	Temperature, water	12.6	deg C	
DT-22	FOX RIVER	2011-06-28	11:08	Temperature, water	23.17	deg C	
DT-22	FOX RIVER	2011-07-19	11:30	Temperature, water	29.6	deg C	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-09-06	11:45	Temperature, water	20.22	deg C	
DT-22	FOX RIVER	2011-10-27	12:40	Temperature, water	10.74	deg C	
DT-22	FOX RIVER	2011-12-01	11:30	Temperature, water	2.67	deg C	
DT-22	FOX RIVER	2012-01-24	12:20	Temperature, water	0.11	deg C	
DT-22	FOX RIVER	2012-02-22	11:45	Temperature, water	2.76	deg C	
DT-22	FOX RIVER	2012-04-23	12:05	Temperature, water	11.52	deg C	
DT-22	FOX RIVER	2012-05-15	12:35	Temperature, water	19.73	deg C	
DT-22	FOX RIVER	2012-06-11	15:15	Temperature, water	26.04	deg C	
DT-22	FOX RIVER	2012-06-28	11:05	Temperature, water	26.24	deg C	
DT-22	FOX RIVER	2012-07-26	10:45	Temperature, water	27.51	deg C	
DT-22	FOX RIVER	2012-07-31	13:50	Temperature, water	28.51	deg C	
DT-22	FOX RIVER	2012-09-11	12:25	Temperature, water	21.74	deg C	
DT-22	FOX RIVER	2012-10-03	10:20	Temperature, water	16.81	deg C	
DT-22	FOX RIVER	2012-11-08	12:10	Temperature, water	6.43	deg C	
DT-22	FOX RIVER	2012-12-13	11:15	Temperature, water	2.27	deg C	
DT-22	FOX RIVER	2013-01-29	12:10	Temperature, water	0.61	deg C	
DT-22	FOX RIVER	2013-03-20	12:25	Temperature, water	0.48	deg C	
DT-22	FOX RIVER	2013-04-30	11:05	Temperature, water	14.74	deg C	
DT-22	FOX RIVER	2013-05-22	12:00	Temperature, water	23	deg C	
DT-22	FOX RIVER	2013-07-02	10:50	Temperature, water	21.96	deg C	
DT-22	FOX RIVER	2013-08-08	11:10	Temperature, water	24.45	deg C	
DT-22	FOX RIVER	2013-09-25	12:00	Temperature, water	18.73	deg C	
DT-22	FOX RIVER	2013-10-28	12:15	Temperature, water	7.61	deg C	
DT-22	FOX RIVER	2013-12-04	11:40	Temperature, water	3.13	deg C	
DT-22	FOX RIVER	2013-04-30	11:05	Tetrachloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Tetrachloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Toluene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Toluene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	trans-1,3-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	trans-1,3-Dichloropropene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Trichloroethane, 1,1,1-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Trichloroethane, 1,1,1-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Trichloroethane, 1,1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Trichloroethane, 1,1,2-	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Trichloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Trichloroethylene	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Trichlorofluoromethane	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Trichlorofluoromethane	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Turbidity	15.8	NTU	
DT-22	FOX RIVER	2008-07-01	11:40	Turbidity	25.8	NTU	
DT-22	FOX RIVER	2008-08-05	11:25	Turbidity	32	NTU	
DT-22	FOX RIVER	2008-09-23	11:35	Turbidity	20	NTU	
DT-22	FOX RIVER	2008-10-30	11:50	Turbidity	5.9	NTU	
DT-22	FOX RIVER	2008-12-29	12:25	Turbidity	20	NTU	
DT-22	FOX RIVER	2009-02-09	11:20	Turbidity	18	NTU	
DT-22	FOX RIVER	2009-03-25	12:05	Turbidity	16	NTU	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-05-06	12:25	Turbidity	16	NTU	
DT-22	FOX RIVER	2009-05-27	12:30	Turbidity	11.3	NTU	
DT-22	FOX RIVER	2009-06-17	11:00	Turbidity	10.9	NTU	
DT-22	FOX RIVER	2009-08-19	11:35	Turbidity	22	NTU	
DT-22	FOX RIVER	2009-09-16	11:42	Turbidity	21	NTU	
DT-22	FOX RIVER	2009-11-04	12:50	Turbidity	8.4	NTU	
DT-22	FOX RIVER	2009-12-16	11:40	Turbidity	3.3	NTU	
DT-22	FOX RIVER	2010-02-03	11:35	Turbidity	8.1	NTU	
DT-22	FOX RIVER	2010-03-10	13:40	Turbidity	8.4	NTU	
DT-22	FOX RIVER	2010-04-27	12:45	Turbidity	16	NTU	
DT-22	FOX RIVER	2010-06-10	12:20	Turbidity	19.7	NTU	
DT-22	FOX RIVER	2010-08-05	12:55	Turbidity	27.1	NTU	
DT-22	FOX RIVER	2010-09-28	12:40	Turbidity	28.2	NTU	
DT-22	FOX RIVER	2010-11-09	11:15	Turbidity	9.47	NTU	
DT-22	FOX RIVER	2010-12-15	11:20	Turbidity	6.49	NTU	
DT-22	FOX RIVER	2011-03-02	12:10	Turbidity	7.7	NTU	
DT-22	FOX RIVER	2011-04-20	12:30	Turbidity	16	NTU	
DT-22	FOX RIVER	2011-05-17	11:50	Turbidity	12	NTU	
DT-22	FOX RIVER	2011-06-28	11:08	Turbidity	30.4	NTU	
DT-22	FOX RIVER	2011-07-19	11:30	Turbidity	29	NTU	
DT-22	FOX RIVER	2011-09-06	11:45	Turbidity	31	NTU	
DT-22	FOX RIVER	2011-10-27	12:40	Turbidity	14	NTU	
DT-22	FOX RIVER	2011-12-01	11:30	Turbidity	13	NTU	
DT-22	FOX RIVER	2012-01-24	12:20	Turbidity	5	NTU	
DT-22	FOX RIVER	2012-02-22	11:45	Turbidity	7.4	NTU	
DT-22	FOX RIVER	2012-04-23	12:05	Turbidity	28	NTU	
DT-22	FOX RIVER	2012-05-15	12:35	Turbidity	19	NTU	
DT-22	FOX RIVER	2012-06-11	15:15	Turbidity	40	NTU	
DT-22	FOX RIVER	2012-06-28	11:05	Turbidity	36.5	NTU	
DT-22	FOX RIVER	2012-07-26	10:45	Turbidity	46.4	NTU	
DT-22	FOX RIVER	2012-07-31	13:50	Turbidity	50	NTU	
DT-22	FOX RIVER	2012-09-11	12:25	Turbidity	45	NTU	
DT-22	FOX RIVER	2012-10-03	10:20	Turbidity	38	NTU	
DT-22	FOX RIVER	2012-11-08	12:10	Turbidity	9.6	NTU	
DT-22	FOX RIVER	2012-12-13	11:15	Turbidity	9.4	NTU	
DT-22	FOX RIVER	2013-01-29	12:10	Turbidity	8.9	NTU	
DT-22	FOX RIVER	2013-03-20	12:25	Turbidity	13	NTU	
DT-22	FOX RIVER	2013-04-30	11:05	Turbidity	21	NTU	
DT-22	FOX RIVER	2013-05-22	12:00	Turbidity	30	NTU	
DT-22	FOX RIVER	2013-07-02	10:50	Turbidity	33	NTU	
DT-22	FOX RIVER	2013-08-08	11:10	Turbidity	31.1	NTU	
DT-22	FOX RIVER	2013-09-25	12:00	Turbidity	28.2	NTU	
DT-22	FOX RIVER	2013-10-28	12:15	Turbidity	12	NTU	
DT-22	FOX RIVER	2013-12-04	11:40	Turbidity	3.94	NTU	
DT-22	FOX RIVER	2009-06-17	11:00	Vadium	0.98	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Vadium	1.32	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2009-08-19	11:35	Vadium	1.4	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Vadium	1.55	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Vadium	0.97	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Vadium	0.99	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Vadium	NA	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Vadium	0.28	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Vadium	1.95	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Vadium	3.07	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Vadium	0.2	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Vadium	0.58	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Vadium	0.27	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Vadium	1.6	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Vadium	2.1	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Vadium	0.77	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Vadium	0.83	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Vadium	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Vadium	NA	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Vadium	0.53	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Vadium	0.85	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Vadium	0.55	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2012-05-15	12:34	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Vadium	1.36	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Vadium	1.85	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Vadium	1.98	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Vadium	2.75	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Vadium	1.26	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Vadium	1.82	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Vadium	2.05	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Vadium	2.44	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Vadium	0.86	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Vadium	0.95	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Vadium	NA	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Vadium	1.72	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Vadium	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Vinyl chloride	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Vinyl chloride	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Zinc	NA	ug/L	
DT-22	FOX RIVER	2008-05-21	11:15	Zinc	1.02	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Zinc	1.92	ug/L	
DT-22	FOX RIVER	2008-08-05	11:25	Zinc	7.19	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Zinc	3.19	ug/L	
DT-22	FOX RIVER	2008-09-23	11:35	Zinc	5.52	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Zinc	8.51	ug/L	
DT-22	FOX RIVER	2008-10-30	11:50	Zinc	10.3	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2008-12-29	12:25	Zinc	3.86	ug/L	
DT-22	FOX RIVER	2008-12-29	12:25	Zinc	8.26	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Zinc	12.4	ug/L	
DT-22	FOX RIVER	2009-02-09	11:20	Zinc	8.66	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Zinc	7.7	ug/L	
DT-22	FOX RIVER	2009-03-25	12:05	Zinc	3.17	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Zinc	1	ug/L	
DT-22	FOX RIVER	2009-05-06	12:25	Zinc	4.54	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Zinc	NA	ug/L	
DT-22	FOX RIVER	2009-05-27	12:30	Zinc	4.51	ug/L	
DT-22	FOX RIVER	2009-06-17	11:00	Zinc	12.3	ug/L	1 ft
DT-22	FOX RIVER	2009-06-17	11:00	Zinc	8.79	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Zinc	4.62	ug/L	1 ft
DT-22	FOX RIVER	2009-08-19	11:35	Zinc	10.8	ug/L	1 ft
DT-22	FOX RIVER	2009-09-16	11:42	Zinc	5.61	ug/L	
DT-22	FOX RIVER	2009-09-16	11:42	Zinc	9.09	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Zinc	3.26	ug/L	
DT-22	FOX RIVER	2009-11-04	12:50	Zinc	5.59	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Zinc	5.57	ug/L	
DT-22	FOX RIVER	2009-12-16	11:40	Zinc	3.46	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Zinc	3.86	ug/L	
DT-22	FOX RIVER	2010-02-03	11:35	Zinc	15.5	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Zinc	3.37	ug/L	
DT-22	FOX RIVER	2010-03-10	13:40	Zinc	9.96	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Zinc	NA	ug/L	
DT-22	FOX RIVER	2010-04-27	12:45	Zinc	NA	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Zinc	12.4	ug/L	
DT-22	FOX RIVER	2010-06-10	12:20	Zinc	3.07	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Zinc	NA	ug/L	
DT-22	FOX RIVER	2010-08-05	12:55	Zinc	NA	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Zinc	3.34	ug/L	
DT-22	FOX RIVER	2010-09-28	12:40	Zinc	5.12	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Zinc	1.51	ug/L	
DT-22	FOX RIVER	2010-11-09	11:15	Zinc	2.9	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Zinc	NA	ug/L	
DT-22	FOX RIVER	2010-12-15	11:20	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-03-02	12:10	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Zinc	1.65	ug/L	
DT-22	FOX RIVER	2011-04-20	12:30	Zinc	3.34	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-05-17	11:50	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Zinc	NA	ug/L	
DT-22	FOX RIVER	2011-06-28	11:08	Zinc	0.38	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Zinc	53.7	ug/L	
DT-22	FOX RIVER	2011-07-19	11:30	Zinc	64.1	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2011-09-06	11:45	Zinc	1.43	ug/L	
DT-22	FOX RIVER	2011-09-06	11:45	Zinc	2.9	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Zinc	4.43	ug/L	
DT-22	FOX RIVER	2011-10-27	12:40	Zinc	11.1	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Zinc	1.65	ug/L	
DT-22	FOX RIVER	2011-12-01	11:30	Zinc	3.5	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Zinc	10.4	ug/L	
DT-22	FOX RIVER	2012-01-24	12:20	Zinc	13.3	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Zinc	4.81	ug/L	
DT-22	FOX RIVER	2012-02-22	11:45	Zinc	8.16	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Zinc	1.24	ug/L	
DT-22	FOX RIVER	2012-04-23	12:04	Zinc	5.91	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Zinc	3.48	ug/L	
DT-22	FOX RIVER	2012-05-15	12:34	Zinc	7.76	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Zinc	0.56	ug/L	
DT-22	FOX RIVER	2012-06-11	15:14	Zinc	4.84	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Zinc	2.21	ug/L	
DT-22	FOX RIVER	2012-06-28	11:05	Zinc	8.15	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Zinc	1.26	ug/L	
DT-22	FOX RIVER	2012-07-26	10:45	Zinc	5.44	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Zinc	NA	ug/L	
DT-22	FOX RIVER	2012-07-31	13:49	Zinc	2.77	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Zinc	0.78	ug/L	
DT-22	FOX RIVER	2012-09-11	12:24	Zinc	4.69	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Zinc	3.19	ug/L	
DT-22	FOX RIVER	2012-10-03	10:20	Zinc	5.8	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Zinc	1.93	ug/L	
DT-22	FOX RIVER	2012-11-08	12:10	Zinc	3.38	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Zinc	1.73	ug/L	
DT-22	FOX RIVER	2012-12-13	11:15	Zinc	2.85	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Zinc	3.57	ug/L	
DT-22	FOX RIVER	2013-01-29	12:10	Zinc	5.47	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Zinc	1.91	ug/L	
DT-22	FOX RIVER	2013-03-20	12:24	Zinc	5.24	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-04-30	11:05	Zinc	4.9	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-05-22	12:00	Zinc	5.02	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-07-02	10:49	Zinc	3.14	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-08-08	11:09	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-09-25	12:00	Zinc	5.48	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-10-28	12:14	Zinc	5.5	ug/L	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-22	FOX RIVER	2013-12-04	11:39	Zinc	NA	ug/L	
DT-22	FOX RIVER	2013-12-04	11:39	Zinc	8.38	ug/L	
DT-22	FOX RIVER	1991-10-25			560	cfs	ft
DT-22	FOX RIVER	1991-11-12			1360	cfs	ft
DT-22	FOX RIVER	1991-12-20			1240	cfs	ft
DT-22	FOX RIVER	1992-01-17			830	cfs	ft
DT-22	FOX RIVER	1992-03-02			1340	cfs	ft
DT-22	FOX RIVER	1992-03-27			1560	cfs	ft
DT-22	FOX RIVER	1992-05-27			465	cfs	ft
DT-22	FOX RIVER	1992-06-22			265	cfs	ft
DT-22	FOX RIVER	1992-08-18			355	cfs	ft
DT-22	FOX RIVER	2003-06-10			2580	cfs	ft
DT-22	FOX RIVER	2003-09-02			13	cfs	ft
DT-22	FOX RIVER	2003-09-02			17	cfs	ft
DT-22	FOX RIVER	2003-09-16			30	cfs	ft
DT-22	FOX RIVER	2003-09-16			2330	cfs	ft
DT-22	FOX RIVER	2003-09-16			19	cfs	ft
DT-22	FOX RIVER	2003-09-30			7.2	cfs	ft
DT-22	FOX RIVER	2003-10-14			20	cfs	ft
DT-22	FOX RIVER	2003-10-28			9	cfs	ft
DT-22	FOX RIVER	2003-11-25			10	cfs	ft
DT-22	FOX RIVER	2003-12-09			11	cfs	ft
DT-22	FOX RIVER	2004-03-30			4.8	cfs	ft
DT-22	FOX RIVER	2004-04-13			22	cfs	ft
DT-22	FOX RIVER	2004-04-27			468	cfs	ft
DT-22	FOX RIVER	2004-05-18			17	cfs	ft
DT-22	FOX RIVER	2004-05-18			37	cfs	ft
DT-22	FOX RIVER	2004-06-15			32	cfs	ft
DT-22	FOX RIVER	2004-07-20			11	cfs	ft
DT-22	FOX RIVER	2004-08-17			14	cfs	ft
DT-22	FOX RIVER	2006-01-17			504	cfs	ft
DT-22	FOX RIVER	2006-03-21			440	cfs	ft
DT-22	FOX RIVER	2006-05-16			526	cfs	ft
DT-22	FOX RIVER	2006-09-19			504	cfs	ft
DT-22	FOX RIVER	2006-10-17			504	cfs	ft
DT-22	FOX RIVER	2007-09-18			2290	cfs	ft
DT-22	FOX RIVER	2008-08-19			637	cfs	ft
DT-22	FOX RIVER	2008-09-16			544	cfs	ft
DT-22	FOX RIVER	2008-09-16			450	cfs	ft
DT-23	FOX RIVER	2003-01-07		Chlorophyll a, uncorrected for pheophytin	4.5	ug/L	ft
DT-23	FOX RIVER	2003-01-07		Chlorophyll a, uncorrected for pheophytin	61.8	ug/L	ft
DT-23	FOX RIVER	2003-02-04		Chlorophyll a, uncorrected for pheophytin	49	ug/L	ft
DT-23	FOX RIVER	2003-03-04		Chlorophyll a, uncorrected for pheophytin	54.3	ug/L	ft
DT-23	FOX RIVER	2003-03-18		Chlorophyll a, uncorrected for pheophytin	24.3	ug/L	ft
DT-23	FOX RIVER	2003-04-01		Chlorophyll a, uncorrected for pheophytin	103	ug/L	tt
DT-23	FOX RIVER	2003-04-15		Chlorophyll a, uncorrected for pheophytin	171	ug/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-04-29		Chlorophyll a, uncorrected for pheophytin	93.4	ug/L	ft
DT-23	FOX RIVER	2003-05-13		Chlorophyll a, uncorrected for pheophytin	56.5	ug/L	ft
DT-23	FOX RIVER	2003-05-27		Chlorophyll a, uncorrected for pheophytin	37.9	ug/L	ft
DT-23	FOX RIVER	2003-06-10		Chlorophyll a, uncorrected for pheophytin	51.4	ug/L	ft
DT-23	FOX RIVER	2003-06-24		Chlorophyll a, uncorrected for pheophytin	100.5	ug/L	ft
DT-23	FOX RIVER	2003-07-08		Chlorophyll a, uncorrected for pheophytin	97.2	ug/L	ft
DT-23	FOX RIVER	2003-07-22		Chlorophyll a, uncorrected for pheophytin	105.4	ug/L	ft
DT-23	FOX RIVER	2003-08-05		Chlorophyll a, uncorrected for pheophytin	130.4	ug/L	ft
DT-23	FOX RIVER	2003-08-19		Chlorophyll a, uncorrected for pheophytin	173	ug/L	ft
DT-23	FOX RIVER	2003-09-02		Chlorophyll a, uncorrected for pheophytin	247.2	ug/L	ft
DT-23	FOX RIVER	2003-09-16		Chlorophyll a, uncorrected for pheophytin	221.6	ug/L	ft
DT-23	FOX RIVER	2003-09-30		Chlorophyll a, uncorrected for pheophytin	129.6	ug/L	ft
DT-23	FOX RIVER	2003-10-14		Chlorophyll a, uncorrected for pheophytin	158.4	ug/L	ft
DT-23	FOX RIVER	2003-10-28		Chlorophyll a, uncorrected for pheophytin	105.6	ug/L	ft
DT-23	FOX RIVER	2003-11-25		Chlorophyll a, uncorrected for pheophytin	77	ug/L	ft
DT-23	FOX RIVER	2003-12-09		Chlorophyll a, uncorrected for pheophytin	41.2	ug/L	ft
DT-23	FOX RIVER	2004-03-02		Chlorophyll a, uncorrected for pheophytin	16.3	ug/L	ft
DT-23	FOX RIVER	2004-03-16		Chlorophyll a, uncorrected for pheophytin	19.9	ug/L	ft
DT-23	FOX RIVER	2004-03-30		Chlorophyll a, uncorrected for pheophytin	69.8	ug/L	ft
DT-23	FOX RIVER	2004-04-13		Chlorophyll a, uncorrected for pheophytin	102.8	ug/L	ft
DT-23	FOX RIVER	2004-04-27		Chlorophyll a, uncorrected for pheophytin	103.8	ug/L	ft
DT-23	FOX RIVER	2004-05-18		Chlorophyll a, uncorrected for pheophytin	70.8	ug/L	ft
DT-23	FOX RIVER	2004-06-15		Chlorophyll a, uncorrected for pheophytin	99.4	ug/L	ft
DT-23	FOX RIVER	2004-07-20		Chlorophyll a, uncorrected for pheophytin	54.2	ug/L	ft
DT-23	FOX RIVER	2004-08-17		Chlorophyll a, uncorrected for pheophytin	130.8	ug/L	ft
DT-23	FOX RIVER	2004-09-21		Chlorophyll a, uncorrected for pheophytin	196.2	ug/L	ft
DT-23	FOX RIVER	2004-10-19		Chlorophyll a, uncorrected for pheophytin	159	ug/L	ft
DT-23	FOX RIVER	2004-10-19		Chlorophyll a, uncorrected for pheophytin	90	ug/L	ft
DT-23	FOX RIVER	2004-11-16		Chlorophyll a, uncorrected for pheophytin	73.7	ug/L	ft
DT-23	FOX RIVER	2005-02-15		Chlorophyll a, uncorrected for pheophytin	7.8	ug/L	ft
DT-23	FOX RIVER	2005-03-15		Chlorophyll a, uncorrected for pheophytin	21.6	ug/L	ft
DT-23	FOX RIVER	2005-04-27		Chlorophyll a, uncorrected for pheophytin	102	ug/L	ft
DT-23	FOX RIVER	2005-06-21		Chlorophyll a, uncorrected for pheophytin	96.2	ug/L	ft
DT-23	FOX RIVER	2005-07-19		Chlorophyll a, uncorrected for pheophytin	110.8	ug/L	ft
DT-23	FOX RIVER	2005-08-16		Chlorophyll a, uncorrected for pheophytin	285.2	ug/L	ft
DT-23	FOX RIVER	2005-09-20		Chlorophyll a, uncorrected for pheophytin	343	ug/L	ft
DT-23	FOX RIVER	2005-10-18		Chlorophyll a, uncorrected for pheophytin	70.2	ug/L	ft
DT-23	FOX RIVER	2006-01-17		Chlorophyll a, uncorrected for pheophytin	16	ug/L	ft
DT-23	FOX RIVER	2006-03-21		Chlorophyll a, uncorrected for pheophytin	34.6	ug/L	ft
DT-23	FOX RIVER	2006-04-18		Chlorophyll a, uncorrected for pheophytin	74.6	ug/L	ft
DT-23	FOX RIVER	2006-05-16		Chlorophyll a, uncorrected for pheophytin	65.6	ug/L	ft
DT-23	FOX RIVER	2006-06-20		Chlorophyll a, uncorrected for pheophytin	151.2	ug/L	ft
DT-23	FOX RIVER	2006-07-18		Chlorophyll a, uncorrected for pheophytin	107.8	ug/L	ft
DT-23	FOX RIVER	2006-08-15		Chlorophyll a, uncorrected for pheophytin	175.2	ug/L	ft
DT-23	FOX RIVER	2006-09-19		Chlorophyll a, uncorrected for pheophytin	136.6	ug/L	ft
DT-23	FOX RIVER	2006-10-17		Chlorophyll a, uncorrected for pheophytin	24.4	ug/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-11-21		Chlorophyll a, uncorrected for pheophytin	70.2	ug/L	ft
DT-23	FOX RIVER	2006-12-19		Chlorophyll a, uncorrected for pheophytin	13.4	ug/L	ft
DT-23	FOX RIVER	2007-04-17		Chlorophyll a, uncorrected for pheophytin	28.7	ug/L	ft
DT-23	FOX RIVER	2007-05-15		Chlorophyll a, uncorrected for pheophytin	105.6	ug/L	ft
DT-23	FOX RIVER	2007-05-15		Chlorophyll a, uncorrected for pheophytin	96.1	ug/L	ft
DT-23	FOX RIVER	2007-06-19		Chlorophyll a, uncorrected for pheophytin	127.8	ug/L	ft
DT-23	FOX RIVER	2007-06-19		Chlorophyll a, uncorrected for pheophytin	114.8	ug/L	ft
DT-23	FOX RIVER	2007-07-17		Chlorophyll a, uncorrected for pheophytin	96	ug/L	ft
DT-23	FOX RIVER	2007-07-17		Chlorophyll a, uncorrected for pheophytin	77.4	ug/L	ft
DT-23	FOX RIVER	2007-08-21		Chlorophyll a, uncorrected for pheophytin	55.6	ug/L	ft
DT-23	FOX RIVER	2007-08-21		Chlorophyll a, uncorrected for pheophytin	50.8	ug/L	ft
DT-23	FOX RIVER	2007-09-18		Chlorophyll a, uncorrected for pheophytin	192.2	ug/L	ft
DT-23	FOX RIVER	2007-09-18		Chlorophyll a, uncorrected for pheophytin	184.2	ug/L	ft
DT-23	FOX RIVER	2007-10-16		Chlorophyll a, uncorrected for pheophytin	20.4	ug/L	ft
DT-23	FOX RIVER	2007-10-16		Chlorophyll a, uncorrected for pheophytin	22.7	ug/L	ft
DT-23	FOX RIVER	2007-11-20		Chlorophyll a, uncorrected for pheophytin	51.5	ug/L	ft
DT-23	FOX RIVER	2007-11-20		Chlorophyll a, uncorrected for pheophytin	45.4	ug/L	ft
DT-23	FOX RIVER	2008-04-15		Chlorophyll a, uncorrected for pheophytin	22	ug/L	ft
DT-23	FOX RIVER	2008-04-15		Chlorophyll a, uncorrected for pheophytin	14.7	ug/L	ft
DT-23	FOX RIVER	2008-05-20		Chlorophyll a, uncorrected for pheophytin	55.6	ug/L	ft
DT-23	FOX RIVER	2008-05-20		Chlorophyll a, uncorrected for pheophytin	48	ug/L	ft
DT-23	FOX RIVER	2008-06-17		Chlorophyll a, uncorrected for pheophytin	64.8	ug/L	ft
DT-23	FOX RIVER	2008-06-17		Chlorophyll a, uncorrected for pheophytin	64	ug/L	ft
DT-23	FOX RIVER	2008-07-15		Chlorophyll a, uncorrected for pheophytin	109.4	ug/L	ft
DT-23	FOX RIVER	2008-08-19		Chlorophyll a, uncorrected for pheophytin	92.8	ug/L	ft
DT-23	FOX RIVER	2008-09-16		Chlorophyll a, uncorrected for pheophytin	56.8	ug/L	ft
DT-23	FOX RIVER	1964-06-02		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-23	FOX RIVER	1964-06-09		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-23	FOX RIVER	1964-06-17		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-23	FOX RIVER	1964-06-23		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-23	FOX RIVER	1965-07-08		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-23	FOX RIVER	1965-07-27		Dissolved oxygen (DO)	5.7	mg/L	ft
DT-23	FOX RIVER	1965-08-17		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	1965-12-16		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-23	FOX RIVER	1966-06-30		Dissolved oxygen (DO)	5.3	mg/L	ft
DT-23	FOX RIVER	1966-07-26		Dissolved oxygen (DO)	4.7	mg/L	ft
DT-23	FOX RIVER	1966-08-23		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-23	FOX RIVER	1967-08-31		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	1967-12-19		Dissolved oxygen (DO)	21.6	mg/L	ft
DT-23	FOX RIVER	1968-10-02		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	1969-05-21		Dissolved oxygen (DO)	7	mg/L	ft
DT-23	FOX RIVER	1969-07-01		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-23	FOX RIVER	1969-08-19		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-23	FOX RIVER	1970-08-10		Dissolved oxygen (DO)	6.3	mg/L	ft
DT-23	FOX RIVER	1970-08-31		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-23	FOX RIVER	1970-09-28		Dissolved oxygen (DO)	9.4	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1970-10-26		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	1970-11-30		Dissolved oxygen (DO)	15.5	mg/L	ft
DT-23	FOX RIVER	1971-04-12		Dissolved oxygen (DO)	13.3	mg/L	ft
DT-23	FOX RIVER	1971-05-17		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	1971-06-16		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-23	FOX RIVER	1971-07-29		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-23	FOX RIVER	1971-09-08		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-23	FOX RIVER	1971-10-14		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-23	FOX RIVER	1971-11-09		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Dissolved oxygen (DO)	16	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Dissolved oxygen (DO)	13.7	mg/L	ft
DT-23	FOX RIVER	1972-03-06		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-23	FOX RIVER	1972-03-07		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Dissolved oxygen (DO)	12.9	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Dissolved oxygen (DO)	16.2	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Dissolved oxygen (DO)	19.5	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Dissolved oxygen (DO)	13.9	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Dissolved oxygen (DO)	6.2	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Dissolved oxygen (DO)	7	mg/L	ft
DT-23	FOX RIVER	1972-08-14		Dissolved oxygen (DO)	13.1	mg/L	ft
DT-23	FOX RIVER	1972-08-14		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Dissolved oxygen (DO)	6	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Dissolved oxygen (DO)	6	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Dissolved oxygen (DO)	14.9	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Dissolved oxygen (DO)	17.8	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Dissolved oxygen (DO)	14.8	mg/L	ft
DT-23	FOX RIVER	1973-01-16		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-23	FOX RIVER	1973-01-17		Dissolved oxygen (DO)	12	mg/L	ft
DT-23	FOX RIVER	1973-03-07		Dissolved oxygen (DO)	12.5	mg/L	ft
DT-23	FOX RIVER	1973-03-08		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	1973-03-26		Dissolved oxygen (DO)	13	mg/L	ft
DT-23	FOX RIVER	1973-03-26		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-23	FOX RIVER	1973-04-05		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-23	FOX RIVER	1973-04-06		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-23	FOX RIVER	1973-06-06		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-23	FOX RIVER	1973-06-06		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-23	FOX RIVER	1973-07-11		Dissolved oxygen (DO)	6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1973-07-11		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-23	FOX RIVER	1973-08-07		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	1973-08-07		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	1973-09-12		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-23	FOX RIVER	1973-09-12		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	1973-11-14		Dissolved oxygen (DO)	18	mg/L	ft
DT-23	FOX RIVER	1973-11-14		Dissolved oxygen (DO)	17.9	mg/L	ft
DT-23	FOX RIVER	1973-12-12		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-23	FOX RIVER	1973-12-12		Dissolved oxygen (DO)	16.3	mg/L	ft
DT-23	FOX RIVER	1974-01-17		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	1974-01-17		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-23	FOX RIVER	1974-02-14		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	1974-02-14		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	1974-06-19		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-23	FOX RIVER	1974-06-19		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-23	FOX RIVER	1974-08-16		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	1974-08-21		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-23	FOX RIVER	1974-10-16		Dissolved oxygen (DO)	11.8	mg/L	ft
DT-23	FOX RIVER	1974-10-18		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-23	FOX RIVER	1974-12-09		Dissolved oxygen (DO)	18.5	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Dissolved oxygen (DO)	14.5	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Dissolved oxygen (DO)	14.3	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Dissolved oxygen (DO)	16.6	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Dissolved oxygen (DO)	16.5	mg/L	ft
DT-23	FOX RIVER	1975-04-29		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-23	FOX RIVER	1975-04-29		Dissolved oxygen (DO)	13.3	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Dissolved oxygen (DO)	6.1	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Dissolved oxygen (DO)	6.7	mg/L	ft
DT-23	FOX RIVER	1975-08-15		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-23	FOX RIVER	1975-08-15		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	1975-08-28		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Dissolved oxygen (DO)	14.1	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Dissolved oxygen (DO)	14.5	mg/L	ft
DT-23	FOX RIVER	1976-01-28		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	1976-02-24		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-23	FOX RIVER	1976-04-28		Dissolved oxygen (DO)	14.8	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1976-04-28		Dissolved oxygen (DO)	14.2	mg/L	ft
DT-23	FOX RIVER	1976-05-20		Dissolved oxygen (DO)	15.3	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-23	FOX RIVER	1976-10-26		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	1976-11-17		Dissolved oxygen (DO)	18.6	mg/L	ft
DT-23	FOX RIVER	1976-11-17		Dissolved oxygen (DO)	18.8	mg/L	ft
DT-23	FOX RIVER	1977-11-07		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-23	FOX RIVER	1977-12-07		Dissolved oxygen (DO)	13	mg/L	ft
DT-23	FOX RIVER	1977-12-29		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-23	FOX RIVER	1978-01-24		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-23	FOX RIVER	1978-03-01		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	1982-06-15		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	7	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	8.45	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	16.6	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	18	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	8.02	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Dissolved oxygen (DO)	14.2	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	16.9	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	27.6	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	9.25	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	9.3	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	9.99	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	19.5	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	13	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	18	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	11.38	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	15.5	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	9.7	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	11.74	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	16	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	13.2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	14	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	11.16	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	14.1	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	10.41	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	10.9	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	9.44	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Dissolved oxygen (DO)	14.6	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.91	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	15.8	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	9.63	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	9.22	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	9.13	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Dissolved oxygen (DO)	16	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	9.59	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	8.65	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	6.9	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	17.6	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	8.21	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	9.23	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Dissolved oxygen (DO)	5.4	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	7.92	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	9.3	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Dissolved oxygen (DO)	9.8	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	7.2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	7.85	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	14.72	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	14.4	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	10	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	9.73	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	9.54	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	11.49	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Dissolved oxygen (DO)	18.4	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	7.7	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	10.95	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	15.7	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Dissolved oxygen (DO)	9.25	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	13.3	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	8.19	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Dissolved oxygen (DO)	8.59	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	6.9	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	16.3	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	7.81	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	14.5	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Dissolved oxygen (DO)	9.26	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	29	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	10.07	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	13.3	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Dissolved oxygen (DO)	7.43	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	9	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	16.7	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	14	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Dissolved oxygen (DO)	7.18	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	12.2	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	14.3	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Dissolved oxygen (DO)	7.21	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Dissolved oxygen (DO)	16.5	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Dissolved oxygen (DO)	8.55	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Dissolved oxygen (DO)	14	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Dissolved oxygen (DO)	9.5	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Dissolved oxygen (DO)	9.61	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	14	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	10.83	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	10.91	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	8.14	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	17.6	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	10.87	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Dissolved oxygen (DO)	11.1	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	8.37	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	15.3	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	10.71	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	16.3	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	8.22	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	8.54	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	8.05	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	5.87	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Dissolved oxygen (DO)	15.8	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	8.2	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	13.6	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Dissolved oxygen (DO)	6.93	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	12	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	10.1	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	11.2	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Dissolved oxygen (DO)	8.33	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	7.49	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	9.95	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	10.5	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	11.54	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	15.2	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	9.08	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	8.91	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Dissolved oxygen (DO)	11.11	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	15.7	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	7.73	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	11.01	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Dissolved oxygen (DO)	12.4	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Dissolved oxygen (DO)	7.76	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Dissolved oxygen (DO)	7.22	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	6.64	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	15	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	9.29	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	17.6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Dissolved oxygen (DO)	10.58	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	8.93	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	10.05	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	15.4	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	13	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Dissolved oxygen (DO)	9.57	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	9.19	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	14	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Dissolved oxygen (DO)	10.48	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	6	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	12.1	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	9	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	7.8	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Dissolved oxygen (DO)	7.2	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Dissolved oxygen (DO)	6.6	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Dissolved oxygen (DO)	10.7	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Dissolved oxygen (DO)	7	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	8.1	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	12.8	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	9.2	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	14.2	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	22.7	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Dissolved oxygen (DO)	6.47	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	11.9	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	6.25	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	3.8	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	7.59	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Dissolved oxygen (DO)	6.5	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	11.78	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	7.11	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Dissolved oxygen (DO)	8.6	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	6.77	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	8.93	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	12.7	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Dissolved oxygen (DO)	10	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	10.42	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	9.6	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	13.2	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	10.01	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Dissolved oxygen (DO)	14.9	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	9.43	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	6.5	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	5.9	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Dissolved oxygen (DO)	10.6	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	7.9	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	13.71	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Dissolved oxygen (DO)	8.9	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	8.8	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	13.7	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	7.5	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Dissolved oxygen (DO)	8.7	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	8.4	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	15.6	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	12.72	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Dissolved oxygen (DO)	11.4	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	11.6	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	10.16	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	11	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	15.6	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Dissolved oxygen (DO)	11.3	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	3.7	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	6.74	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	12.6	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	12.3	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Dissolved oxygen (DO)	10.2	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Dissolved oxygen (DO)	9.7	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Dissolved oxygen (DO)	11.8	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Dissolved oxygen (DO)	14.5	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Dissolved oxygen (DO)	8.75	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Dissolved oxygen (DO)	7.93	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Dissolved oxygen (DO)	11	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Dissolved oxygen (DO)	11.7	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Dissolved oxygen (DO)	15.9	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Dissolved oxygen (DO)	13.5	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	7.1	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	5.17	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	9.1	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	15.8	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Dissolved oxygen (DO)	5.17	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Dissolved oxygen (DO)	16.92	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Dissolved oxygen (DO)	5.3	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Dissolved oxygen (DO)	21	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Dissolved oxygen (DO)	5.33	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	14.69	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	5.5	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	9.6	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	12	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	7.4	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Dissolved oxygen (DO)	5.5	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.16	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.99	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Dissolved oxygen (DO)	10.16	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	6.92	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	11.57	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	4.8	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	11	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	8	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Dissolved oxygen (DO)	11	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	9.81	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	6.13	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	5.7	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	8.3	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	7.3	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	5.1	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	10.88	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	7.1	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	12.21	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	9.9	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Dissolved oxygen (DO)	13.4	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	14.8	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	8.2	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	6.8	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	10.3	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	10.48	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Dissolved oxygen (DO)	6.8	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Dissolved oxygen (DO)	10.8	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	7.6	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	9.4	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	10.72	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	6.09	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	10.4	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Dissolved oxygen (DO)	20	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	8.5	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	5.52	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	9.53	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Dissolved oxygen (DO)	14.9	mg/L	ft
DT-23	FOX RIVER	1964-06-02		Dissolved oxygen saturation	116	%	ft
DT-23	FOX RIVER	1964-06-09		Dissolved oxygen saturation	140	%	ft
DT-23	FOX RIVER	1964-06-17		Dissolved oxygen saturation	84.8	%	ft
DT-23	FOX RIVER	1964-06-23		Dissolved oxygen saturation	86.2	%	ft
DT-23	FOX RIVER	1965-07-08		Dissolved oxygen saturation	142.353	%	ft
DT-23	FOX RIVER	1965-07-27		Dissolved oxygen saturation	69.5122	%	ft
DT-23	FOX RIVER	1965-08-17		Dissolved oxygen saturation	116.049	%	ft
DT-23	FOX RIVER	1965-12-16		Dissolved oxygen saturation	92.9577	%	ft
DT-23	FOX RIVER	1966-06-30		Dissolved oxygen saturation	64.6341	%	ft
DT-23	FOX RIVER	1966-07-26		Dissolved oxygen saturation	58.0247	%	ft
DT-23	FOX RIVER	1966-08-23		Dissolved oxygen saturation	71.2766	%	ft
DT-23	FOX RIVER	1967-08-31		Dissolved oxygen saturation	82.4742	%	ft
DT-23	FOX RIVER	1967-12-19		Dissolved oxygen saturation	152.113	%	ft
DT-23	FOX RIVER	1968-10-02		Dissolved oxygen saturation	96.9072	%	ft
DT-23	FOX RIVER	1969-05-21		Dissolved oxygen saturation	67.3077	%	ft
DT-23	FOX RIVER	1969-07-01		Dissolved oxygen saturation	86.3636	%	ft
DT-23	FOX RIVER	1969-08-19		Dissolved oxygen saturation	91.4634	%	ft
DT-23	FOX RIVER	1970-08-10		Dissolved oxygen saturation	76.8292	%	ft
DT-23	FOX RIVER	1970-08-31		Dissolved oxygen saturation	85.7142	%	ft
DT-23	FOX RIVER	1970-09-28		Dissolved oxygen saturation	96.9072	%	ft
DT-23	FOX RIVER	1970-10-26		Dissolved oxygen saturation	103.922	%	ft
DT-23	FOX RIVER	1970-11-30		Dissolved oxygen saturation	112.319	%	ft
DT-23	FOX RIVER	1971-04-12		Dissolved oxygen saturation	125.472	%	ft
DT-23	FOX RIVER	1971-05-17		Dissolved oxygen saturation	89.3617	%	ft
DT-23	FOX RIVER	1971-06-16		Dissolved oxygen saturation	128.049	%	ft
DT-23	FOX RIVER	1971-07-29		Dissolved oxygen saturation	114.444	%	ft
DT-23	FOX RIVER	1971-09-08		Dissolved oxygen saturation	90.1234	%	ft
DT-23	FOX RIVER	1971-10-14		Dissolved oxygen saturation	92.4528	%	ft
DT-23	FOX RIVER	1971-11-09		Dissolved oxygen saturation	103.817	%	ft
DT-23	FOX RIVER	1972-01-06		Dissolved oxygen saturation	110	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1972-01-06		Dissolved oxygen saturation	93.8356	%	ft
DT-23	FOX RIVER	1972-03-06		Dissolved oxygen saturation	97.8	%	ft
DT-23	FOX RIVER	1972-03-07		Dissolved oxygen saturation	88.4058	%	ft
DT-23	FOX RIVER	1972-04-10		Dissolved oxygen saturation	133	%	ft
DT-23	FOX RIVER	1972-04-10		Dissolved oxygen saturation	163.866	%	ft
DT-23	FOX RIVER	1972-05-01		Dissolved oxygen saturation	125	%	ft
DT-23	FOX RIVER	1972-05-01		Dissolved oxygen saturation	114.815	%	ft
DT-23	FOX RIVER	1972-06-01		Dissolved oxygen saturation	76.6	%	ft
DT-23	FOX RIVER	1972-06-01		Dissolved oxygen saturation	97.8261	%	ft
DT-23	FOX RIVER	1972-07-05		Dissolved oxygen saturation	66	%	ft
DT-23	FOX RIVER	1972-07-05		Dissolved oxygen saturation	74.4681	%	ft
DT-23	FOX RIVER	1972-08-14		Dissolved oxygen saturation	151	%	ft
DT-23	FOX RIVER	1972-08-14		Dissolved oxygen saturation	141.379	%	ft
DT-23	FOX RIVER	1972-09-19		Dissolved oxygen saturation	63.2	%	ft
DT-23	FOX RIVER	1972-09-19		Dissolved oxygen saturation	63.1579	%	ft
DT-23	FOX RIVER	1972-10-04		Dissolved oxygen saturation	83	%	ft
DT-23	FOX RIVER	1972-10-04		Dissolved oxygen saturation	81	%	ft
DT-23	FOX RIVER	1972-10-30		Dissolved oxygen saturation	122	%	ft
DT-23	FOX RIVER	1972-10-30		Dissolved oxygen saturation	102.521	%	ft
DT-23	FOX RIVER	1972-12-11		Dissolved oxygen saturation	122	%	ft
DT-23	FOX RIVER	1972-12-11		Dissolved oxygen saturation	101.37	%	ft
DT-23	FOX RIVER	1973-01-16		Dissolved oxygen saturation	81.9	%	ft
DT-23	FOX RIVER	1973-01-17		Dissolved oxygen saturation	84.507	%	ft
DT-23	FOX RIVER	1973-03-07		Dissolved oxygen saturation	105.042	%	ft
DT-23	FOX RIVER	1973-03-08		Dissolved oxygen saturation	74.8	%	ft
DT-23	FOX RIVER	1973-03-26		Dissolved oxygen saturation	104	%	ft
DT-23	FOX RIVER	1973-03-26		Dissolved oxygen saturation	100.8	%	ft
DT-23	FOX RIVER	1973-04-05		Dissolved oxygen saturation	107	%	ft
DT-23	FOX RIVER	1973-04-06		Dissolved oxygen saturation	107.563	%	ft
DT-23	FOX RIVER	1973-05-01		Dissolved oxygen saturation	100	%	ft
DT-23	FOX RIVER	1973-05-01		Dissolved oxygen saturation	94.2307	%	ft
DT-23	FOX RIVER	1973-06-06		Dissolved oxygen saturation	106	%	ft
DT-23	FOX RIVER	1973-06-06		Dissolved oxygen saturation	110.345	%	ft
DT-23	FOX RIVER	1973-07-11		Dissolved oxygen saturation	74.1	%	ft
DT-23	FOX RIVER	1973-07-11		Dissolved oxygen saturation	82.716	%	ft
DT-23	FOX RIVER	1973-08-07		Dissolved oxygen saturation	110	%	ft
DT-23	FOX RIVER	1973-08-07		Dissolved oxygen saturation	100	%	ft
DT-23	FOX RIVER	1973-09-12		Dissolved oxygen saturation	145	%	ft
DT-23	FOX RIVER	1973-09-12		Dissolved oxygen saturation	143.182	%	ft
DT-23	FOX RIVER	1973-10-04		Dissolved oxygen saturation	87.4	%	ft
DT-23	FOX RIVER	1973-10-04		Dissolved oxygen saturation	93.6842	%	ft
DT-23	FOX RIVER	1973-11-14		Dissolved oxygen saturation	144	%	ft
DT-23	FOX RIVER	1973-11-14		Dissolved oxygen saturation	143.2	%	ft
DT-23	FOX RIVER	1973-12-12		Dissolved oxygen saturation	101	%	ft
DT-23	FOX RIVER	1973-12-12		Dissolved oxygen saturation	114.789	%	ft
DT-23	FOX RIVER	1974-01-17		Dissolved oxygen saturation	66.2	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1974-01-17		Dissolved oxygen saturation	69.0141	%	ft
DT-23	FOX RIVER	1974-02-14		Dissolved oxygen saturation	74	%	ft
DT-23	FOX RIVER	1974-02-14		Dissolved oxygen saturation	64.3835	%	ft
DT-23	FOX RIVER	1974-06-19		Dissolved oxygen saturation	129	%	ft
DT-23	FOX RIVER	1974-06-19		Dissolved oxygen saturation	130.851	%	ft
DT-23	FOX RIVER	1974-08-16		Dissolved oxygen saturation	126	%	ft
DT-23	FOX RIVER	1974-08-21		Dissolved oxygen saturation	106.098	%	ft
DT-23	FOX RIVER	1974-10-16		Dissolved oxygen saturation	104.425	%	ft
DT-23	FOX RIVER	1974-10-18		Dissolved oxygen saturation	94.7	%	ft
DT-23	FOX RIVER	1974-12-09		Dissolved oxygen saturation	130.333	%	ft
DT-23	FOX RIVER	1975-01-16		Dissolved oxygen saturation	99.3	%	ft
DT-23	FOX RIVER	1975-03-13		Dissolved oxygen saturation	120	%	ft
DT-23	FOX RIVER	1975-03-13		Dissolved oxygen saturation	113.014	%	ft
DT-23	FOX RIVER	1975-04-29		Dissolved oxygen saturation	123	%	ft
DT-23	FOX RIVER	1975-04-29		Dissolved oxygen saturation	119.82	%	ft
DT-23	FOX RIVER	1975-06-05		Dissolved oxygen saturation	88.6	%	ft
DT-23	FOX RIVER	1975-06-05		Dissolved oxygen saturation	81.8182	%	ft
DT-23	FOX RIVER	1975-06-23		Dissolved oxygen saturation	75.3	%	ft
DT-23	FOX RIVER	1975-06-23		Dissolved oxygen saturation	82.716	%	ft
DT-23	FOX RIVER	1975-08-15		Dissolved oxygen saturation	116	%	ft
DT-23	FOX RIVER	1975-08-15		Dissolved oxygen saturation	107.143	%	ft
DT-23	FOX RIVER	1975-08-28		Dissolved oxygen saturation	138	%	ft
DT-23	FOX RIVER	1975-09-30		Dissolved oxygen saturation	109	%	ft
DT-23	FOX RIVER	1975-09-30		Dissolved oxygen saturation	100	%	ft
DT-23	FOX RIVER	1975-11-10		Dissolved oxygen saturation	91.9	%	ft
DT-23	FOX RIVER	1975-11-10		Dissolved oxygen saturation	98.1481	%	ft
DT-23	FOX RIVER	1975-11-20		Dissolved oxygen saturation	118	%	ft
DT-23	FOX RIVER	1975-11-20		Dissolved oxygen saturation	121.849	%	ft
DT-23	FOX RIVER	1976-01-28		Dissolved oxygen saturation	63.4	%	ft
DT-23	FOX RIVER	1976-02-24		Dissolved oxygen saturation	112.5	%	ft
DT-23	FOX RIVER	1976-03-03		Dissolved oxygen saturation	111	%	ft
DT-23	FOX RIVER	1976-03-03		Dissolved oxygen saturation	108.148	%	ft
DT-23	FOX RIVER	1976-04-28		Dissolved oxygen saturation	133	%	ft
DT-23	FOX RIVER	1976-04-28		Dissolved oxygen saturation	133.962	%	ft
DT-23	FOX RIVER	1976-05-20		Dissolved oxygen saturation	166.304	%	ft
DT-23	FOX RIVER	1976-09-13		Dissolved oxygen saturation	87	%	ft
DT-23	FOX RIVER	1976-09-13		Dissolved oxygen saturation	90	%	ft
DT-23	FOX RIVER	1976-10-26		Dissolved oxygen saturation	107	%	ft
DT-23	FOX RIVER	1976-11-17		Dissolved oxygen saturation	145	%	ft
DT-23	FOX RIVER	1976-11-17		Dissolved oxygen saturation	146.875	%	ft
DT-23	FOX RIVER	1977-11-07		Dissolved oxygen saturation	105	%	ft
DT-23	FOX RIVER	1977-12-07		Dissolved oxygen saturation	89	%	ft
DT-23	FOX RIVER	1977-12-29		Dissolved oxygen saturation	72.6	%	ft
DT-23	FOX RIVER	1978-01-24		Dissolved oxygen saturation	59	%	ft
DT-23	FOX RIVER	1978-03-01		Dissolved oxygen saturation	56.2	%	ft
DT-23	FOX RIVER	1982-06-15		Dissolved oxygen saturation	81.1111	%	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1982-08-04		Dissolved oxygen saturation	95.1219	%	ft
DT-23	FOX RIVER	1982-10-19		Dissolved oxygen saturation	114.815	%	ft
DT-23	FOX RIVER	1983-01-31		Dissolved oxygen saturation	104.348	%	ft
DT-23	FOX RIVER	2007-05-15		Fecal coliform	8	Col/100ml	ft
DT-23	FOX RIVER	2007-06-19		Fecal coliform	150	Col/100ml	ft
DT-23	FOX RIVER	2007-07-17		Fecal coliform	43	Col/100ml	ft
DT-23	FOX RIVER	2007-08-21		Fecal coliform	304	Col/100ml	ft
DT-23	FOX RIVER	2007-09-18		Fecal coliform	5	Col/100ml	ft
DT-23	FOX RIVER	2007-10-16		Fecal coliform	39	Col/100ml	ft
DT-23	FOX RIVER	2008-05-20		Fecal coliform	4	Col/100ml	ft
DT-23	FOX RIVER	2008-06-17		Fecal coliform	23	Col/100ml	ft
DT-23	FOX RIVER	2008-07-15		Fecal coliform	58	Col/100ml	ft
DT-23	FOX RIVER	1967-08-31		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1969-05-21		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1969-12-17		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1970-09-28		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1970-11-30		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1971-04-12		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-23	FOX RIVER	1972-03-06		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-23	FOX RIVER	1972-03-07		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Nitrite (NO2) + Nitrate (NO3) as N	2.2	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Nitrite (NO2) + Nitrate (NO3) as N	1.6	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1972-08-14		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-23	FOX RIVER	1973-01-16		Nitrite (NO2) + Nitrate (NO3) as N	2.9	mg/L	ft
DT-23	FOX RIVER	1973-01-17		Nitrite (NO2) + Nitrate (NO3) as N	2.7	mg/L	ft
DT-23	FOX RIVER	1973-03-07		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-23	FOX RIVER	1973-03-08		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-23	FOX RIVER	1973-03-26		Nitrite (NO2) + Nitrate (NO3) as N	1	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1973-03-26		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-23	FOX RIVER	1973-04-05		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-23	FOX RIVER	1973-04-06		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-23	FOX RIVER	1973-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-23	FOX RIVER	1973-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1973-07-07		Nitrite (NO2) + Nitrate (NO3) as N	0.138	mg/L	0 ft
DT-23	FOX RIVER	1973-07-11		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1973-07-11		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1973-08-04		Nitrite (NO2) + Nitrate (NO3) as N	0.018	mg/L	0 ft
DT-23	FOX RIVER	1973-08-07		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1973-08-07		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1973-09-08		Nitrite (NO2) + Nitrate (NO3) as N	0.016	mg/L	0 ft
DT-23	FOX RIVER	1973-09-12		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-23	FOX RIVER	1973-10-13		Nitrite (NO2) + Nitrate (NO3) as N	0.42	mg/L	0 ft
DT-23	FOX RIVER	1973-11-03		Nitrite (NO2) + Nitrate (NO3) as N	0.014	mg/L	0 ft
DT-23	FOX RIVER	1973-11-14		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1973-12-02		Nitrite (NO2) + Nitrate (NO3) as N	0.312	mg/L	0 ft
DT-23	FOX RIVER	1973-12-12		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-23	FOX RIVER	1973-12-12		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-23	FOX RIVER	1974-01-05		Nitrite (NO2) + Nitrate (NO3) as N	2	mg/L	0 ft
DT-23	FOX RIVER	1974-01-17		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-23	FOX RIVER	1974-01-17		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-23	FOX RIVER	1974-02-02		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	0 ft
DT-23	FOX RIVER	1974-02-14		Nitrite (NO2) + Nitrate (NO3) as N	2.3	mg/L	ft
DT-23	FOX RIVER	1974-02-14		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-23	FOX RIVER	1974-03-09		Nitrite (NO2) + Nitrate (NO3) as N	1.68	mg/L	0 ft
DT-23	FOX RIVER	1974-03-16		Nitrite (NO2) + Nitrate (NO3) as N	1.44	mg/L	0 ft
DT-23	FOX RIVER	1974-04-07		Nitrite (NO2) + Nitrate (NO3) as N	1.12	mg/L	0 ft
DT-23	FOX RIVER	1974-05-18		Nitrite (NO2) + Nitrate (NO3) as N	0.36	mg/L	0 ft
DT-23	FOX RIVER	1974-06-19		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1974-06-19		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1974-08-16		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1974-10-16		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1974-10-18		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1974-12-09		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Nitrite (NO2) + Nitrate (NO3) as N	2.4	mg/L	ft
DT-23	FOX RIVER	1975-01-28		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-23	FOX RIVER	1975-01-28		Nitrite (NO2) + Nitrate (NO3) as N	1.3	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Nitrite (NO2) + Nitrate (NO3) as N	1.5	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-23	FOX RIVER	1975-04-29		Nitrite (NO2) + Nitrate (NO3) as N	0.8	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1975-04-29		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Nitrite (NO2) + Nitrate (NO3) as N	0.5	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	ft
DT-23	FOX RIVER	1975-08-15		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1975-08-28		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1976-01-28		Nitrite (NO2) + Nitrate (NO3) as N	1.4	mg/L	ft
DT-23	FOX RIVER	1976-02-24		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Nitrite (NO2) + Nitrate (NO3) as N	1.8	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Nitrite (NO2) + Nitrate (NO3) as N	2.8	mg/L	ft
DT-23	FOX RIVER	1976-04-28		Nitrite (NO2) + Nitrate (NO3) as N	1.7	mg/L	ft
DT-23	FOX RIVER	1976-04-28		Nitrite (NO2) + Nitrate (NO3) as N	1.1	mg/L	ft
DT-23	FOX RIVER	1976-05-20		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1976-10-26		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1976-10-26		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	ft
DT-23	FOX RIVER	1976-11-17		Nitrite (NO2) + Nitrate (NO3) as N	0	mg/L	ft
DT-23	FOX RIVER	1977-11-07		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	1977-12-07		Nitrite (NO2) + Nitrate (NO3) as N	1.6	mg/L	ft
DT-23	FOX RIVER	1977-12-29		Nitrite (NO2) + Nitrate (NO3) as N	4.9	mg/L	ft
DT-23	FOX RIVER	1978-01-24		Nitrite (NO2) + Nitrate (NO3) as N	2.6	mg/L	ft
DT-23	FOX RIVER	1978-03-01		Nitrite (NO2) + Nitrate (NO3) as N	2.1	mg/L	ft
DT-23	FOX RIVER	1982-06-15		Nitrite (NO2) + Nitrate (NO3) as N	0.6	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Nitrite (NO2) + Nitrate (NO3) as N	0.02	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Nitrite (NO2) + Nitrate (NO3) as N	0.3	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Nitrite (NO2) + Nitrate (NO3) as N	1.9	mg/L	ft
DT-23	FOX RIVER	1983-10-03		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrite (NO2) + Nitrate (NO3) as N	0.474	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrite (NO2) + Nitrate (NO3) as N	0.58	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrite (NO2) + Nitrate (NO3) as N	0.045	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Nitrite (NO2) + Nitrate (NO3) as N	0.58	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrite (NO2) + Nitrate (NO3) as N	0.67	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrite (NO2) + Nitrate (NO3) as N	0.18	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrite (NO2) + Nitrate (NO3) as N	1.13	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrite (NO2) + Nitrate (NO3) as N	1.2	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrite (NO2) + Nitrate (NO3) as N	1.53	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrite (NO2) + Nitrate (NO3) as N	0.68	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2008-06-17		Nitrite (NO2) + Nitrate (NO3) as N	0.46	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Nitrite (NO2) + Nitrate (NO3) as N	0.53	mg/L	ft
DT-23	FOX RIVER	1973-07-07		Nitrogen, ammonia as N	0.105	mg/L	0 ft
DT-23	FOX RIVER	1973-08-04		Nitrogen, ammonia as N	0.044	mg/L	0 ft
DT-23	FOX RIVER	1973-09-08		Nitrogen, ammonia as N	0.037	mg/L	0 ft
DT-23	FOX RIVER	1973-10-13		Nitrogen, ammonia as N	0.044	mg/L	0 ft
DT-23	FOX RIVER	1973-11-03		Nitrogen, ammonia as N	0.046	mg/L	0 ft
DT-23	FOX RIVER	1973-12-02		Nitrogen, ammonia as N	0.084	mg/L	0 ft
DT-23	FOX RIVER	1974-01-05		Nitrogen, ammonia as N	0.224	mg/L	0 ft
DT-23	FOX RIVER	1974-02-02		Nitrogen, ammonia as N	0.2	mg/L	0 ft
DT-23	FOX RIVER	1974-03-09		Nitrogen, ammonia as N	0.095	mg/L	0 ft
DT-23	FOX RIVER	1974-03-16		Nitrogen, ammonia as N	0.17	mg/L	0 ft
DT-23	FOX RIVER	1974-04-07		Nitrogen, ammonia as N	0.36	mg/L	0 ft
DT-23	FOX RIVER	1974-05-18		Nitrogen, ammonia as N	0.025	mg/L	0 ft
DT-23	FOX RIVER	1974-10-16		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	1974-10-18		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	1974-12-09		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-23	FOX RIVER	1977-11-07		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	1977-12-07		Nitrogen, ammonia as N	0.34	mg/L	ft
DT-23	FOX RIVER	1977-12-29		Nitrogen, ammonia as N	0.64	mg/L	ft
DT-23	FOX RIVER	1978-01-24		Nitrogen, ammonia as N	0.69	mg/L	ft
DT-23	FOX RIVER	1978-03-01		Nitrogen, ammonia as N	1.2	mg/L	ft
DT-23	FOX RIVER	1982-06-15		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	1983-10-03		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.4	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.061	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, ammonia as N	0.272	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, ammonia as N	0.175	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, ammonia as N	0.032	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Nitrogen, ammonia as N	0.063	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.018	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Nitrogen, ammonia as N	0.028	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.1	mg/L	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	------------------------	--------	-------	-------
DT-23	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.027	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.34	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Nitrogen, ammonia as N	1.62	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.047	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.133	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.116	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.168	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.045	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, ammonia as N	0.035	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.035	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.037	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.046	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.098	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.39	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Nitrogen, ammonia as N	0.026	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.026	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Nitrogen, ammonia as N	0.178	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.092	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, ammonia as N	0.02	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.32	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.26	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Nitrogen, ammonia as N	0.034	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, ammonia as N	0.31	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.253	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.283	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.227	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, ammonia as N	0.24	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.145	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Nitrogen, ammonia as N	0.025	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.026	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.074	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Nitrogen, ammonia as N	0.269	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, ammonia as N	0.59	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, ammonia as N	0.081	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.028	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.015	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.06	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.033	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.124	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.058	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.488	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.061	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.096	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.01	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, ammonia as N	0.034	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.54	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Nitrogen, ammonia as N	0.064	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.047	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.175	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.079	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.126	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.031	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, ammonia as N	0.112	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.068	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.037	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.18	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Nitrogen, ammonia as N	0.042	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Nitrogen, ammonia as N	0.29	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2005-03-15		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Nitrogen, ammonia as N	0.048	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Nitrogen, ammonia as N	0.23	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	0.024	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.026	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Nitrogen, ammonia as N	0.152	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.048	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.057	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, ammonia as N	0.066	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.139	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Nitrogen, ammonia as N	0.014	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, ammonia as N	0.16	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, ammonia as N	0.064	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.457	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.08	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.6	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, ammonia as N	0.3	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.111	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, ammonia as N	0.56	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.02	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-04-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Nitrogen, ammonia as N	0.085	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.09	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Nitrogen, ammonia as N	0.168	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Nitrogen, ammonia as N	0.056	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Nitrogen, ammonia as N	0.028	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.037	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.19	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Nitrogen, ammonia as N	0.018	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.066	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Nitrogen, ammonia as N	0.062	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Nitrogen, ammonia as N	0.12	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Nitrogen, ammonia as N	0.15	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Nitrogen, ammonia as N	0.026	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, ammonia as N	0.066	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	1	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.094	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Nitrogen, ammonia as N	0.1369	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-07-17		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Nitrogen, ammonia as N	0.13	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, ammonia as N	0.084	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, ammonia as N	0.049	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.057	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.021	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, ammonia as N	0.102	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, ammonia as N	0.01	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, ammonia as N	0.2	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, ammonia as N	0.039	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, ammonia as N	0.28	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, ammonia as N	0.016	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, ammonia as N	0.098	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.02	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.06	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, ammonia as N	0.03	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.018	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.17	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, ammonia as N	0.11	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Nitrogen, ammonia as N	0.14	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.1	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.07	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.22	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, ammonia as N	0.017	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.05	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.33	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.04	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.21	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Nitrogen, ammonia as N	0.031	mg/L	ft
DT-23	FOX RIVER	1973-06-03		Nitrogen, Kjeldahl	2.31	mg/L	0 ft
DT-23	FOX RIVER	1973-07-07		Nitrogen, Kjeldahl	3.7	mg/L	0 ft
DT-23	FOX RIVER	1973-08-04		Nitrogen, Kjeldahl	3.15	mg/L	0 ft
DT-23	FOX RIVER	1973-09-08		Nitrogen, Kjeldahl	2.3	mg/L	0 ft
DT-23	FOX RIVER	1973-10-13		Nitrogen, Kjeldahl	3.05	mg/L	0 ft
DT-23	FOX RIVER	1973-11-03		Nitrogen, Kjeldahl	1.45	mg/L	0 ft
DT-23	FOX RIVER	1973-12-02		Nitrogen, Kjeldahl	1.4	mg/L	0 ft
DT-23	FOX RIVER	1974-01-05		Nitrogen, Kjeldahl	1.1	mg/L	0 ft
DT-23	FOX RIVER	1974-02-02		Nitrogen, Kjeldahl	1	mg/L	0 ft
DT-23	FOX RIVER	1974-03-09		Nitrogen, Kjeldahl	1.3	mg/L	0 ft
DT-23	FOX RIVER	1974-03-16		Nitrogen, Kjeldahl	4	mg/L	0 ft
DT-23	FOX RIVER	1974-04-07		Nitrogen, Kjeldahl	1.9	mg/L	0 ft
DT-23	FOX RIVER	1974-05-18		Nitrogen, Kjeldahl	1.4	mg/L	0 ft
DT-23	FOX RIVER	1982-06-15		Nitrogen, Kjeldahl	1.72	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Nitrogen, Kjeldahl	2.4	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Nitrogen, Kjeldahl	2.2	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Nitrogen, Kjeldahl	0.87	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, Kjeldahl	0.94	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Nitrogen, Kjeldahl	1	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Nitrogen, Kjeldahl	1.11	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Nitrogen, Kjeldahl	1.49	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Nitrogen, Kjeldahl	1.06	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Nitrogen, Kjeldahl	1.19	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Nitrogen, Kjeldahl	2.15	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Nitrogen, Kjeldahl	1.51	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Nitrogen, Kjeldahl	1.42	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Nitrogen, Kjeldahl	1.54	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Nitrogen, Kjeldahl	1.88	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Nitrogen, Kjeldahl	2.06	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Nitrogen, Kjeldahl	2.3	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Nitrogen, Kjeldahl	2.8	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Nitrogen, Kjeldahl	3.16	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	3.54	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Nitrogen, Kjeldahl	3.56	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Nitrogen, Kjeldahl	2.94	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Nitrogen, Kjeldahl	1.26	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, Kjeldahl	2.14	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Nitrogen, Kjeldahl	1.19	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, Kjeldahl	2.25	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Nitrogen, Kjeldahl	2.19	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Nitrogen, Kjeldahl	2.78	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-11-25		Nitrogen, Kjeldahl	1.67	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, Kjeldahl	0.88	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Nitrogen, Kjeldahl	1.28	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Nitrogen, Kjeldahl	1.71	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Nitrogen, Kjeldahl	0.84	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Nitrogen, Kjeldahl	1.06	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, Kjeldahl	1.52	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Nitrogen, Kjeldahl	1.72	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, Kjeldahl	1.29	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Nitrogen, Kjeldahl	2	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, Kjeldahl	1.69	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Nitrogen, Kjeldahl	2.24	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, Kjeldahl	1.48	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Nitrogen, Kjeldahl	1.28	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Nitrogen, Kjeldahl	1.65	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Nitrogen, Kjeldahl	2.1	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Nitrogen, Kjeldahl	1.82	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Nitrogen, Kjeldahl	2.38	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, Kjeldahl	2	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Nitrogen, Kjeldahl	2.36	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Nitrogen, Kjeldahl	1.28	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Nitrogen, Kjeldahl	1.15	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Nitrogen, Kjeldahl	1.76	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Nitrogen, Kjeldahl	1.61	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Nitrogen, Kjeldahl	2.42	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Nitrogen, Kjeldahl	3.68	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Nitrogen, Kjeldahl	4.82	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Nitrogen, Kjeldahl	2.42	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Nitrogen, Kjeldahl	1.4	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, Kjeldahl	3	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Nitrogen, Kjeldahl	1.3	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Nitrogen, Kjeldahl	1.8	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Nitrogen, Kjeldahl	1.5	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Nitrogen, Kjeldahl	1.9	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Nitrogen, Kjeldahl	2.35	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Nitrogen, Kjeldahl	2.75	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Nitrogen, Kjeldahl	2.26	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Nitrogen, Kjeldahl	1.68	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Nitrogen, Kjeldahl	1.41	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Nitrogen, Kjeldahl	1.15	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Nitrogen, Kjeldahl	1.32	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, Kjeldahl	1.96	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Nitrogen, Kjeldahl	1.96	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, Kjeldahl	1.98	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Nitrogen, Kjeldahl	1.98	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-07-17		Nitrogen, Kjeldahl	2.57	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Nitrogen, Kjeldahl	2.57	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, Kjeldahl	1.93	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Nitrogen, Kjeldahl	1.93	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, Kjeldahl	2.13	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Nitrogen, Kjeldahl	2.13	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, Kjeldahl	1.44	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Nitrogen, Kjeldahl	1.44	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, Kjeldahl	1.15	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Nitrogen, Kjeldahl	1.15	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, Kjeldahl	1.01	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Nitrogen, Kjeldahl	1.01	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, Kjeldahl	1.08	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Nitrogen, Kjeldahl	1.08	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, Kjeldahl	1.29	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Nitrogen, Kjeldahl	1.29	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Nitrogen, Kjeldahl	1.69	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Nitrogen, Kjeldahl	1.61	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Nitrogen, Kjeldahl	1.44	mg/L	ft
DT-23	FOX RIVER	1964-06-02		рН	8.6	SU	ft
DT-23	FOX RIVER	1964-06-09		рН	8.5	SU	ft
DT-23	FOX RIVER	1964-06-17		рН	8.1	SU	ft
DT-23	FOX RIVER	1964-06-23		рН	8.3	SU	ft
DT-23	FOX RIVER	1965-07-08		рН	8.6	SU	ft
DT-23	FOX RIVER	1965-07-27		рН	8.7	SU	ft
DT-23	FOX RIVER	1965-08-17		рН	8.9	SU	ft
DT-23	FOX RIVER	1965-09-07		рН	8.8	SU	ft
DT-23	FOX RIVER	1965-12-16		рН	8.5	SU	ft
DT-23	FOX RIVER	1966-06-30		рН	8.5	SU	ft
DT-23	FOX RIVER	1966-07-26		рН	8.7	SU	ft
DT-23	FOX RIVER	1966-08-23		рН	9	SU	ft
DT-23	FOX RIVER	1967-08-31		рН	8.7	SU	ft
DT-23	FOX RIVER	1967-12-19		рН	8.9	SU	ft
DT-23	FOX RIVER	1968-10-02		рН	8.7	SU	ft
DT-23	FOX RIVER	1969-05-21		рН	8.2	SU	ft
DT-23	FOX RIVER	1969-07-01		рН	8.7	SU	ft
DT-23	FOX RIVER	1969-08-19		рН	8.5	SU	ft
DT-23	FOX RIVER	1969-12-17		рН	8.5	SU	ft
DT-23	FOX RIVER	1970-07-06		рН	8.4	SU	ft
DT-23	FOX RIVER	1970-08-10		рН	8.6	SU	ft
DT-23	FOX RIVER	1970-08-31		рН	8.7	SU	ft
DT-23	FOX RIVER	1970-09-28		рН	8.3	SU	ft
DT-23	FOX RIVER	1970-10-26		рН	8.6	SU	ft
DT-23	FOX RIVER	1970-11-30		рН	8.3	SU	ft
DT-23	FOX RIVER	1971-04-12		рН	8.6	SU	ft
DT-23	FOX RIVER	1971-05-17		рН	8.6	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1971-06-16		рН	8.8	SU	ft
DT-23	FOX RIVER	1971-07-29		рН	8.9	SU	ft
DT-23	FOX RIVER	1971-09-08		рН	8.8	SU	ft
DT-23	FOX RIVER	1971-10-14		рН	8.7	SU	ft
DT-23	FOX RIVER	1971-11-09		рН	8.8	SU	ft
DT-23	FOX RIVER	1972-01-06		рН	8.5	SU	ft
DT-23	FOX RIVER	1972-01-06		рН	8.3	SU	ft
DT-23	FOX RIVER	1972-03-06		рН	8.2	SU	ft
DT-23	FOX RIVER	1972-03-07		рН	7.9	SU	ft
DT-23	FOX RIVER	1972-03-21		рН	7.7	SU	ft
DT-23	FOX RIVER	1972-03-21		рН	7.7	SU	ft
DT-23	FOX RIVER	1972-04-10		рН	9	SU	ft
DT-23	FOX RIVER	1972-04-10		рН	9.1	SU	ft
DT-23	FOX RIVER	1972-05-01		рН	8.7	SU	ft
DT-23	FOX RIVER	1972-05-01		рН	8.8	SU	ft
DT-23	FOX RIVER	1972-06-01		рН	7.9	SU	ft
DT-23	FOX RIVER	1972-06-01		рН	8.1	SU	ft
DT-23	FOX RIVER	1972-07-05		рН	8.2	SU	ft
DT-23	FOX RIVER	1972-07-05		рН	8.4	SU	ft
DT-23	FOX RIVER	1972-08-14		рН	8.9	SU	ft
DT-23	FOX RIVER	1972-08-14		рН	8.9	SU	ft
DT-23	FOX RIVER	1972-09-19		рН	8.3	SU	ft
DT-23	FOX RIVER	1972-09-19		рН	8.3	SU	ft
DT-23	FOX RIVER	1972-10-04		рН	8.1	SU	ft
DT-23	FOX RIVER	1972-10-04		рН	8.1	SU	ft
DT-23	FOX RIVER	1972-10-30		рН	8.6	SU	ft
DT-23	FOX RIVER	1972-10-30		рН	8.3	SU	ft
DT-23	FOX RIVER	1972-12-11		рН	8.4	SU	ft
DT-23	FOX RIVER	1972-12-11		рН	8.2	SU	ft
DT-23	FOX RIVER	1973-01-16		рН	8	SU	ft
DT-23	FOX RIVER	1973-01-17		рН	7.8	SU	ft
DT-23	FOX RIVER	1973-03-07		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-03-08		рН	8.2	SU	ft
DT-23	FOX RIVER	1973-03-26		рН	8.9	SU	ft
DT-23	FOX RIVER	1973-03-26		рН	8.8	SU	ft
DT-23	FOX RIVER	1973-04-05		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-04-06		рН	8.7	SU	ft
DT-23	FOX RIVER	1973-05-01		рН	8.3	SU	ft
DT-23	FOX RIVER	1973-05-01		рН	8.3	SU	ft
DT-23	FOX RIVER	1973-06-06		рН	8.7	SU	ft
DT-23	FOX RIVER	1973-06-06		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-07-11		рН	8.5	SU	ft
DT-23	FOX RIVER	1973-07-11		рН	8.5	SU	ft
DT-23	FOX RIVER	1973-08-07		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-08-07		pH	8.8	SU	ft
DT-23	FOX RIVER	1973-09-12		рН	8.7	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1973-09-12		рн	8.8	SU	ft
DT-23	FOX RIVER	1973-10-04		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-10-04		рН	8.7	SU	ft
DT-23	FOX RIVER	1973-11-14		рН	8.6	SU	ft
DT-23	FOX RIVER	1973-11-14		рН	8.8	SU	ft
DT-23	FOX RIVER	1973-12-12		рН	8.5	SU	ft
DT-23	FOX RIVER	1973-12-12		рН	8.8	SU	ft
DT-23	FOX RIVER	1974-01-17		рН	8.1	SU	ft
DT-23	FOX RIVER	1974-01-17		рН	8.2	SU	ft
DT-23	FOX RIVER	1974-02-14		рН	8.4	SU	ft
DT-23	FOX RIVER	1974-02-14		рН	8.3	SU	ft
DT-23	FOX RIVER	1974-06-19		рН	8.7	SU	ft
DT-23	FOX RIVER	1974-06-19		рН	8.6	SU	ft
DT-23	FOX RIVER	1974-08-16		рН	8.6	SU	ft
DT-23	FOX RIVER	1974-08-21		рН	8.6	SU	ft
DT-23	FOX RIVER	1974-10-16		рН	8.7	SU	ft
DT-23	FOX RIVER	1974-10-18		рН	8.5	SU	ft
DT-23	FOX RIVER	1974-12-09		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-01-16		рН	8.3	SU	ft
DT-23	FOX RIVER	1975-01-16		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-01-28		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-01-28		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-03-13		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-03-13		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-04-29		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-04-29		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-06-05		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-06-05		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-06-23		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-06-23		рН	8.4	SU	ft
DT-23	FOX RIVER	1975-08-15		рН	8.7	SU	ft
DT-23	FOX RIVER	1975-08-15		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-08-28		рН	8.7	SU	ft
DT-23	FOX RIVER	1975-09-30		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-09-30		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-11-10		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-11-10		рН	8.6	SU	ft
DT-23	FOX RIVER	1975-11-20		рН	8.5	SU	ft
DT-23	FOX RIVER	1975-11-20		рН	8.4	SU	ft
DT-23	FOX RIVER	1976-01-28		рН	8.3	SU	ft
DT-23	FOX RIVER	1976-02-24		рН	8.4	SU	ft
DT-23	FOX RIVER	1976-03-03		рН	8.5	SU	ft
DT-23	FOX RIVER	1976-03-03		рН	8.4	SU	ft
DT-23	FOX RIVER	1976-04-28		рН	8.5	SU	ft
DT-23	FOX RIVER	1976-04-28		рН	8.5	SU	ft
DT-23	FOX RIVER	1976-05-20		рН	8.6	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1976-09-13		рН	8.5	SU	ft
DT-23	FOX RIVER	1976-09-13		рН	8.5	SU	ft
DT-23	FOX RIVER	1976-10-26		рН	8.8	SU	ft
DT-23	FOX RIVER	1976-10-26		рН	8.8	SU	ft
DT-23	FOX RIVER	1976-11-17		рН	8.8	SU	ft
DT-23	FOX RIVER	1976-11-17		рН	8.7	SU	ft
DT-23	FOX RIVER	1977-11-07		рН	8.2	SU	ft
DT-23	FOX RIVER	1977-12-07		рН	8.3	SU	ft
DT-23	FOX RIVER	1977-12-29		рН	8.5	SU	ft
DT-23	FOX RIVER	1978-01-24		рН	7.9	SU	ft
DT-23	FOX RIVER	1978-03-01		рН	8.4	SU	ft
DT-23	FOX RIVER	1982-06-15		рН	7.8	SU	ft
DT-23	FOX RIVER	1982-08-04		рН	8	SU	ft
DT-23	FOX RIVER	1982-10-19		рН	8	SU	ft
DT-23	FOX RIVER	1983-01-31		рН	7.3	SU	ft
DT-23	FOX RIVER	1983-10-03		рН	7.6	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.83	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.1	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.44	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	7.8	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.21	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.37	SU	ft
DT-23	FOX RIVER	2003-01-07		рН	8.33	SU	ft
DT-23	FOX RIVER	2003-02-04		рН	8.69	SU	ft
DT-23	FOX RIVER	2003-02-04		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-02-04		рН	8	SU	ft
DT-23	FOX RIVER	2003-02-04		рН	8.08	SU	ft
DT-23	FOX RIVER	2003-02-04		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-03-04		рН	8.5	SU	ft
DT-23	FOX RIVER	2003-03-04		рН	8.42	SU	ft
DT-23	FOX RIVER	2003-03-04		рН	8.68	SU	ft
DT-23	FOX RIVER	2003-03-04		рН	8.58	SU	ft
DT-23	FOX RIVER	2003-03-04		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	9.06	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	8.1	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	8.57	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	8.48	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	9	SU	ft
DT-23	FOX RIVER	2003-03-18		рН	8.32	SU	ft
DT-23	FOX RIVER	2003-04-01		рН	8.61	SU	ft
DT-23	FOX RIVER	2003-04-01		рН	8.57	SU	ft
DT-23	FOX RIVER	2003-04-01		рН	8.6	SU	ft
DT-23	FOX RIVER	2003-04-01		рН	8.51	SU	ft
DT-23	FOX RIVER	2003-04-01		рН	8.14	SU	ft
DT-23	FOX RIVER	2003-04-15		рН	8.7	SU	ft
DT-23	FOX RIVER	2003-04-15		рН	8.64	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-04-15		рН	8.5	SU	ft
DT-23	FOX RIVER	2003-04-15		рН	8.6	SU	ft
DT-23	FOX RIVER	2003-04-15		рН	8.34	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.2	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.46	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.51	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.6	SU	ft
DT-23	FOX RIVER	2003-04-29		рН	8.37	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.52	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.79	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.48	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.72	SU	ft
DT-23	FOX RIVER	2003-05-13		рН	8.19	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	8.14	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	8.31	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	7.9	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	7.97	SU	ft
DT-23	FOX RIVER	2003-05-27		рН	8.74	SU	ft
DT-23	FOX RIVER	2003-06-10		рН	8.29	SU	ft
DT-23	FOX RIVER	2003-06-10		рН	8.6	SU	ft
DT-23	FOX RIVER	2003-06-10		рН	8.34	SU	ft
DT-23	FOX RIVER	2003-06-10		рН	8.26	SU	ft
DT-23	FOX RIVER	2003-06-10		рН	8.23	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	7.98	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	8.29	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	8.33	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-06-24		рН	8.31	SU	ft
DT-23	FOX RIVER	2003-07-08		рН	8.5	SU	ft
DT-23	FOX RIVER	2003-07-08		рН	8.22	SU	ft
DT-23	FOX RIVER	2003-07-08		рН	7.9	SU	ft
DT-23	FOX RIVER	2003-07-08		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-07-08		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.39	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	7.8	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.2	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.47	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.19	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.22	SU	ft
DT-23	FOX RIVER	2003-07-22		рН	8.61	SU	ft
DT-23	FOX RIVER	2003-08-05		рН	8.28	SU	ft
DT-23	FOX RIVER	2003-08-05		pН	8.5	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-08-05		рН	8.7	SU	ft
DT-23	FOX RIVER	2003-08-05		рН	8.57	SU	ft
DT-23	FOX RIVER	2003-08-05		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-08-19		рН	8.46	SU	ft
DT-23	FOX RIVER	2003-08-19		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-08-19		рН	8.6	SU	ft
DT-23	FOX RIVER	2003-08-19		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-08-19		рН	8.36	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	8.1	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	8.55	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	9.08	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	8.44	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	8.54	SU	ft
DT-23	FOX RIVER	2003-09-02		рН	8.5	SU	ft
DT-23	FOX RIVER	2003-09-16		рН	8.41	SU	ft
DT-23	FOX RIVER	2003-09-16		рН	8.65	SU	ft
DT-23	FOX RIVER	2003-09-16		рН	7.5	SU	ft
DT-23	FOX RIVER	2003-09-16		рН	7.9	SU	ft
DT-23	FOX RIVER	2003-09-16		рН	8.4	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.2	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.7	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.35	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.65	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.1	SU	ft
DT-23	FOX RIVER	2003-09-30		рН	8.01	SU	ft
DT-23	FOX RIVER	2003-10-14		рН	8.37	SU	ft
DT-23	FOX RIVER	2003-10-14		рН	8.5	SU	ft
DT-23	FOX RIVER	2003-10-14		рН	7.95	SU	ft
DT-23	FOX RIVER	2003-10-14		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-10-14		рН	8.25	SU	ft
DT-23	FOX RIVER	2003-10-28		рН	9	SU	ft
DT-23	FOX RIVER	2003-10-28		рН	8.07	SU	ft
DT-23	FOX RIVER	2003-10-28		рН	8.15	SU	ft
DT-23	FOX RIVER	2003-10-28		рН	8.18	SU	ft
DT-23	FOX RIVER	2003-10-28		рН	8.72	SU	ft
DT-23	FOX RIVER	2003-11-25		рН	8.7	SU	ft
DT-23	FOX RIVER	2003-11-25		рН	7.9	SU	ft
DT-23	FOX RIVER	2003-11-25		рН	8.3	SU	ft
DT-23	FOX RIVER	2003-11-25		рН	8.8	SU	ft
DT-23	FOX RIVER	2003-11-25		рН	8.12	SU	ft
DT-23	FOX RIVER	2003-12-09		рН	8.56	SU	ft
DT-23	FOX RIVER	2003-12-09		рн	8.2	SU	ft
DT-23	FOX RIVER	2003-12-09		рн	8.12	SU	ft
DT-23	FOX RIVER	2003-12-09		рн	8	SU	ft r
דט-23	FOX RIVER	2003-12-09		рн	8.69	SU	rt c
DT-23	FOX RIVER	2004-03-02		рН	8.31	SU	tt

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-03-02		рН	8.01	SU	ft
DT-23	FOX RIVER	2004-03-02		рН	8.6	SU	ft
DT-23	FOX RIVER	2004-03-02		рН	8.2	SU	ft
DT-23	FOX RIVER	2004-03-16		рН	8.7	SU	ft
DT-23	FOX RIVER	2004-03-16		рН	8.31	SU	ft
DT-23	FOX RIVER	2004-03-16		рН	8.45	SU	ft
DT-23	FOX RIVER	2004-03-16		рН	8.5	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.01	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.3	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.57	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.62	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.42	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.48	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.79	SU	ft
DT-23	FOX RIVER	2004-03-30		рН	8.45	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.31	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.6	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.91	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.44	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.67	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.3	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.39	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	7.99	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.32	SU	ft
DT-23	FOX RIVER	2004-04-13		рН	8.28	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.4	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.2	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.16	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.28	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.31	SU	ft
DT-23	FOX RIVER	2004-04-27		рН	8.14	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	8.35	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	7.8	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	8.24	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	8.25	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	8	SU	ft
DT-23	FOX RIVER	2004-05-18		рН	7.5	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8.52	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8.1	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8.16	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8.5	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8	SU	ft
DT-23	FOX RIVER	2004-06-15		рН	8.47	SU	ft
DT-23	FOX RIVER	2004-07-20		рН	8.3	SU	ft
DT-23	FOX RIVER	2004-07-20		рН	8.54	SU	ft
DT-23	FOX RIVER	2004-07-20		рН	8.8	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-07-20		рН	8.91	SU	ft
DT-23	FOX RIVER	2004-07-20		рН	8.06	SU	ft
DT-23	FOX RIVER	2004-07-20		рН	8.7	SU	ft
DT-23	FOX RIVER	2004-08-17		рН	8.17	SU	ft
DT-23	FOX RIVER	2004-08-17		рН	8.2	SU	ft
DT-23	FOX RIVER	2004-08-17		рН	8.6	SU	ft
DT-23	FOX RIVER	2004-08-17		рН	8.41	SU	ft
DT-23	FOX RIVER	2004-08-17		рН	8.9	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.5	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.7	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.98	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.34	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.44	SU	ft
DT-23	FOX RIVER	2004-09-21		рН	8.3	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.64	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.66	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.51	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.33	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.6	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.3	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.53	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.58	SU	ft
DT-23	FOX RIVER	2004-10-19		рН	8.47	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.4	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.5	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.85	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.55	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.44	SU	ft
DT-23	FOX RIVER	2004-11-16		рН	8.29	SU	ft
DT-23	FOX RIVER	2005-02-15		рН	8.3	SU	ft
DT-23	FOX RIVER	2005-02-15		рН	8.39	SU	ft
DT-23	FOX RIVER	2005-02-15		рН	8.31	SU	ft
DT-23	FOX RIVER	2005-02-15		рН	8.28	SU	ft
DT-23	FOX RIVER	2005-02-15		рН	8.41	SU	ft
DT-23	FOX RIVER	2005-03-15		рН	8.5	SU	ft
DT-23	FOX RIVER	2005-03-15		рН	8.22	SU	ft
DT-23	FOX RIVER	2005-03-15		рН	7.95	SU	ft
DT-23	FOX RIVER	2005-03-15		рН	8.1	SU	ft
DT-23	FOX RIVER	2005-03-15		рН	8.35	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	8.67	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	8.6	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	8.8	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	8.01	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	7.85	SU	ft
DT-23	FOX RIVER	2005-04-27		рН	8.53	SU	ft
DT-23	FOX RIVER	2005-06-21		рН	8.6	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2005-06-21		рН	8.1	SU	ft
DT-23	FOX RIVER	2005-06-21		рН	8.62	SU	ft
DT-23	FOX RIVER	2005-06-21		рН	8.24	SU	ft
DT-23	FOX RIVER	2005-06-21		рН	8.59	SU	ft
DT-23	FOX RIVER	2005-06-21		рН	8.78	SU	ft
DT-23	FOX RIVER	2005-07-19		рН	8.75	SU	ft
DT-23	FOX RIVER	2005-07-19		рН	8.2	SU	ft
DT-23	FOX RIVER	2005-07-19		рН	8.6	SU	ft
DT-23	FOX RIVER	2005-07-19		рН	8.27	SU	ft
DT-23	FOX RIVER	2005-07-19		рН	8.38	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	9	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	8	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	8.29	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	8.35	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	8.72	SU	ft
DT-23	FOX RIVER	2005-08-16		рН	8.52	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	7.7	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	8.2	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	8.21	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	8.7	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	8.29	SU	ft
DT-23	FOX RIVER	2005-09-20		рН	8.43	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8.63	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8.67	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8.08	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8.1	SU	ft
DT-23	FOX RIVER	2005-10-18		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.03	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.54	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.4	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.23	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.35	SU	ft
DT-23	FOX RIVER	2006-01-17		рН	8.2	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	8.35	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	7.9	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	8.03	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	7.95	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	8.4	SU	ft
DT-23	FOX RIVER	2006-03-21		рН	8.7	SU	ft
DT-23	FOX RIVER	2006-04-18		рН	8.2	SU	ft
DT-23	FOX RIVER	2006-04-18		рН	8.7	SU	ft
DT-23	FOX RIVER	2006-04-18		рН	7.98	SU	ft
DT-23	FOX RIVER	2006-04-18		рН	7.8	SU	ft
DT-23	FOX RIVER	2006-04-18		pН	8.38	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-04-18		рН	8.5	SU	ft
DT-23	FOX RIVER	2006-04-18		рН	8.76	SU	ft
DT-23	FOX RIVER	2006-05-16		рН	8.15	SU	ft
DT-23	FOX RIVER	2006-05-16		рН	8.5	SU	ft
DT-23	FOX RIVER	2006-05-16		рН	8.2	SU	ft
DT-23	FOX RIVER	2006-05-16		рН	8.09	SU	ft
DT-23	FOX RIVER	2006-05-16		рН	8.29	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.3	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.72	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.5	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.4	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-06-20		рН	8.13	SU	ft
DT-23	FOX RIVER	2006-07-18		рН	7.7	SU	ft
DT-23	FOX RIVER	2006-07-18		рН	8.75	SU	ft
DT-23	FOX RIVER	2006-07-18		рН	8.81	SU	ft
DT-23	FOX RIVER	2006-07-18		рН	8.63	SU	ft
DT-23	FOX RIVER	2006-07-18		рН	8.2	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.5	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.3	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.8	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.2	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-08-15		рН	8.96	SU	ft
DT-23	FOX RIVER	2006-09-19		рН	8.7	SU	ft
DT-23	FOX RIVER	2006-09-19		рН	8.71	SU	ft
DT-23	FOX RIVER	2006-09-19		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-09-19		рН	8.54	SU	ft
DT-23	FOX RIVER	2006-09-19		рН	8	SU	ft
DT-23	FOX RIVER	2006-10-17		рН	8.47	SU	ft
DT-23	FOX RIVER	2006-10-17		рН	8.3	SU	ft
DT-23	FOX RIVER	2006-10-17		рН	8.61	SU	ft
DT-23	FOX RIVER	2006-11-21		рН	8.53	SU	ft
DT-23	FOX RIVER	2006-11-21		рН	8.42	SU	ft
DT-23	FOX RIVER	2006-11-21		рН	8.5	SU	ft
DT-23	FOX RIVER	2006-11-21		рН	8.4	SU	ft
DT-23	FOX RIVER	2006-11-21		рН	8.6	SU	ft
DT-23	FOX RIVER	2006-12-19		рН	7.8	SU	ft
DT-23	FOX RIVER	2006-12-19		рН	8.4	SU	ft
DT-23	FOX RIVER	2006-12-19		рН	8	SU	ft
DT-23	FOX RIVER	2006-12-19		рН	8.3	SU	ft
DT-23	FOX RIVER	2006-12-19		рН	8.57	SU	ft
DT-23	FOX RIVER	2007-04-17		рН	8.2	SU	ft
DT-23	FOX RIVER	2007-04-17		рН	8.41	SU	ft
DT-23	FOX RIVER	2007-04-17		рН	8.97	SU	ft
DT-23	FOX RIVER	2007-04-17		pН	8.4	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-05-15		рН	8.8	SU	ft
DT-23	FOX RIVER	2007-05-15		рН	8.2	SU	ft
DT-23	FOX RIVER	2007-05-15		рН	8.37	SU	ft
DT-23	FOX RIVER	2007-05-15		рН	8	SU	ft
DT-23	FOX RIVER	2007-05-15		рН	8.18	SU	ft
DT-23	FOX RIVER	2007-05-15		рН	8.8	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.2	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.58	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.54	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.01	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.1	SU	ft
DT-23	FOX RIVER	2007-06-19		рН	8.2	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8.3	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8.59	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8.5	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8.6	SU	ft
DT-23	FOX RIVER	2007-07-17		рН	8.6	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.4	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.5	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.62	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.6	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.41	SU	ft
DT-23	FOX RIVER	2007-08-21		рН	8.5	SU	ft
DT-23	FOX RIVER	2007-09-18		рН	8.5	SU	ft
DT-23	FOX RIVER	2007-09-18		рН	7.92	SU	ft
DT-23	FOX RIVER	2007-09-18		рН	8.7	SU	ft
DT-23	FOX RIVER	2007-09-18		рН	8.8	SU	ft
DT-23	FOX RIVER	2007-09-18		рН	8.8	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.4	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.28	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.3	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.54	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.72	SU	ft
DT-23	FOX RIVER	2007-10-16		рН	8.3	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	8.77	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	8.5	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	7.97	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	8.1	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	8.08	SU	ft
DT-23	FOX RIVER	2007-11-20		рН	8.5	SU	ft
DT-23	FOX RIVER	2008-04-15		рН	8	SU	ft
DT-23	FOX RIVER	2008-04-15		рН	8.2	SU	ft
DT-23	FOX RIVER	2008-04-15		рН	8.28	SU	ft
DT-23	FOX RIVER	2008-04-15		pН	8.41	SU	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2008-04-15		рН	8.4	SU	ft
DT-23	FOX RIVER	2008-04-15		рН	8.12	SU	ft
DT-23	FOX RIVER	2008-04-15		рН	8.2	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.3	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.4	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.7	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.44	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.17	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.51	SU	ft
DT-23	FOX RIVER	2008-05-20		рН	8.7	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.1	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.74	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.76	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.45	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.4	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.3	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.5	SU	ft
DT-23	FOX RIVER	2008-06-17		рН	8.1	SU	ft
DT-23	FOX RIVER	2008-07-15		рН	8.7	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.5	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.15	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.11	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.7	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.2	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.58	SU	ft
DT-23	FOX RIVER	2008-08-19		рН	8.62	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.5	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.75	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.13	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.49	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.32	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.4	SU	ft
DT-23	FOX RIVER	2008-09-16		рН	8.1	SU	ft
DT-23	FOX RIVER	1967-08-31		Phosphorus	0.326	mg/L	ft
DT-23	FOX RIVER	1967-12-19		Phosphorus	0.098	mg/L	ft
DT-23	FOX RIVER	1968-10-02		Phosphorus	0.163	mg/L	ft
DT-23	FOX RIVER	1969-05-21		Phosphorus	0.196	mg/L	ft
DT-23	FOX RIVER	1969-07-01		Phosphorus	0.131	mg/L	ft
DT-23	FOX RIVER	1969-08-19		Phosphorus	0.261	mg/L	ft
DT-23	FOX RIVER	1969-12-17		Phosphorus	0.163	mg/L	ft
DT-23	FOX RIVER	1970-07-06		Phosphorus	0.196	mg/L	ft
DT-23	FOX RIVER	1970-08-10		Phosphorus	0.228	mg/L	ft
DT-23	FOX RIVER	1970-08-31		Phosphorus	0.228	mg/L	ft
DT-23	FOX RIVER	1970-09-28		Phosphorus	0.261	mg/L	ft
DT-23	FOX RIVER	1970-10-26		Phosphorus	0.033	mg/L	ft
DT-23	FOX RIVER	1970-11-30		Phosphorus	0.098	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1971-05-17		Phosphorus	0.424	mg/L	ft
DT-23	FOX RIVER	1971-06-16		Phosphorus	0.033	mg/L	ft
DT-23	FOX RIVER	1971-07-29		Phosphorus	0.131	mg/L	ft
DT-23	FOX RIVER	1971-09-08		Phosphorus	0.261	mg/L	ft
DT-23	FOX RIVER	1971-10-14		Phosphorus	0.098	mg/L	ft
DT-23	FOX RIVER	1971-11-09		Phosphorus	0.098	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	1972-01-06		Phosphorus	0.31	mg/L	ft
DT-23	FOX RIVER	1972-03-06		Phosphorus	0.7	mg/L	ft
DT-23	FOX RIVER	1972-03-07		Phosphorus	0.5	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Phosphorus	0.4	mg/L	ft
DT-23	FOX RIVER	1972-03-21		Phosphorus	0.5	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1972-04-10		Phosphorus	0.22	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Phosphorus	0.27	mg/L	ft
DT-23	FOX RIVER	1972-05-01		Phosphorus	0.27	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1972-06-01		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Phosphorus	0.5	mg/L	ft
DT-23	FOX RIVER	1972-07-05		Phosphorus	0.3	mg/L	ft
DT-23	FOX RIVER	1972-08-14		Phosphorus	0.26	mg/L	ft
DT-23	FOX RIVER	1972-08-14		Phosphorus	0.66	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	1972-09-19		Phosphorus	0.3	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1972-10-04		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1972-10-30		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1972-12-11		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	1973-01-16		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	1973-01-17		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1973-03-07		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	1973-03-08		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	1973-03-26		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	1973-03-26		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1973-04-05		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	1973-04-06		Phosphorus	0.145	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1973-05-01		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1973-06-03		Phosphorus	0.175	mg/L	0 ft
DT-23	FOX RIVER	1973-06-06		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1973-06-06		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1973-07-07		Phosphorus	0.2	mg/L	0 ft
DT-23	FOX RIVER	1973-07-11		Phosphorus	0.33	mg/L	ft
DT-23	FOX RIVER	1973-07-11		Phosphorus	0.32	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1973-08-04		Phosphorus	0.28	mg/L	0 ft
DT-23	FOX RIVER	1973-08-07		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	1973-08-07		Phosphorus	0.54	mg/L	ft
DT-23	FOX RIVER	1973-09-08		Phosphorus	0.3	mg/L	0 ft
DT-23	FOX RIVER	1973-09-12		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	1973-09-12		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	1973-10-04		Phosphorus	0.22	mg/L	ft
DT-23	FOX RIVER	1973-10-13		Phosphorus	0.315	mg/L	0 ft
DT-23	FOX RIVER	1973-11-03		Phosphorus	0.24	mg/L	0 ft
DT-23	FOX RIVER	1973-11-14		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	1973-11-14		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	1973-12-02		Phosphorus	0.04	mg/L	0 ft
DT-23	FOX RIVER	1973-12-12		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1973-12-12		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	1974-01-05		Phosphorus	0.175	mg/L	0 ft
DT-23	FOX RIVER	1974-01-17		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1974-01-17		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	1974-02-02		Phosphorus	0.16	mg/L	0 ft
DT-23	FOX RIVER	1974-02-14		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	1974-02-14		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1974-03-09		Phosphorus	0.18	mg/L	0 ft
DT-23	FOX RIVER	1974-03-16		Phosphorus	0.135	mg/L	0 ft
DT-23	FOX RIVER	1974-04-07		Phosphorus	0.24	mg/L	0 ft
DT-23	FOX RIVER	1974-05-18		Phosphorus	0.135	mg/L	0 ft
DT-23	FOX RIVER	1974-06-19		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1974-06-19		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1974-08-16		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1974-08-21		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1974-10-16		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1974-10-18		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1974-12-09		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Phosphorus	0.3	mg/L	ft
DT-23	FOX RIVER	1975-01-16		Phosphorus	0.29	mg/L	ft
DT-23	FOX RIVER	1975-01-28		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-01-28		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	1975-03-13		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	1975-04-29		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-04-29		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-06-05		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1975-06-23		Phosphorus	0.26	mg/L	ft
DT-23	FOX RIVER	1975-08-15		Phosphorus	0.29	mg/L	ft
DT-23	FOX RIVER	1975-08-15		Phosphorus	0.29	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1975-08-28		Phosphorus	0.31	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1975-09-30		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	1975-11-10		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1975-11-20		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	1976-01-28		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1976-02-24		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1976-03-03		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	1976-04-28		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	1976-04-28		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	1976-05-20		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Phosphorus	0.29	mg/L	ft
DT-23	FOX RIVER	1976-09-13		Phosphorus	0.26	mg/L	ft
DT-23	FOX RIVER	1976-10-26		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	1976-10-26		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1976-11-17		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	1976-11-17		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	1977-11-07		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	1977-12-07		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	1977-12-29		Phosphorus	1.5	mg/L	ft
DT-23	FOX RIVER	1978-01-24		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1978-03-01		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	1982-06-15		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	1982-06-15		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	1982-08-04		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	1982-10-19		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	1983-01-31		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	1983-10-03		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Phosphorus	0.145	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2003-01-07		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2003-02-04		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2003-03-04		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-03-18		Phosphorus	0.12	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-04-01		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2003-04-01		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	2003-04-15		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2003-04-29		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2003-05-13		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2003-05-27		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Phosphorus	0.376	mg/L	ft
DT-23	FOX RIVER	2003-06-10		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Phosphorus	0.095	mg/L	ft
DT-23	FOX RIVER	2003-06-24		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Phosphorus	0.184	mg/L	ft
DT-23	FOX RIVER	2003-07-08		Phosphorus	0.22	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2003-07-22		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	2003-08-05		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2003-08-19		Phosphorus	0.22	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2003-09-02		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Phosphorus	0.35	mg/L	ft
DT-23	FOX RIVER	2003-09-16		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2003-09-30		Phosphorus	0.12	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-10-14		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2003-10-14		Phosphorus	0.065	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2003-10-28		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2003-11-25		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2003-12-09		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2004-03-02		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2004-03-16		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Phosphorus	0.07	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2004-03-30		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2004-04-13		Phosphorus	0.033	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Phosphorus	0.201	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2004-04-27		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2004-05-18		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Phosphorus	0.02	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-06-15		Phosphorus	0.23	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2004-06-15		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Phosphorus	0.35	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	2004-07-20		Phosphorus	0.28	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	2004-08-17		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2004-09-21		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.07	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	2004-10-19		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2004-11-16		Phosphorus	0.114	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Phosphorus	0.13	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Phosphorus	0.22	mg/L	ft
DT-23	FOX RIVER	2005-02-15		Phosphorus	0.172	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2005-03-15		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2005-04-27		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2005-06-21		Phosphorus	0.116	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	2005-07-19		Phosphorus	0.21	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Phosphorus	0.3	mg/L	ft
DT-23	FOX RIVER	2005-08-16		Phosphorus	0.166	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Phosphorus	0.167	mg/L	ft
DT-23	FOX RIVER	2005-09-20		Phosphorus	0.41	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Phosphorus	0.2	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2005-10-18		Phosphorus	0.33	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-01-17		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2006-01-17		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Phosphorus	0.055	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Phosphorus	0.27	mg/L	ft
DT-23	FOX RIVER	2006-03-21		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2006-04-18		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2006-05-16		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Phosphorus	0.01	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2006-06-20		Phosphorus	0.26	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Phosphorus	0.26	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2006-07-18		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Phosphorus	0.148	mg/L	ft
DT-23	FOX RIVER	2006-08-15		Phosphorus	0.24	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Phosphorus	0.07	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2006-09-19		Phosphorus	0.248	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2006-10-17		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Phosphorus	0.29	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Phosphorus	0.153	mg/L	ft
DT-23	FOX RIVER	2006-11-21		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Phosphorus	0.05	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2006-12-19		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Phosphorus	0.084	mg/L	ft
DT-23	FOX RIVER	2007-04-17		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Phosphorus	0.07	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Phosphorus	0.321	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Phosphorus	0.07	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Phosphorus	0.25	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-06-19		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-06-19		Phosphorus	0.25	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Phosphorus	0.165	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Phosphorus	0.27	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2007-07-17		Phosphorus	0.27	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Phosphorus	0.17	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2007-08-21		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-09-18		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Phosphorus	0.1	mg/L	ft
DT-23	FOX RIVER	2007-10-16		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2007-11-20		Phosphorus	0.08	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2008-04-15		Phosphorus	0.09	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Phosphorus	0.19	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Phosphorus	0.02	mg/L	ft
DT-23	FOX RIVER	2008-05-20		Phosphorus	0.12	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Phosphorus	0.15	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2008-06-17		Phosphorus	0.16	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Phosphorus	0.03	mg/L	ft
DT-23	FOX RIVER	2008-07-15		Phosphorus	0.14	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Phosphorus	0.04	mg/L	ft
DT-23	FOX RIVER	2008-08-19		Phosphorus	0.12	mg/L	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2008-08-19		Phosphorus	0.18	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Phosphorus	0.06	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Phosphorus	0.103	mg/L	ft
DT-23	FOX RIVER	2008-09-16		Phosphorus	0.11	mg/L	ft
DT-23	FOX RIVER	2007-05-15		Specific conductance	800	uS/cm	ft
DT-23	FOX RIVER	2007-06-19		Specific conductance	840	uS/cm	ft
DT-23	FOX RIVER	2007-07-17		Specific conductance	860	uS/cm	ft
DT-23	FOX RIVER	2007-08-21		Specific conductance	660	uS/cm	ft
DT-23	FOX RIVER	2007-09-18		Specific conductance	720	uS/cm	ft
DT-23	FOX RIVER	2007-10-16		Specific conductance	810	uS/cm	ft
DT-23	FOX RIVER	2007-11-20		Specific conductance	810	uS/cm	ft
DT-23	FOX RIVER	2008-04-15		Specific conductance	580	uS/cm	ft
DT-23	FOX RIVER	2008-05-20		Specific conductance	840	uS/cm	ft
DT-23	FOX RIVER	2008-06-17		Specific conductance	535	uS/cm	ft
DT-23	FOX RIVER	2008-07-15		Specific conductance	680	uS/cm	ft
DT-23	FOX RIVER	1964-06-02		Temperature, water	18.9	с	ft
DT-23	FOX RIVER	1964-06-09		Temperature, water	20.6	с	ft
DT-23	FOX RIVER	1964-06-17		Temperature, water	20	с	ft
DT-23	FOX RIVER	1964-06-23		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1965-07-08		Temperature, water	23.9	с	ft
DT-23	FOX RIVER	1965-07-27		Temperature, water	26.1	с	ft
DT-23	FOX RIVER	1965-08-17		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	1965-09-07		Temperature, water	20	с	ft
DT-23	FOX RIVER	1965-12-16		Temperature, water	1.1	с	ft
DT-23	FOX RIVER	1966-06-30		Temperature, water	25.6	с	ft
DT-23	FOX RIVER	1966-07-26		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	1966-08-23		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1967-08-31		Temperature, water	17.2	с	ft
DT-23	FOX RIVER	1967-12-19		Temperature, water	1.1	с	ft
DT-23	FOX RIVER	1968-10-02		Temperature, water	16.7	с	ft
DT-23	FOX RIVER	1969-05-21		Temperature, water	14.4	с	ft
DT-23	FOX RIVER	1969-07-01		Temperature, water	22.2	с	ft
DT-23	FOX RIVER	1969-08-19		Temperature, water	25.6	С	ft
DT-23	FOX RIVER	1969-12-17		Temperature, water	0	С	ft
DT-23	FOX RIVER	1970-07-06		Temperature, water	23.3	с	ft
DT-23	FOX RIVER	1970-08-10		Temperature, water	25.6	С	ft
DT-23	FOX RIVER	1970-08-31		Temperature, water	25	с	ft
DT-23	FOX RIVER	1970-09-28		Temperature, water	16.7	с	ft
DT-23	FOX RIVER	1970-10-26		Temperature, water	15	с	ft
DT-23	FOX RIVER	1970-11-30		Temperature, water	2.2	с	ft
DT-23	FOX RIVER	1971-04-12		Temperature, water	13.3	с	ft
DT-23	FOX RIVER	1971-05-17		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1971-06-16		Temperature, water	26.1	с	ft
DT-23	FOX RIVER	1971-07-29		Temperature, water	21.1	с	ft
DT-23	FOX RIVER	1971-09-08		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	1971-10-14		Temperature, water	13.3	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1971-11-09		Temperature, water	3.9	С	ft
DT-23	FOX RIVER	1972-01-06		Temperature, water	0	С	ft
DT-23	FOX RIVER	1972-01-06		Temperature, water	0	С	ft
DT-23	FOX RIVER	1972-03-06		Temperature, water	1.7	С	ft
DT-23	FOX RIVER	1972-03-07		Temperature, water	2.2	с	ft
DT-23	FOX RIVER	1972-04-10		Temperature, water	7.2	с	ft
DT-23	FOX RIVER	1972-04-10		Temperature, water	7.8	с	ft
DT-23	FOX RIVER	1972-05-01		Temperature, water	11.1	с	ft
DT-23	FOX RIVER	1972-05-01		Temperature, water	11.7	с	ft
DT-23	FOX RIVER	1972-06-01		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1972-06-01		Temperature, water	20	с	ft
DT-23	FOX RIVER	1972-07-05		Temperature, water	18.9	с	ft
DT-23	FOX RIVER	1972-07-05		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1972-08-14		Temperature, water	23.3	с	ft
DT-23	FOX RIVER	1972-08-14		Temperature, water	23.3	с	ft
DT-23	FOX RIVER	1972-09-19		Temperature, water	17.8	с	ft
DT-23	FOX RIVER	1972-09-19		Temperature, water	18.3	с	ft
DT-23	FOX RIVER	1972-10-04		Temperature, water	16.1	с	ft
DT-23	FOX RIVER	1972-10-04		Temperature, water	16.1	с	ft
DT-23	FOX RIVER	1972-10-30		Temperature, water	7.2	с	ft
DT-23	FOX RIVER	1972-10-30		Temperature, water	7.8	с	ft
DT-23	FOX RIVER	1972-12-11		Temperature, water	0.001	с	ft
DT-23	FOX RIVER	1972-12-11		Temperature, water	0.0016	с	ft
DT-23	FOX RIVER	1973-01-16		Temperature, water	1.7	с	ft
DT-23	FOX RIVER	1973-01-17		Temperature, water	0.6	с	ft
DT-23	FOX RIVER	1973-03-07		Temperature, water	8.3	с	ft
DT-23	FOX RIVER	1973-03-08		Temperature, water	7.8	с	ft
DT-23	FOX RIVER	1973-03-26		Temperature, water	6.1	с	ft
DT-23	FOX RIVER	1973-03-26		Temperature, water	6.1	с	ft
DT-23	FOX RIVER	1973-04-05		Temperature, water	8.3	с	ft
DT-23	FOX RIVER	1973-04-06		Temperature, water	8.3	с	ft
DT-23	FOX RIVER	1973-05-01		Temperature, water	15	с	ft
DT-23	FOX RIVER	1973-05-01		Temperature, water	13.9	с	ft
DT-23	FOX RIVER	1973-06-06		Temperature, water	22.8	с	ft
DT-23	FOX RIVER	1973-06-06		Temperature, water	23.3	с	ft
DT-23	FOX RIVER	1973-07-11		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	1973-07-11		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	1973-08-07		Temperature, water	25.6	с	ft
DT-23	FOX RIVER	1973-08-07		Temperature, water	25.6	с	ft
DT-23	FOX RIVER	1973-09-12		Temperature, water	22.2	с	ft
DT-23	FOX RIVER	1973-09-12		Temperature, water	21.7	с	ft
DT-23	FOX RIVER	1973-10-04		Temperature, water	17.8	С	ft
DT-23	FOX RIVER	1973-10-04		Temperature, water	17.8	с	ft
DT-23	FOX RIVER	1973-11-14		Temperature, water	5.6	с	ft
DT-23	FOX RIVER	1973-11-14		Temperature, water	6.1	с	ft
DT-23	FOX RIVER	1973-12-12		Temperature, water	0.6	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1973-12-12		Temperature, water	0.6	С	ft
DT-23	FOX RIVER	1974-01-17		Temperature, water	0.6	С	ft
DT-23	FOX RIVER	1974-01-17		Temperature, water	0.6	С	ft
DT-23	FOX RIVER	1974-02-14		Temperature, water	0	С	ft
DT-23	FOX RIVER	1974-02-14		Temperature, water	0	с	ft
DT-23	FOX RIVER	1974-06-19		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1974-06-19		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	1974-08-16		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	1974-08-21		Temperature, water	25.6	с	ft
DT-23	FOX RIVER	1974-10-16		Temperature, water	10	с	ft
DT-23	FOX RIVER	1974-10-18		Temperature, water	10	с	ft
DT-23	FOX RIVER	1974-12-09		Temperature, water	0.6	с	ft
DT-23	FOX RIVER	1975-01-16		Temperature, water	0	с	ft
DT-23	FOX RIVER	1975-01-28		Temperature, water	1.5	с	ft
DT-23	FOX RIVER	1975-01-28		Temperature, water	1.5	с	ft
DT-23	FOX RIVER	1975-03-13		Temperature, water	2	с	ft
DT-23	FOX RIVER	1975-03-13		Temperature, water	0.5	с	ft
DT-23	FOX RIVER	1975-04-29		Temperature, water	11.5	с	ft
DT-23	FOX RIVER	1975-04-29		Temperature, water	11.5	с	ft
DT-23	FOX RIVER	1975-06-05		Temperature, water	22	С	ft
DT-23	FOX RIVER	1975-06-05		Temperature, water	22	с	ft
DT-23	FOX RIVER	1975-06-23		Temperature, water	27	с	ft
DT-23	FOX RIVER	1975-06-23		Temperature, water	27	с	ft
DT-23	FOX RIVER	1975-08-15		Temperature, water	24.5	с	ft
DT-23	FOX RIVER	1975-08-15		Temperature, water	25	с	ft
DT-23	FOX RIVER	1975-08-28		Temperature, water	25	с	ft
DT-23	FOX RIVER	1975-09-30		Temperature, water	16	с	ft
DT-23	FOX RIVER	1975-09-30		Temperature, water	15.5	с	ft
DT-23	FOX RIVER	1975-11-10		Temperature, water	11	с	ft
DT-23	FOX RIVER	1975-11-10		Temperature, water	12	с	ft
DT-23	FOX RIVER	1975-11-20		Temperature, water	8.5	с	ft
DT-23	FOX RIVER	1975-11-20		Temperature, water	8.5	с	ft
DT-23	FOX RIVER	1976-01-28		Temperature, water	1.5	с	ft
DT-23	FOX RIVER	1976-02-24		Temperature, water	5	с	ft
DT-23	FOX RIVER	1976-03-03		Temperature, water	3.5	с	ft
DT-23	FOX RIVER	1976-03-03		Temperature, water	3	с	ft
DT-23	FOX RIVER	1976-04-28		Temperature, water	11.5	с	ft
DT-23	FOX RIVER	1976-04-28		Temperature, water	13	с	ft
DT-23	FOX RIVER	1976-05-20		Temperature, water	20	с	ft
DT-23	FOX RIVER	1976-09-13		Temperature, water	20.5	с	ft
DT-23	FOX RIVER	1976-09-13		Temperature, water	21	с	ft
DT-23	FOX RIVER	1976-10-26		Temperature, water	6	с	ft
DT-23	FOX RIVER	1976-10-26		Temperature, water	6.5	с	ft
DT-23	FOX RIVER	1976-11-17		Temperature, water	5.5	с	ft
DT-23	FOX RIVER	1976-11-17		Temperature, water	5.5	с	ft
DT-23	FOX RIVER	1977-11-07		Temperature, water	16.5	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	1977-12-07		Temperature, water	0	с	ft
DT-23	FOX RIVER	1977-12-29		Temperature, water	1	с	ft
DT-23	FOX RIVER	1978-01-24		Temperature, water	0.5	с	ft
DT-23	FOX RIVER	1978-03-01		Temperature, water	0	с	ft
DT-23	FOX RIVER	1982-06-15		Temperature, water	21.5	с	ft
DT-23	FOX RIVER	1982-08-04		Temperature, water	26.5	с	ft
DT-23	FOX RIVER	1982-10-19		Temperature, water	11.9	с	ft
DT-23	FOX RIVER	1983-01-31		Temperature, water	1.7	с	ft
DT-23	FOX RIVER	1983-10-03		Temperature, water	19	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	1	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	25.39	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	6.1	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	8.8	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	3	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	25.5	с	ft
DT-23	FOX RIVER	2003-01-07		Temperature, water	0.5	с	ft
DT-23	FOX RIVER	2003-02-04		Temperature, water	1	с	ft
DT-23	FOX RIVER	2003-02-04		Temperature, water	6.1	с	ft
DT-23	FOX RIVER	2003-02-04		Temperature, water	25.77	с	ft
DT-23	FOX RIVER	2003-02-04		Temperature, water	11.8	с	ft
DT-23	FOX RIVER	2003-02-04		Temperature, water	1.4	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	28.1	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	20.7	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	2.7	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	2.1	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	1.9	с	ft
DT-23	FOX RIVER	2003-03-04		Temperature, water	26.31	с	ft
DT-23	FOX RIVER	2003-03-18		Temperature, water	4.4	с	ft
DT-23	FOX RIVER	2003-03-18		Temperature, water	9.9	с	ft
DT-23	FOX RIVER	2003-03-18		Temperature, water	27.7	с	ft
DT-23	FOX RIVER	2003-03-18		Temperature, water	26.7	с	ft
DT-23	FOX RIVER	2003-03-18		Temperature, water	26.74	с	ft
DT-23	FOX RIVER	2003-04-01		Temperature, water	27.12	с	ft
DT-23	FOX RIVER	2003-04-01		Temperature, water	8.4	с	ft
DT-23	FOX RIVER	2003-04-01		Temperature, water	17.2	с	ft
DT-23	FOX RIVER	2003-04-01		Temperature, water	8.2	с	ft
DT-23	FOX RIVER	2003-04-01		Temperature, water	13.7	с	ft
DT-23	FOX RIVER	2003-04-15		Temperature, water	2.3	с	ft
DT-23	FOX RIVER	2003-04-15		Temperature, water	2.1	с	ft
DT-23	FOX RIVER	2003-04-15		Temperature, water	12.6	с	ft
DT-23	FOX RIVER	2003-04-15		Temperature, water	26.95	с	ft
DT-23	FOX RIVER	2003-04-29		Temperature, water	26.91	с	ft
DT-23	FOX RIVER	2003-04-29		Temperature, water	1.1	с	ft
DT-23	FOX RIVER	2003-04-29		Temperature, water	0.2	с	ft
DT-23	FOX RIVER	2003-04-29		Temperature, water	12.7	с	ft
DT-23	FOX RIVER	2003-04-29		Temperature, water	1.4	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-05-13		Temperature, water	9	С	ft
DT-23	FOX RIVER	2003-05-13		Temperature, water	26.69	С	ft
DT-23	FOX RIVER	2003-05-13		Temperature, water	18.5	С	ft
DT-23	FOX RIVER	2003-05-13		Temperature, water	9.6	С	ft
DT-23	FOX RIVER	2003-05-13		Temperature, water	13.6	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	15.6	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	22.7	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	26.44	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	0.6	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	22.9	с	ft
DT-23	FOX RIVER	2003-05-27		Temperature, water	19.3	с	ft
DT-23	FOX RIVER	2003-06-10		Temperature, water	19.9	с	ft
DT-23	FOX RIVER	2003-06-10		Temperature, water	26.1	с	ft
DT-23	FOX RIVER	2003-06-10		Temperature, water	17.9	с	ft
DT-23	FOX RIVER	2003-06-10		Temperature, water	23.8	с	ft
DT-23	FOX RIVER	2003-06-10		Temperature, water	25	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	2.6	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	25.89	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	22.4	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	24.8	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	29	с	ft
DT-23	FOX RIVER	2003-06-24		Temperature, water	0.3	с	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	4.3	С	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	25.8	С	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	0	С	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	1.8	С	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	25.68	С	ft
DT-23	FOX RIVER	2003-07-08		Temperature, water	18.7	С	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	25.6	С	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	23.7	С	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	22.9	с	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	8.8	С	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	1.6	С	ft
DT-23	FOX RIVER	2003-07-22		Temperature, water	14.1	С	ft
DT-23	FOX RIVER	2003-08-05		Temperature, water	6.3	С	ft
DT-23	FOX RIVER	2003-08-05		Temperature, water	24	С	ft
DT-23	FOX RIVER	2003-08-05		Temperature, water	12.5	С	ft
DT-23	FOX RIVER	2003-08-05		Temperature, water	20.5	С	ft
DT-23	FOX RIVER	2003-08-05		Temperature, water	25.85	С	ft
DT-23	FOX RIVER	2003-08-19		Temperature, water	25.5	С	ft
DT-23	FOX RIVER	2003-08-19		Temperature, water	17	С	ft
DT-23	FOX RIVER	2003-08-19		Temperature, water	23.9	С	ft
DT-23	FOX RIVER	2003-08-19		Temperature, water	10.5	с	ft
DT-23	FOX RIVER	2003-08-19		Temperature, water	26.65	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	0	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	20.8	С	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2003-09-02		Temperature, water	12.4	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	0.1	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	13.7	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	20.2	С	ft
DT-23	FOX RIVER	2003-09-02		Temperature, water	26.53	с	ft
DT-23	FOX RIVER	2003-09-16		Temperature, water	22.3	с	ft
DT-23	FOX RIVER	2003-09-16		Temperature, water	0.2	с	ft
DT-23	FOX RIVER	2003-09-16		Temperature, water	20.2	с	ft
DT-23	FOX RIVER	2003-09-16		Temperature, water	0	с	ft
DT-23	FOX RIVER	2003-09-16		Temperature, water	26.53	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	6.8	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	13.1	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	6.2	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	31.8	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	0	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	26.36	с	ft
DT-23	FOX RIVER	2003-09-30		Temperature, water	21	с	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	0.1	с	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	14.8	с	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	1.1	С	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	26.02	с	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	22	с	ft
DT-23	FOX RIVER	2003-10-14		Temperature, water	25.5	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	14.5	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	23.9	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	25.64	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	19.5	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	9.6	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	22.8	с	ft
DT-23	FOX RIVER	2003-10-28		Temperature, water	3.6	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	0.2	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	22.8	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	25.22	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	20	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	2.6	с	ft
DT-23	FOX RIVER	2003-11-25		Temperature, water	5.5	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	11.1	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	8	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	25.2	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	3.6	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	4.9	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	25.05	с	ft
DT-23	FOX RIVER	2003-12-09		Temperature, water	2.7	с	ft
DT-23	FOX RIVER	2004-03-02		Temperature, water	0	с	ft
DT-23	FOX RIVER	2004-03-02		Temperature, water	4.3	с	ft
DT-23	FOX RIVER	2004-03-02		Temperature, water	25.93	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-03-02		Temperature, water	18.7	С	ft
DT-23	FOX RIVER	2004-03-02		Temperature, water	21.4	С	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	1.9	С	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	18	С	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	15.5	с	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	15.4	с	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	17	с	ft
DT-23	FOX RIVER	2004-03-16		Temperature, water	21.3	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	17	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	27.8	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	12	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	0	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	12.5	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	22	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	27.37	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	0.5	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	15.3	с	ft
DT-23	FOX RIVER	2004-03-30		Temperature, water	12.7	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	7.5	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	25.3	С	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	25.4	С	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	12.7	С	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	5	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	0.9	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	0.2	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	22	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	26.74	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	21.5	с	ft
DT-23	FOX RIVER	2004-04-13		Temperature, water	22.2	с	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	10.5	с	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	20	С	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	15.1	С	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	26.74	С	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	21	С	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	0.1	С	ft
DT-23	FOX RIVER	2004-04-27		Temperature, water	22.4	С	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	16	С	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	26.53	с	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	14.6	С	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	18	С	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	19	С	ft
DT-23	FOX RIVER	2004-05-18		Temperature, water	6.9	С	ft
DT-23	FOX RIVER	2004-06-15		Temperature, water	23.5	С	ft
DT-23	FOX RIVER	2004-06-15		Temperature, water	26.19	с	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-06-15		Temperature, water	0.5	С	ft
DT-23	FOX RIVER	2004-06-15		Temperature, water	0.16	С	ft
DT-23	FOX RIVER	2004-06-15		Temperature, water	2.6	С	ft
DT-23	FOX RIVER	2004-06-15		Temperature, water	8.6	С	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	16	с	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	25.5	с	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	5.4	с	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	8.5	с	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	4	с	ft
DT-23	FOX RIVER	2004-07-20		Temperature, water	25.6	с	ft
DT-23	FOX RIVER	2004-08-17		Temperature, water	0	с	ft
DT-23	FOX RIVER	2004-08-17		Temperature, water	21.1	с	ft
DT-23	FOX RIVER	2004-08-17		Temperature, water	25.5	С	ft
DT-23	FOX RIVER	2004-08-17		Temperature, water	20.6	с	ft
DT-23	FOX RIVER	2004-08-17		Temperature, water	25.98	с	ft
DT-23	FOX RIVER	2004-09-21		Temperature, water	26.95	с	ft
DT-23	FOX RIVER	2004-09-21		Temperature, water	27	с	ft
DT-23	FOX RIVER	2004-09-21		Temperature, water	1.8	С	ft
DT-23	FOX RIVER	2004-09-21		Temperature, water	0.6	с	ft
DT-23	FOX RIVER	2004-09-21		Temperature, water	20.6	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	6.9	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	2.6	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	5.4	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	9.9	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	27.79	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	6.7	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	1.6	с	ft
DT-23	FOX RIVER	2004-10-19		Temperature, water	27.88	с	ft
DT-23	FOX RIVER	2004-11-16		Temperature, water	6.6	с	ft
DT-23	FOX RIVER	2004-11-16		Temperature, water	27.79	с	ft
DT-23	FOX RIVER	2004-11-16		Temperature, water	5.8	с	ft
DT-23	FOX RIVER	2004-11-16		Temperature, water	6.5	с	ft
DT-23	FOX RIVER	2005-02-15		Temperature, water	25.8	с	ft
DT-23	FOX RIVER	2005-02-15		Temperature, water	13.7	с	ft
DT-23	FOX RIVER	2005-02-15		Temperature, water	1.8	с	ft
DT-23	FOX RIVER	2005-02-15		Temperature, water	26.86	с	ft
DT-23	FOX RIVER	2005-03-15		Temperature, water	16.3	с	ft
DT-23	FOX RIVER	2005-03-15		Temperature, water	23.5	с	ft
DT-23	FOX RIVER	2005-03-15		Temperature, water	26.65	с	ft
DT-23	FOX RIVER	2005-03-15		Temperature, water	6.5	с	ft
DT-23	FOX RIVER	2005-03-15		Temperature, water	2.1	с	ft
DT-23	FOX RIVER	2005-04-27		Temperature, water	10.6	с	ft
DT-23	FOX RIVER	2005-04-27		Temperature, water	24.2	с	ft
DT-23	FOX RIVER	2005-04-27		Temperature, water	20.5	с	ft
DT-23	FOX RIVER	2005-04-27		Temperature, water	26.31	с	ft
DT-23	FOX RIVER	2005-04-27		Temperature, water	6	с	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	--------------------	--------	-------	-------
DT-23	FOX RIVER	2005-04-27		Temperature, water	0	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	24.7	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	26.86	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	2.2	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	22.8	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	23.5	с	ft
DT-23	FOX RIVER	2005-06-21		Temperature, water	23	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	0	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	28	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	3	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	27	с	ft
DT-23	FOX RIVER	2005-07-19		Temperature, water	2.8	с	ft
DT-23	FOX RIVER	2005-08-16		Temperature, water	25	с	ft
DT-23	FOX RIVER	2005-08-16		Temperature, water	27.03	с	ft
DT-23	FOX RIVER	2005-08-16		Temperature, water	13.7	с	ft
DT-23	FOX RIVER	2005-08-16		Temperature, water	16.84	с	ft
DT-23	FOX RIVER	2005-08-16		Temperature, water	1.6	с	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	26.74	с	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	22	с	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	7.3	с	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	25.7	с	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	16.2	С	ft
DT-23	FOX RIVER	2005-09-20		Temperature, water	5.7	с	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	5.8	с	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	26.53	с	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	26.2	С	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	14	С	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	9.2	С	ft
DT-23	FOX RIVER	2005-10-18		Temperature, water	6.8	с	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	11.8	С	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	0.3	С	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	5.5	С	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	3.1	С	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	0.4	С	ft
DT-23	FOX RIVER	2006-01-17		Temperature, water	26.06	С	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	2.8	С	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	25.4	С	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	0	С	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	2.4	С	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	10.7	C	ft
DT-23	FOX RIVER	2006-03-21		Temperature, water	24.92	C	rt
DT-23	FOX RIVER	2006-04-18		Temperature, water	9.6	C	tt
DT-23	FOX RIVER	2006-04-18		Temperature, water	0.08	C	ft
DT-23		2006-04-18		remperature, water	13.3		π
DT-23	FOX RIVER	2006-04-18		remperature, water	27	C	rt

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-04-18		Temperature, water	18	С	ft
DT-23	FOX RIVER	2006-04-18		Temperature, water	24.3	С	ft
DT-23	FOX RIVER	2006-04-18		Temperature, water	24.96	С	ft
DT-23	FOX RIVER	2006-05-16		Temperature, water	11.3	С	ft
DT-23	FOX RIVER	2006-05-16		Temperature, water	8	с	ft
DT-23	FOX RIVER	2006-05-16		Temperature, water	2.7	с	ft
DT-23	FOX RIVER	2006-05-16		Temperature, water	25.93	с	ft
DT-23	FOX RIVER	2006-05-16		Temperature, water	13	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	6.4	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	1.8	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	21.3	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	23.6	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	27.6	с	ft
DT-23	FOX RIVER	2006-06-20		Temperature, water	3.31	с	ft
DT-23	FOX RIVER	2006-07-18		Temperature, water	29.3	с	ft
DT-23	FOX RIVER	2006-07-18		Temperature, water	28.3	с	ft
DT-23	FOX RIVER	2006-07-18		Temperature, water	12.8	с	ft
DT-23	FOX RIVER	2006-07-18		Temperature, water	27.2	с	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	21.4	с	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	27	с	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	28.2	с	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	28.43	С	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	23.9	С	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	11.1	С	ft
DT-23	FOX RIVER	2006-08-15		Temperature, water	24	С	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	20.6	С	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	25	С	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	11.1	С	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	18.3	С	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	28.51	с	ft
DT-23	FOX RIVER	2006-09-19		Temperature, water	24.5	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	9.5	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	27.92	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	2.3	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	0	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	9.1	С	ft
DT-23	FOX RIVER	2006-10-17		Temperature, water	16.5	С	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	1.6	С	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	10.4	С	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	26.95	С	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	20.3	С	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	28.4	с	ft
DT-23	FOX RIVER	2006-11-21		Temperature, water	3.5	С	ft
DT-23	FOX RIVER	2006-12-19		Temperature, water	25.85	С	ft
DT-23	FOX RIVER	2006-12-19		Temperature, water	4.5	С	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2006-12-19		Temperature, water	15.3	С	ft
DT-23	FOX RIVER	2006-12-19		Temperature, water	21.5	С	ft
DT-23	FOX RIVER	2006-12-19		Temperature, water	2.6	С	ft
DT-23	FOX RIVER	2006-12-19		Temperature, water	27.4	С	ft
DT-23	FOX RIVER	2007-04-17		Temperature, water	10.1	с	ft
DT-23	FOX RIVER	2007-04-17		Temperature, water	25.47	с	ft
DT-23	FOX RIVER	2007-04-17		Temperature, water	3.5	с	ft
DT-23	FOX RIVER	2007-04-17		Temperature, water	22	с	ft
DT-23	FOX RIVER	2007-04-17		Temperature, water	10.9	с	ft
DT-23	FOX RIVER	2007-05-15		Temperature, water	20	с	ft
DT-23	FOX RIVER	2007-05-15		Temperature, water	11.3	с	ft
DT-23	FOX RIVER	2007-05-15		Temperature, water	26.19	с	ft
DT-23	FOX RIVER	2007-05-15		Temperature, water	19.4	с	ft
DT-23	FOX RIVER	2007-05-15		Temperature, water	20	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	27.24	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	21.2	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	26.1	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	23.7	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	21	с	ft
DT-23	FOX RIVER	2007-06-19		Temperature, water	26.1	с	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	22.9	с	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	28.26	с	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	1	С	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	23.5	С	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	17.4	С	ft
DT-23	FOX RIVER	2007-07-17		Temperature, water	23.5	С	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	27.92	С	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	25.2	С	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	21	С	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	0.52	С	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	6.7	с	ft
DT-23	FOX RIVER	2007-08-21		Temperature, water	21	С	ft
DT-23	FOX RIVER	2007-09-18		Temperature, water	17.7	С	ft
DT-23	FOX RIVER	2007-09-18		Temperature, water	18.1	С	ft
DT-23	FOX RIVER	2007-09-18		Temperature, water	27.16	С	ft
DT-23	FOX RIVER	2007-09-18		Temperature, water	18.1	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	27.6	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	0.27	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	14.7	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	27.1	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	26.1	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	4.2	С	ft
DT-23	FOX RIVER	2007-10-16		Temperature, water	14.7	с	ft
DT-23	FOX RIVER	2007-11-20		Temperature, water	8.1	С	ft
DT-23	FOX RIVER	2007-11-20		Temperature, water	5.7	С	ft
DT-23	FOX RIVER	2007-11-20		Temperature, water	26.8	С	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2007-11-20		Temperature, water	25.93	С	ft
DT-23	FOX RIVER	2007-11-20		Temperature, water	0	С	ft
DT-23	FOX RIVER	2007-11-20		Temperature, water	5.7	С	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	6.31	С	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	26.4	с	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	7.6	с	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	19.2	с	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	26.5	с	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	26.65	с	ft
DT-23	FOX RIVER	2008-04-15		Temperature, water	7.6	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	19.7	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	0	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	13.75	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	27.29	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	15.4	с	ft
DT-23	FOX RIVER	2008-05-20		Temperature, water	15.4	с	ft
DT-23	FOX RIVER	2008-06-17		Temperature, water	29	с	ft
DT-23	FOX RIVER	2008-06-17		Temperature, water	21	с	ft
DT-23	FOX RIVER	2008-06-17		Temperature, water	27.24	с	ft
DT-23	FOX RIVER	2008-06-17		Temperature, water	7.4	с	ft
DT-23	FOX RIVER	2008-06-17		Temperature, water	21	с	ft
DT-23	FOX RIVER	2008-07-15		Temperature, water	23.8	с	ft
DT-23	FOX RIVER	2008-08-19		Temperature, water	25.93	с	ft
DT-23	FOX RIVER	2008-08-19		Temperature, water	15.4	с	ft
DT-23	FOX RIVER	2008-08-19		Temperature, water	24.4	с	ft
DT-23	FOX RIVER	2008-08-19		Temperature, water	26.3	с	ft
DT-23	FOX RIVER	2008-08-19		Temperature, water	27.4	с	ft
DT-23	FOX RIVER	2008-09-16		Temperature, water	27.7	с	ft
DT-23	FOX RIVER	2008-09-16		Temperature, water	9.6	с	ft
DT-23	FOX RIVER	2008-09-16		Temperature, water	25.47	с	ft
DT-23	FOX RIVER	2008-09-16		Temperature, water	23.1	с	ft
DT-23	FOX RIVER	2003-04-15			1350	cfs	ft
DT-23	FOX RIVER	2003-08-05			2120	cfs	ft
DT-23	FOX RIVER	2003-09-02			19	cfs	ft
DT-23	FOX RIVER	2003-09-16			12	cfs	ft
DT-23	FOX RIVER	2003-09-30			9.6	cfs	ft
DT-23	FOX RIVER	2003-10-14			180	cfs	ft
DT-23	FOX RIVER	2003-10-28			13	cfs	ft
DT-23	FOX RIVER	2003-11-25			12	cfs	ft
DT-23	FOX RIVER	2003-12-09			9.3	cfs	ft
DT-23	FOX RIVER	2004-03-02			19	cfs	ft
DT-23	FOX RIVER	2004-03-02			573	cfs	ft
DT-23	FOX RIVER	2004-03-16			2.6	cfs	ft
DT-23	FOX RIVER	2004-03-30			0.57	cfs	ft
DT-23	FOX RIVER	2004-03-30			26	cfs	ft
DT-23	FOX RIVER	2004-04-13			20	cfs	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
DT-23	FOX RIVER	2004-04-13			5.3	cfs	ft
DT-23	FOX RIVER	2004-04-27			46	cfs	ft
DT-23	FOX RIVER	2004-05-18			895	cfs	ft
DT-23	FOX RIVER	2004-05-18			21	cfs	ft
DT-23	FOX RIVER	2004-06-15			27	cfs	ft
DT-23	FOX RIVER	2004-07-20			76	cfs	ft
DT-23	FOX RIVER	2004-08-17			14	cfs	ft
DT-23	FOX RIVER	2004-11-16			2462	cfs	ft
DT-23	FOX RIVER	2005-02-15			1918	cfs	ft
DT-23	FOX RIVER	2006-03-21			440	cfs	ft
DT-23	FOX RIVER	2006-05-16			526	cfs	ft
DT-23	FOX RIVER	2006-06-20			504	cfs	ft
DT-23	FOX RIVER	2006-07-18			2780	cfs	ft
DT-23	FOX RIVER	2006-09-19			504	cfs	ft
DT-23	FOX RIVER	2006-10-17			504	cfs	ft
DT-23	FOX RIVER	2006-11-21			3230	cfs	ft
DT-23	FOX RIVER	2008-05-20			493	cfs	ft
DT-23	FOX RIVER	2008-06-17			482	cfs	ft
DT-23	FOX RIVER	2008-08-19			609	cfs	ft
DT-23	FOX RIVER	2008-09-16			555	cfs	ft
RTP	SLOCUM	1973-05-09		Dissolved oxygen (DO)	9.2	mg/L	5 ft
RTP	SLOCUM	1973-08-07		Dissolved oxygen (DO)	10.2	mg/L	0 ft
RTP	SLOCUM	1973-08-07		Dissolved oxygen (DO)	16.8	mg/L	4 ft
RTP	SLOCUM	1973-10-16		Dissolved oxygen (DO)	0	mg/L	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	5.9	mg/L	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	4.2	mg/L	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	1.7	mg/L	4 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	5.5	mg/L	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	4.6	mg/L	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	3.6	mg/L	4 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	3.2	mg/L	6 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	6.6	mg/L	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	5.9	mg/L	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen (DO)	5.1	mg/L	3 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.58	mg/L	0.25 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.62	mg/L	1 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.61	mg/L	2 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.67	mg/L	3 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.72	mg/L	4 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.75	mg/L	5 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.71	mg/L	6 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen (DO)	11.46	mg/L	7 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	12.58	mg/L	0.25 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	12.51	mg/L	1 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	12.34	mg/L	2 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	12.11	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	11.94	mg/L	4 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	11.64	mg/L	5 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen (DO)	7.91	mg/L	6 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	10.95	mg/L	0.25 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	10.95	mg/L	1 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	10.82	mg/L	2 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	10.72	mg/L	3 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	8.82	mg/L	4 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	7.14	mg/L	5 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen (DO)	5.58	mg/L	6 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	13.78	mg/L	0.25 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	14.12	mg/L	1 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	13.77	mg/L	2 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	11.97	mg/L	3 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	10.07	mg/L	4 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	6.75	mg/L	5 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen (DO)	4.93	mg/L	6 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	13.22	mg/L	0.25 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	13.3	mg/L	1 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	13.34	mg/L	2 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	13.03	mg/L	3 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	12.82	mg/L	4 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	8.44	mg/L	5 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen (DO)	7.22	mg/L	6 ft
RTP	SLOCUM	1973-05-09		Dissolved oxygen saturation	90.196	%	5 ft
RTP	SLOCUM	1973-08-07		Dissolved oxygen saturation	121.429	%	0 ft
RTP	SLOCUM	1973-08-07		Dissolved oxygen saturation	200	%	4 ft
RTP	SLOCUM	1973-10-16		Dissolved oxygen saturation	0	%	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	69.4117	%	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	49.4117	%	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	19.5402	%	4 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	65.5	%	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	54.1	%	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	42.4	%	4 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	36.8	%	6 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	78.6	%	0 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	70.2	%	2 ft
RTP	SLOCUM	1977-08-10		Dissolved oxygen saturation	60.7	%	3 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	116.1	%	0.25 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	116.5	%	1 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	116.4	%	2 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	116.8	%	3 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	117.3	%	4 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	117.5	%	5 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	116.9	%	6 ft
RTP	SLOCUM	2005-05-18		Dissolved oxygen saturation	114.3	%	7 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	152.7	%	0.25 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	151.9	%	1 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	149.8	%	2 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	146.6	%	3 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	144.4	%	4 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	140.6	%	5 ft
RTP	SLOCUM	2005-06-22		Dissolved oxygen saturation	94.2	%	6 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	139.1	%	0.25 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	139.2	%	1 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	137.5	%	2 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	136	%	3 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	111.4	%	4 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	90.1	%	5 ft
RTP	SLOCUM	2005-07-20		Dissolved oxygen saturation	70.2	%	6 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	167.9	%	0.25 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	171.9	%	1 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	167.1	%	2 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	144.9	%	3 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	121.5	%	4 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	81.1	%	5 ft
RTP	SLOCUM	2005-08-17		Dissolved oxygen saturation	59.1	%	6 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	152.7	%	0.25 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	153.7	%	1 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	154.1	%	2 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	150.5	%	3 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	147.9	%	4 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	96.8	%	5 ft
RTP	SLOCUM	2005-09-21		Dissolved oxygen saturation	82.6	%	6 ft
RTP	SLOCUM	2005-05-18		Light Extinction	3.0342409	Coef	0.32 ft
RTP	SLOCUM	2005-05-18		Light Extinction	0.858539013	Coef	1.226 ft
RTP	SLOCUM	2005-05-18		Light Extinction	0.902405238	Coef	2.289 ft
RTP	SLOCUM	2005-05-18		Light Extinction	0.377853549	Coef	3.286 ft
RTP	SLOCUM	2005-05-18		Light Extinction	0.61930568	Coef	4.292 ft
RTP	SLOCUM	2005-05-18		Light Extinction	0.515758421	Coef	5.275 ft
RTP	SLOCUM	2005-06-22		Light Extinction	6.239709883	Coef	0.275 ft
RTP	SLOCUM	2005-06-22		Light Extinction	1.738497926	Coef	1.254 ft
RTP	SLOCUM	2005-06-22		Light Extinction	0.983012812	Coef	2.248 ft
RTP	SLOCUM	2005-06-22		Light Extinction	0.820900209	Coef	3.294 ft
RTP	SLOCUM	2005-06-22		Light Extinction	0.648093625	Coef	4.303 ft
RTP	SLOCUM	2005-07-20		Light Extinction	9.27863217	Coef	0.349 ft
RTP	SLOCUM	2005-07-20		Light Extinction	0.610956862	Coef	1.268 ft
RTP	SLOCUM	2005-07-20		Light Extinction	0.383436471	Coef	2.29 ft
RTP	SLOCUM	2005-07-20		Light Extinction	0.19171497	Coef	3.198 ft
RTP	SLOCUM	2005-07-20		Light Extinction	0.265754784	Coef	4.207 ft
RTP	SLOCUM	2005-08-17		Light Extinction	8.361029961	Coef	0.203 ft
RTP	SLOCUM	2005-08-17		Light Extinction	1.508800395	Coef	1.284 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2005-08-17		Light Extinction	0.679273277	Coef	2.274 ft
RTP	SLOCUM	2005-08-17		Light Extinction	0.858403111	Coef	3.228 ft
RTP	SLOCUM	2005-08-17		Light Extinction	0.494713096	Coef	4.199 ft
RTP	SLOCUM	2005-09-21		Light Extinction	5.776867001	Coef	0.277 ft
RTP	SLOCUM	2005-09-21		Light Extinction	1.418880382	Coef	1.266 ft
RTP	SLOCUM	2005-09-21		Light Extinction	0.775214649	Coef	2.258 ft
RTP	SLOCUM	2005-09-21		Light Extinction	0.637825841	Coef	3.262 ft
RTP	SLOCUM	2005-09-21		Light Extinction	0.330013453	Coef	4.259 ft
RTP	SLOCUM	1973-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.13	mg/L	0 ft
RTP	SLOCUM	1973-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.12	mg/L	5 ft
RTP	SLOCUM	1973-08-07		Nitrite (NO2) + Nitrate (NO3) as N	0.15	mg/L	0 ft
RTP	SLOCUM	1973-08-07		Nitrite (NO2) + Nitrate (NO3) as N	0.2	mg/L	4 ft
RTP	SLOCUM	1973-10-16		Nitrite (NO2) + Nitrate (NO3) as N	0.04	mg/L	0 ft
RTP	SLOCUM	1995-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.078	mg/L	3 ft
RTP	SLOCUM	1995-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.074	mg/L	5.5 ft
RTP	SLOCUM	1995-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.063	mg/L	3 ft
RTP	SLOCUM	1995-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.061	mg/L	6 ft
RTP	SLOCUM	1995-07-10		Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	3 ft
RTP	SLOCUM	1995-07-10		Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	5 ft
RTP	SLOCUM	1995-08-08		Nitrite (NO2) + Nitrate (NO3) as N	0.105	mg/L	3 ft
RTP	SLOCUM	1995-08-08		Nitrite (NO2) + Nitrate (NO3) as N	0.092	mg/L	5 ft
RTP	SLOCUM	1995-09-05		Nitrite (NO2) + Nitrate (NO3) as N	0.11	mg/L	3 ft
RTP	SLOCUM	1995-09-05		Nitrite (NO2) + Nitrate (NO3) as N	0.08	mg/L	5 ft
RTP	SLOCUM	2001-05-22		Nitrite (NO2) + Nitrate (NO3) as N	0.084	mg/L	3 ft
RTP	SLOCUM	2001-05-22		Nitrite (NO2) + Nitrate (NO3) as N	0.083	mg/L	5 ft
RTP	SLOCUM	1973-05-09		Nitrogen, ammonia as N	0.07	mg/L	0 ft
RTP	SLOCUM	1973-05-09		Nitrogen, ammonia as N	0.08	mg/L	5 ft
RTP	SLOCUM	1973-08-07		Nitrogen, ammonia as N	0.12	mg/L	0 ft
RTP	SLOCUM	1973-08-07		Nitrogen, ammonia as N	0.18	mg/L	4 ft
RTP	SLOCUM	1973-10-16		Nitrogen, ammonia as N	0.06	mg/L	0 ft
RTP	SLOCUM	1995-08-08		Nitrogen, ammonia as N	0.167	mg/L	3 ft
RTP	SLOCUM	1995-08-08		Nitrogen, ammonia as N	0.218	mg/L	5 ft
RTP	SLOCUM	1995-09-05		Nitrogen, ammonia as N	0.205	mg/L	5 ft
RTP	SLOCUM	1973-05-09		Nitrogen, Kjeldahl	1.9	mg/L	0 ft
RTP	SLOCUM	1973-05-09		Nitrogen, Kjeldahl	2.1	mg/L	5 ft
RTP	SLOCUM	1973-08-07		Nitrogen, Kjeldahl	6.1	mg/L	0 ft
RTP	SLOCUM	1973-08-07		Nitrogen, Kjeldahl	6.4	mg/L	4 ft
RTP	SLOCUM	1973-10-16		Nitrogen, Kjeldahl	6	mg/L	0 ft
RTP	SLOCUM	1995-05-09		Nitrogen, Kjeldahl	2.42	mg/L	3 ft
RTP	SLOCUM	1995-05-09		Nitrogen, Kjeldahl	1.5	mg/L	5.5 ft
RTP	SLOCUM	1995-06-05		Nitrogen, Kjeldahl	3.3	mg/L	3 ft
RTP	SLOCUM	1995-06-05		Nitrogen, Kjeldahl	3.22	mg/L	6 ft
RTP	SLOCUM	1995-07-10		Nitrogen, Kjeldahl	3.38	mg/L	3 ft
RTP	SLOCUM	1995-07-10		Nitrogen, Kjeldahl	3.41	mg/L	5 ft
RTP	SLOCUM	1995-08-08		Nitrogen, Kjeldahl	3.6	mg/L	3 ft
RTP	SLOCUM	1995-08-08		Nitrogen, Kjeldahl	3.5	mg/L	5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	1995-09-05		Nitrogen, Kjeldahl	2.51	mg/L	3 ft
RTP	SLOCUM	1995-09-05		Nitrogen, Kjeldahl	2.79	mg/L	5 ft
RTP	SLOCUM	2001-05-22		Nitrogen, Kjeldahl	0.941	mg/L	3 ft
RTP	SLOCUM	2001-05-22		Nitrogen, Kjeldahl	1.01	mg/L	5 ft
RTP	SLOCUM	2001-06-26		Nitrogen, Kjeldahl	1.44	mg/L	3 ft
RTP	SLOCUM	2001-06-26		Nitrogen, Kjeldahl	2.09	mg/L	5 ft
RTP	SLOCUM	2001-07-31		Nitrogen, Kjeldahl	2.67	mg/L	3 ft
RTP	SLOCUM	2001-07-31		Nitrogen, Kjeldahl	2.99	mg/L	5 ft
RTP	SLOCUM	2001-08-28		Nitrogen, Kjeldahl	3.12	mg/L	3 ft
RTP	SLOCUM	2001-08-28		Nitrogen, Kjeldahl	2.77	mg/L	5 ft
RTP	SLOCUM	2001-09-25		Nitrogen, Kjeldahl	3.11	mg/L	3 ft
RTP	SLOCUM	2001-09-25		Nitrogen, Kjeldahl	3.14	mg/L	5 ft
RTP	SLOCUM	2005-05-18		Nitrogen, Kjeldahl	1.71	mg/L	3 ft
RTP	SLOCUM	2005-06-22		Nitrogen, Kjeldahl	2.57	mg/L	3 ft
RTP	SLOCUM	2005-07-20		Nitrogen, Kjeldahl	3.46	mg/L	3 ft
RTP	SLOCUM	2005-08-17		Nitrogen, Kjeldahl	3.38	mg/L	3 ft
RTP	SLOCUM	2005-09-21		Nitrogen, Kjeldahl	3.36	mg/L	3 ft
RTP	SLOCUM	1995-05-09		Orthophosphate as P, Dissolved	0.021	mg/L	3 ft
RTP	SLOCUM	1995-05-09		Orthophosphate as P, Dissolved	0.022	mg/L	5.5 ft
RTP	SLOCUM	1995-06-05		Orthophosphate as P, Dissolved	0.005	mg/L	3 ft
RTP	SLOCUM	1995-06-05		Orthophosphate as P, Dissolved	0.005	mg/L	6 ft
RTP	SLOCUM	1995-07-10		Orthophosphate as P, Dissolved	0.005	mg/L	3 ft
RTP	SLOCUM	1995-08-08		Orthophosphate as P, Dissolved	0.006	mg/L	5 ft
RTP	SLOCUM	2001-06-26		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTP	SLOCUM	2001-06-26		Orthophosphate as P, Dissolved	0.006	mg/L	5 ft
RTP	SLOCUM	2001-09-25		Orthophosphate as P, Dissolved	0.012	mg/L	3 ft
RTP	SLOCUM	2001-09-25		Orthophosphate as P, Dissolved	0.008	mg/L	5 ft
RTP	SLOCUM	2005-09-21		Orthophosphate as P, Dissolved	0.015	mg/L	3 ft
RTP	SLOCUM	1973-05-09		рН	8.8	SU	0 ft
RTP	SLOCUM	1973-05-09		рН	8.6	SU	5 ft
RTP	SLOCUM	1973-08-07		рН	9.4	SU	0 ft
RTP	SLOCUM	1973-08-07		рН	9.3	SU	4 ft
RTP	SLOCUM	1973-10-16		рН	9.2	SU	0 ft
RTP	SLOCUM	1995-05-09		рН	8.5	SU	3 ft
RTP	SLOCUM	1995-05-09		рН	8.5	SU	5.5 ft
RTP	SLOCUM	1995-06-05		рН	8.45	SU	3 ft
RTP	SLOCUM	1995-06-05		рН	8.23	SU	6 ft
RTP	SLOCUM	1995-07-10		рН	8.42	SU	3 ft
RTP	SLOCUM	1995-07-10		рН	8.33	SU	5 ft
RTP	SLOCUM	1995-08-08		рН	8.36	SU	3 ft
RTP	SLOCUM	1995-08-08		рН	8.34	SU	5 ft
RTP	SLOCUM	1995-09-05		рН	8.68	SU	3 ft
RTP	SLOCUM	1995-09-05		рН	8.72	SU	5 ft
RTP	SLOCUM	2001-05-22		рН	8.22	SU	3 ft
RTP	SLOCUM	2001-05-22		рН	8.23	SU	5 ft
RTP	SLOCUM	2001-06-26		рН	8.43	SU	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2001-06-26		рН	8.33	SU	5 ft
RTP	SLOCUM	2001-07-31		рН	8.62	SU	3 ft
RTP	SLOCUM	2001-07-31		рН	7.88	SU	5 ft
RTP	SLOCUM	2001-08-28		рН	8.44	SU	3 ft
RTP	SLOCUM	2001-08-28		рН	8.39	SU	5 ft
RTP	SLOCUM	2001-09-25		рН	8.43	SU	3 ft
RTP	SLOCUM	2001-09-25		рН	8.43	SU	5 ft
RTP	SLOCUM	2005-05-18		рН	8.38	SU	0.25 ft
RTP	SLOCUM	2005-05-18		рН	8.4	SU	1 ft
RTP	SLOCUM	2005-05-18		рН	8.43	SU	2 ft
RTP	SLOCUM	2005-05-18		рН	8.45	SU	3 ft
RTP	SLOCUM	2005-05-18		рН	8.47	SU	4 ft
RTP	SLOCUM	2005-05-18		рН	8.48	SU	5 ft
RTP	SLOCUM	2005-05-18		рН	8.49	SU	6 ft
RTP	SLOCUM	2005-05-18		рН	8.49	SU	7 ft
RTP	SLOCUM	2005-06-22		рН	9	SU	0.25 ft
RTP	SLOCUM	2005-06-22		рН	9.02	SU	1 ft
RTP	SLOCUM	2005-06-22		рН	9.06	SU	2 ft
RTP	SLOCUM	2005-06-22		рН	9.05	SU	3 ft
RTP	SLOCUM	2005-06-22		рН	9.03	SU	4 ft
RTP	SLOCUM	2005-06-22		рН	9.02	SU	5 ft
RTP	SLOCUM	2005-06-22		рН	8.74	SU	6 ft
RTP	SLOCUM	2005-07-20		рН	9.28	SU	0.25 ft
RTP	SLOCUM	2005-07-20		рН	9.34	SU	1 ft
RTP	SLOCUM	2005-07-20		рН	9.37	SU	2 ft
RTP	SLOCUM	2005-07-20		рН	9.37	SU	3 ft
RTP	SLOCUM	2005-07-20		рН	9.28	SU	4 ft
RTP	SLOCUM	2005-07-20		рН	9.21	SU	5 ft
RTP	SLOCUM	2005-07-20		рН	9.11	SU	6 ft
RTP	SLOCUM	2005-08-17		рН	9.45	SU	0.25 ft
RTP	SLOCUM	2005-08-17		рН	9.55	SU	1 ft
RTP	SLOCUM	2005-08-17		рН	9.58	SU	2 ft
RTP	SLOCUM	2005-08-17		рН	9.46	SU	3 ft
RTP	SLOCUM	2005-08-17		рН	9.41	SU	4 ft
RTP	SLOCUM	2005-08-17		рН	9.18	SU	5 ft
RTP	SLOCUM	2005-08-17		рН	9.08	SU	6 ft
RTP	SLOCUM	2005-09-21		рН	9.38	SU	0.25 ft
RTP	SLOCUM	2005-09-21		рН	9.42	SU	1 ft
RTP	SLOCUM	2005-09-21		рН	9.46	SU	2 ft
RTP	SLOCUM	2005-09-21		рН	9.46	SU	3 ft
RTP	SLOCUM	2005-09-21		рН	9.47	SU	4 ft
RTP	SLOCUM	2005-09-21		рН	9.26	SU	5 ft
RTP	SLOCUM	2005-09-21		рН	9.21	SU	6 ft
RTP	SLOCUM	1973-05-09		Phosphorus	0.49	mg/L	0 ft
RTP	SLOCUM	1973-05-09		Phosphorus	0.512	mg/L	5 ft
RTP	SLOCUM	1973-08-07		Phosphorus	0.865	mg/L	0 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	1973-08-07		Phosphorus	0.9	mg/L	4 ft
RTP	SLOCUM	1973-10-16		Phosphorus	1.33	mg/L	0 ft
RTP	SLOCUM	1995-05-09		Phosphorus	0.132	mg/L	3 ft
RTP	SLOCUM	1995-05-09		Phosphorus	0.162	mg/L	5.5 ft
RTP	SLOCUM	1995-06-05		Phosphorus	0.192	mg/L	3 ft
RTP	SLOCUM	1995-06-05		Phosphorus	0.163	mg/L	6 ft
RTP	SLOCUM	1995-07-10		Phosphorus	0.19	mg/L	3 ft
RTP	SLOCUM	1995-07-10		Phosphorus	0.174	mg/L	5 ft
RTP	SLOCUM	1995-08-08		Phosphorus	0.195	mg/L	3 ft
RTP	SLOCUM	1995-08-08		Phosphorus	0.19	mg/L	5 ft
RTP	SLOCUM	1995-09-05		Phosphorus	0.242	mg/L	3 ft
RTP	SLOCUM	1995-09-05		Phosphorus	0.242	mg/L	5 ft
RTP	SLOCUM	2001-05-22		Phosphorus	0.143	mg/L	3 ft
RTP	SLOCUM	2001-05-22		Phosphorus	0.134	mg/L	5 ft
RTP	SLOCUM	2001-06-26		Phosphorus	0.192	mg/L	3 ft
RTP	SLOCUM	2001-06-26		Phosphorus	0.203	mg/L	5 ft
RTP	SLOCUM	2001-07-31		Phosphorus	0.14	mg/L	3 ft
RTP	SLOCUM	2001-07-31		Phosphorus	0.146	mg/L	5 ft
RTP	SLOCUM	2001-08-28		Phosphorus	0.268	mg/L	3 ft
RTP	SLOCUM	2001-08-28		Phosphorus	0.239	mg/L	5 ft
RTP	SLOCUM	2001-09-25		Phosphorus	0.168	mg/L	3 ft
RTP	SLOCUM	2001-09-25		Phosphorus	0.159	mg/L	5 ft
RTP	SLOCUM	2005-05-18		Phosphorus	0.107	mg/L	3 ft
RTP	SLOCUM	2005-06-22		Phosphorus	0.135	mg/L	3 ft
RTP	SLOCUM	2005-07-20		Phosphorus	0.192	mg/L	3 ft
RTP	SLOCUM	2005-08-17		Phosphorus	0.16	mg/L	3 ft
RTP	SLOCUM	2005-09-21		Phosphorus	0.154	mg/L	3 ft
RTP	SLOCUM	1973-05-09		Secchi	1.5	ft	ft
RTP	SLOCUM	1973-08-07		Secchi	0.6667	ft	ft
RTP	SLOCUM	1973-10-16		Secchi	1	ft	ft
RTP	SLOCUM	1995-05-09		Secchi	1.08	ft	ft
RTP	SLOCUM	1995-06-05		Secchi	1.16	ft	ft
RTP	SLOCUM	1995-07-10		Secchi	1.25	ft	ft
RTP	SLOCUM	1995-08-08		Secchi	0.92	ft	ft
RTP	SLOCUM	2001-05-22		Secchi	1.02	ft	ft
RTP	SLOCUM	2001-06-26		Secchi	0.98	ft	ft
RTP	SLOCUM	2001-07-31		Secchi	0.82	ft	ft
RTP	SLOCUM	2001-08-28		Secchi	0.79	ft	ft
RTP	SLOCUM	2001-09-25		Secchi	1.05	ft	ft
RTP	SLOCUM	2005-05-18		Secchi	1.64	ft	ft
RTP	SLOCUM	2005-06-22		Secchi	0.689	ft	ft
RTP	SLOCUM	2005-07-20		Secchi	0.85	ft	ft
RTP	SLOCUM	2005-08-17		Secchi	0.98	ft	ft
RTP	SLOCUM	2005-09-21		Secchi	0.98	ft	ft
RTP	SLOCUM	1995-06-05		Specific conductance	638	uS/cm	3 ft
RTP	SLOCUM	1995-06-05		Specific conductance	641	uS/cm	6 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	1995-07-10		Specific conductance	656	uS/cm	3 ft
RTP	SLOCUM	1995-07-10		Specific conductance	659	uS/cm	5 ft
RTP	SLOCUM	1995-08-08		Specific conductance	602	uS/cm	3 ft
RTP	SLOCUM	1995-08-08		Specific conductance	602	uS/cm	5 ft
RTP	SLOCUM	1995-09-05		Specific conductance	580	uS/cm	3 ft
RTP	SLOCUM	1995-09-05		Specific conductance	579	uS/cm	5 ft
RTP	SLOCUM	2001-05-22		Specific conductance	900.5	uS/cm	3 ft
RTP	SLOCUM	2001-05-22		Specific conductance	899.5	uS/cm	5 ft
RTP	SLOCUM	2001-06-26		Specific conductance	809.1	uS/cm	3 ft
RTP	SLOCUM	2001-06-26		Specific conductance	810.8	uS/cm	5 ft
RTP	SLOCUM	2001-07-31		Specific conductance	789.1	uS/cm	3 ft
RTP	SLOCUM	2001-07-31		Specific conductance	816.7	uS/cm	5 ft
RTP	SLOCUM	2001-08-28		Specific conductance	809.6	uS/cm	3 ft
RTP	SLOCUM	2001-08-28		Specific conductance	810	uS/cm	5 ft
RTP	SLOCUM	2001-09-25		Specific conductance	750	uS/cm	3 ft
RTP	SLOCUM	2001-09-25		Specific conductance	749.3	uS/cm	5 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	0.25 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	1 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	2 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	3 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	4 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	5 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1109	uS/cm	6 ft
RTP	SLOCUM	2005-05-18		Specific conductance	1110	uS/cm	7 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1067	uS/cm	0.25 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1067	uS/cm	1 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1067	uS/cm	2 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1068	uS/cm	3 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1068	uS/cm	4 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1068	uS/cm	5 ft
RTP	SLOCUM	2005-06-22		Specific conductance	1079	uS/cm	6 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1122	uS/cm	0.25 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1122	uS/cm	1 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1122	uS/cm	2 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1122	uS/cm	3 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1123	uS/cm	4 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1122	uS/cm	5 ft
RTP	SLOCUM	2005-07-20		Specific conductance	1123	uS/cm	6 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1134	uS/cm	0.25 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1134	uS/cm	1 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1135	uS/cm	2 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1135	uS/cm	3 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1134	uS/cm	4 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1136	uS/cm	5 ft
RTP	SLOCUM	2005-08-17		Specific conductance	1140	uS/cm	6 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1145	uS/cm	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2005-09-21		Specific conductance	1158	uS/cm	1 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1158	uS/cm	2 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1158	uS/cm	3 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1158	uS/cm	4 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1146	uS/cm	5 ft
RTP	SLOCUM	2005-09-21		Specific conductance	1160	uS/cm	6 ft
RTP	SLOCUM	1973-05-09		Temperature, water	14.6	с	0 ft
RTP	SLOCUM	1973-05-09		Temperature, water	14.6	с	5 ft
RTP	SLOCUM	1973-08-07		Temperature, water	25.3	с	0 ft
RTP	SLOCUM	1973-08-07		Temperature, water	25.1	с	4 ft
RTP	SLOCUM	1973-10-16		Temperature, water	16.4	с	0 ft
RTP	SLOCUM	1977-08-10		Temperature, water	24.5	с	0 ft
RTP	SLOCUM	1977-08-10		Temperature, water	23.8	с	2 ft
RTP	SLOCUM	1977-08-10		Temperature, water	23	с	4 ft
RTP	SLOCUM	1977-08-10		Temperature, water	25.5	С	0 ft
RTP	SLOCUM	1977-08-10		Temperature, water	24.3	с	2 ft
RTP	SLOCUM	1977-08-10		Temperature, water	23.6	с	4 ft
RTP	SLOCUM	1977-08-10		Temperature, water	23.2	с	6 ft
RTP	SLOCUM	1977-08-10		Temperature, water	25	с	0 ft
RTP	SLOCUM	1977-08-10		Temperature, water	25	с	2 ft
RTP	SLOCUM	1977-08-10		Temperature, water	24.9	с	3 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.36	с	0.25 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.34	с	1 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.35	с	2 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.29	с	3 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.27	с	4 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.22	с	5 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.16	с	6 ft
RTP	SLOCUM	2005-05-18		Temperature, water	15.1	с	7 ft
RTP	SLOCUM	2005-06-22		Temperature, water	24.99	с	0.25 ft
RTP	SLOCUM	2005-06-22		Temperature, water	25.01	с	1 ft
RTP	SLOCUM	2005-06-22		Temperature, water	25	с	2 ft
RTP	SLOCUM	2005-06-22		Temperature, water	24.89	с	3 ft
RTP	SLOCUM	2005-06-22		Temperature, water	24.82	с	4 ft
RTP	SLOCUM	2005-06-22		Temperature, water	24.74	с	5 ft
RTP	SLOCUM	2005-06-22		Temperature, water	23.97	с	6 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.53	с	0.25 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.53	с	1 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.52	с	2 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.47	с	3 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.23	с	4 ft
RTP	SLOCUM	2005-07-20		Temperature, water	27.12	с	5 ft
RTP	SLOCUM	2005-07-20		Temperature, water	26.99	С	6 ft
RTP	SLOCUM	2005-08-17		Temperature, water	25.19	С	0.25 ft
RTP	SLOCUM	2005-08-17		Temperature, water	25.14	С	1 ft
RTP	SLOCUM	2005-08-17		Temperature, water	24.98	С	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM	2005-08-17		Temperature, water	24.82	С	3 ft
RTP	SLOCUM	2005-08-17		Temperature, water	24.68	С	4 ft
RTP	SLOCUM	2005-08-17		Temperature, water	24.46	С	5 ft
RTP	SLOCUM	2005-08-17		Temperature, water	24.31	С	6 ft
RTP	SLOCUM	2005-09-21		Temperature, water	22.37	С	0.25 ft
RTP	SLOCUM	2005-09-21		Temperature, water	22.35	С	1 ft
RTP	SLOCUM	2005-09-21		Temperature, water	22.35	С	2 ft
RTP	SLOCUM	2005-09-21		Temperature, water	22.32	С	3 ft
RTP	SLOCUM	2005-09-21		Temperature, water	22.26	С	4 ft
RTP	SLOCUM	2005-09-21		Temperature, water	21.97	С	5 ft
RTP	SLOCUM	2005-09-21		Temperature, water	21.85	С	6 ft
RTP	SLOCUM LAKE	1995-05-09		Alkalinity	155	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-05-09		Alkalinity	154	mg/l CaCO3	5.5
RTP	SLOCUM LAKE	1995-06-05		Alkalinity	175	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-06-05		Alkalinity	176	mg/l CaCO3	6
RTP	SLOCUM LAKE	1995-07-10		Alkalinity	183	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-07-10		Alkalinity	182	mg/l CaCO3	5
RTP	SLOCUM LAKE	1995-08-08		Alkalinity	143	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-08-08		Alkalinity	140	mg/l CaCO3	5
RTP	SLOCUM LAKE	1995-09-05		Alkalinity	130	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-09-05		Alkalinity	128	mg/l CaCO3	5
RTP	SLOCUM LAKE	2001-05-22		Alkalinity	185	mg/l CaCO3	3
RTP	SLOCUM LAKE	2001-05-22		Alkalinity	187	mg/l CaCO3	5
RTP	SLOCUM LAKE	2001-06-26		Alkalinity	145	mg/l CaCO3	3
RTP	SLOCUM LAKE	2001-06-26		Alkalinity	146	mg/l CaCO3	5
RTP	SLOCUM LAKE	2001-07-31		Alkalinity	128	mg/l CaCO3	3
RTP	SLOCUM LAKE	2001-07-31		Alkalinity	130	mg/l CaCO3	5
RTP	SLOCUM LAKE	2001-08-28		Alkalinity	149	mg/l CaCO3	3
RTP	SLOCUM LAKE	2001-08-28		Alkalinity	150	mg/l CaCO3	5
RTP	SLOCUM LAKE	2001-09-25		Alkalinity	129	mg/l CaCO3	3
RTP	SLOCUM LAKE	2001-09-25		Alkalinity	128	mg/l CaCO3	5
RTP	SLOCUM LAKE	2005-05-18		Alkalinity	169	mg/l CaCO3	3
RTP	SLOCUM LAKE	2005-06-22		Alkalinity	130	mg/l CaCO3	3
RTP	SLOCUM LAKE	2005-07-20		Alkalinity	110	mg/l CaCO3	3
RTP	SLOCUM LAKE	2005-08-17		Alkalinity	108	mg/l CaCO3	3
RTP	SLOCUM LAKE	2005-09-21		Alkalinity	108	mg/l CaCO3	3
RTP	SLOCUM LAKE	2013-05-22		Alkalinity	177	mg/l CaCO3	3
RTP	SLOCUM LAKE	2013-06-19		Alkalinity	175	mg/l CaCO3	3
RTP	SLOCUM LAKE	2013-07-17		Alkalinity	138	mg/l CaCO3	3
RTP	SLOCUM LAKE	2013-08-21		Alkalinity	122	mg/l CaCO3	3
RTP	SLOCUM LAKE	2013-09-18		Alkalinity	115	mg/l CaCO3	3
RTP	SLOCUM LAKE	1995-08-08		Ammonia as N	0.167	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Ammonia as N	0.218	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Ammonia as N	0.205	mg/L	5
RTP	SLOCUM LAKE	2013-05-22		Ammonia as N	0.342	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Ammonia as N	0.193	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	2005-05-18		Chloride	240	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Chloride	243	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Chloride	259	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Chloride	267	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Chloride	277	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Chloride	153	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Chloride	167	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Chloride	135	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Chloride	97.5	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Chloride	151	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-05-09		Chlorophyll a	0	ug/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-06-05		Chlorophyll a	0	ug/L	6
RTP	SLOCUM LAKE	1995-07-10		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-07-10		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	1995-08-08		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-08-08		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	1995-09-05		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-09-05		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2001-05-22		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2001-05-22		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2001-06-26		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2001-06-26		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2001-07-31		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2001-07-31		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2001-08-28		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2001-08-28		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2001-09-25		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2001-09-25		Chlorophyll a	0	ug/L	5
RTP	SLOCUM LAKE	2005-05-18		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2005-06-22		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2005-07-20		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2005-08-17		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	2005-09-21		Chlorophyll a	0	ug/L	3
RTP	SLOCUM LAKE	1995-05-09		Depth, Secchi Disk Depth	1.08	ft	3
RTP	SLOCUM LAKE	1995-06-05		Depth, Secchi Disk Depth	1.16	ft	3
RTP	SLOCUM LAKE	1995-07-10		Depth, Secchi Disk Depth	1.25	ft	3
RTP	SLOCUM LAKE	1995-08-08		Depth, Secchi Disk Depth	0.92	ft	3
RTP	SLOCUM LAKE	1995-09-05		Depth, Secchi Disk Depth	0.58	ft	3
RTP	SLOCUM LAKE	2001-05-22		Depth, Secchi Disk Depth	1.02	ft	3
RTP	SLOCUM LAKE	2001-06-26		Depth, Secchi Disk Depth	0.98	ft	3
RTP	SLOCUM LAKE	2001-07-31		Depth, Secchi Disk Depth	0.82	ft	3
RTP	SLOCUM LAKE	2001-08-28		Depth, Secchi Disk Depth	0.79	ft	3
RTP	SLOCUM LAKE	2001-09-25		Depth, Secchi Disk Depth	1.05	ft	3
RTP	SLOCUM LAKE	2005-05-18		Depth, Secchi Disk Depth	1.64	ft	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	2005-06-22		Depth, Secchi Disk Depth	0.689	ft	3
RTP	SLOCUM LAKE	2005-07-20		Depth, Secchi Disk Depth	0.85	ft	3
RTP	SLOCUM LAKE	2005-08-17		Depth, Secchi Disk Depth	0.98	ft	3
RTP	SLOCUM LAKE	2005-09-21		Depth, Secchi Disk Depth	0.98	ft	3
RTP	SLOCUM LAKE	2013-05-22		Depth, Secchi Disk Depth	0.72	ft	3
RTP	SLOCUM LAKE	2013-06-19		Depth, Secchi Disk Depth	0.72	ft	3
RTP	SLOCUM LAKE	2013-07-17		Depth, Secchi Disk Depth	1.1	ft	3
RTP	SLOCUM LAKE	2013-08-21		Depth, Secchi Disk Depth	8.1	ft	3
RTP	SLOCUM LAKE	2013-09-18		Depth, Secchi Disk Depth	0.83	ft	3
RTP	SLOCUM LAKE	2013-05-22		Dissolved oxygen (DO)	6.09	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Dissolved oxygen (DO)	8.87	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Dissolved oxygen (DO)	8.95	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Dissolved oxygen (DO)	9.51	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Dissolved oxygen (DO)	9.58	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Nitrogen, Kjeldahl	2.42	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Nitrogen, Kjeldahl	1.5	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Nitrogen, Kjeldahl	3.3	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Nitrogen, Kjeldahl	3.22	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Nitrogen, Kjeldahl	3.38	mg/L	3
RTP	SLOCUM LAKE	1995-07-10		Nitrogen, Kjeldahl	3.41	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Nitrogen, Kjeldahl	3.6	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Nitrogen, Kjeldahl	3.5	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Nitrogen, Kjeldahl	2.51	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Nitrogen, Kjeldahl	2.79	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Nitrogen, Kjeldahl	0.941	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Nitrogen, Kjeldahl	1.01	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Nitrogen, Kjeldahl	1.44	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Nitrogen, Kjeldahl	2.09	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Nitrogen, Kjeldahl	2.67	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Nitrogen, Kjeldahl	2.99	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Nitrogen, Kjeldahl	3.12	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Nitrogen, Kjeldahl	2.77	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Nitrogen, Kjeldahl	3.11	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Nitrogen, Kjeldahl	3.14	mg/L	5
RTP	SLOCUM LAKE	2005-05-18		Nitrogen, Kjeldahl	1.71	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Nitrogen, Kjeldahl	2.57	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Nitrogen, Kjeldahl	3.46	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Nitrogen, Kjeldahl	3.38	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Nitrogen, Kjeldahl	3.36	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Nitrogen, Kjeldahl	2.65	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Nitrogen, Kjeldahl	2.34	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Nitrogen, Kjeldahl	1.92	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Nitrogen, Kjeldahl	2.43	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Nitrogen, Kjeldahl	2.72	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Nitrogen, Nitrate (NO3) as N	0.078	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Nitrogen, Nitrate (NO3) as N	0.074	mg/L	5.5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	1995-06-05		Nitrogen, Nitrate (NO3) as N	0.063	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Nitrogen, Nitrate (NO3) as N	0.061	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Nitrogen, Nitrate (NO3) as N	0.056	mg/L	3
RTP	SLOCUM LAKE	1995-07-10		Nitrogen, Nitrate (NO3) as N	0.056	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Nitrogen, Nitrate (NO3) as N	0.105	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Nitrogen, Nitrate (NO3) as N	0.092	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Nitrogen, Nitrate (NO3) as N	0.11	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Nitrogen, Nitrate (NO3) as N	0.08	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Nitrogen, Nitrate (NO3) as N	0.084	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Nitrogen, Nitrate (NO3) as N	0.083	mg/L	5
RTP	SLOCUM LAKE	2013-05-22		Nitrogen, Nitrate (NO3) as N	0.095	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		рН	8.5	SU	3
RTP	SLOCUM LAKE	1995-05-09		рН	8.5	SU	5.5
RTP	SLOCUM LAKE	1995-06-05		рН	8.45	SU	3
RTP	SLOCUM LAKE	1995-06-05		рН	8.23	SU	6
RTP	SLOCUM LAKE	1995-07-10		рН	8.42	SU	3
RTP	SLOCUM LAKE	1995-07-10		рН	8.33	SU	5
RTP	SLOCUM LAKE	1995-08-08		рН	8.36	SU	3
RTP	SLOCUM LAKE	1995-08-08		рН	8.34	SU	5
RTP	SLOCUM LAKE	1995-09-05		рН	8.68	SU	3
RTP	SLOCUM LAKE	1995-09-05		рН	8.72	SU	5
RTP	SLOCUM LAKE	2001-05-22		рН	8.22	SU	3
RTP	SLOCUM LAKE	2001-05-22		рН	8.23	SU	5
RTP	SLOCUM LAKE	2001-06-26		рН	8.43	SU	3
RTP	SLOCUM LAKE	2001-06-26		рН	8.33	SU	5
RTP	SLOCUM LAKE	2001-07-31		рН	8.62	SU	3
RTP	SLOCUM LAKE	2001-07-31		рН	7.88	SU	5
RTP	SLOCUM LAKE	2001-08-28		рН	8.44	SU	3
RTP	SLOCUM LAKE	2001-08-28		рН	8.39	SU	5
RTP	SLOCUM LAKE	2001-09-25		рН	8.43	SU	3
RTP	SLOCUM LAKE	2001-09-25		рН	8.43	SU	5
RTP	SLOCUM LAKE	2005-05-18		рН	8.46	SU	3
RTP	SLOCUM LAKE	2005-06-22		рН	9.04	SU	3
RTP	SLOCUM LAKE	2005-07-20		рН	9.37	SU	3
RTP	SLOCUM LAKE	2005-08-17		рН	9.46	SU	3
RTP	SLOCUM LAKE	2005-09-21		рН	9.46	SU	3
RTP	SLOCUM LAKE	2013-05-22		рН	8.26	SU	3
RTP	SLOCUM LAKE	2013-06-19		рН	8.38	SU	3
RTP	SLOCUM LAKE	2013-07-17		рН	8.73	SU	3
RTP	SLOCUM LAKE	2013-08-21		рН	8.99	SU	3
RTP	SLOCUM LAKE	2013-09-18		рН	9.11	SU	3
RTP	SLOCUM LAKE	1995-05-09		Phosphorus	0.132	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Phosphorus	0.162	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Phosphorus	0.192	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Phosphorus	0.163	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Phosphorus	0.19	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	1995-07-10		Phosphorus	0.174	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Phosphorus	0.195	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Phosphorus	0.19	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Phosphorus	0.242	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Phosphorus	0.242	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Phosphorus	0.143	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Phosphorus	0.134	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Phosphorus	0.192	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Phosphorus	0.203	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Phosphorus	0.14	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Phosphorus	0.146	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Phosphorus	0.268	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Phosphorus	0.239	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Phosphorus	0.168	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Phosphorus	0.159	mg/L	5
RTP	SLOCUM LAKE	2005-05-18		Phosphorus	0.107	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Phosphorus	0.135	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Phosphorus	0.192	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Phosphorus	0.16	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Phosphorus	0.154	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Phosphorus	0.209	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Phosphorus	0.129	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Phosphorus	0.127	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Phosphorus	0.148	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Phosphorus	0.148	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Phosphorus, Soluble Reactive	0.021	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Phosphorus, Soluble Reactive	0.022	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Phosphorus, Soluble Reactive	0.005	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Phosphorus, Soluble Reactive	0.005	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Phosphorus, Soluble Reactive	0.005	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Phosphorus, Soluble Reactive	0.006	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Phosphorus, Soluble Reactive	0.006	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Phosphorus, Soluble Reactive	0.012	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Phosphorus, Soluble Reactive	0.008	mg/L	5
RTP	SLOCUM LAKE	2005-09-21		Phosphorus, Soluble Reactive	0.015	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Phosphorus, Soluble Reactive	0.016	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Solids, Total Dissolved (TDS)	524	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Solids, Total Dissolved (TDS)	522	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Solids, Total Dissolved (TDS)	476	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Solids, Total Dissolved (TDS)	484	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Solids, Total Dissolved (TDS)	452	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Solids, Total Dissolved (TDS)	452	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Solids, Total Dissolved (TDS)	482	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Solids, Total Dissolved (TDS)	464	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Solids, Total Dissolved (TDS)	438	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	2001-09-25		Solids, Total Dissolved (TDS)	448	mg/L	5
RTP	SLOCUM LAKE	1995-05-09		Solids, Total Suspended (TSS)	25	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Solids, Total Suspended (TSS)	21	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Solids, Total Suspended (TSS)	24	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Solids, Total Suspended (TSS)	19	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Solids, Total Suspended (TSS)	23	mg/L	3
RTP	SLOCUM LAKE	1995-07-10		Solids, Total Suspended (TSS)	21	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Solids, Total Suspended (TSS)	27	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Solids, Total Suspended (TSS)	28	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Solids, Total Suspended (TSS)	47	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Solids, Total Suspended (TSS)	43	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Solids, Total Suspended (TSS)	39	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Solids, Total Suspended (TSS)	41.2	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Solids, Total Suspended (TSS)	48	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Solids, Total Suspended (TSS)	51	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Solids, Total Suspended (TSS)	38	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Solids, Total Suspended (TSS)	38	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Solids, Total Suspended (TSS)	46.6	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Solids, Total Suspended (TSS)	54.8	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Solids, Total Suspended (TSS)	24.6	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Solids, Total Suspended (TSS)	27	mg/L	5
RTP	SLOCUM LAKE	2005-05-18		Solids, Total Suspended (TSS)	24	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Solids, Total Suspended (TSS)	57	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Solids, Total Suspended (TSS)	77	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Solids, Total Suspended (TSS)	49	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Solids, Total Suspended (TSS)	61	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Solids, Total Suspended (TSS)	39	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Solids, Total Suspended (TSS)	32	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Solids, Total Suspended (TSS)	28	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Solids, Total Suspended (TSS)	32	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Solids, Total Suspended (TSS)	34	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Specific conductance	0.638	mS/cm	3
RTP	SLOCUM LAKE	1995-06-05		Specific conductance	0.641	mS/cm	6
RTP	SLOCUM LAKE	1995-07-10		Specific conductance	0.656	mS/cm	3
RTP	SLOCUM LAKE	1995-07-10		Specific conductance	0.659	mS/cm	5
RTP	SLOCUM LAKE	1995-08-08		Specific conductance	0.602	mS/cm	3
RTP	SLOCUM LAKE	1995-08-08		Specific conductance	0.602	mS/cm	5
RTP	SLOCUM LAKE	1995-09-05		Specific conductance	0.58	mS/cm	3
RTP	SLOCUM LAKE	1995-09-05		Specific conductance	0.579	mS/cm	5
RTP	SLOCUM LAKE	2001-05-22		Specific conductance	0.9005	mS/cm	3
RTP	SLOCUM LAKE	2001-05-22		Specific conductance	0.8995	mS/cm	5
RTP	SLOCUM LAKE	2001-06-26		Specific conductance	0.8091	mS/cm	3
RTP	SLOCUM LAKE	2001-06-26		Specific conductance	0.8108	mS/cm	5
RTP	SLOCUM LAKE	2001-07-31		Specific conductance	0.7891	mS/cm	3
RTP	SLOCUM LAKE	2001-07-31		Specific conductance	0.8167	mS/cm	5
RTP	SLOCUM LAKE	2001-08-28		Specific conductance	0.8096	mS/cm	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	2001-08-28		Specific conductance	0.81	mS/cm	5
RTP	SLOCUM LAKE	2001-09-25		Specific conductance	0.75	mS/cm	3
RTP	SLOCUM LAKE	2001-09-25		Specific conductance	0.7493	mS/cm	5
RTP	SLOCUM LAKE	2005-05-18		Specific conductance	1.109	mS/cm	3
RTP	SLOCUM LAKE	2005-06-22		Specific conductance	1.068	mS/cm	3
RTP	SLOCUM LAKE	2005-07-20		Specific conductance	1.122	mS/cm	3
RTP	SLOCUM LAKE	2005-08-17		Specific conductance	1.135	mS/cm	3
RTP	SLOCUM LAKE	2005-09-21		Specific conductance	1.159	mS/cm	3
RTP	SLOCUM LAKE	2013-05-22		Specific conductance	0.831	mS/cm	3
RTP	SLOCUM LAKE	2013-06-19		Specific conductance	0.853	mS/cm	3
RTP	SLOCUM LAKE	2013-07-17		Specific conductance	0.716	mS/cm	3
RTP	SLOCUM LAKE	2013-08-21		Specific conductance	0.715	mS/cm	3
RTP	SLOCUM LAKE	2013-09-18		Specific conductance	0.721	mS/cm	3
RTP	SLOCUM LAKE	1995-05-09		Total solids	506	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Total solids	496	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Total solids	474	mg/L	3
RTP	SLOCUM LAKE	1995-06-05		Total solids	470	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Total solids	539	mg/L	3
RTP	SLOCUM LAKE	1995-07-10		Total solids	546	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Total solids	487	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Total solids	472	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Total solids	408	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Total solids	474	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Total solids	594	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Total solids	592	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Total solids	566	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Total solids	554	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Total solids	534	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Total solids	535	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Total solids	529	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Total solids	544	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Total solids	494	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Total solids	485	mg/L	5
RTP	SLOCUM LAKE	2005-05-18		Total solids	660	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Total solids	660	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Total solids	738	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Total solids	728	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Total solids	728	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Total solids	558	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Total solids	567	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Total solids	453	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Total solids	450	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Total solids	446	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Total volatile solids	137	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		Total volatile solids	125	mg/L	5.5
RTP	SLOCUM LAKE	1995-06-05		Total volatile solids	147	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	1995-06-05		Total volatile solids	157	mg/L	6
RTP	SLOCUM LAKE	1995-07-10		Total volatile solids	189	mg/L	3
RTP	SLOCUM LAKE	1995-07-10		Total volatile solids	169	mg/L	5
RTP	SLOCUM LAKE	1995-08-08		Total volatile solids	173	mg/L	3
RTP	SLOCUM LAKE	1995-08-08		Total volatile solids	170	mg/L	5
RTP	SLOCUM LAKE	1995-09-05		Total volatile solids	140	mg/L	3
RTP	SLOCUM LAKE	1995-09-05		Total volatile solids	157	mg/L	5
RTP	SLOCUM LAKE	2001-05-22		Total volatile solids	150	mg/L	3
RTP	SLOCUM LAKE	2001-05-22		Total volatile solids	151	mg/L	5
RTP	SLOCUM LAKE	2001-06-26		Total volatile solids	197	mg/L	3
RTP	SLOCUM LAKE	2001-06-26		Total volatile solids	189	mg/L	5
RTP	SLOCUM LAKE	2001-07-31		Total volatile solids	175	mg/L	3
RTP	SLOCUM LAKE	2001-07-31		Total volatile solids	169	mg/L	5
RTP	SLOCUM LAKE	2001-08-28		Total volatile solids	154	mg/L	3
RTP	SLOCUM LAKE	2001-08-28		Total volatile solids	140	mg/L	5
RTP	SLOCUM LAKE	2001-09-25		Total volatile solids	155	mg/L	3
RTP	SLOCUM LAKE	2001-09-25		Total volatile solids	147	mg/L	5
RTP	SLOCUM LAKE	2005-05-18		Total volatile solids	127	mg/L	3
RTP	SLOCUM LAKE	2005-06-22		Total volatile solids	173	mg/L	3
RTP	SLOCUM LAKE	2005-07-20		Total volatile solids	215	mg/L	3
RTP	SLOCUM LAKE	2005-08-17		Total volatile solids	209	mg/L	3
RTP	SLOCUM LAKE	2005-09-21		Total volatile solids	193	mg/L	3
RTP	SLOCUM LAKE	2013-05-22		Total volatile solids	146	mg/L	3
RTP	SLOCUM LAKE	2013-06-19		Total volatile solids	159	mg/L	3
RTP	SLOCUM LAKE	2013-07-17		Total volatile solids	120	mg/L	3
RTP	SLOCUM LAKE	2013-08-21		Total volatile solids	110	mg/L	3
RTP	SLOCUM LAKE	2013-09-18		Total volatile solids	106	mg/L	3
RTP	SLOCUM LAKE	1995-05-09		TRP	0		3
RTP	SLOCUM LAKE	1995-05-09		TRP	0		5.5
RTP	SLOCUM LAKE	1995-06-05		TRP	0		3
RTP	SLOCUM LAKE	1995-06-05		TRP	0		6
RTP	SLOCUM LAKE	1995-07-10		TRP	0		3
RTP	SLOCUM LAKE	1995-07-10		TRP	0		5
RTP	SLOCUM LAKE	1995-08-08		TRP	0		3
RTP	SLOCUM LAKE	1995-08-08		TRP	0		5
RTP	SLOCUM LAKE	1995-09-05		TRP	0		3
RTP	SLOCUM LAKE	1995-09-05		TRP	0		5
RTP	SLOCUM LAKE	2001-05-22		TRP	0		3
RTP	SLOCUM LAKE	2001-05-22		TRP	0		5
RTP	SLOCUM LAKE	2001-06-26		TRP	0		3
RTP	SLOCUM LAKE	2001-06-26		TRP	0		5
RTP	SLOCUM LAKE	2001-07-31		TRP	0		3
RTP	SLOCUM LAKE	2001-07-31		TRP	0		5
RTP	SLOCUM LAKE	2001-08-28		TRP	0		3
RTP	SLOCUM LAKE	2001-08-28		TRP	0		5
RTP	SLOCUM LAKE	2001-09-25		TRP	0		3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTP	SLOCUM LAKE	2001-09-25		TRP	0		5
RTP	SLOCUM LAKE	2005-05-18		TRP	0		3
RTP	SLOCUM LAKE	2005-06-22		TRP	0		3
RTP	SLOCUM LAKE	2005-07-20		TRP	0		3
RTP	SLOCUM LAKE	2005-08-17		TRP	0		3
RTP	SLOCUM LAKE	2005-09-21		TRP	0		3
RTZF	TOWER LAKE	2001-05-23		Alkalinity	252	mg/l CaCO3	3
RTZF	TOWER LAKE	2001-05-23		Alkalinity	253	mg/l CaCO3	5
RTZF	TOWER LAKE	2001-06-27		Alkalinity	240	mg/l CaCO3	3
RTZF	TOWER LAKE	2001-06-27		Alkalinity	242	mg/l CaCO3	6
RTZF	TOWER LAKE	2001-08-01		Alkalinity	199	mg/l CaCO3	3
RTZF	TOWER LAKE	2001-08-01		Alkalinity	201	mg/l CaCO3	5
RTZF	TOWER LAKE	2001-08-29		Alkalinity	184	mg/l CaCO3	3
RTZF	TOWER LAKE	2001-08-29		Alkalinity	181	mg/l CaCO3	5
RTZF	TOWER LAKE	2001-09-25		Alkalinity	177	mg/l CaCO3	3
RTZF	TOWER LAKE	2001-09-25		Alkalinity	178	mg/l CaCO3	5
RTZF	TOWER LAKE	2007-05-09		Alkalinity	243	mg/l CaCO3	3
RTZF	TOWER LAKE	2007-06-13		Alkalinity	219	mg/l CaCO3	3
RTZF	TOWER LAKE	2007-07-11		Alkalinity	220	mg/l CaCO3	3
RTZF	TOWER LAKE	2007-08-08		Alkalinity	182	mg/l CaCO3	3
RTZF	TOWER LAKE	2007-09-12		Alkalinity	225	mg/l CaCO3	3
RTZF	TOWER LAKE	2013-05-21		Alkalinity	180	mg/l CaCO3	3
RTZF	TOWER LAKE	2013-06-18		Alkalinity	191	mg/l CaCO3	3
RTZF	TOWER LAKE	2013-07-16		Alkalinity	180	mg/l CaCO3	3
RTZF	TOWER LAKE	2013-08-20		Alkalinity	191	mg/l CaCO3	3
RTZF	TOWER LAKE	2013-09-17		Alkalinity	194	mg/l CaCO3	3
RTZF	TOWER LAKE	2012-05-23	10:35	Alkalinity, total	250	mg/L	1 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Alkalinity, total	230	mg/L	1 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Alkalinity, total	210	mg/L	1 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Alkalinity, total	190	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-30	11:29	Alkalinity, total	155	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Alkalinity, total	190	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Alkalinity, total	210	mg/L	1 ft
RTZF	TOWER LAKE	1988-04-27		Ammonia as N	0.04	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Ammonia as N	0.06	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Ammonia as N	0.04	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Ammonia as N	0.2	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Ammonia as N	0.16	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Ammonia as N	0.17	mg/L	7
RTZF	TOWER LAKE	1988-08-24		Ammonia as N	0.1	mg/L	5.5
RTZF	TOWER LAKE	1988-09-21		Ammonia as N	0.92	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Ammonia as N	0.56	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Ammonia as N	0.66	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Ammonia as N	0.233	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Ammonia as N	0.23	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Chloride	182	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2007-06-13		Chloride	189	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Chloride	196	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Chloride	179	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Chloride	124	mg/L	3
RTZF	TOWER LAKE	2012-05-23	10:35	Chloride	184	mg/L	1 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Chloride	208	mg/L	1 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Chloride	265	mg/L	1 ft
RTZF	TOWER LAKE	2013-05-21		Chloride	138	mg/L	3
RTZF	TOWER LAKE	2013-05-27	10:59	Chloride	144	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-18		Chloride	141	mg/L	3
RTZF	TOWER LAKE	2013-06-30	11:29	Chloride	91.8	mg/L	1 ft
RTZF	TOWER LAKE	2013-07-16		Chloride	95	mg/L	3
RTZF	TOWER LAKE	2013-08-04	12:00	Chloride	100	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-20		Chloride	103	mg/L	3
RTZF	TOWER LAKE	2013-09-02	10:23	Chloride	108	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-17		Chloride	107	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a	11.75	ug/L	3
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a	12.55	ug/L	5
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a	9.6	ug/L	7
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a	7.1	ug/L	3
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a	6.7	ug/L	5
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a	8.1	ug/L	7
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a	16.6	ug/L	3
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a	15.2	ug/L	5
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a	6.9	ug/L	7
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a	42.72	ug/L	2
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a	41.52	ug/L	4
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a	43.25	ug/L	6
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a	60.3	ug/L	0
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a	55.1	ug/L	3
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a	54.5	ug/L	5.5
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a	10.7	ug/L	0
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a	11.5	ug/L	3
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a	13.4	ug/L	6
RTZF	TOWER LAKE	2001-05-23		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2001-05-23		Chlorophyll a	0	ug/L	5
RTZF	TOWER LAKE	2001-06-27		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2001-06-27		Chlorophyll a	0	ug/L	6
RTZF	TOWER LAKE	2001-08-01		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2001-08-01		Chlorophyll a	0	ug/L	5
RTZF	TOWER LAKE	2001-08-29		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2001-08-29		Chlorophyll a	0	ug/L	5
RTZF	TOWER LAKE	2001-09-25		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2001-09-25		Chlorophyll a	0	ug/L	5
RTZF	TOWER LAKE	2007-05-09		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2007-06-13		Chlorophyll a	0	ug/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2007-07-11		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2007-08-08		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2007-09-12		Chlorophyll a	0	ug/L	3
RTZF	TOWER LAKE	2012-05-23	10:35	Chlorophyll a, corrected for pheophytin	2.97	ug/L	4 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Chlorophyll a, corrected for pheophytin	1.78	ug/L	3 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Chlorophyll a, corrected for pheophytin	25.2	ug/L	3 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Chlorophyll a, corrected for pheophytin	2	ug/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Chlorophyll a, corrected for pheophytin	23.3	ug/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Chlorophyll a, corrected for pheophytin	54.9	ug/L	1 ft
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a, uncorrected for pheophytin	11.75	ug/L	3 ft
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a, uncorrected for pheophytin	12.55	ug/L	5 ft
RTZF	TOWER LAKE	1988-04-27		Chlorophyll a, uncorrected for pheophytin	9.6	ug/L	7 ft
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a, uncorrected for pheophytin	7.1	ug/L	3 ft
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a, uncorrected for pheophytin	6.7	ug/L	5 ft
RTZF	TOWER LAKE	1988-05-26		Chlorophyll a, uncorrected for pheophytin	8.1	ug/L	7 ft
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a, uncorrected for pheophytin	16.6	ug/L	3 ft
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a, uncorrected for pheophytin	15.2	ug/L	5 ft
RTZF	TOWER LAKE	1988-06-22		Chlorophyll a, uncorrected for pheophytin	6.9	ug/L	7 ft
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a, uncorrected for pheophytin	42.72	ug/L	2 ft
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a, uncorrected for pheophytin	41.52	ug/L	4 ft
RTZF	TOWER LAKE	1988-07-21		Chlorophyll a, uncorrected for pheophytin	43.25	ug/L	6 ft
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a, uncorrected for pheophytin	60.3	ug/L	0 ft
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a, uncorrected for pheophytin	55.1	ug/L	3 ft
RTZF	TOWER LAKE	1988-08-24		Chlorophyll a, uncorrected for pheophytin	54.5	ug/L	5.5 ft
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a, uncorrected for pheophytin	10.7	ug/L	0 ft
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a, uncorrected for pheophytin	11.5	ug/L	3 ft
RTZF	TOWER LAKE	1988-09-21		Chlorophyll a, uncorrected for pheophytin	13.4	ug/L	6 ft
RTZF	TOWER LAKE	2012-05-23	10:35	Chlorophyll a, uncorrected for pheophytin	3.65	ug/L	4 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Chlorophyll a, uncorrected for pheophytin	1.19	ug/L	3 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Chlorophyll a, uncorrected for pheophytin	28.3	ug/L	3 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Chlorophyll a, uncorrected for pheophytin	1.97	ug/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Chlorophyll a, uncorrected for pheophytin	24.3	ug/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Chlorophyll a, uncorrected for pheophytin	56.8	ug/L	1 ft
RTZF	TOWER LAKE	2012-05-23	10:35	Chlorophyll b	NA	ug/L	4 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Chlorophyll b	NA	ug/L	3 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Chlorophyll b	0.53	ug/L	3 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Chlorophyll b	NA	ug/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Chlorophyll b	1.68	ug/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Chlorophyll b	NA	ug/L	1 ft
RTZF	TOWER LAKE	2012-05-23	10:35	Chlorophyll c	0.53	ug/L	4 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Chlorophyll c	NA	ug/L	3 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Chlorophyll c	4.92	ug/L	3 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Chlorophyll c	NA	ug/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Chlorophyll c	1.37	ug/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Chlorophyll c	2.13	ug/L	1 ft
RTZF	TOWER LAKE	1988-04-27		Depth, Secchi Disk Depth	1	ft	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	1988-05-26		Depth, Secchi Disk Depth	3	ft	3
RTZF	TOWER LAKE	1988-06-22		Depth, Secchi Disk Depth	1.6	ft	3
RTZF	TOWER LAKE	1988-07-21		Depth, Secchi Disk Depth	1.83	ft	2
RTZF	TOWER LAKE	1988-08-24		Depth, Secchi Disk Depth	1	ft	0
RTZF	TOWER LAKE	1988-09-21		Depth, Secchi Disk Depth	1.25	ft	0
RTZF	TOWER LAKE	2001-05-23		Depth, Secchi Disk Depth	2.26	ft	3
RTZF	TOWER LAKE	2001-06-27		Depth, Secchi Disk Depth	4.5	ft	3
RTZF	TOWER LAKE	2001-08-01		Depth, Secchi Disk Depth	2.2	ft	3
RTZF	TOWER LAKE	2001-08-29		Depth, Secchi Disk Depth	1.05	ft	3
RTZF	TOWER LAKE	2001-09-25		Depth, Secchi Disk Depth	1.54	ft	3
RTZF	TOWER LAKE	2007-05-09		Depth, Secchi Disk Depth	6.56	ft	3
RTZF	TOWER LAKE	2007-06-13		Depth, Secchi Disk Depth	6.398	ft	3
RTZF	TOWER LAKE	2007-07-11		Depth, Secchi Disk Depth	3.94	ft	3
RTZF	TOWER LAKE	2007-08-08		Depth, Secchi Disk Depth	2.36	ft	3
RTZF	TOWER LAKE	2007-09-12		Depth, Secchi Disk Depth	2.3	ft	3
RTZF	TOWER LAKE	2013-05-21		Depth, Secchi Disk Depth	4.35	ft	3
RTZF	TOWER LAKE	2013-06-18		Depth, Secchi Disk Depth	6	ft	3
RTZF	TOWER LAKE	2013-07-16		Depth, Secchi Disk Depth	4.35	ft	3
RTZF	TOWER LAKE	2013-08-20		Depth, Secchi Disk Depth	2	ft	3
RTZF	TOWER LAKE	2013-09-17		Depth, Secchi Disk Depth	1.2	ft	3
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.57	mg/L	0.25 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.46	mg/L	1 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.48	mg/L	2 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.52	mg/L	3 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.6	mg/L	4 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.57	mg/L	5 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen (DO)	5.68	mg/L	6 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	9.04	mg/L	0.25 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	9.1	mg/L	1 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	9.14	mg/L	2 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	8.7	mg/L	3 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	8.31	mg/L	4 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	4.7	mg/L	5 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	2.88	mg/L	6 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen (DO)	0.97	mg/L	7 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	9.37	mg/L	0.25 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	8.85	mg/L	1 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	8.81	mg/L	2 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	9.05	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	7.87	mg/L	4 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	0.91	mg/L	5 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	0.04	mg/L	6 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen (DO)	0.03	mg/L	7 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	11.34	mg/L	0.25 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	11.3	mg/L	1 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	10.87	mg/L	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	9.5	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	8.69	mg/L	4 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	7.55	mg/L	5 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	7.84	mg/L	6 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen (DO)	1.59	mg/L	7 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.82	mg/L	0.25 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.85	mg/L	1 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.82	mg/L	2 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.77	mg/L	3 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.68	mg/L	4 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.75	mg/L	5 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.73	mg/L	6 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen (DO)	7.72	mg/L	7 ft
RTZF	TOWER LAKE	2013-05-21		Dissolved oxygen (DO)	8.85	mg/L	3
RTZF	TOWER LAKE	2013-06-18		Dissolved oxygen (DO)	9.89	mg/L	3
RTZF	TOWER LAKE	2013-07-16		Dissolved oxygen (DO)	8.6	mg/L	3
RTZF	TOWER LAKE	2013-08-20		Dissolved oxygen (DO)	9.62	mg/L	3
RTZF	TOWER LAKE	2013-09-17		Dissolved oxygen (DO)	9.56	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	62	%	0.25 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	60.8	%	1 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	61.1	%	2 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	61.5	%	3 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	62.3	%	4 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	61.9	%	5 ft
RTZF	TOWER LAKE	2001-05-23		Dissolved oxygen saturation	63.2	%	6 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	115.7	%	0.25 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	116.5	%	1 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	115.6	%	2 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	110.2	%	3 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	104.7	%	4 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	58.5	%	5 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	35.5	%	6 ft
RTZF	TOWER LAKE	2001-06-27		Dissolved oxygen saturation	11.7	%	7 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	124.2	%	0.25 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	119	%	1 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	118.3	%	2 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	120.8	%	3 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	104.3	%	4 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	14.8	%	5 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	0.5	%	6 ft
RTZF	TOWER LAKE	2001-08-01		Dissolved oxygen saturation	0.3	%	7 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	141.6	%	0.25 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	141	%	1 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	135	%	2 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	116.6	%	3 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	106.6	%	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	92.4	%	5 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	95.3	%	6 ft
RTZF	TOWER LAKE	2001-08-29		Dissolved oxygen saturation	19.2	%	7 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	80	%	0.25 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	80.3	%	1 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	80	%	2 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	79.5	%	3 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	78.6	%	4 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	79.3	%	5 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	79.1	%	6 ft
RTZF	TOWER LAKE	2001-09-25		Dissolved oxygen saturation	79	%	7 ft
RTZF	TOWER LAKE	2002-05-07		E. coli	3	Col/100ml	ft
RTZF	TOWER LAKE	2002-05-07		E. coli	6.3	Col/100ml	ft
RTZF	TOWER LAKE	2002-05-07		E. coli	816.4	Col/100ml	ft
RTZF	TOWER LAKE	2002-05-21		E. coli	6.2	Col/100ml	ft
RTZF	TOWER LAKE	2002-05-21		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2002-05-21		E. coli	9.7	Col/100ml	ft
RTZF	TOWER LAKE	2002-06-10		E. coli	12.2	Col/100ml	ft
RTZF	TOWER LAKE	2002-06-10		E. coli	13.1	Col/100ml	ft
RTZF	TOWER LAKE	2002-06-24		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2002-06-24		E. coli	12.2	Col/100ml	ft
RTZF	TOWER LAKE	2002-07-08		E. coli	55.6	Col/100ml	ft
RTZF	TOWER LAKE	2002-07-08		E. coli	56.3	Col/100ml	ft
RTZF	TOWER LAKE	2002-07-22		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2002-08-05		E. coli	122.3	Col/100ml	ft
RTZF	TOWER LAKE	2002-08-05		E. coli	150	Col/100ml	ft
RTZF	TOWER LAKE	2002-08-19		E. coli	727	Col/100ml	ft
RTZF	TOWER LAKE	2002-08-20		E. coli	12.1	Col/100ml	ft
RTZF	TOWER LAKE	2003-05-06		E. coli	17.5	Col/100ml	ft
RTZF	TOWER LAKE	2003-05-06		E. coli	16.1	Col/100ml	ft
RTZF	TOWER LAKE	2003-05-13		E. coli	9.6	Col/100ml	ft
RTZF	TOWER LAKE	2003-05-13		E. coli	6.3	Col/100ml	ft
RTZF	TOWER LAKE	2003-06-09		E. coli	35	Col/100ml	ft
RTZF	TOWER LAKE	2003-06-09		E. coli	39.9	Col/100ml	ft
RTZF	TOWER LAKE	2003-06-23		E. coli	7.4	Col/100ml	ft
RTZF	TOWER LAKE	2003-06-23		E. coli	11.9	Col/100ml	ft
RTZF	TOWER LAKE	2003-07-07		E. coli	62	Col/100ml	ft
RTZF	TOWER LAKE	2003-07-07		E. coli	98.8	Col/100ml	ft
RTZF	TOWER LAKE	2003-07-21		E. coli	14.8	Col/100ml	ft
RTZF	TOWER LAKE	2003-07-21		E. coli	16	Col/100ml	ft
RTZF	TOWER LAKE	2003-08-04		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2003-08-04		E. coli	4.1	Col/100ml	ft
RTZF	TOWER LAKE	2003-08-18		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2003-08-18		E. coli	4.1	Col/100ml	ft
RTZF	TOWER LAKE	2004-05-24		E. coli	130	Col/100ml	ft
RTZF	TOWER LAKE	2004-05-24		E. coli	86	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2004-05-27		E. coli	21.3	Col/100ml	ft
RTZF	TOWER LAKE	2004-05-27		E. coli	32.3	Col/100ml	ft
RTZF	TOWER LAKE	2004-06-07		E. coli	23.8	Col/100ml	ft
RTZF	TOWER LAKE	2004-06-07		E. coli	29.2	Col/100ml	ft
RTZF	TOWER LAKE	2004-06-21		E. coli	32.3	Col/100ml	ft
RTZF	TOWER LAKE	2004-06-21		E. coli	38.8	Col/100ml	ft
RTZF	TOWER LAKE	2004-07-06		E. coli	83.6	Col/100ml	ft
RTZF	TOWER LAKE	2004-07-06		E. coli	88.2	Col/100ml	ft
RTZF	TOWER LAKE	2004-07-19		E. coli	47.1	Col/100ml	ft
RTZF	TOWER LAKE	2004-07-19		E. coli	71.2	Col/100ml	ft
RTZF	TOWER LAKE	2004-08-02		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2004-08-02		E. coli	6.3	Col/100ml	ft
RTZF	TOWER LAKE	2004-08-16		E. coli	4.1	Col/100ml	ft
RTZF	TOWER LAKE	2004-08-16		E. coli	8.4	Col/100ml	ft
RTZF	TOWER LAKE	2005-05-18		E. coli	4.1	Col/100ml	ft
RTZF	TOWER LAKE	2005-05-25		E. coli	90.7	Col/100ml	ft
RTZF	TOWER LAKE	2005-05-25		E. coli	90.9	Col/100ml	ft
RTZF	TOWER LAKE	2005-06-06		E. coli	10.9	Col/100ml	ft
RTZF	TOWER LAKE	2005-06-06		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2005-06-20		E. coli	1	Col/100ml	ft
RTZF	TOWER LAKE	2005-06-20		E. coli	8.6	Col/100ml	ft
RTZF	TOWER LAKE	2005-07-11		E. coli	1	Col/100ml	ft
RTZF	TOWER LAKE	2005-07-25		E. coli	11	Col/100ml	ft
RTZF	TOWER LAKE	2005-07-25		E. coli	19.9	Col/100ml	ft
RTZF	TOWER LAKE	2005-08-08		E. coli	18.3	Col/100ml	ft
RTZF	TOWER LAKE	2005-08-08		E. coli	24.6	Col/100ml	ft
RTZF	TOWER LAKE	2005-08-22		E. coli	14.6	Col/100ml	ft
RTZF	TOWER LAKE	2005-08-22		E. coli	14.8	Col/100ml	ft
RTZF	TOWER LAKE	2006-05-23		E. coli	22.8	Col/100ml	ft
RTZF	TOWER LAKE	2006-05-23		E. coli	24	Col/100ml	ft
RTZF	TOWER LAKE	2006-05-24		E. coli	20.1	Col/100ml	ft
RTZF	TOWER LAKE	2006-05-24		E. coli	39.5	Col/100ml	ft
RTZF	TOWER LAKE	2006-06-05		E. coli	14.6	Col/100ml	ft
RTZF	TOWER LAKE	2006-06-05		E. coli	16.1	Col/100ml	ft
RTZF	TOWER LAKE	2006-06-19		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2006-06-19		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2006-07-10		E. coli	13.4	Col/100ml	ft
RTZF	TOWER LAKE	2006-07-10		E. coli	16.1	Col/100ml	ft
RTZF	TOWER LAKE	2006-07-24		E. coli	1	Col/100ml	ft
RTZF	TOWER LAKE	2006-07-24		E. coli	2	Col/100ml	ft
RTZF	TOWER LAKE	2006-08-07		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2006-08-07		E. coli	65	Col/100ml	ft
RTZF	TOWER LAKE	2006-08-21		E. coli	17.1	Col/100ml	ft
RTZF	TOWER LAKE	2006-08-21		E. coli	5.2	Col/100ml	ft
RTZF	TOWER LAKE	2007-05-22		E. coli	816.4	Col/100ml	ft
RTZF	TOWER LAKE	2007-05-22		E. coli	866.4	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2007-06-11		E. coli	11	Col/100ml	ft
RTZF	TOWER LAKE	2007-06-11		E. coli	12	Col/100ml	ft
RTZF	TOWER LAKE	2007-06-25		E. coli	21.8	Col/100ml	ft
RTZF	TOWER LAKE	2007-06-25		E. coli	23.8	Col/100ml	ft
RTZF	TOWER LAKE	2007-07-09		E. coli	11.9	Col/100ml	ft
RTZF	TOWER LAKE	2007-07-09		E. coli	18.9	Col/100ml	ft
RTZF	TOWER LAKE	2007-07-23		E. coli	21.1	Col/100ml	ft
RTZF	TOWER LAKE	2007-07-23		E. coli	78	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-13		E. coli	108.1	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-13		E. coli	980.4	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-14		E. coli	26.2	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-14		E. coli	32.3	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-27		E. coli	23.1	Col/100ml	ft
RTZF	TOWER LAKE	2007-08-27		E. coli	83.6	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-09		Fecal coliform	820	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-09		Fecal coliform	750	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-11		Fecal coliform	110	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-11		Fecal coliform	130	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-30		Fecal coliform	130	Col/100ml	ft
RTZF	TOWER LAKE	2001-05-30		Fecal coliform	70	Col/100ml	ft
RTZF	TOWER LAKE	2001-06-12		Fecal coliform	300	Col/100ml	ft
RTZF	TOWER LAKE	2001-06-12		Fecal coliform	280	Col/100ml	ft
RTZF	TOWER LAKE	2001-06-26		Fecal coliform	200	Col/100ml	ft
RTZF	TOWER LAKE	2001-06-26		Fecal coliform	300	Col/100ml	ft
RTZF	TOWER LAKE	2001-07-17		Fecal coliform	10	Col/100ml	ft
RTZF	TOWER LAKE	2001-07-17		Fecal coliform	60	Col/100ml	ft
RTZF	TOWER LAKE	2001-07-31		Fecal coliform	130	Col/100ml	ft
RTZF	TOWER LAKE	2001-07-31		Fecal coliform	200	Col/100ml	ft
RTZF	TOWER LAKE	2001-08-14		Fecal coliform	10	Col/100ml	ft
RTZF	TOWER LAKE	2013-05-27	10:59	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-30	11:29	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZF	TOWER LAKE	2001-05-23		Light Extinction	2.953537071	Coef	0.34 ft
RTZF	TOWER LAKE	2001-05-23		Light Extinction	0.916468207	Coef	1.27 ft
RTZF	TOWER LAKE	2001-05-23		Light Extinction	0.828692673	Coef	2.27 ft
RTZF	TOWER LAKE	2001-05-23		Light Extinction	1.046557507	Coef	3.26 ft
RTZF	TOWER LAKE	2001-05-23		Light Extinction	1.225738664	Coef	4.32 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	2.207509698	Coef	0.38 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	0.430082683	Coef	1.23 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	0.498579492	Coef	2.26 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	0.40320522	Coef	3.26 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	0.391997678	Coef	4.28 ft
RTZF	TOWER LAKE	2001-06-27		Light Extinction	0.429040913	Coef	5.19 ft
RTZF	TOWER LAKE	2001-08-01		Light Extinction	5.08055657	Coef	0.22 ft
RTZF	TOWER LAKE	2001-08-01		Light Extinction	0.671759397	Coef	1.23 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-01		Light Extinction	0.874785989	Coef	2.29 ft
RTZF	TOWER LAKE	2001-08-01		Light Extinction	0.381627481	Coef	3.25 ft
RTZF	TOWER LAKE	2001-08-01		Light Extinction	0.608695439	Coef	4.29 ft
RTZF	TOWER LAKE	2001-08-01		Light Extinction	0.549274864	Coef	5.22 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	3.418755495	Coef	0.22 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	1.22880804	Coef	1.22 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	1.233458782	Coef	2.25 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	1.348351416	Coef	3.2 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	1.532798012	Coef	4.25 ft
RTZF	TOWER LAKE	2001-08-29		Light Extinction	2.188885833	Coef	5.2 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	2.904877214	Coef	0.42 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	1.288039765	Coef	1.26 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	1.408408511	Coef	2.33 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	0.41399309	Coef	3.44 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	1.174899808	Coef	4.43 ft
RTZF	TOWER LAKE	2001-09-25		Light Extinction	1.27745615	Coef	5.29 ft
RTZF	TOWER LAKE	1988-04-27		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	5 ft
RTZF	TOWER LAKE	1988-04-27		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	7 ft
RTZF	TOWER LAKE	1988-05-26		Nitrite (NO2) + Nitrate (NO3) as N	0.054	mg/L	3 ft
RTZF	TOWER LAKE	1988-05-26		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	5 ft
RTZF	TOWER LAKE	1988-05-26		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	7 ft
RTZF	TOWER LAKE	1988-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.063	mg/L	3 ft
RTZF	TOWER LAKE	1988-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.063	mg/L	5 ft
RTZF	TOWER LAKE	1988-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.069	mg/L	7 ft
RTZF	TOWER LAKE	1988-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.069	mg/L	2 ft
RTZF	TOWER LAKE	1988-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.066	mg/L	4 ft
RTZF	TOWER LAKE	1988-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.084	mg/L	6 ft
RTZF	TOWER LAKE	1988-08-24		Nitrite (NO2) + Nitrate (NO3) as N	0.058	mg/L	3 ft
RTZF	TOWER LAKE	1988-09-21		Nitrite (NO2) + Nitrate (NO3) as N	0.138	mg/L	0 ft
RTZF	TOWER LAKE	1988-09-21		Nitrite (NO2) + Nitrate (NO3) as N	0.131	mg/L	3 ft
RTZF	TOWER LAKE	1988-09-21		Nitrite (NO2) + Nitrate (NO3) as N	0.131	mg/L	6 ft
RTZF	TOWER LAKE	1988-04-27		Nitrogen, ammonia as N	0.04	mg/L	3 ft
RTZF	TOWER LAKE	1988-04-27		Nitrogen, ammonia as N	0.06	mg/L	5 ft
RTZF	TOWER LAKE	1988-04-27		Nitrogen, ammonia as N	0.04	mg/L	7 ft
RTZF	TOWER LAKE	1988-05-26		Nitrogen, ammonia as N	0.2	mg/L	3 ft
RTZF	TOWER LAKE	1988-05-26		Nitrogen, ammonia as N	0.16	mg/L	5 ft
RTZF	TOWER LAKE	1988-05-26		Nitrogen, ammonia as N	0.17	mg/L	7 ft
RTZF	TOWER LAKE	1988-08-24		Nitrogen, ammonia as N	0.1	mg/L	5.5 ft
RTZF	TOWER LAKE	1988-09-21		Nitrogen, ammonia as N	0.92	mg/L	0 ft
RTZF	TOWER LAKE	1988-09-21		Nitrogen, ammonia as N	0.56	mg/L	3 ft
RTZF	TOWER LAKE	1988-09-21		Nitrogen, ammonia as N	0.66	mg/L	6 ft
RTZF	TOWER LAKE	2001-05-23		Nitrogen, ammonia as N	0.233	mg/L	3 ft
RTZF	TOWER LAKE	2001-05-23		Nitrogen, ammonia as N	0.23	mg/L	5 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Nitrogen, ammonia as N	0.11	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-30	11:29	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Nitrogen, ammonia as N	0.09	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2013-09-02	10:23	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZF	TOWER LAKE	2001-05-23		Nitrogen, Kjeldahl	0.796	mg/L	3 ft
RTZF	TOWER LAKE	2001-05-23		Nitrogen, Kjeldahl	0.796	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Nitrogen, Kjeldahl	0.821	mg/L	5 ft
RTZF	TOWER LAKE	2001-05-23		Nitrogen, Kjeldahl	0.821	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Nitrogen, Kjeldahl	1.6	mg/L	3 ft
RTZF	TOWER LAKE	2001-06-27		Nitrogen, Kjeldahl	1.6	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Nitrogen, Kjeldahl	1.44	mg/L	6 ft
RTZF	TOWER LAKE	2001-06-27		Nitrogen, Kjeldahl	1.44	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Nitrogen, Kjeldahl	1.71	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-01		Nitrogen, Kjeldahl	1.71	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Nitrogen, Kjeldahl	1.86	mg/L	5 ft
RTZF	TOWER LAKE	2001-08-01		Nitrogen, Kjeldahl	1.86	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Nitrogen, Kjeldahl	2.16	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-29		Nitrogen, Kjeldahl	2.16	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Nitrogen, Kjeldahl	1.98	mg/L	5 ft
RTZF	TOWER LAKE	2001-08-29		Nitrogen, Kjeldahl	1.98	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Nitrogen, Kjeldahl	1.83	mg/L	3 ft
RTZF	TOWER LAKE	2001-09-25		Nitrogen, Kjeldahl	1.83	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Nitrogen, Kjeldahl	1.97	mg/L	5 ft
RTZF	TOWER LAKE	2001-09-25		Nitrogen, Kjeldahl	1.97	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Nitrogen, Kjeldahl	0.942	mg/L	3 ft
RTZF	TOWER LAKE	2007-05-09		Nitrogen, Kjeldahl	0.942	mg/L	3
RTZF	TOWER LAKE	2007-06-13		Nitrogen, Kjeldahl	1.04	mg/L	3 ft
RTZF	TOWER LAKE	2007-06-13		Nitrogen, Kjeldahl	1.04	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Nitrogen, Kjeldahl	1.41	mg/L	3 ft
RTZF	TOWER LAKE	2007-07-11		Nitrogen, Kjeldahl	1.41	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Nitrogen, Kjeldahl	1.36	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Nitrogen, Kjeldahl	1.55	mg/L	3
RTZF	TOWER LAKE	2013-05-21		Nitrogen, Kjeldahl	1.06	mg/L	3
RTZF	TOWER LAKE	2013-05-27	10:59	Nitrogen, Kjeldahl	0.924	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-18		Nitrogen, Kjeldahl	1.11	mg/L	3
RTZF	TOWER LAKE	2013-06-30	11:29	Nitrogen, Kjeldahl	1.07	mg/L	1 ft
RTZF	TOWER LAKE	2013-07-16		Nitrogen, Kjeldahl	1.39	mg/L	3
RTZF	TOWER LAKE	2013-08-04	12:00	Nitrogen, Kjeldahl	1.66	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-20		Nitrogen, Kjeldahl	1.84	mg/L	3
RTZF	TOWER LAKE	2013-09-02	10:23	Nitrogen, Kjeldahl	1.38	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-17		Nitrogen, Kjeldahl	2.44	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Nitrogen, Nitrate (NO3) as N	0.054	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	7
RTZF	TOWER LAKE	1988-06-22		Nitrogen, Nitrate (NO3) as N	0.063	mg/L	3
RTZF	TOWER LAKE	1988-06-22		Nitrogen, Nitrate (NO3) as N	0.063	mg/L	5
RTZF	TOWER LAKE	1988-06-22		Nitrogen, Nitrate (NO3) as N	0.069	mg/L	7

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	1988-07-21		Nitrogen, Nitrate (NO3) as N	0.069	mg/L	2
RTZF	TOWER LAKE	1988-07-21		Nitrogen, Nitrate (NO3) as N	0.066	mg/L	4
RTZF	TOWER LAKE	1988-07-21		Nitrogen, Nitrate (NO3) as N	0.084	mg/L	6
RTZF	TOWER LAKE	1988-08-24		Nitrogen, Nitrate (NO3) as N	0.058	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Nitrogen, Nitrate (NO3) as N	0.138	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Nitrogen, Nitrate (NO3) as N	0.131	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Nitrogen, Nitrate (NO3) as N	0.131	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Orthophosphate as P, Dissolved	0.011	mg/L	3 ft
RTZF	TOWER LAKE	2001-05-23		Orthophosphate as P, Dissolved	0.011	mg/L	5 ft
RTZF	TOWER LAKE	2001-06-27		Orthophosphate as P, Dissolved	0.009	mg/L	6 ft
RTZF	TOWER LAKE	2001-08-01		Orthophosphate as P, Dissolved	0.011	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-01		Orthophosphate as P, Dissolved	0.015	mg/L	5 ft
RTZF	TOWER LAKE	2001-08-29		Orthophosphate as P, Dissolved	0.005	mg/L	3 ft
RTZF	TOWER LAKE	2001-08-29		Orthophosphate as P, Dissolved	0.009	mg/L	5 ft
RTZF	TOWER LAKE	2001-09-25		Orthophosphate as P, Dissolved	0.019	mg/L	3 ft
RTZF	TOWER LAKE	2001-09-25		Orthophosphate as P, Dissolved	0.008	mg/L	5 ft
RTZF	TOWER LAKE	1988-07-21		Orthophosphate as P, Total	0.02	mg/L	2 ft
RTZF	TOWER LAKE	1988-07-21		Orthophosphate as P, Total	0.02	mg/L	4 ft
RTZF	TOWER LAKE	1988-08-24		Orthophosphate as P, Total	0.042	mg/L	0 ft
RTZF	TOWER LAKE	1988-08-24		Orthophosphate as P, Total	0.045	mg/L	3 ft
RTZF	TOWER LAKE	1988-08-24		Orthophosphate as P, Total	0.042	mg/L	5.5 ft
RTZF	TOWER LAKE	1988-09-21		Orthophosphate as P, Total	0.024	mg/L	0 ft
RTZF	TOWER LAKE	1988-09-21		Orthophosphate as P, Total	0.02	mg/L	3 ft
RTZF	TOWER LAKE	1988-09-21		Orthophosphate as P, Total	0.024	mg/L	6 ft
RTZF	TOWER LAKE	1988-04-27		рН	8.3	SU	3
RTZF	TOWER LAKE	1988-04-27		рН	8.3	SU	5
RTZF	TOWER LAKE	1988-04-27		рН	8.3	SU	7
RTZF	TOWER LAKE	1988-05-26		рН	8.4	SU	3
RTZF	TOWER LAKE	1988-05-26		рН	8.4	SU	5
RTZF	TOWER LAKE	1988-05-26		рН	8.3	SU	7
RTZF	TOWER LAKE	1988-06-22		рН	8.4	SU	3
RTZF	TOWER LAKE	1988-06-22		рН	8.4	SU	5
RTZF	TOWER LAKE	1988-06-22		рН	8.3	SU	7
RTZF	TOWER LAKE	1988-07-21		рН	8.5	SU	2
RTZF	TOWER LAKE	1988-07-21		рН	8.5	SU	4
RTZF	TOWER LAKE	1988-07-21		рН	8.5	SU	6
RTZF	TOWER LAKE	1988-08-24		рН	8.6	SU	0
RTZF	TOWER LAKE	1988-08-24		рН	8.6	SU	3
RTZF	TOWER LAKE	1988-08-24		рН	8.5	SU	5.5
RTZF	TOWER LAKE	1988-09-21		рН	8.2	SU	0
RTZF	TOWER LAKE	1988-09-21		рН	8.2	SU	3
RTZF	TOWER LAKE	1988-09-21		рН	8.2	SU	6
RTZF	TOWER LAKE	2001-05-23		рН	7.67	SU	0.25 ft
RTZF	TOWER LAKE	2001-05-23		рН	7.67	SU	1 ft
RTZF	TOWER LAKE	2001-05-23		рН	7.67	SU	2 ft
RTZF	TOWER LAKE	2001-05-23		рН	7.69	SU	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-05-23		рН	7.7	su	4 ft
RTZF	TOWER LAKE	2001-05-23		рН	7.7	SU	5
RTZF		2001-05-23		рН	7.72	SU	6 ft
RTZF	TOWER LAKE	2001-06-27		рН	8.15	SU	0.25 ft
RTZF	TOWER LAKE	2001-06-27		рН	8.16	SU	1 ft
RTZF	TOWER LAKE	2001-06-27		рН	8.13	SU	2 ft
RTZF	TOWER LAKE	2001-06-27		рН	8.13	SU	3
RTZF	TOWER LAKE	2001-06-27		рН	8.09	SU	4 ft
RTZF	TOWER LAKE	2001-06-27		рН	7.73	SU	5 ft
RTZF	TOWER LAKE	2001-06-27		рН	7.54	SU	6
RTZF	TOWER LAKE	2001-06-27		рН	7.37	SU	7 ft
RTZF	TOWER LAKE	2001-08-01		рН	8.3	SU	0.25 ft
RTZF	TOWER LAKE	2001-08-01		рН	8.31	SU	1 ft
RTZF	TOWER LAKE	2001-08-01		рН	8.31	SU	2 ft
RTZF	TOWER LAKE	2001-08-01		рН	8.3	SU	3
RTZF	TOWER LAKE	2001-08-01		рН	8.21	SU	4 ft
RTZF	TOWER LAKE	2001-08-01		рН	7.83	SU	5
RTZF	TOWER LAKE	2001-08-01		рН	7.32	SU	6 ft
RTZF	TOWER LAKE	2001-08-01		рН	7.17	SU	7 ft
RTZF	TOWER LAKE	2001-08-29		рН	8.51	SU	0.25 ft
RTZF	TOWER LAKE	2001-08-29		рН	8.51	SU	1 ft
RTZF	TOWER LAKE	2001-08-29		рН	8.49	SU	2 ft
RTZF	TOWER LAKE	2001-08-29		рН	8.43	SU	3
RTZF	TOWER LAKE	2001-08-29		рН	8.39	SU	4 ft
RTZF	TOWER LAKE	2001-08-29		рН	8.31	SU	5
RTZF	TOWER LAKE	2001-08-29		рН	8.33	SU	6 ft
RTZF	TOWER LAKE	2001-08-29		рН	7.5	SU	7 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.89	SU	0.25 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.92	SU	1 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.92	SU	2 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.93	SU	3
RTZF	TOWER LAKE	2001-09-25		рН	7.93	SU	4 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.93	SU	5
RTZF	TOWER LAKE	2001-09-25		рН	7.93	SU	6 ft
RTZF	TOWER LAKE	2001-09-25		рН	7.93	SU	7 ft
RTZF	TOWER LAKE	2007-05-09		рН	8.2	SU	3
RTZF	TOWER LAKE	2007-06-13		рН	8.36	SU	3
RTZF	TOWER LAKE	2007-07-08		рН	8.31	SU	3 ft
RTZF	TOWER LAKE	2007-07-11		рН	8.53	SU	3
RTZF	TOWER LAKE	2007-08-08		рН	8.31	SU	3
RTZF	TOWER LAKE	2007-09-12		рН	8.1	SU	3
RTZF	TOWER LAKE	2013-05-21		рН	8.2	SU	3
RTZF	TOWER LAKE	2013-06-18		рН	8.27	SU	3
RTZF	TOWER LAKE	2013-07-16		рН	8.08	SU	3
RTZF	TOWER LAKE	2013-08-20		рН	8.3	SU	3
RTZF	TOWER LAKE	2013-09-17		рН	8.27	SU	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2012-05-23	10:35	Pheophytin a	0.96	ug/L	4 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Pheophytin a	NA	ug/L	3 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Pheophytin a	3.66	ug/L	3 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Pheophytin a	NA	ug/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Pheophytin a	0.5	ug/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Pheophytin a	NA	ug/L	1 ft
RTZF	TOWER LAKE	1988-04-27		Phosphorus	0.043	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Phosphorus	0.039	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Phosphorus	0.033	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Phosphorus	0.036	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Phosphorus	0.036	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Phosphorus	0.043	mg/L	7
RTZF	TOWER LAKE	1988-06-22		Phosphorus	0.017	mg/L	3
RTZF	TOWER LAKE	1988-06-22		Phosphorus	0.046	mg/L	5
RTZF	TOWER LAKE	1988-06-22		Phosphorus	0.043	mg/L	7
RTZF	TOWER LAKE	1988-07-21		Phosphorus	0.097	mg/L	2
RTZF	TOWER LAKE	1988-07-21		Phosphorus	0.081	mg/L	4
RTZF	TOWER LAKE	1988-07-21		Phosphorus	0.081	mg/L	6
RTZF	TOWER LAKE	1988-08-24		Phosphorus	0.104	mg/L	0
RTZF	TOWER LAKE	1988-08-24		Phosphorus	0.14	mg/L	3
RTZF	TOWER LAKE	1988-08-24		Phosphorus	0.108	mg/L	5.5
RTZF	TOWER LAKE	1988-09-21		Phosphorus	0.066	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Phosphorus	0.058	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Phosphorus	0.049	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Phosphorus	0.06	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Phosphorus	0.057	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Phosphorus	0.056	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Phosphorus	0.081	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Phosphorus	0.101	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Phosphorus	0.152	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Phosphorus	0.162	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Phosphorus	0.17	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Phosphorus	0.121	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Phosphorus	0.131	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Phosphorus	0.028	mg/L	3
RTZF	TOWER LAKE	2007-06-13		Phosphorus	0.047	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Phosphorus	0.068	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Phosphorus	0.101	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Phosphorus	0.087	mg/L	3
RTZF	TOWER LAKE	2012-05-23	10:35	Phosphorus	0.032	mg/L	1 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Phosphorus	0.099	mg/L	1 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Phosphorus	0.116	mg/L	1 ft
RTZF	TOWER LAKE	2013-05-21		Phosphorus	0.04	mg/L	3
RTZF	TOWER LAKE	2013-05-27	10:59	Phosphorus	0.053	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-18		Phosphorus	0.048	mg/L	3
RTZF	TOWER LAKE	2013-06-30	11:29	Phosphorus	0.101	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2013-07-16		Phosphorus	0.112	mg/L	3
RTZF	TOWER LAKE	2013-08-04	12:00	Phosphorus	0.105	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-20		Phosphorus	0.093	mg/L	3
RTZF	TOWER LAKE	2013-09-02	10:23	Phosphorus	0.113	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-17		Phosphorus	0.122	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Phosphorus, Soluble Reactive	0.011	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Phosphorus, Soluble Reactive	0.011	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Phosphorus, Soluble Reactive	0.009	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Phosphorus, Soluble Reactive	0.011	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Phosphorus, Soluble Reactive	0.015	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Phosphorus, Soluble Reactive	0.005	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Phosphorus, Soluble Reactive	0.009	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Phosphorus, Soluble Reactive	0.019	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Phosphorus, Soluble Reactive	0.008	mg/L	5
RTZF	TOWER LAKE	2007-08-08		Phosphorus, Soluble Reactive	0.009	mg/L	3
RTZF	TOWER LAKE	2013-07-16		Phosphorus, Soluble Reactive	0.018	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Secchi	1	ft	ft
RTZF	TOWER LAKE	1988-05-26		Secchi	3	ft	ft
RTZF	TOWER LAKE	1988-06-22		Secchi	1.6	ft	ft
RTZF	TOWER LAKE	1988-07-21		Secchi	1.83	ft	ft
RTZF	TOWER LAKE	1988-08-24		Secchi	1	ft	ft
RTZF	TOWER LAKE	1988-09-21		Secchi	1.25	ft	ft
RTZF	TOWER LAKE	2001-05-23		Secchi	2.26	ft	ft
RTZF	TOWER LAKE	2001-06-27		Secchi	4.5	ft	ft
RTZF	TOWER LAKE	2001-08-01		Secchi	2.2	ft	ft
RTZF	TOWER LAKE	2001-08-29		Secchi	1.05	ft	ft
RTZF	TOWER LAKE	2001-09-25		Secchi	1.54	ft	ft
RTZF	TOWER LAKE	2007-05-09		Secchi	6.56	ft	ft
RTZF	TOWER LAKE	2007-06-13		Secchi	6.398	ft	ft
RTZF	TOWER LAKE	2007-07-08		Secchi	2.36	ft	ft
RTZF	TOWER LAKE	2007-07-11		Secchi	3.96	ft	ft
RTZF	TOWER LAKE	2012-05-23	10:35	Solids, suspended, volatile	5	mg/L	1 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Solids, suspended, volatile	13	mg/L	1 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Solids, suspended, volatile	10	mg/L	1 ft
RTZF	TOWER LAKE	2013-05-27	10:59	Solids, suspended, volatile	8	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-30	11:29	Solids, suspended, volatile	6	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-04	12:00	Solids, suspended, volatile	9	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-02	10:23	Solids, suspended, volatile	9	mg/L	1 ft
RTZF	TOWER LAKE	1988-04-27		Solids, Total Dissolved (TDS)	419	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Solids, Total Dissolved (TDS)	420	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Solids, Total Dissolved (TDS)	418	mg/L	7
RTZF	TOWER LAKE	2001-05-23		Solids, Total Dissolved (TDS)	672	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Solids, Total Dissolved (TDS)	652	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Solids, Total Dissolved (TDS)	672	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Solids, Total Dissolved (TDS)	660	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Solids, Total Dissolved (TDS)	620	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-01		Solids, Total Dissolved (TDS)	628	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Solids, Total Dissolved (TDS)	583	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Solids, Total Dissolved (TDS)	600	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Solids, Total Dissolved (TDS)	570	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Solids, Total Dissolved (TDS)	568	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Solids, Total Suspended (TSS)	24.8	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Solids, Total Suspended (TSS)	26.4	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Solids, Total Suspended (TSS)	139	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Solids, Total Suspended (TSS)	10.4	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Solids, Total Suspended (TSS)	13.2	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Solids, Total Suspended (TSS)	20.8	mg/L	7
RTZF	TOWER LAKE	1988-06-22		Solids, Total Suspended (TSS)	25.2	mg/L	3
RTZF	TOWER LAKE	1988-06-22		Solids, Total Suspended (TSS)	34	mg/L	5
RTZF	TOWER LAKE	1988-06-22		Solids, Total Suspended (TSS)	30.5	mg/L	7
RTZF	TOWER LAKE	1988-07-21		Solids, Total Suspended (TSS)	22	mg/L	2
RTZF	TOWER LAKE	1988-07-21		Solids, Total Suspended (TSS)	19.5	mg/L	4
RTZF	TOWER LAKE	1988-07-21		Solids, Total Suspended (TSS)	19.5	mg/L	6
RTZF	TOWER LAKE	1988-08-24		Solids, Total Suspended (TSS)	45	mg/L	0
RTZF	TOWER LAKE	1988-08-24		Solids, Total Suspended (TSS)	26	mg/L	3
RTZF	TOWER LAKE	1988-08-24		Solids, Total Suspended (TSS)	42	mg/L	5.5
RTZF	TOWER LAKE	1988-09-21		Solids, Total Suspended (TSS)	21	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Solids, Total Suspended (TSS)	22	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Solids, Total Suspended (TSS)	27	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Solids, Total Suspended (TSS)	14.6	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Solids, Total Suspended (TSS)	14	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Solids, Total Suspended (TSS)	5.6	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Solids, Total Suspended (TSS)	16	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Solids, Total Suspended (TSS)	12	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Solids, Total Suspended (TSS)	15	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Solids, Total Suspended (TSS)	26.2	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Solids, Total Suspended (TSS)	32	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Solids, Total Suspended (TSS)	16.8	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Solids, Total Suspended (TSS)	16.3	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Solids, Total Suspended (TSS)	3.1	mg/L	3
RTZF	TOWER LAKE	2007-06-13		Solids, Total Suspended (TSS)	4.2	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Solids, Total Suspended (TSS)	9.3	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Solids, Total Suspended (TSS)	6.8	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Solids, Total Suspended (TSS)	12	mg/L	3
RTZF	TOWER LAKE	2012-05-23	10:35	Solids, Total Suspended (TSS)	8	mg/L	1 ft
RTZF	TOWER LAKE	2012-07-16	13:14	Solids, Total Suspended (TSS)	20	mg/L	1 ft
RTZF	TOWER LAKE	2012-08-21	13:00	Solids, Total Suspended (TSS)	17	mg/L	1 ft
RTZF	TOWER LAKE	2013-05-21		Solids, Total Suspended (TSS)	2.7	mg/L	3
RTZF	TOWER LAKE	2013-05-27	10:59	Solids, Total Suspended (TSS)	14	mg/L	1 ft
RTZF	TOWER LAKE	2013-06-18		Solids, Total Suspended (TSS)	3.2	mg/L	3
RTZF	TOWER LAKE	2013-06-30	11:29	Solids, Total Suspended (TSS)	8	mg/L	1 ft
RTZF	TOWER LAKE	2013-07-16		Solids, Total Suspended (TSS)	7.4	mg/L	3
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	------------	------------	-------	-------------------------------	--------	-------	---------
RTZF	TOWER LAKE	2013-08-04	12:00	Solids, Total Suspended (TSS)	13	mg/L	1 ft
RTZF	TOWER LAKE	2013-08-20		Solids, Total Suspended (TSS)	10	mg/L	3
RTZF	TOWER LAKE	2013-09-02	10:23	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZF	TOWER LAKE	2013-09-17		Solids, Total Suspended (TSS)	23.4	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1098	uS/cm	0.25 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1100	uS/cm	1 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1099	uS/cm	2 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1.102	mS/cm	3
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1102	uS/cm	3 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1101	uS/cm	4 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1.098	mS/cm	5
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1098	uS/cm	5 ft
RTZF	TOWER LAKE	2001-05-23		Specific conductance	1096	uS/cm	6 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1106	uS/cm	0.25 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1107	uS/cm	1 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1107	uS/cm	2 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1.107	mS/cm	3
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1107	uS/cm	3 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1107	uS/cm	4 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1111	uS/cm	5 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1.115	mS/cm	6
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1115	uS/cm	6 ft
RTZF	TOWER LAKE	2001-06-27		Specific conductance	1117	uS/cm	7 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1060	uS/cm	0.25 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1047	uS/cm	1 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1045	uS/cm	2 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1.049	mS/cm	3
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1049	uS/cm	3 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1049	uS/cm	4 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1.061	mS/cm	5
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1061	uS/cm	5 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1072	uS/cm	6 ft
RTZF	TOWER LAKE	2001-08-01		Specific conductance	1080	uS/cm	7 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1013	uS/cm	0.25 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1014	uS/cm	1 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1016	uS/cm	2 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1.016	mS/cm	3
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1016	uS/cm	3 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1017	uS/cm	4 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1.02	mS/cm	5
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1020	uS/cm	5 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1019	uS/cm	6 ft
RTZF	TOWER LAKE	2001-08-29		Specific conductance	1065	uS/cm	7 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	998.7	uS/cm	0.25 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	998.2	uS/cm	1 ft
RTZF	TOWER LAKE	2001-09-25	ĺ l	Specific conductance	998.3	uS/cm	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-09-25		Specific conductance	0.9981	mS/cm	3
RTZF	TOWER LAKE	2001-09-25		Specific conductance	998.1	uS/cm	3 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	998	uS/cm	4 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	0.9979	mS/cm	5
RTZF	TOWER LAKE	2001-09-25		Specific conductance	997.9	uS/cm	5 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	997.6	uS/cm	6 ft
RTZF	TOWER LAKE	2001-09-25		Specific conductance	997.4	uS/cm	7 ft
RTZF	TOWER LAKE	2007-05-09		Specific conductance	1.111	mS/cm	3
RTZF	TOWER LAKE	2007-05-09		Specific conductance	1111	uS/cm	3 ft
RTZF	TOWER LAKE	2007-06-13		Specific conductance	1.072	mS/cm	3
RTZF	TOWER LAKE	2007-06-13		Specific conductance	1072	uS/cm	3 ft
RTZF	TOWER LAKE	2007-07-08		Specific conductance	975	uS/cm	3 ft
RTZF	TOWER LAKE	2007-07-11		Specific conductance	1.111	mS/cm	3
RTZF	TOWER LAKE	2007-07-11		Specific conductance	1111	uS/cm	3 ft
RTZF	TOWER LAKE	2007-08-08		Specific conductance	0.975	mS/cm	3
RTZF	TOWER LAKE	2007-09-12		Specific conductance	0.858	mS/cm	3
RTZF	TOWER LAKE	2013-05-21		Specific conductance	0.7601	mS/cm	3
RTZF	TOWER LAKE	2013-06-18		Specific conductance	0.9197	mS/cm	3
RTZF	TOWER LAKE	2013-07-16		Specific conductance	0.6685	mS/cm	3
RTZF	TOWER LAKE	2013-08-20		Specific conductance	0.6914	mS/cm	3
RTZF	TOWER LAKE	2013-09-17		Specific conductance	0.6688	mS/cm	3
RTZF	TOWER LAKE	2012-05-23	10:35	Temperature, sample	5	deg C	
RTZF	TOWER LAKE	2012-07-16	13:14	Temperature, sample	8	deg C	
RTZF	TOWER LAKE	2012-08-21	13:00	Temperature, sample	9	deg C	
RTZF	TOWER LAKE	2013-05-27	10:59	Temperature, sample	8	deg C	
RTZF	TOWER LAKE	2013-06-30	11:29	Temperature, sample	10	deg C	
RTZF	TOWER LAKE	2013-08-04	12:00	Temperature, sample	7	deg C	
RTZF	TOWER LAKE	2013-09-02	10:23	Temperature, sample	9	deg C	
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.49	с	0.25 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.51	с	1 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.49	с	2 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.47	с	3 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.43	с	4 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.42	с	5 ft
RTZF	TOWER LAKE	2001-05-23		Temperature, water	18.21	с	6 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	26.93	с	0.25 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	26.95	с	1 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	26.57	с	2 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	26.37	с	3 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	26.07	с	4 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	25.36	с	5 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	24.86	с	6 ft
RTZF	TOWER LAKE	2001-06-27		Temperature, water	24.2	с	7 ft
RTZF	TOWER LAKE	2001-08-01		Temperature, water	28.74	с	0.25 ft
RTZF	TOWER LAKE	2001-08-01		Temperature, water	29.53	с	1 ft
RTZF	TOWER LAKE	2001-08-01		Temperature, water	29.46	с	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-01		Temperature, water	29.11	с	3 ft
RTZF	TOWER LAKE	2001-08-01		Temperature, water	28.71	с	4 ft
RTZF		2001-08-01		Temperature, water	27.32	с	5 ft
RTZF		2001-08-01		Temperature, water	25.97	с	6 ft
RTZF	TOWER LAKE	2001-08-01		Temperature, water	25.35	с	7 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	25.17	С	0.25 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	25.16	с	1 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	24.93	с	2 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	24.28	с	3 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	24.22	с	4 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	24.15	с	5 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	23.73	с	6 ft
RTZF	TOWER LAKE	2001-08-29		Temperature, water	23.4	С	7 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.3	с	0.25 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.3	с	1 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.3	с	2 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.31	с	3 ft
RTZF		2001-09-25		Temperature, water	15.31	с	4 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.31	с	5 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.3	с	6 ft
RTZF	TOWER LAKE	2001-09-25		Temperature, water	15.31	С	7 ft
RTZF	TOWER LAKE	1988-04-27		Total solids	464	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Total solids	471	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Total solids	585	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Total solids	521	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Total solids	534	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Total solids	538	mg/L	7
RTZF	TOWER LAKE	1988-06-22		Total solids	558	mg/L	3
RTZF	TOWER LAKE	1988-06-22		Total solids	564	mg/L	5
RTZF	TOWER LAKE	1988-06-22		Total solids	564	mg/L	7
RTZF	TOWER LAKE	1988-07-21		Total solids	522	mg/L	2
RTZF	TOWER LAKE	1988-07-21		Total solids	533	mg/L	4
RTZF	TOWER LAKE	1988-07-21		Total solids	520	mg/L	6
RTZF	TOWER LAKE	1988-08-24		Total solids	438	mg/L	0
RTZF	TOWER LAKE	1988-08-24		Total solids	451	mg/L	3
RTZF	TOWER LAKE	1988-08-24		Total solids	452	mg/L	5.5
RTZF	TOWER LAKE	1988-09-21		Total solids	488	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Total solids	465	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Total solids	454	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Total solids	688	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Total solids	697	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Total solids	705	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Total solids	723	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Total solids	679	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Total solids	693	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Total solids	691	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2001-08-29		Total solids	706	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Total solids	617	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Total solids	602	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Total solids	620	mg/L	3
RTZF	TOWER LAKE	2007-06-13		Total solids	642	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Total solids	642	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Total solids	560	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Total solids	519	mg/L	3
RTZF	TOWER LAKE	2013-05-21		Total solids	533	mg/L	3
RTZF	TOWER LAKE	2013-06-18		Total solids	559	mg/L	3
RTZF	TOWER LAKE	2013-07-16		Total solids	435	mg/L	3
RTZF	TOWER LAKE	2013-08-20		Total solids	446	mg/L	3
RTZF	TOWER LAKE	2013-09-17		Total solids	456	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Total volatile solids	115	mg/L	3
RTZF	TOWER LAKE	1988-04-27		Total volatile solids	118	mg/L	5
RTZF	TOWER LAKE	1988-04-27		Total volatile solids	140	mg/L	7
RTZF	TOWER LAKE	1988-05-26		Total volatile solids	175	mg/L	3
RTZF	TOWER LAKE	1988-05-26		Total volatile solids	182	mg/L	5
RTZF	TOWER LAKE	1988-05-26		Total volatile solids	192	mg/L	7
RTZF	TOWER LAKE	1988-06-22		Total volatile solids	208	mg/L	3
RTZF	TOWER LAKE	1988-06-22		Total volatile solids	212	mg/L	5
RTZF	TOWER LAKE	1988-06-22		Total volatile solids	218	mg/L	7
RTZF	TOWER LAKE	1988-07-21		Total volatile solids	196	mg/L	2
RTZF	TOWER LAKE	1988-07-21		Total volatile solids	215	mg/L	4
RTZF	TOWER LAKE	1988-07-21		Total volatile solids	198	mg/L	6
RTZF	TOWER LAKE	1988-08-24		Total volatile solids	150	mg/L	0
RTZF	TOWER LAKE	1988-08-24		Total volatile solids	154	mg/L	3
RTZF	TOWER LAKE	1988-08-24		Total volatile solids	160	mg/L	5.5
RTZF	TOWER LAKE	1988-09-21		Total volatile solids	152	mg/L	0
RTZF	TOWER LAKE	1988-09-21		Total volatile solids	144	mg/L	3
RTZF	TOWER LAKE	1988-09-21		Total volatile solids	142	mg/L	6
RTZF	TOWER LAKE	2001-05-23		Total volatile solids	180	mg/L	3
RTZF	TOWER LAKE	2001-05-23		Total volatile solids	191	mg/L	5
RTZF	TOWER LAKE	2001-06-27		Total volatile solids	177	mg/L	3
RTZF	TOWER LAKE	2001-06-27		Total volatile solids	188	mg/L	6
RTZF	TOWER LAKE	2001-08-01		Total volatile solids	215	mg/L	3
RTZF	TOWER LAKE	2001-08-01		Total volatile solids	231	mg/L	5
RTZF	TOWER LAKE	2001-08-29		Total volatile solids	257	mg/L	3
RTZF	TOWER LAKE	2001-08-29		Total volatile solids	221	mg/L	5
RTZF	TOWER LAKE	2001-09-25		Total volatile solids	171	mg/L	3
RTZF	TOWER LAKE	2001-09-25		Total volatile solids	153	mg/L	5
RTZF	TOWER LAKE	2007-05-09		Total volatile solids	103	mg/L	3
RTZF	TOWER LAKE	2007-06-13		Total volatile solids	146	mg/L	3
RTZF	TOWER LAKE	2007-07-11		Total volatile solids	150	mg/L	3
RTZF	TOWER LAKE	2007-08-08		Total volatile solids	124	mg/L	3
RTZF	TOWER LAKE	2007-09-12		Total volatile solids	104	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZF	TOWER LAKE	2013-05-21		Total volatile solids	114	mg/L	3
RTZF	TOWER LAKE	2013-06-18		Total volatile solids	125	mg/L	3
RTZF	TOWER LAKE	2013-07-16		Total volatile solids	103	mg/L	3
RTZF	TOWER LAKE	2013-08-20		Total volatile solids	104	mg/L	3
RTZF	TOWER LAKE	2013-09-17		Total volatile solids	111	mg/L	3
RTZF	TOWER LAKE	1988-04-27		TRP	0		3
RTZF	TOWER LAKE	1988-04-27		TRP	0		5
RTZF	TOWER LAKE	1988-04-27		TRP	0		7
RTZF	TOWER LAKE	1988-05-26		TRP	0		3
RTZF	TOWER LAKE	1988-05-26		TRP	0		5
RTZF	TOWER LAKE	1988-05-26		TRP	0		7
RTZF	TOWER LAKE	1988-06-22		TRP	0		3
RTZF	TOWER LAKE	1988-06-22		TRP	0		5
RTZF	TOWER LAKE	1988-06-22		TRP	0		7
RTZF	TOWER LAKE	1988-07-21		TRP	0.02		2
RTZF	TOWER LAKE	1988-07-21		TRP	0.02		4
RTZF	TOWER LAKE	1988-07-21		TRP	0		6
RTZF	TOWER LAKE	1988-08-24		TRP	0.042		0
RTZF	TOWER LAKE	1988-08-24		TRP	0.045		3
RTZF	TOWER LAKE	1988-08-24		TRP	0.042		5.5
RTZF	TOWER LAKE	1988-09-21		TRP	0.024		0
RTZF	TOWER LAKE	1988-09-21		TRP	0.02		3
RTZF	TOWER LAKE	1988-09-21		TRP	0.024		6
RTZF	TOWER LAKE	2001-05-23		TRP	0		3
RTZF	TOWER LAKE	2001-05-23		TRP	0		5
RTZF	TOWER LAKE	2001-06-27		TRP	0		3
RTZF	TOWER LAKE	2001-06-27		TRP	0		6
RTZF	TOWER LAKE	2001-08-01		TRP	0		3
RTZF	TOWER LAKE	2001-08-01		TRP	0		5
RTZF	TOWER LAKE	2001-08-29		TRP	0		3
RTZF	TOWER LAKE	2001-08-29		TRP	0		5
RTZF	TOWER LAKE	2001-09-25		TRP	0		3
RTZF	TOWER LAKE	2001-09-25		TRP	0		5
RTZF	TOWER LAKE	2007-05-09		TRP	0		3
RTZF	TOWER LAKE	2007-06-13		TRP	0		3
RTZF	TOWER LAKE	2007-07-11		TRP	0		3
RTZF	TOWER LAKE	2007-08-08		TRP	0		3
RTZF	TOWER LAKE	2007-09-12		TRP	0		3
RTZI	ISLAND LAKE	2009-08-10	10:22	Acetochlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Acetochlor	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Acetochlor	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Acetochlor	6.1	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Alachlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Alachlor	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Alachlor	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Alachlor	NA	ug/kg	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10	10:22	Aldrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Aldrin	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Aldrin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Aldrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	1998-05-19		Alkalinity	223	mg/l CaCO3	3
RTZI	ISLAND LAKE	1998-05-19		Alkalinity	227	mg/l CaCO3	8
RTZI	ISLAND LAKE	1998-06-16		Alkalinity	245	mg/l CaCO3	3
RTZI	ISLAND LAKE	1998-06-16		Alkalinity	246	mg/l CaCO3	7
RTZI	ISLAND LAKE	1998-07-21		Alkalinity	204	mg/l CaCO3	3
RTZI	ISLAND LAKE	1998-07-21		Alkalinity	224	mg/l CaCO3	8
RTZI	ISLAND LAKE	1998-08-19		Alkalinity	184	mg/l CaCO3	3
RTZI	ISLAND LAKE	1998-08-19		Alkalinity	184	mg/l CaCO3	7
RTZI	ISLAND LAKE	1998-09-22		Alkalinity	158	mg/l CaCO3	3
RTZI	ISLAND LAKE	1998-09-22		Alkalinity	158	mg/l CaCO3	7
RTZI	ISLAND LAKE	2003-05-14		Alkalinity	198	mg/l CaCO3	3
RTZI	ISLAND LAKE	2003-05-14		Alkalinity	198	mg/l CaCO3	6
RTZI	ISLAND LAKE	2003-06-11		Alkalinity	217	mg/l CaCO3	3
RTZI	ISLAND LAKE	2003-06-11		Alkalinity	224	mg/l CaCO3	6
RTZI	ISLAND LAKE	2003-07-16		Alkalinity	217	mg/l CaCO3	3
RTZI	ISLAND LAKE	2003-07-16		Alkalinity	216	mg/l CaCO3	6
RTZI	ISLAND LAKE	2003-08-13		Alkalinity	220	mg/l CaCO3	3
RTZI	ISLAND LAKE	2003-08-13		Alkalinity	219	mg/l CaCO3	5
RTZI	ISLAND LAKE	2003-09-17		Alkalinity	192	mg/l CaCO3	3
RTZI	ISLAND LAKE	2003-09-17		Alkalinity	192	mg/l CaCO3	5
RTZI	ISLAND LAKE	2013-05-14		Alkalinity	166	mg/l CaCO3	3
RTZI	ISLAND LAKE	2013-05-14		Alkalinity	169	mg/l CaCO3	5
RTZI	ISLAND LAKE	2013-06-11		Alkalinity	196	mg/l CaCO3	3
RTZI	ISLAND LAKE	2013-07-09		Alkalinity	198	mg/l CaCO3	3
RTZI	ISLAND LAKE	2013-08-13		Alkalinity	200	mg/l CaCO3	3
RTZI	ISLAND LAKE	2013-09-10		Alkalinity	198	mg/l CaCO3	3
RTZI	ISLAND LAKE	2008-05-26	11:20	Alkalinity, total	256	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Alkalinity, total	250	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Alkalinity, total	208	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Alkalinity, total	216	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Alkalinity, total	214	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Alkalinity, total	218	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Alkalinity, total	174	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Alkalinity, total	190	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Alkalinity, total	208	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Alkalinity, total	236	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Alkalinity, total	210	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Alkalinity, total	215	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Alkalinity, total	225	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Alkalinity, total	240	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Alkalinity, total	240	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Alkalinity, total	235	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-07-13	13:29	Alkalinity, total	240	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Alkalinity, total	245	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Alkalinity, total	240	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Alkalinity, total	215	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Alkalinity, total	215	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Alkalinity, total	220	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Alkalinity, total	205	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Alkalinity, total	200	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Alkalinity, total	230	mg/L	1 ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Alkalinity, total	205	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Alkalinity, total	240	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Alkalinity, total	245	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Alkalinity, total	190	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Alkalinity, total	180	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Alkalinity, total	185	mg/L	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Alkalinity, total	185	mg/L	1 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Alkalinity, total	245	mg/L	1 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Alkalinity, total	200	mg/L	1 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Alkalinity, total	180	mg/L	1 ft
RTZI	ISLAND LAKE	1989-04-20		Ammonia as N	0.14	mg/L	4
RTZI	ISLAND LAKE	1998-05-19		Ammonia as N	0.252	mg/L	8
RTZI	ISLAND LAKE	1998-07-21		Ammonia as N	1.11	mg/L	8
RTZI	ISLAND LAKE	2003-05-14		Ammonia as N	0.278	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Ammonia as N	0.315	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Ammonia as N	0.174	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Ammonia as N	0.176	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Ammonia as N	0.116	mg/L	6
RTZI	ISLAND LAKE	2009-08-10	10:22	Arsenic	37.6	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Arsenic	40.9	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Arsenic	22.4	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Arsenic	15.3	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Atrazine	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Atrazine	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Atrazine	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Atrazine	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Barium	135	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Barium	81.9	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Barium	62.8	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Barium	126	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	BHC-alpha	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	BHC-alpha	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	BHC-alpha	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	BHC-alpha	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	BHC-gamma (Lindane)	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	BHC-gamma (Lindane)	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	BHC-gamma (Lindane)	NA	ug/kg	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2011-08-27	8:00	BHC-gamma (Lindane)	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Cadmium	NA	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Cadmium	NA	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Cadmium	NA	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Cadmium	2.73	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Captan	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Captan	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Captan	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Captan	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Carbon, organic	11.1	%	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Carbon, organic	8.17	%	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Carbon, organic	6.07	%	4 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Chlordane, cis	0.75	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Chlordane, cis	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Chlordane, cis	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlordane, cis	0.88	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Chlordane, trans	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Chlordane, trans	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Chlordane, trans	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlordane, trans	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Chloride	109	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Chloride	110	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Chloride	74.3	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Chloride	82.4	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Chloride	98	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Chloride	102	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Chloride	62.9	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Chloride	70.3	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Chloride	72.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Chloride	79.2	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Chloride	64.8	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Chloride	68.4	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Chloride	85.5	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Chloride	82.8	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Chloride	83	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Chloride	84.4	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Chloride	148	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Chloride	147	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Chloride	146	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Chloride	79.7	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Chloride	79.6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Chloride	88.3	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Chloride	79.8	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Chloride	71.6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Chloride	77.2	mg/L	1 ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Chloride	86.8	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2011-06-05	16:00	Chloride	82.2	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Chloride	93.6	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Chloride	80.8	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chloride	89	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chloride	83.1	mg/L	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Chloride	95.9	mg/L	1 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Chloride	102	mg/L	1 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Chloride	108	mg/L	1 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Chloride	118	mg/L	1 ft
RTZI	ISLAND LAKE	2013-05-14		Chloride	83.4	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Chloride	84.5	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Chloride	92.6	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Chloride	76.8	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Chloride	82.6	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Chloride	89.2	mg/L	3
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a	49.4	ug/L	2
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a	48.4	ug/L	4
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a	53.7	ug/L	6
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a	33.6	ug/L	0
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a	32	ug/L	3
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a	24.3	ug/L	6
RTZI	ISLAND LAKE	1998-05-19		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	1998-05-19		Chlorophyll a	0	ug/L	8
RTZI	ISLAND LAKE	1998-06-16		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	1998-06-16		Chlorophyll a	0	ug/L	7
RTZI	ISLAND LAKE	1998-07-21		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	1998-07-21		Chlorophyll a	0	ug/L	8
RTZI	ISLAND LAKE	1998-08-19		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	1998-08-19		Chlorophyll a	0	ug/L	7
RTZI	ISLAND LAKE	1998-09-22		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	1998-09-22		Chlorophyll a	0	ug/L	7
RTZI	ISLAND LAKE	2003-05-14		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2003-05-14		Chlorophyll a	0	ug/L	6
RTZI	ISLAND LAKE	2003-06-11		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2003-06-11		Chlorophyll a	0	ug/L	6
RTZI	ISLAND LAKE	2003-07-16		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2003-07-16		Chlorophyll a	0	ug/L	6
RTZI	ISLAND LAKE	2003-08-13		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2003-08-13		Chlorophyll a	0	ug/L	5
RTZI	ISLAND LAKE	2003-09-17		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2003-09-17		Chlorophyll a	0	ug/L	5
RTZI	ISLAND LAKE	2013-08-13		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2013-09-10		Chlorophyll a	0	ug/L	3
RTZI	ISLAND LAKE	2008-05-26	11:20	Chlorophyll a, corrected for pheophytin	10.6	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Chlorophyll a, corrected for pheophytin	6.24	ug/L	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Chlorophyll a, corrected for pheophytin	17.1	ug/L	7 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-06-16	16:40	Chlorophyll a, corrected for pheophytin	28.4	ug/L	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Chlorophyll a, corrected for pheophytin	51.8	ug/L	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Chlorophyll a, corrected for pheophytin	41.7	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Chlorophyll a, corrected for pheophytin	12.8	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Chlorophyll a, corrected for pheophytin	8.68	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Chlorophyll a, corrected for pheophytin	62.8	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Chlorophyll a, corrected for pheophytin	62.7	ug/L	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Chlorophyll a, corrected for pheophytin	39.9	ug/L	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Chlorophyll a, corrected for pheophytin	62	ug/L	3 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Chlorophyll a, corrected for pheophytin	8.21	ug/L	7.5 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Chlorophyll a, corrected for pheophytin	42.9	ug/L	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Chlorophyll a, corrected for pheophytin	37.8	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11		Chlorophyll a, corrected for pheophytin	37.8	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Chlorophyll a, corrected for pheophytin	35.2	ug/L	4 ft
RTZI	ISLAND LAKE	2009-05-11		Chlorophyll a, corrected for pheophytin	35.2	ug/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Chlorophyll a, corrected for pheophytin	25.1	ug/L	2 ft
RTZI	ISLAND LAKE	2009-05-11		Chlorophyll a, corrected for pheophytin	25.1	ug/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Chlorophyll a, corrected for pheophytin	24.7	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10		Chlorophyll a, corrected for pheophytin	24.7	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Chlorophyll a, corrected for pheophytin	34.3	ug/L	3 ft
RTZI	ISLAND LAKE	2009-06-10		Chlorophyll a, corrected for pheophytin	34.3	ug/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Chlorophyll a, corrected for pheophytin	34.1	ug/L	2 ft
RTZI	ISLAND LAKE	2009-06-10		Chlorophyll a, corrected for pheophytin	34.1	ug/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Chlorophyll a, corrected for pheophytin	55.5	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13		Chlorophyll a, corrected for pheophytin	55.5	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Chlorophyll a, corrected for pheophytin	52.3	ug/L	3 ft
RTZI	ISLAND LAKE	2009-07-13		Chlorophyll a, corrected for pheophytin	52.3	ug/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Chlorophyll a, corrected for pheophytin	47.5	ug/L	2 ft
RTZI	ISLAND LAKE	2009-07-13		Chlorophyll a, corrected for pheophytin	47.5	ug/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Chlorophyll a, corrected for pheophytin	17.2	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10		Chlorophyll a, corrected for pheophytin	17.2	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Chlorophyll a, corrected for pheophytin	19	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10		Chlorophyll a, corrected for pheophytin	19	ug/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Chlorophyll a, corrected for pheophytin	160	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10		Chlorophyll a, corrected for pheophytin	160	ug/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Chlorophyll a, corrected for pheophytin	40.6	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08		Chlorophyll a, corrected for pheophytin	40.6	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Chlorophyll a, corrected for pheophytin	37.4	ug/L	3 ft
RTZI	ISLAND LAKE	2009-10-08		Chlorophyll a, corrected for pheophytin	37.4	ug/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Chlorophyll a, corrected for pheophytin	26.7	ug/L	2 ft
RTZI	ISLAND LAKE	2009-10-08		Chlorophyll a, corrected for pheophytin	26.7	ug/L	ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlorophyll a, corrected for pheophytin	148	ug/L	2 ft
RTZI	ISLAND LAKE	2012-05-23	10:49	Chlorophyll a, corrected for pheophytin	8.01	ug/L	6 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Chlorophyll a, corrected for pheophytin	11.1	ug/L	5 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Chlorophyll a, corrected for pheophytin	167	ug/L	2 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Chlorophyll a, corrected for pheophytin	101	ug/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a, uncorrected for pheophytin	49.4	ug/L	2 ft
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a, uncorrected for pheophytin	48.4	ug/L	4 ft
RTZI	ISLAND LAKE	1989-04-20		Chlorophyll a, uncorrected for pheophytin	53.7	ug/L	6 ft
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a, uncorrected for pheophytin	33.6	ug/L	0 ft
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a, uncorrected for pheophytin	32	ug/L	3 ft
RTZI	ISLAND LAKE	1989-07-11		Chlorophyll a, uncorrected for pheophytin	24.3	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Chlorophyll a, uncorrected for pheophytin	10.7	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Chlorophyll a, uncorrected for pheophytin	7.25	ug/L	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Chlorophyll a, uncorrected for pheophytin	20.2	ug/L	7 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Chlorophyll a, uncorrected for pheophytin	32.2	ug/L	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Chlorophyll a, uncorrected for pheophytin	52.5	ug/L	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Chlorophyll a, uncorrected for pheophytin	40.8	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Chlorophyll a, uncorrected for pheophytin	14.4	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Chlorophyll a, uncorrected for pheophytin	9.56	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Chlorophyll a, uncorrected for pheophytin	63.7	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Chlorophyll a, uncorrected for pheophytin	66.8	ug/L	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Chlorophyll a, uncorrected for pheophytin	43.2	ug/L	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Chlorophyll a, uncorrected for pheophytin	65.1	ug/L	3 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Chlorophyll a, uncorrected for pheophytin	8.59	ug/L	7.5 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Chlorophyll a, uncorrected for pheophytin	44.4	ug/L	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Chlorophyll a, uncorrected for pheophytin	38.9	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Chlorophyll a, uncorrected for pheophytin	35.5	ug/L	4 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Chlorophyll a, uncorrected for pheophytin	26	ug/L	2 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Chlorophyll a, uncorrected for pheophytin	24.3	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Chlorophyll a, uncorrected for pheophytin	33.8	ug/L	3 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Chlorophyll a, uncorrected for pheophytin	32.7	ug/L	2 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Chlorophyll a, uncorrected for pheophytin	57	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Chlorophyll a, uncorrected for pheophytin	53.8	ug/L	3 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Chlorophyll a, uncorrected for pheophytin	49	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Chlorophyll a, uncorrected for pheophytin	16.9	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Chlorophyll a, uncorrected for pheophytin	18.5	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Chlorophyll a, uncorrected for pheophytin	159	ug/L	2 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Chlorophyll a, uncorrected for pheophytin	41.8	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Chlorophyll a, uncorrected for pheophytin	39.8	ug/L	3 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Chlorophyll a, uncorrected for pheophytin	32.1	ug/L	2 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlorophyll a, uncorrected for pheophytin	152	ug/L	2 ft
RTZI	ISLAND LAKE	2012-05-23	10:49	Chlorophyll a, uncorrected for pheophytin	8.4	ug/L	6 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Chlorophyll a, uncorrected for pheophytin	11.5	ug/L	5 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Chlorophyll a, uncorrected for pheophytin	173	ug/L	2 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Chlorophyll a, uncorrected for pheophytin	110	ug/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlorophyll b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2012-05-23	10:49	Chlorophyll b	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Chlorophyll b	0.53	ug/L	5 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Chlorophyll b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Chlorophyll b	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chlorophyll c	9.59	ug/L	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2012-05-23	10:49	Chlorophyll c	1.44	ug/L	6 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Chlorophyll c	1.17	ug/L	5 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Chlorophyll c	10.5	ug/L	2 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Chlorophyll c	5.32	ug/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Chlorophyll-b	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Chlorophyll-b	NA	ug/L	7 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Chlorophyll-b	7.95	ug/L	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Chlorophyll-b	7.77	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Chlorophyll-b	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Chlorophyll-b	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Chlorophyll-b	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Chlorophyll-b	NA	ug/L	7.5 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Chlorophyll-b	NA	ug/L	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Chlorophyll-b	NA	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Chlorophyll-b	NA	ug/L	4 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Chlorophyll-b	NA	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Chlorophyll-b	NA	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Chlorophyll-b	0.55	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Chlorophyll-b	NA	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Chlorophyll-b	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Chlorophyll-b	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Chlorophyll-c	1.2	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Chlorophyll-c	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Chlorophyll-c	1.71	ug/L	7 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Chlorophyll-c	3.11	ug/L	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Chlorophyll-c	3.24	ug/L	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Chlorophyll-c	1.94	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Chlorophyll-c	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Chlorophyll-c	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Chlorophyll-c	8.33	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Chlorophyll-c	6.28	ug/L	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Chlorophyll-c	5.94	ug/L	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Chlorophyll-c	6.71	ug/L	3 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Chlorophyll-c	1.16	ug/L	7.5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-10-18	12:24	Chlorophyll-c	7.29	ug/L	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Chlorophyll-c	6.84	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Chlorophyll-c	6.14	ug/L	4 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Chlorophyll-c	4.17	ug/L	2 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Chlorophyll-c	4.79	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Chlorophyll-c	5.67	ug/L	3 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Chlorophyll-c	6.1	ug/L	2 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Chlorophyll-c	3.57	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Chlorophyll-c	3.66	ug/L	3 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Chlorophyll-c	3.5	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Chlorophyll-c	0.88	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Chlorophyll-c	1.41	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Chlorophyll-c	9.71	ug/L	2 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Chlorophyll-c	1.27	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Chlorophyll-c	3.87	ug/L	3 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Chlorophyll-c	2.52	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Chromium	12.9	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Chromium	4.09	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Chromium	6.7	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Chromium	25.4	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Copper	50.7	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Copper	26.2	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Copper	24.1	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Copper	44.6	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Cyazine	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Cyazine	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Cyazine	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Cyazine	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	DDD, p,p'-	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	DDD, p,p'-	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	DDD, p,p'-	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	DDE, p,p'-	0.91	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	DDE, p,p'-	0.36	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	DDE, p,p'-	0.29	ug/kg	4 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	DDT, p,p'-	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	DDT, p,p'-	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	DDT, p,p'-	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2008-05-01		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-05-01		Depth, bottom	6.5	ft	
RTZI	ISLAND LAKE	2008-05-01		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-05-26		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-05-26		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-05-26		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-06-05		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-06-05		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-06-05		Depth, bottom	4	ft	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-06-16		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-06-16		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-06-16		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-07-02		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-07-02		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-07-02		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-07-22		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-07-22		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-07-22		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-08-05		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-08-05		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-08-05		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-08-18		Depth, bottom	8.5	ft	
RTZI	ISLAND LAKE	2008-08-18		Depth, bottom	5.5	ft	
RTZI	ISLAND LAKE	2008-08-18		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	2008-09-28		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-09-28		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-09-28		Depth, bottom	4.5	ft	
RTZI	ISLAND LAKE	2008-10-18		Depth, bottom	9	ft	
RTZI	ISLAND LAKE	2008-10-18		Depth, bottom	6	ft	
RTZI	ISLAND LAKE	2008-10-18		Depth, bottom	4	ft	
RTZI	ISLAND LAKE	1989-04-20		Depth, Secchi Disk Depth	1.41	ft	2
RTZI	ISLAND LAKE	1989-07-11		Depth, Secchi Disk Depth	1.25	ft	0
RTZI	ISLAND LAKE	1998-05-19		Depth, Secchi Disk Depth	2.8	ft	3
RTZI	ISLAND LAKE	1998-06-16		Depth, Secchi Disk Depth	2.1	ft	3
RTZI	ISLAND LAKE	1998-07-21		Depth, Secchi Disk Depth	1	ft	3
RTZI	ISLAND LAKE	1998-08-19		Depth, Secchi Disk Depth	1	ft	3
RTZI	ISLAND LAKE	1998-09-22		Depth, Secchi Disk Depth	1	ft	3
RTZI	ISLAND LAKE	2003-05-14		Depth, Secchi Disk Depth	3.45	ft	3
RTZI	ISLAND LAKE	2003-06-11		Depth, Secchi Disk Depth	4.95	ft	3
RTZI	ISLAND LAKE	2003-07-16		Depth, Secchi Disk Depth	3.41	ft	3
RTZI	ISLAND LAKE	2003-08-13		Depth, Secchi Disk Depth	1.41	ft	3
RTZI	ISLAND LAKE	2003-09-17		Depth, Secchi Disk Depth	1.28	ft	3
RTZI	ISLAND LAKE	2008-05-01	13:00	Depth, Secchi Disk Depth	24	in	
RTZI	ISLAND LAKE	2008-05-01	13:20	Depth, Secchi Disk Depth	22	in	
RTZI	ISLAND LAKE	2008-05-01	13:45	Depth, Secchi Disk Depth	21	in	
RTZI	ISLAND LAKE	2008-05-26	11:20	Depth, Secchi Disk Depth	36	in	
RTZI	ISLAND LAKE	2008-05-26	11:44	Depth, Secchi Disk Depth	34	in	
RTZI	ISLAND LAKE	2008-05-26	12:13	Depth, Secchi Disk Depth	30	in	
RTZI	ISLAND LAKE	2008-06-05	18:00	Depth, Secchi Disk Depth	52	in	
RTZI	ISLAND LAKE	2008-06-05	18:23	Depth, Secchi Disk Depth	48	in	
RTZI	ISLAND LAKE	2008-06-05	18:38	Depth, Secchi Disk Depth	33	in	
RTZI	ISLAND LAKE	2008-06-16	15:45	Depth, Secchi Disk Depth	42	in	
RTZI	ISLAND LAKE	2008-06-16	16:10	Depth, Secchi Disk Depth	32	in	
RTZI	ISLAND LAKE	2008-06-16	16:40	Depth, Secchi Disk Depth	26	in	
RTZI	ISLAND LAKE	2008-07-02	11:51	Depth, Secchi Disk Depth	24	in	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-07-02	12:18	Depth, Secchi Disk Depth	24	in	
RTZI	ISLAND LAKE	2008-07-02	12:33	Depth, Secchi Disk Depth	20	in	
RTZI	ISLAND LAKE	2008-07-22	11:00	Depth, Secchi Disk Depth	27	in	
RTZI	ISLAND LAKE	2008-07-22	11:22	Depth, Secchi Disk Depth	24	in	
RTZI	ISLAND LAKE	2008-07-22	11:40	Depth, Secchi Disk Depth	22	in	
RTZI	ISLAND LAKE	2008-08-05	11:59	Depth, Secchi Disk Depth	26	in	
RTZI	ISLAND LAKE	2008-08-05	12:20	Depth, Secchi Disk Depth	24	in	
RTZI	ISLAND LAKE	2008-08-05	12:35	Depth, Secchi Disk Depth	18	in	
RTZI	ISLAND LAKE	2008-08-18	10:25	Depth, Secchi Disk Depth	18	in	
RTZI	ISLAND LAKE	2008-08-18	10:45	Depth, Secchi Disk Depth	18	in	
RTZI	ISLAND LAKE	2008-08-18	10:58	Depth, Secchi Disk Depth	16	in	
RTZI	ISLAND LAKE	2008-09-28	11:40	Depth, Secchi Disk Depth	32	in	
RTZI	ISLAND LAKE	2008-09-28	12:10	Depth, Secchi Disk Depth	32	in	
RTZI	ISLAND LAKE	2008-09-28	12:20	Depth, Secchi Disk Depth	26	in	
RTZI	ISLAND LAKE	2008-10-18	11:50	Depth, Secchi Disk Depth	72	in	
RTZI	ISLAND LAKE	2008-10-18	12:13	Depth, Secchi Disk Depth	60	in	
RTZI	ISLAND LAKE	2008-10-18	12:24	Depth, Secchi Disk Depth	36	in	
RTZI	ISLAND LAKE	2013-05-14		Depth, Secchi Disk Depth	16	ft	3
RTZI	ISLAND LAKE	2013-05-14		Depth, Secchi Disk Depth	16	ft	5
RTZI	ISLAND LAKE	2013-06-11		Depth, Secchi Disk Depth	4.05	ft	3
RTZI	ISLAND LAKE	2013-07-09		Depth, Secchi Disk Depth	3.36	ft	3
RTZI	ISLAND LAKE	2013-08-13		Depth, Secchi Disk Depth	0.9	ft	3
RTZI	ISLAND LAKE	2013-09-10		Depth, Secchi Disk Depth	1.87	ft	3
RTZI	ISLAND LAKE	2009-08-10	10:22	Dieldrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Dieldrin	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Dieldrin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Dieldrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen (DO)	6.9	mg/L	0 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen (DO)	6.8	mg/L	1 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen (DO)	6.7	mg/L	2 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen (DO)	6.6	mg/L	3 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen (DO)	6.5	mg/L	4 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	8.01	mg/L	0.25 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	8.08	mg/L	1 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	8.02	mg/L	2 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	8	mg/L	3 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	7.59	mg/L	4 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	7.04	mg/L	5 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	6.8	mg/L	6 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	6.5	mg/L	7 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen (DO)	6	mg/L	8 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.69	mg/L	0.25 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.6	mg/L	1 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.58	mg/L	2 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.26	mg/L	3 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.22	mg/L	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	7.22	mg/L	5 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	6.98	mg/L	6 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	5.65	mg/L	7 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen (DO)	1.78	mg/L	8 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	9.66	mg/L	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	9.95	mg/L	1 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	10.07	mg/L	2 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	10.1	mg/L	3 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	9.13	mg/L	4 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	6.95	mg/L	5 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	5.54	mg/L	6 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	3.83	mg/L	7 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen (DO)	1.51	mg/L	8 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	9.42	mg/L	0.25 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	9.29	mg/L	1 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	9.06	mg/L	2 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	8.7	mg/L	3 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	8.58	mg/L	4 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	8.45	mg/L	5 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	8.37	mg/L	6 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	7.77	mg/L	7 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen (DO)	6.8	mg/L	8 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	7.86	mg/L	0.25 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	6.22	mg/L	1 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	5.55	mg/L	2 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	5.45	mg/L	3 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	5.7	mg/L	4 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	6.2	mg/L	5 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	6.28	mg/L	6 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen (DO)	5.78	mg/L	7 ft
RTZI	ISLAND LAKE	2013-05-14		Dissolved oxygen (DO)	7.69	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Dissolved oxygen (DO)	7.21	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Dissolved oxygen (DO)	9.79	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Dissolved oxygen (DO)	10.78	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Dissolved oxygen (DO)	12.81	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Dissolved oxygen (DO)	9.97	mg/L	3
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen saturation	79.3	%	0 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen saturation	78.2	%	1 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen saturation	77	%	2 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen saturation	75.9	%	3 ft
RTZI	ISLAND LAKE	1989-08-25		Dissolved oxygen saturation	74.7	%	4 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	84.6	%	0.25 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	85.4	%	1 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	84.8	%	2 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	84.6	%	3 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	79.9	%	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	72.8	%	5 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	69.9	%	6 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	66.6	%	7 ft
RTZI	ISLAND LAKE	2003-05-14		Dissolved oxygen saturation	61.2	%	8 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	88.6	%	0.25 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	87.7	%	1 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	87.4	%	2 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	83.7	%	3 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	83.2	%	4 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	83.2	%	5 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	80.4	%	6 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	64.6	%	7 ft
RTZI	ISLAND LAKE	2003-06-11		Dissolved oxygen saturation	19.9	%	8 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	126.2	%	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	128.6	%	1 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	127.6	%	2 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	127.1	%	3 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	114.4	%	4 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	86.7	%	5 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	68.9	%	6 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	47.5	%	7 ft
RTZI	ISLAND LAKE	2003-07-16		Dissolved oxygen saturation	18.6	%	8 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	112.5	%	0.25 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	110.7	%	1 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	107.7	%	2 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	102.8	%	3 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	101.2	%	4 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	99.7	%	5 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	98.7	%	6 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	91.5	%	7 ft
RTZI	ISLAND LAKE	2003-08-13		Dissolved oxygen saturation	79.9	%	8 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	91.4	%	0.25 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	71.6	%	1 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	63.8	%	2 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	62.7	%	3 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	65.5	%	4 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	71.2	%	5 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	72.2	%	6 ft
RTZI	ISLAND LAKE	2003-09-17		Dissolved oxygen saturation	66.3	%	7 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Endrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Endrin	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Endrin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Endrin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Heptachlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Heptachlor	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Heptachlor	NA	ug/kg	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2011-08-27	8:00	Heptachlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Heptachlor epoxide	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Heptachlor epoxide	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Heptachlor epoxide	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Heptachlor epoxide	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Hexachlorobenzene	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Hexachlorobenzene	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Hexachlorobenzene	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Hexachlorobenzene	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Inorganic nitrogen (nitrate and nitrite)	0.455	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Inorganic nitrogen (nitrate and nitrite)	0.028	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Inorganic nitrogen (nitrate and nitrite)	0.033	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Iron	25300	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Iron	22400	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Iron	18700	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Iron	24100	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Lead	37.4	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Lead	68	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Lead	19	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Lead	34.5	mg/kg	8 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	5.623480931	Coef	0.23 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	0.80708497	Coef	1.26 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	0.599782311	Coef	2.24 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	0.628608659	Coef	3.24 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	0.465350128	Coef	4.25 ft
RTZI	ISLAND LAKE	2003-05-14		Light Extinction	1.56256108	Coef	5.28 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	6.734118073	Coef	0.26 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.555602361	Coef	1.25 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.380772496	Coef	2.25 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.288231817	Coef	3.22 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.438254931	Coef	4.22 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.406398977	Coef	5.28 ft
RTZI	ISLAND LAKE	2003-06-11		Light Extinction	0.495416139	Coef	6.26 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	3.584617994	Coef	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.558483589	Coef	1.23 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.521307815	Coef	2.22 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.631814487	Coef	3.27 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.674195821	Coef	4.25 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.87932876	Coef	5.28 ft
RTZI	ISLAND LAKE	2003-07-16		Light Extinction	0.770324126	Coef	6.25 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	1.976162128	Coef	0.87 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	1.839176964	Coef	1.801 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	0.907488086	Coef	2.862 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	1.135306269	Coef	3.843 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	1.444449753	Coef	4.831 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	1.157670544	Coef	5.844 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	0.773963852	Coef	6.843 ft
RTZI	ISLAND LAKE	2003-08-13		Light Extinction	-0.153842994	Coef	7.845 ft
RTZI	ISLAND LAKE	2003-09-17		Light Extinction	4.229797548	Coef	0.26 ft
RTZI	ISLAND LAKE	2003-09-17		Light Extinction	1.447771135	Coef	1.26 ft
RTZI	ISLAND LAKE	2003-09-17		Light Extinction	1.430746124	Coef	2.26 ft
RTZI	ISLAND LAKE	2003-09-17		Light Extinction	1.511841368	Coef	3.24 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Manganese	719	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Manganese	803	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Manganese	520	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Manganese	632	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Mercury	0.09	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Mercury	0.06	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Mercury	0.05	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Mercury	0.04	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Methoxychlor	1.7	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Methoxychlor	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Methoxychlor	1.1	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Methoxychlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Metolachlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Metolachlor	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Metolachlor	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Metolachlor	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Metribuzin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Metribuzin	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Metribuzin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Metribuzin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Nickel	24.7	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Nickel	12.9	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Nickel	11.7	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nickel	22.6	mg/kg	8 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrite (NO2) + Nitrate (NO3) as N	1.01	mg/L	2 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrite (NO2) + Nitrate (NO3) as N	1.02	mg/L	4 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrite (NO2) + Nitrate (NO3) as N	0.998	mg/L	6 ft
RTZI	ISLAND LAKE	1989-08-25		Nitrite (NO2) + Nitrate (NO3) as N	0.1	mg/L	1 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrite (NO2) + Nitrate (NO3) as N	1.34	mg/L	3 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrite (NO2) + Nitrate (NO3) as N	0.883	mg/L	8 ft
RTZI	ISLAND LAKE	1998-06-16		Nitrite (NO2) + Nitrate (NO3) as N	0.126	mg/L	3 ft
RTZI	ISLAND LAKE	1998-06-16		Nitrite (NO2) + Nitrate (NO3) as N	0.207	mg/L	7 ft
RTZI	ISLAND LAKE	1998-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.089	mg/L	3 ft
RTZI	ISLAND LAKE	1998-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.089	mg/L	8 ft
RTZI	ISLAND LAKE	1998-08-19		Nitrite (NO2) + Nitrate (NO3) as N	0.061	mg/L	3 ft
RTZI	ISLAND LAKE	1998-08-19		Nitrite (NO2) + Nitrate (NO3) as N	0.084	mg/L	7 ft
RTZI	ISLAND LAKE	1998-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.084	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	1998-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.087	mg/L	7 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrite (NO2) + Nitrate (NO3) as N	2.83	mg/L	3 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrite (NO2) + Nitrate (NO3) as N	2.86	mg/L	6 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrite (NO2) + Nitrate (NO3) as N	1.89	mg/L	3 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrite (NO2) + Nitrate (NO3) as N	1.91	mg/L	6 ft
RTZI	ISLAND LAKE	2003-07-16		Nitrite (NO2) + Nitrate (NO3) as N	0.639	mg/L	3 ft
RTZI	ISLAND LAKE	2003-07-16		Nitrite (NO2) + Nitrate (NO3) as N	0.616	mg/L	6 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, ammonia as N	0.14	mg/L	4 ft
RTZI	ISLAND LAKE	1989-08-25		Nitrogen, ammonia as N	0.07	mg/L	1 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, ammonia as N	0.252	mg/L	8 ft
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, ammonia as N	1.11	mg/L	8 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, ammonia as N	0.278	mg/L	3 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, ammonia as N	0.315	mg/L	6 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, ammonia as N	0.174	mg/L	3 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, ammonia as N	0.176	mg/L	6 ft
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, ammonia as N	0.116	mg/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Nitrogen, ammonia as N	0.171	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Nitrogen, ammonia as N	0.157	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Nitrogen, ammonia as N	0.285	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Nitrogen, ammonia as N	0.136	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Nitrogen, ammonia as N	0.0885	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, ammonia as N	0.0885	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Nitrogen, ammonia as N	0.0577	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, ammonia as N	0.0577	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Nitrogen, ammonia as N	0.0408	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, ammonia as N	0.0408	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Nitrogen, ammonia as N	0.0949	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, ammonia as N	0.0949	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Nitrogen, ammonia as N	0.0596	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, ammonia as N	0.0596	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Nitrogen, ammonia as N	0.0243	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, ammonia as N	0.0243	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Nitrogen, ammonia as N	0.0217	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, ammonia as N	0.0217	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, ammonia as N	0.0105	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, ammonia as N	0.0105	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Nitrogen, ammonia as N	0.0427	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, ammonia as N	0.0427	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10	10:38	Nitrogen, ammonia as N	0.0415	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, ammonia as N	0.0415	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Nitrogen, ammonia as N	0.0375	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, ammonia as N	0.0375	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Nitrogen, ammonia as N	0.488	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, ammonia as N	0.488	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Nitrogen, ammonia as N	0.493	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, ammonia as N	0.493	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Nitrogen, ammonia as N	0.476	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, ammonia as N	0.476	mg/L	ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Nitrogen, ammonia as N	0.11	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Nitrogen, ammonia as N	0.06	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Nitrogen, ammonia as N	0.02	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nitrogen, ammonia as N	NA	mg/L	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Nitrogen, ammonia as N	4.57	mg/L	1 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, Kjeldahl	2.3	mg/L	2 ft
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, Kjeldahl	2.3	mg/L	2
RTZI	ISLAND LAKE	1989-07-11		Nitrogen, Kjeldahl	3	mg/L	0 ft
RTZI	ISLAND LAKE	1989-07-11		Nitrogen, Kjeldahl	3	mg/L	0
RTZI	ISLAND LAKE	1989-08-25		Nitrogen, Kjeldahl	2.1	mg/L	1 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Kjeldahl	1.55	mg/L	3 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Kjeldahl	1.55	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Kjeldahl	1.91	mg/L	8 ft
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Kjeldahl	1.91	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Kjeldahl	1.44	mg/L	3 ft
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Kjeldahl	1.44	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Kjeldahl	1.59	mg/L	7 ft
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Kjeldahl	1.59	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Kjeldahl	2.49	mg/L	3 ft
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Kjeldahl	2.49	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Kjeldahl	2.84	mg/L	8 ft
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Kjeldahl	2.84	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Kjeldahl	3.01	mg/L	3 ft
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Kjeldahl	3.01	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Kjeldahl	2.87	mg/L	7 ft
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Kjeldahl	2.87	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Kjeldahl	3.48	mg/L	3 ft
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Kjeldahl	3.48	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Kjeldahl	3.44	mg/L	7 ft
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Kjeldahl	3.44	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Kjeldahl	1.81	mg/L	3 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Kjeldahl	1.81	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Kjeldahl	2.22	- mg/L	6 ft
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Kjeldahl	2.22	mg/L	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Kjeldahl	2.29	mg/L	3 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Kjeldahl	2.29	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Kjeldahl	2.09	mg/L	6 ft
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Kjeldahl	2.09	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Kjeldahl	1.75	mg/L	3 ft
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Kjeldahl	1.75	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Kjeldahl	2.32	mg/L	6 ft
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Kjeldahl	2.32	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Nitrogen, Kjeldahl	2.17	mg/L	3 ft
RTZI	ISLAND LAKE	2003-08-13		Nitrogen, Kjeldahl	2.17	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Nitrogen, Kjeldahl	2.29	mg/L	5 ft
RTZI	ISLAND LAKE	2003-08-13		Nitrogen, Kjeldahl	2.29	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Nitrogen, Kjeldahl	2.48	mg/L	3 ft
RTZI	ISLAND LAKE	2003-09-17		Nitrogen, Kjeldahl	2.48	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Nitrogen, Kjeldahl	2.7	mg/L	5 ft
RTZI	ISLAND LAKE	2003-09-17		Nitrogen, Kjeldahl	2.7	mg/L	5
RTZI	ISLAND LAKE	2008-05-26	11:20	Nitrogen, Kjeldahl	1.03	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Nitrogen, Kjeldahl	0.816	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Nitrogen, Kjeldahl	0.971	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Nitrogen, Kjeldahl	1.34	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Nitrogen, Kjeldahl	1.77	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Nitrogen, Kjeldahl	2.02	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Nitrogen, Kjeldahl	1.39	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Nitrogen, Kjeldahl	0.836	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Nitrogen, Kjeldahl	1.89	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Nitrogen, Kjeldahl	1.93	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Nitrogen, Kjeldahl	1.42	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Kjeldahl	1.42	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Nitrogen, Kjeldahl	1.23	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Kjeldahl	1.23	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Nitrogen, Kjeldahl	1.16	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Kjeldahl	1.16	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Nitrogen, Kjeldahl	1.05	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Kjeldahl	1.05	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Nitrogen, Kjeldahl	1.1	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Kjeldahl	1.1	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Nitrogen, Kjeldahl	1.06	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Kjeldahl	1.06	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Nitrogen, Kjeldahl	1.76	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Kjeldahl	1.76	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Nitrogen, Kjeldahl	1.56	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Kjeldahl	1.56	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Nitrogen, Kjeldahl	1.63	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Kjeldahl	1.63	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Nitrogen, Kjeldahl	2.58	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Nitrogen, Kjeldahl	8720	mg/kg	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Kjeldahl	2.58	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Nitrogen, Kjeldahl	2.64	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Nitrogen, Kjeldahl	4630	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Kjeldahl	2.64	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Nitrogen, Kjeldahl	2.39	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Nitrogen, Kjeldahl	3390	mg/kg	4 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Kjeldahl	2.39	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Nitrogen, Kjeldahl	1.99	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Kjeldahl	1.99	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Nitrogen, Kjeldahl	2.38	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Kjeldahl	2.38	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Nitrogen, Kjeldahl	1.66	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Kjeldahl	1.66	mg/L	ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Nitrogen, Kjeldahl	2.11	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Nitrogen, Kjeldahl	1.19	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Nitrogen, Kjeldahl	1.32	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Nitrogen, Kjeldahl	1.33	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nitrogen, Kjeldahl	3.02	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nitrogen, Kjeldahl	2.45	mg/L	8 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Nitrogen, Kjeldahl	7040	mg/kg	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Nitrogen, Kjeldahl	2.02	mg/L	1 ft
RTZI	ISLAND LAKE	2013-05-14		Nitrogen, Kjeldahl	1.51	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Nitrogen, Kjeldahl	2.01	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Nitrogen, Kjeldahl	1.75	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Nitrogen, Kjeldahl	2.34	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Nitrogen, Kjeldahl	2.83	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Nitrogen, Kjeldahl	3.21	mg/L	3
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, Nitrate (NO3) as N	1.01	mg/L	2
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, Nitrate (NO3) as N	1.02	mg/L	4
RTZI	ISLAND LAKE	1989-04-20		Nitrogen, Nitrate (NO3) as N	0.998	mg/L	6
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Nitrate (NO3) as N	1.34	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Nitrogen, Nitrate (NO3) as N	0.883	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Nitrate (NO3) as N	0.126	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Nitrogen, Nitrate (NO3) as N	0.207	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Nitrate (NO3) as N	0.089	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Nitrogen, Nitrate (NO3) as N	0.089	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Nitrate (NO3) as N	0.061	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Nitrogen, Nitrate (NO3) as N	0.084	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Nitrate (NO3) as N	0.084	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Nitrogen, Nitrate (NO3) as N	0.087	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Nitrate (NO3) as N	2.83	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Nitrogen, Nitrate (NO3) as N	2.86	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Nitrate (NO3) as N	1.89	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Nitrogen, Nitrate (NO3) as N	1.91	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Nitrate (NO3) as N	0.639	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Nitrogen, Nitrate (NO3) as N	0.616	mg/L	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-05-26	11:20	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Nitrogen, Nitrate (NO3) as N	0.621	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Nitrogen, Nitrate (NO3) as N	0.491	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Nitrogen, Nitrate (NO3) as N	0.03	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Nitrogen, Nitrate (NO3) as N	0.0502	mg/L	1 ft
RTZI	ISLAND LAKE	2013-05-14		Nitrogen, Nitrate (NO3) as N	0.137	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Nitrogen, Nitrate (NO3) as N	0.147	mg/L	5
RTZI	ISLAND LAKE	2013-07-09		Nitrogen, Nitrate (NO3) as N	0.268	mg/L	3
RTZI	ISLAND LAKE	2008-05-26	11:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.105	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.189	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.647	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.51	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.03	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.039	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.039	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.029	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.029	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.087	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.087	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.024	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.024	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.024	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.024	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.122	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.122	mg/L	ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Nitrogen, Nitrite (NO2) as N	0.105	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Nitrogen, Nitrite (NO2) as N	0.189	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Nitrogen, Nitrite (NO2) as N	0.026	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Nitrogen, Nitrite (NO2) as N	0.019	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Organic carbon	10.7	%	8 ft
RTZI	ISLAND LAKE	1998-06-16		Orthophosphate as P, Dissolved	0.007	mg/L	7 ft
RTZI	ISLAND LAKE	1998-07-21		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTZI	ISLAND LAKE	1998-07-21		Orthophosphate as P, Dissolved	0.023	mg/L	8 ft
RTZI	ISLAND LAKE	1998-08-19		Orthophosphate as P, Dissolved	0.008	mg/L	3 ft
RTZI	ISLAND LAKE	1998-08-19		Orthophosphate as P, Dissolved	0.011	mg/L	7 ft
RTZI	ISLAND LAKE	1998-09-22		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTZI	ISLAND LAKE	1998-09-22		Orthophosphate as P, Dissolved	0.006	mg/L	7 ft
RTZI	ISLAND LAKE	2003-05-14		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTZI	ISLAND LAKE	2003-05-14		Orthophosphate as P, Dissolved	0.016	mg/L	6 ft
RTZI	ISLAND LAKE	2003-07-16		Orthophosphate as P, Dissolved	0.007	mg/L	3 ft
RTZI	ISLAND LAKE	2003-07-16		Orthophosphate as P, Dissolved	0.006	mg/L	6 ft
RTZI	ISLAND LAKE	2003-08-13		Orthophosphate as P, Dissolved	0.011	mg/L	5 ft
RTZI	ISLAND LAKE	2003-09-17		Orthophosphate as P, Dissolved	0.007	mg/L	3 ft
RTZI	ISLAND LAKE	2003-09-17		Orthophosphate as P, Dissolved	0.009	mg/L	5 ft
RTZI	ISLAND LAKE	1989-04-20		Orthophosphate as P, Total	0.015	mg/L	2 ft
RTZI	ISLAND LAKE	1989-04-20		Orthophosphate as P, Total	0.014	mg/L	4 ft
RTZI	ISLAND LAKE	1989-04-20		Orthophosphate as P, Total	0.014	mg/L	6 ft
RTZI	ISLAND LAKE	1989-07-11		Orthophosphate as P, Total	0.014	mg/L	0 ft
RTZI	ISLAND LAKE	1989-07-11		Orthophosphate as P, Total	0.015	mg/L	3 ft
RTZI	ISLAND LAKE	1989-07-11		Orthophosphate as P, Total	0.018	mg/L	6 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	p,p'-DDD	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	p,p'-DDE	1.6	ug/kg	8 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	p,p'-DDT	0.45	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	PCBS, Polychlorited Biphenyls, (Unspecified Mix)	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	PCBS, Polychlorited Biphenyls, (Unspecified Mix)	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	PCBS, Polychlorited Biphenyls, (Unspecified Mix)	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Pendimethalin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Pendimethalin	NA	ug/kg	5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10	11:06	Pendimethalin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Pendimethalin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	1989-08-25		рН	7.8	SU	1 ft
RTZI	ISLAND LAKE	1998-05-19		рН	7.94	SU	3
RTZI	ISLAND LAKE	1998-05-19		рН	7.31	SU	8
RTZI	ISLAND LAKE	1998-06-16		рН	8.45	SU	3
RTZI	ISLAND LAKE	1998-06-16		рН	7.93	SU	7
RTZI	ISLAND LAKE	1998-07-21		рН	8.38	SU	3
RTZI	ISLAND LAKE	1998-07-21		рН	7.54	SU	8
RTZI	ISLAND LAKE	1998-08-19		рН	8.71	SU	3
RTZI	ISLAND LAKE	1998-08-19		рН	8.71	SU	7
RTZI	ISLAND LAKE	1998-09-22		рН	8.8	SU	3
RTZI	ISLAND LAKE	1998-09-22		рН	8.86	SU	7
RTZI	ISLAND LAKE	2003-05-14		рН	8.1	SU	0.25 ft
RTZI	ISLAND LAKE	2003-05-14		рН	8.11	SU	1 ft
RTZI	ISLAND LAKE	2003-05-14		рН	8.12	SU	2 ft
RTZI	ISLAND LAKE	2003-05-14		рН	8.11	SU	3
RTZI	ISLAND LAKE	2003-05-14		рН	8.08	SU	4 ft
RTZI	ISLAND LAKE	2003-05-14		рН	8.01	SU	5 ft
RTZI	ISLAND LAKE	2003-05-14		рН	7.99	SU	6
RTZI	ISLAND LAKE	2003-05-14		рН	7.95	SU	7 ft
RTZI	ISLAND LAKE	2003-05-14		рН	7.9	SU	8 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	0.25 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	1 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	2 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	3
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	4 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.33	SU	5 ft
RTZI	ISLAND LAKE	2003-06-11		рН	8.31	SU	6
RTZI	ISLAND LAKE	2003-06-11		рН	8.16	SU	7 ft
RTZI	ISLAND LAKE	2003-06-11		рН	7.78	SU	8 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.6	SU	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.61	SU	1 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.62	SU	2 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.62	SU	3
RTZI	ISLAND LAKE	2003-07-16		рН	8.55	SU	4 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.39	SU	5 ft
RTZI	ISLAND LAKE	2003-07-16		рН	8.21	SU	6
RTZI	ISLAND LAKE	2003-07-16		рН	8.05	SU	7 ft
RTZI	ISLAND LAKE	2003-07-16		рН	7.84	SU	8 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.41	SU	0.25 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.47	SU	1 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.48	SU	2 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.47	SU	3
RTZI	ISLAND LAKE	2003-08-13		рН	8.47	SU	4 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.46	SU	5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-08-13		рН	8.47	SU	6 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.44	SU	7 ft
RTZI	ISLAND LAKE	2003-08-13		рН	8.39	SU	8 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.64	SU	0.25 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.52	SU	1 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.48	SU	2 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.48	SU	3
RTZI	ISLAND LAKE	2003-09-17		рН	8.51	SU	4 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.56	SU	5
RTZI	ISLAND LAKE	2003-09-17		рН	8.57	SU	6 ft
RTZI	ISLAND LAKE	2003-09-17		рН	8.53	SU	7 ft
RTZI	ISLAND LAKE	2013-05-14		рН	7.95	SU	3
RTZI	ISLAND LAKE	2013-05-14		рН	7.78	SU	5
RTZI	ISLAND LAKE	2013-06-11		рН	8.19	SU	3
RTZI	ISLAND LAKE	2013-07-09		рН	8.5	SU	3
RTZI	ISLAND LAKE	2013-08-13		рН	8.75	SU	3
RTZI	ISLAND LAKE	2013-09-10		рН	8.76	SU	3
RTZI	ISLAND LAKE	2011-08-27	8:00	Pheophytin a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2012-05-23	10:49	Pheophytin a	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Pheophytin a	NA	ug/L	5 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Pheophytin a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Pheophytin a	7.54	ug/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Pheophytin-a	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Pheophytin-a	1.23	ug/L	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Pheophytin-a	3.98	ug/L	7 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Pheophytin-a	4.53	ug/L	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Pheophytin-a	NA	ug/L	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Pheophytin-a	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Pheophytin-a	1.81	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Pheophytin-a	NA	ug/L	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Pheophytin-a	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Pheophytin-a	2.71	ug/L	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Pheophytin-a	2.68	ug/L	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Pheophytin-a	1.07	ug/L	3 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Pheophytin-a	NA	ug/L	7.5 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Pheophytin-a	NA	ug/L	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Pheophytin-a	NA	ug/L	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Pheophytin-a	NA	ug/L	4 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Pheophytin-a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Pheophytin-a	NA	ug/L	7 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Pheophytin-a	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Pheophytin-a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Pheophytin-a	NA	ug/L	5 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Pheophytin-a	NA	ug/L	3 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Pheophytin-a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Pheophytin-a	NA	ug/L	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10	10:38	Pheophytin-a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Pheophytin-a	NA	ug/L	2 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Pheophytin-a	NA	ug/L	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Pheophytin-a	1.5	ug/L	3 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Pheophytin-a	6.94	ug/L	2 ft
RTZI	ISLAND LAKE	1989-04-20		Phosphorus	0.09	mg/L	2
RTZI	ISLAND LAKE	1989-04-20		Phosphorus	0.065	mg/L	4
RTZI	ISLAND LAKE	1989-04-20		Phosphorus	0.089	mg/L	6
RTZI	ISLAND LAKE	1989-07-11		Phosphorus	0.141	mg/L	0
RTZI	ISLAND LAKE	1989-07-11		Phosphorus	0.174	mg/L	3
RTZI	ISLAND LAKE	1989-07-11		Phosphorus	0.156	mg/L	6
RTZI	ISLAND LAKE	1989-08-25		Phosphorus	0.019	mg/L	1 ft
RTZI	ISLAND LAKE	1989-08-25		Phosphorus	0.108	mg/L	1 ft
RTZI	ISLAND LAKE	1998-05-19		Phosphorus	0.068	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Phosphorus	0.087	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Phosphorus	0.068	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Phosphorus	0.085	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Phosphorus	0.135	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Phosphorus	0.171	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Phosphorus	0.162	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Phosphorus	0.179	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Phosphorus	0.149	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Phosphorus	0.16	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Phosphorus	0.07	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Phosphorus	0.059	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Phosphorus	0.052	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Phosphorus	0.045	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Phosphorus	0.073	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Phosphorus	0.099	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Phosphorus	0.138	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Phosphorus	0.12	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Phosphorus	0.162	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Phosphorus	0.153	mg/L	5
RTZI	ISLAND LAKE	2008-05-26	11:20	Phosphorus	0.072	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Phosphorus	0.058	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Phosphorus	0.134	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Phosphorus	0.164	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Phosphorus	0.16	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Phosphorus	0.168	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Phosphorus	0.139	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Phosphorus	0.113	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Phosphorus	0.081	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Phosphorus	0.106	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Phosphorus	0.032	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Phosphorus	0.072	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.032	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.072	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Phosphorus	0.012	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Phosphorus	0.078	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.012	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.078	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Phosphorus	0.015	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Phosphorus	0.069	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.015	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11		Phosphorus	0.069	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Phosphorus	0.021	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Phosphorus	0.053	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.021	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.053	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Phosphorus	0.022	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Phosphorus	0.058	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.022	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.058	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Phosphorus	0.029	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Phosphorus	0.067	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.029	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10		Phosphorus	0.067	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Phosphorus	0.028	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Phosphorus	0.122	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.028	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.122	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Phosphorus	0.027	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Phosphorus	0.119	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.027	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.119	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Phosphorus	0.043	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Phosphorus	0.137	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.043	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13		Phosphorus	0.137	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Phosphorus	0.024	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Phosphorus	0.257	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Phosphorus	1190	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.024	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.257	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Phosphorus	0.028	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Phosphorus	0.257	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Phosphorus	905	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.028	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.257	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Phosphorus	0.045	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Phosphorus	0.255	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Phosphorus	752	mg/kg	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.045	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10		Phosphorus	0.255	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Phosphorus	0.055	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Phosphorus	0.136	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.055	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.136	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Phosphorus	0.047	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Phosphorus	0.136	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.047	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.136	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Phosphorus	0.051	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Phosphorus	0.121	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.051	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08		Phosphorus	0.121	mg/L	ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Phosphorus	0.07	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Phosphorus	0.04	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Phosphorus	0.048	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Phosphorus	0.106	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Phosphorus	0.143	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Phosphorus	0.16	mg/L	8 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Phosphorus	8670	mg/kg	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Phosphorus	0.064	mg/L	1 ft
RTZI	ISLAND LAKE	2012-05-23	10:49	Phosphorus	0.049	mg/L	1 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Phosphorus	0.045	mg/L	1 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Phosphorus	0.104	mg/L	1 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Phosphorus	0.183	mg/L	1 ft
RTZI	ISLAND LAKE	2013-05-14		Phosphorus	0.074	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Phosphorus	0.068	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Phosphorus	0.067	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Phosphorus	0.07	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Phosphorus	0.197	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Phosphorus	0.198	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Phosphorus, Soluble Reactive	0.007	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Phosphorus, Soluble Reactive	0.023	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Phosphorus, Soluble Reactive	0.008	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Phosphorus, Soluble Reactive	0.011	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Phosphorus, Soluble Reactive	0.006	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Phosphorus, Soluble Reactive	0.016	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Phosphorus, Soluble Reactive	0.006	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Phosphorus, Soluble Reactive	0.011	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Phosphorus, Soluble Reactive	0.009	mg/L	5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2013-06-11		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Phosphorus, Soluble Reactive	0.028	mg/L	3
RTZI	ISLAND LAKE	2011-08-27	8:00	Polychlorited biphenyls	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Potassium	2790	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Potassium	819	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Potassium	868	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Potassium	2960	mg/kg	8 ft
RTZI	ISLAND LAKE	1989-04-20		Secchi	1.41	ft	ft
RTZI	ISLAND LAKE	1989-07-11		Secchi	1.25	ft	ft
RTZI	ISLAND LAKE	1989-08-25		Secchi	1	ft	ft
RTZI	ISLAND LAKE	1998-05-19		Secchi	2.8	ft	ft
RTZI	ISLAND LAKE	1998-06-16		Secchi	2.1	ft	ft
RTZI	ISLAND LAKE	1998-07-21		Secchi	1	ft	ft
RTZI	ISLAND LAKE	1998-08-19		Secchi	1	ft	ft
RTZI	ISLAND LAKE	1998-09-22		Secchi	1	ft	ft
RTZI	ISLAND LAKE	2003-05-14		Secchi	3.45	ft	ft
RTZI	ISLAND LAKE	2003-06-11		Secchi	4.95	ft	ft
RTZI	ISLAND LAKE	2003-07-16		Secchi	3.41	ft	ft
RTZI	ISLAND LAKE	2003-08-13		Secchi	1.41	ft	ft
RTZI	ISLAND LAKE	2003-09-17		Secchi	1.28	ft	ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Silver	1.28	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Silver	1.06	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Silver	0.88	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Silver	0.7	mg/kg	8 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Solids, Dissolved	496	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Solids, Dissolved	640	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Solids, Dissolved	356	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Solids, Dissolved	372	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Solids, suspended, volatile	9	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Solids, suspended, volatile	8.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Solids, suspended, volatile	9	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Solids, suspended, volatile	7	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Solids, suspended, volatile	7.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Solids, suspended, volatile	5	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Solids, suspended, volatile	7	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Solids, suspended, volatile	6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Solids, suspended, volatile	7	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Solids, suspended, volatile	6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Solids, suspended, volatile	6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Solids, suspended, volatile	8	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-07-13	13:29	Solids, suspended, volatile	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Solids, suspended, volatile	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Solids, suspended, volatile	8	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Solids, suspended, volatile	25	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Solids, suspended, volatile	15.7	%	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Solids, suspended, volatile	25	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Solids, suspended, volatile	10.8	%	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Solids, suspended, volatile	21	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Solids, suspended, volatile	8.4	%	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Solids, suspended, volatile	9	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Solids, suspended, volatile	9	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Solids, suspended, volatile	6	mg/L	1 ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Solids, suspended, volatile	4	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Solids, suspended, volatile	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Solids, suspended, volatile	14	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, suspended, volatile	19	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, suspended, volatile	19	mg/L	8 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, suspended, volatile	17	%	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Solids, suspended, volatile	11	mg/L	1 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Solids, suspended, volatile	5	mg/L	1 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Solids, suspended, volatile	18	mg/L	1 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Solids, suspended, volatile	22	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Solids, Total	29.9	%	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Solids, Total	45.7	%	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Solids, Total	48.1	%	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, Total	33.7	%	8 ft
RTZI	ISLAND LAKE	1998-05-19		Solids, Total Dissolved (TDS)	424	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Solids, Total Dissolved (TDS)	416	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Solids, Total Dissolved (TDS)	441	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Solids, Total Dissolved (TDS)	438	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Solids, Total Dissolved (TDS)	386	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Solids, Total Dissolved (TDS)	402	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Solids, Total Dissolved (TDS)	372	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Solids, Total Dissolved (TDS)	370	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Solids, Total Dissolved (TDS)	374	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Solids, Total Dissolved (TDS)	352	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Solids, Total Dissolved (TDS)	524	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Solids, Total Dissolved (TDS)	522	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Solids, Total Dissolved (TDS)	560	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Solids, Total Dissolved (TDS)	570	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Solids, Total Dissolved (TDS)	500	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Solids, Total Dissolved (TDS)	510	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Solids, Total Dissolved (TDS)	538	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Solids, Total Dissolved (TDS)	504	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Solids, Total Dissolved (TDS)	458	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-09-17		Solids, Total Dissolved (TDS)	452	mg/L	5
RTZI	ISLAND LAKE	2009-08-10	10:22	Solids, Total Fixed	84.3	%	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Solids, Total Fixed	89.2	%	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Solids, Total Fixed	91.6	%	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, Total Fixed	83	%	8 ft
RTZI	ISLAND LAKE	1989-07-11		Solids, Total Suspended (TSS)	16	mg/L	0
RTZI	ISLAND LAKE	1989-07-11		Solids, Total Suspended (TSS)	16	mg/L	3
RTZI	ISLAND LAKE	1989-07-11		Solids, Total Suspended (TSS)	18	mg/L	6
RTZI	ISLAND LAKE	1998-05-19		Solids, Total Suspended (TSS)	12	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Solids, Total Suspended (TSS)	12	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Solids, Total Suspended (TSS)	11	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Solids, Total Suspended (TSS)	15	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Solids, Total Suspended (TSS)	23	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Solids, Total Suspended (TSS)	10	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Solids, Total Suspended (TSS)	22	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Solids, Total Suspended (TSS)	24	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Solids, Total Suspended (TSS)	19	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Solids, Total Suspended (TSS)	23	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Solids, Total Suspended (TSS)	5.7	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Solids, Total Suspended (TSS)	6.5	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Solids, Total Suspended (TSS)	5.9	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Solids, Total Suspended (TSS)	6.4	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Solids, Total Suspended (TSS)	11	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Solids, Total Suspended (TSS)	15	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Solids, Total Suspended (TSS)	22.6	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Solids, Total Suspended (TSS)	22.2	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Solids, Total Suspended (TSS)	29.4	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Solids, Total Suspended (TSS)	31.8	mg/L	5
RTZI	ISLAND LAKE	2008-05-26	11:20	Solids, Total Suspended (TSS)	4.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Solids, Total Suspended (TSS)	6	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Solids, Total Suspended (TSS)	5.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Solids, Total Suspended (TSS)	12.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Solids, Total Suspended (TSS)	20.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Solids, Total Suspended (TSS)	8.5	mg/L	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Solids, Total Suspended (TSS)	9	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Solids, Total Suspended (TSS)	7.5	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Solids, Total Suspended (TSS)	9	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Solids, Total Suspended (TSS)	9	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11		Solids, Total Suspended (TSS)	10	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Solids, Total Suspended (TSS)	5	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Solids, Total Suspended (TSS)	5	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-06-10	13:31	Solids, Total Suspended (TSS)	6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Solids, Total Suspended (TSS)	6	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Solids, Total Suspended (TSS)	8	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10		Solids, Total Suspended (TSS)	8	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Solids, Total Suspended (TSS)	10	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Solids, Total Suspended (TSS)	11	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13		Solids, Total Suspended (TSS)	11	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Solids, Total Suspended (TSS)	22	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Solids, Total Suspended (TSS)	22	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Solids, Total Suspended (TSS)	25	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Solids, Total Suspended (TSS)	25	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Solids, Total Suspended (TSS)	25	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10		Solids, Total Suspended (TSS)	25	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Solids, Total Suspended (TSS)	18	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Solids, Total Suspended (TSS)	18	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Solids, Total Suspended (TSS)	4	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Solids, Total Suspended (TSS)	4	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Solids, Total Suspended (TSS)	4	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08		Solids, Total Suspended (TSS)	4	mg/L	ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Solids, Total Suspended (TSS)	8	mg/L	1 ft
RTZI	ISLAND LAKE	2011-06-05	16:00	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-07-05	11:20	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-01	14:20	Solids, Total Suspended (TSS)	17	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, Total Suspended (TSS)	23	mg/L	1 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Solids, Total Suspended (TSS)	25	mg/L	8 ft
RTZI	ISLAND LAKE	2011-10-10	12:02	Solids, Total Suspended (TSS)	14	mg/L	1 ft
RTZI	ISLAND LAKE	2012-06-18	10:04	Solids, Total Suspended (TSS)	5	mg/L	1 ft
RTZI	ISLAND LAKE	2012-07-17	10:27	Solids, Total Suspended (TSS)	19	mg/L	1 ft
RTZI	ISLAND LAKE	2012-08-27	11:48	Solids, Total Suspended (TSS)	25	mg/L	1 ft
RTZI	ISLAND LAKE	2013-05-14		Solids, Total Suspended (TSS)	13	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Solids, Total Suspended (TSS)	14	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Solids, Total Suspended (TSS)	4.8	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Solids, Total Suspended (TSS)	8.7	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Solids, Total Suspended (TSS)	23	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Solids, Total Suspended (TSS)	17	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Specific conductance	0.704	mS/cm	3
RTZI	ISLAND LAKE	1998-05-19		Specific conductance	704	uS/cm	3 ft
RTZI	ISLAND LAKE	1998-05-19		Specific conductance	0.699	mS/cm	8
RTZI	ISLAND LAKE	1998-05-19		Specific conductance	699	uS/cm	8 ft
RTZI	ISLAND LAKE	1998-06-16		Specific conductance	0.735	mS/cm	3
RTZI	ISLAND LAKE	1998-06-16		Specific conductance	735	uS/cm	3 ft
RTZI	ISLAND LAKE	1998-06-16		Specific conductance	0.752	mS/cm	7
RTZI	ISLAND LAKE	1998-06-16		Specific conductance	752	uS/cm	7 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	1998-07-21		Specific conductance	0.64	mS/cm	3
RTZI	ISLAND LAKE	1998-07-21		Specific conductance	640	uS/cm	3 ft
RTZI	ISLAND LAKE	1998-07-21		Specific conductance	0.683	mS/cm	8
RTZI	ISLAND LAKE	1998-07-21		Specific conductance	683	uS/cm	8 ft
RTZI	ISLAND LAKE	1998-08-19		Specific conductance	0.604	mS/cm	3
RTZI	ISLAND LAKE	1998-08-19		Specific conductance	604	uS/cm	3 ft
RTZI	ISLAND LAKE	1998-08-19		Specific conductance	0.604	mS/cm	7
RTZI	ISLAND LAKE	1998-08-19		Specific conductance	604	uS/cm	7 ft
RTZI	ISLAND LAKE	1998-09-22		Specific conductance	0.562	mS/cm	3
RTZI	ISLAND LAKE	1998-09-22		Specific conductance	562	uS/cm	3 ft
RTZI	ISLAND LAKE	1998-09-22		Specific conductance	0.562	mS/cm	7
RTZI	ISLAND LAKE	1998-09-22		Specific conductance	562	uS/cm	7 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	876.2	uS/cm	0.25 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	876.1	uS/cm	1 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	876	uS/cm	2 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	0.8768	mS/cm	3
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	876.8	uS/cm	3 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	876.3	uS/cm	4 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	871	uS/cm	5 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	0.8717	mS/cm	6
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	871.7	uS/cm	6 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	872.6	uS/cm	7 ft
RTZI	ISLAND LAKE	2003-05-14		Specific conductance	873.9	uS/cm	8 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	906.1	uS/cm	0.25 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	905.7	uS/cm	1 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	905.8	uS/cm	2 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	0.9058	mS/cm	3
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	905.8	uS/cm	3 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	905.3	uS/cm	4 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	905.7	uS/cm	5 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	0.9061	mS/cm	6
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	906.1	uS/cm	6 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	909.9	uS/cm	7 ft
RTZI	ISLAND LAKE	2003-06-11		Specific conductance	919.1	uS/cm	8 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	813.4	uS/cm	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	811.3	uS/cm	1 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	810.6	uS/cm	2 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	0.81	mS/cm	3
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	810	uS/cm	3 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	813.3	uS/cm	4 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	820.5	uS/cm	5 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	0.8253	mS/cm	6
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	825.3	uS/cm	6 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	830.1	uS/cm	7 ft
RTZI	ISLAND LAKE	2003-07-16		Specific conductance	835.1	uS/cm	8 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	821	uS/cm	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	821	uS/cm	1 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	821	uS/cm	2 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	0.822	mS/cm	3
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	822	uS/cm	3 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	821	uS/cm	4 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	0.822	mS/cm	5
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	822	uS/cm	5 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	822	uS/cm	6 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	823	uS/cm	7 ft
RTZI	ISLAND LAKE	2003-08-13		Specific conductance	824	uS/cm	8 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	770.6	uS/cm	0.25 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	773	uS/cm	1 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	773.3	uS/cm	2 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	0.7736	mS/cm	3
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	773.6	uS/cm	3 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	772.5	uS/cm	4 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	0.7715	mS/cm	5
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	771.5	uS/cm	5 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	771.7	uS/cm	6 ft
RTZI	ISLAND LAKE	2003-09-17		Specific conductance	773	uS/cm	7 ft
RTZI	ISLAND LAKE	2013-05-14		Specific conductance	0.6185	mS/cm	3
RTZI	ISLAND LAKE	2013-05-14		Specific conductance	0.6245	mS/cm	5
RTZI	ISLAND LAKE	2013-06-11		Specific conductance	0.7575	mS/cm	3
RTZI	ISLAND LAKE	2013-07-09		Specific conductance	0.6894	mS/cm	3
RTZI	ISLAND LAKE	2013-08-13		Specific conductance	0.67	mS/cm	3
RTZI	ISLAND LAKE	2013-09-10		Specific conductance	0.6637	mS/cm	3
RTZI	ISLAND LAKE	2008-05-26	11:20	Temperature, sample	0.7	deg C	1 ft
RTZI	ISLAND LAKE	2008-05-26	11:20	Temperature, sample	0	deg C	6 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Temperature, sample	0.7	deg C	1 ft
RTZI	ISLAND LAKE	2008-05-26	12:13	Temperature, sample	0	deg C	3 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Temperature, sample	1.9	deg C	1 ft
RTZI	ISLAND LAKE	2008-06-16	15:45	Temperature, sample	6	deg C	7 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Temperature, sample	1.9	deg C	1 ft
RTZI	ISLAND LAKE	2008-06-16	16:40	Temperature, sample	6	deg C	3 ft
RTZI	ISLAND LAKE	2008-07-22	11:00	Temperature, sample	0	deg C	6 ft
RTZI	ISLAND LAKE	2008-07-22	11:40	Temperature, sample	0	deg C	3 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2008-08-05	11:59	Temperature, sample	12	deg C	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2008-08-05	12:35	Temperature, sample	12	deg C	1 ft
RTZI	ISLAND LAKE	2008-08-18	10:25	Temperature, sample	12	deg C	3 ft
RTZI	ISLAND LAKE	2008-08-18	10:58	Temperature, sample	12	deg C	3 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Temperature, sample	1.8	deg C	1 ft
RTZI	ISLAND LAKE	2008-09-28	11:40	Temperature, sample	0	deg C	6 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Temperature, sample	1.8	deg C	1 ft
RTZI	ISLAND LAKE	2008-09-28	12:20	Temperature, sample	0	deg C	3 ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-------------	------------	-------	---------------------	--------	-------	---------
RTZI	ISLAND LAKE	2008-10-18	11:50	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2008-10-18	11:50	Temperature, sample	0	deg C	7.5 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2008-10-18	12:24	Temperature, sample	0	deg C	3.5 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Temperature, sample	3	deg C	1 ft
RTZI	ISLAND LAKE	2009-05-11	12:45	Temperature, sample	0	deg C	5 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Temperature, sample	3	deg C	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:00	Temperature, sample	0	deg C	4 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2009-05-11	13:24	Temperature, sample	0	deg C	2 ft
RTZI	ISLAND LAKE	2009-06-10	13:07	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:31	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2009-06-10	13:47	Temperature, sample	2	deg C	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:29	Temperature, sample	1	deg C	1 ft
RTZI	ISLAND LAKE	2009-07-13	13:50	Temperature, sample	1	deg C	1 ft
RTZI	ISLAND LAKE	2009-07-13	14:08	Temperature, sample	1	deg C	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:14	Temperature, sample	6	deg C	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Temperature, sample	0	deg C	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:38	Temperature, sample	6	deg C	1 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Temperature, sample	0	deg C	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:01	Temperature, sample	6	deg C	1 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Temperature, sample	0	deg C	4 ft
RTZI	ISLAND LAKE	2009-10-08	10:16	Temperature, sample	5	deg C	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:26	Temperature, sample	5	deg C	1 ft
RTZI	ISLAND LAKE	2009-10-08	10:45	Temperature, sample	5	deg C	1 ft
RTZI	ISLAND LAKE	2011-05-02	11:45	Temperature, sample	2	deg C	
RTZI	ISLAND LAKE	2011-06-05	16:00	Temperature, sample	5	deg C	
RTZI	ISLAND LAKE	2011-07-05	11:20	Temperature, sample	5	deg C	
RTZI	ISLAND LAKE	2011-08-01	14:20	Temperature, sample	5	deg C	
RTZI	ISLAND LAKE	2011-08-27	8:00	Temperature, sample	4	deg C	
RTZI	ISLAND LAKE	2011-08-27	8:00	Temperature, sample	0	deg C	
RTZI	ISLAND LAKE	2011-10-10	12:02	Temperature, sample	3	deg C	
RTZI	ISLAND LAKE	2012-05-23	10:49	Temperature, sample	4	deg C	
RTZI	ISLAND LAKE	2012-06-18	10:04	Temperature, sample	5	deg C	
RTZI	ISLAND LAKE	2012-07-17	10:27	Temperature, sample	4	deg C	
RTZI	ISLAND LAKE	2012-08-27	11:48	Temperature, sample	8	deg C	
RTZI	ISLAND LAKE	1989-08-25		Temperature, water	23.4	С	0 ft
RTZI	ISLAND LAKE	1989-08-25		Temperature, water	23.4	С	1 ft
RTZI	ISLAND LAKE	1989-08-25		Temperature, water	23.3	С	2 ft
RTZI	ISLAND LAKE	1989-08-25		Temperature, water	23.3	С	3 ft
RTZI	ISLAND LAKE	1989-08-25		Temperature, water	23.3	С	4 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	16.48	С	0.25 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	16.49	С	1 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	16.49	С	2 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	16.47	С	3 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	16.31	с	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	15.46	С	5 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	15.18	С	6 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	14.95	С	7 ft
RTZI	ISLAND LAKE	2003-05-14		Temperature, water	14.8	С	8 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.6	С	0.25 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.6	С	1 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.61	С	2 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.61	С	3 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.6	с	4 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.59	с	5 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.57	с	6 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	20.21	с	7 ft
RTZI	ISLAND LAKE	2003-06-11		Temperature, water	19.15	с	8 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	27.85	с	0.25 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	27.27	с	1 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	26.18	с	2 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	25.78	с	3 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	25.51	с	4 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	25.31	с	5 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	25.11	с	6 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	24.9	С	7 ft
RTZI	ISLAND LAKE	2003-07-16		Temperature, water	24.48	С	8 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	24.16	с	0.25 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	24.09	С	1 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.91	С	2 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.59	С	3 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.54	с	4 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.52	С	5 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.52	С	6 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.4	С	7 ft
RTZI	ISLAND LAKE	2003-08-13		Temperature, water	23.33	с	8 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.66	С	0.25 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.13	С	1 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.06	С	2 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.06	с	3 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.06	С	4 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	21.01	С	5 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	20.98	с	6 ft
RTZI	ISLAND LAKE	2003-09-17		Temperature, water	20.94	С	7 ft
RTZI	ISLAND LAKE	1998-05-19		Total solids	450	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Total solids	446	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Total solids	482	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Total solids	481	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Total solids	435	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Total solids	434	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Total solids	416	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	1998-08-19		Total solids	412	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Total solids	419	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Total solids	375	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Total solids	633	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Total solids	636	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Total solids	612	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Total solids	611	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Total solids	533	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Total solids	553	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Total solids	553	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Total solids	565	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Total solids	512	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Total solids	529	mg/L	5
RTZI	ISLAND LAKE	2013-05-14		Total solids	525	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Total solids	519	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Total solids	529	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Total solids	480	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Total solids	500	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Total solids	494	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Total volatile solids	133	mg/L	3
RTZI	ISLAND LAKE	1998-05-19		Total volatile solids	130	mg/L	8
RTZI	ISLAND LAKE	1998-06-16		Total volatile solids	139	mg/L	3
RTZI	ISLAND LAKE	1998-06-16		Total volatile solids	141	mg/L	7
RTZI	ISLAND LAKE	1998-07-21		Total volatile solids	146	mg/L	3
RTZI	ISLAND LAKE	1998-07-21		Total volatile solids	136	mg/L	8
RTZI	ISLAND LAKE	1998-08-19		Total volatile solids	153	mg/L	3
RTZI	ISLAND LAKE	1998-08-19		Total volatile solids	156	mg/L	7
RTZI	ISLAND LAKE	1998-09-22		Total volatile solids	160	mg/L	3
RTZI	ISLAND LAKE	1998-09-22		Total volatile solids	142	mg/L	7
RTZI	ISLAND LAKE	2003-05-14		Total volatile solids	231	mg/L	3
RTZI	ISLAND LAKE	2003-05-14		Total volatile solids	233	mg/L	6
RTZI	ISLAND LAKE	2003-06-11		Total volatile solids	198	mg/L	3
RTZI	ISLAND LAKE	2003-06-11		Total volatile solids	206	mg/L	6
RTZI	ISLAND LAKE	2003-07-16		Total volatile solids	173	mg/L	3
RTZI	ISLAND LAKE	2003-07-16		Total volatile solids	164	mg/L	6
RTZI	ISLAND LAKE	2003-08-13		Total volatile solids	178	mg/L	3
RTZI	ISLAND LAKE	2003-08-13		Total volatile solids	186	mg/L	5
RTZI	ISLAND LAKE	2003-09-17		Total volatile solids	166	mg/L	3
RTZI	ISLAND LAKE	2003-09-17		Total volatile solids	180	mg/L	5
RTZI	ISLAND LAKE	2013-05-14		Total volatile solids	170	mg/L	3
RTZI	ISLAND LAKE	2013-05-14		Total volatile solids	156	mg/L	5
RTZI	ISLAND LAKE	2013-06-11		Total volatile solids	133	mg/L	3
RTZI	ISLAND LAKE	2013-07-09		Total volatile solids	126	mg/L	3
RTZI	ISLAND LAKE	2013-08-13		Total volatile solids	155	mg/L	3
RTZI	ISLAND LAKE	2013-09-10		Total volatile solids	152	mg/L	3
RTZI	ISLAND LAKE	2009-08-10	10:22	Toxaphene	NA	ug/kg	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2009-08-10	10:43	Toxaphene	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Toxaphene	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Toxaphene	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:22	Trifluralin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Trifluralin	NA	ug/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Trifluralin	NA	ug/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Trifluralin	NA	ug/kg	8 ft
RTZI	ISLAND LAKE	1989-04-20		TRP	0.015		2
RTZI	ISLAND LAKE	1989-04-20		TRP	0.014		4
RTZI	ISLAND LAKE	1989-04-20		TRP	0.014		6
RTZI	ISLAND LAKE	1989-07-11		TRP	0.014		0
RTZI	ISLAND LAKE	1989-07-11		TRP	0.015		3
RTZI	ISLAND LAKE	1989-07-11		TRP	0.018		6
RTZI	ISLAND LAKE	1998-05-19		TRP	0		3
RTZI	ISLAND LAKE	1998-05-19		TRP	0		8
RTZI	ISLAND LAKE	1998-06-16		TRP	0		3
RTZI	ISLAND LAKE	1998-06-16		TRP	0		7
RTZI	ISLAND LAKE	1998-07-21		TRP	0		3
RTZI	ISLAND LAKE	1998-07-21		TRP	0		8
RTZI	ISLAND LAKE	1998-08-19		TRP	0		3
RTZI	ISLAND LAKE	1998-08-19		TRP	0		7
RTZI	ISLAND LAKE	1998-09-22		TRP	0		3
RTZI	ISLAND LAKE	1998-09-22		TRP	0		7
RTZI	ISLAND LAKE	2003-05-14		TRP	0		3
RTZI	ISLAND LAKE	2003-05-14		TRP	0		6
RTZI	ISLAND LAKE	2003-06-11		TRP	0		3
RTZI	ISLAND LAKE	2003-06-11		TRP	0		6
RTZI	ISLAND LAKE	2003-07-16		TRP	0		3
RTZI	ISLAND LAKE	2003-07-16		TRP	0		6
RTZI	ISLAND LAKE	2003-08-13		TRP	0		3
RTZI	ISLAND LAKE	2003-08-13		TRP	0		5
RTZI	ISLAND LAKE	2003-09-17		TRP	0		3
RTZI	ISLAND LAKE	2003-09-17		TRP	0		5
RTZI	ISLAND LAKE	2013-08-13		TRP	0		3
RTZI	ISLAND LAKE	2013-09-10		TRP	0		3
RTZI	ISLAND LAKE	2009-08-10	10:22	Zinc	118	mg/kg	8 ft
RTZI	ISLAND LAKE	2009-08-10	10:43	Zinc	92.5	mg/kg	5 ft
RTZI	ISLAND LAKE	2009-08-10	11:06	Zinc	73.1	mg/kg	4 ft
RTZI	ISLAND LAKE	2011-08-27	8:00	Zinc	108	mg/kg	8 ft
RTZI	ISLAND LAKE	2008-05-01			9	ft	ft
RTZI	ISLAND LAKE	2008-05-01			6.5	ft	ft
RTZI	ISLAND LAKE	2008-05-01			4	ft	ft
RTZI	ISLAND LAKE	2008-05-26			9	ft	ft
RTZI	ISLAND LAKE	2008-05-26			6	ft	ft
RTZI	ISLAND LAKE	2008-05-26			4	ft	ft
RTZI	ISLAND LAKE	2008-06-05			9	ft	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZI	ISLAND LAKE	2008-06-05			6	ft	ft
RTZI	ISLAND LAKE	2008-06-05			4	ft	ft
RTZI	ISLAND LAKE	2008-06-16			9	ft	ft
RTZI	ISLAND LAKE	2008-06-16			6	ft	ft
RTZI	ISLAND LAKE	2008-06-16			4	ft	ft
RTZI	ISLAND LAKE	2008-07-02			9	ft	ft
RTZI	ISLAND LAKE	2008-07-02			6	ft	ft
RTZI	ISLAND LAKE	2008-07-02			4	ft	ft
RTZI	ISLAND LAKE	2008-07-22			9	ft	ft
RTZI	ISLAND LAKE	2008-07-22			6	ft	ft
RTZI	ISLAND LAKE	2008-07-22			4	ft	ft
RTZI	ISLAND LAKE	2008-08-05			9	ft	ft
RTZI	ISLAND LAKE	2008-08-05			6	ft	ft
RTZI	ISLAND LAKE	2008-08-05			4	ft	ft
RTZI	ISLAND LAKE	2008-08-18			8.5	ft	ft
RTZI	ISLAND LAKE	2008-08-18			5.5	ft	ft
RTZI	ISLAND LAKE	2008-08-18			4	ft	ft
RTZI	ISLAND LAKE	2008-09-28			9	ft	ft
RTZI	ISLAND LAKE	2008-09-28			6	ft	ft
RTZI	ISLAND LAKE	2008-09-28			4.5	ft	ft
RTZI	ISLAND LAKE	2008-10-18			9	ft	ft
RTZI	ISLAND LAKE	2008-10-18			6	ft	ft
RTZI	ISLAND LAKE	2008-10-18			4	ft	ft
RTZI	ISLAND LAKE	2009-05-11			7	mg/L	1 ft
RTZI	ISLAND LAKE	2009-05-11			6	mg/L	ft
RTZI	ISLAND LAKE	2009-05-11			7	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10			6	mg/L	1 ft
RTZI	ISLAND LAKE	2009-06-10			6	mg/L	ft
RTZI	ISLAND LAKE	2009-06-10			8	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13			10	mg/L	1 ft
RTZI	ISLAND LAKE	2009-07-13			10	mg/L	ft
RTZI	ISLAND LAKE	2009-07-13			8	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10			25	mg/L	1 ft
RTZI	ISLAND LAKE	2009-08-10			25	mg/L	ft
RTZI	ISLAND LAKE	2009-08-10			21	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08			9	mg/L	1 ft
RTZI	ISLAND LAKE	2009-10-08			9	mg/L	ft
RTZI	ISLAND LAKE	2009-10-08			6	mg/L	ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Alkalinity, total	220	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Alkalinity, total	195	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Alkalinity, total	175	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Alkalinity, total	150	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Chloride	168	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Chloride	189	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Chloride	112	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Chloride	83	mg/L	10 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Chlorophyll a, corrected for pheophytin	3.77	ug/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Chlorophyll a, corrected for pheophytin	9.11	ug/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Chlorophyll a, corrected for pheophytin	5.06	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Chlorophyll a, corrected for pheophytin	24	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Chlorophyll a, uncorrected for pheophytin	3.89	ug/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Chlorophyll a, uncorrected for pheophytin	9.21	ug/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Chlorophyll a, uncorrected for pheophytin	5.7	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Chlorophyll a, uncorrected for pheophytin	29.6	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Chlorophyll b	NA	ug/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Chlorophyll b	0.6	ug/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Chlorophyll b	0.74	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Chlorophyll b	6.94	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Chlorophyll c	NA	ug/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Chlorophyll c	0.72	ug/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Chlorophyll c	NA	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Chlorophyll c	0.62	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	7.3	mg/L	0 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	7.2	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	6.6	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	5.5	mg/L	13 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	7.1	mg/L	2 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	7	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	7	mg/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	6.9	mg/L	7 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen (DO)	6.7	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	11.96	mg/L	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	12.49	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	4.58	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	3.48	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	2.69	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	1.33	mg/L	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	12.26	mg/L	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	12.28	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	12.28	mg/L	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	12.02	mg/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	11.83	mg/L	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	11.62	mg/L	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	11.38	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen (DO)	10.6	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.79	mg/L	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.74	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.31	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.28	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.19	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.19	mg/L	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.62	mg/L	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.54	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.57	mg/L	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.47	mg/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.44	mg/L	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.38	mg/L	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.37	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen (DO)	7.35	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	9.91	mg/L	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	7.57	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	5.41	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	8.91	mg/L	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	8.66	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	8.02	mg/L	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	7.18	mg/L	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen (DO)	7.35	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	8.31	mg/L	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	8.41	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	2.69	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	0.92	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	0.4	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	0.33	mg/L	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	8.23	mg/L	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	8.06	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	7.05	mg/L	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	6.81	mg/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	5.69	mg/L	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	4.5	mg/L	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	3.79	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen (DO)	3.71	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.54	mg/L	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.5	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.44	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.44	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.43	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.46	mg/L	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.44	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.46	mg/L	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.44	mg/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.43	mg/L	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.42	mg/L	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.42	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen (DO)	7.43	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	85.8823	%	0 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	84.7058	%	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	77.647	%	11 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	63.2184	%	13 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	83.5294	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	82.3529	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	82.3529	%	5 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	81.1764	%	7 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Dissolved oxygen saturation	78.8235	%	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	119.5	%	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	124.7	%	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	43.1	%	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	31.9	%	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	24.5	%	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	12	%	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	122.5	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	122.7	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	122.7	%	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	120	%	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	118	%	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	115.5	%	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	112.1	%	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Dissolved oxygen saturation	103.5	%	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	85.6	%	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	85	%	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	79.4	%	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	79	%	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	78	%	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	78	%	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	83.1	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	82.2	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	82.5	%	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	81.4	%	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	81.1	%	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	80.4	%	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	80.1	%	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Dissolved oxygen saturation	79.9	%	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	125.8	%	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	93.1	%	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	66.3	%	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	111.4	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	107.6	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	99.3	%	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	88.5	%	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Dissolved oxygen saturation	90.5	%	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	103.9	%	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	105.1	%	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	32.7	%	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	11.2	%	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	4.8	%	12 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	4	%	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	102.9	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	100.6	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	87.5	%	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	84.4	%	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	70.1	%	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	55.1	%	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	46.4	%	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Dissolved oxygen saturation	45.2	%	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	88.7	%	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	88.4	%	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.8	%	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.8	%	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.5	%	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.4	%	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.4	%	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Dissolved oxygen saturation	87.6	%	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Inorganic nitrogen (nitrate and nitrite)	0.218	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Inorganic nitrogen (nitrate and nitrite)	0.061	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	4.396143789	Coef	0.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.778151852	Coef	1.23 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.524587766	Coef	2.22 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	1.00556845	Coef	3.24 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.272507274	Coef	4.24 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	1.169795564	Coef	5.2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.503123215	Coef	6.24 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.707293041	Coef	7.22 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	0.925310616	Coef	8.28 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Light Extinction	1.121032948	Coef	9.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	3.568084644	Coef	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.543483785	Coef	1.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.707293041	Coef	10.27 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	1.109709382	Coef	11.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.583400693	Coef	2.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.539087283	Coef	3.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.537897454	Coef	4.28 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.72769552	Coef	5.18 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.405175542	Coef	6.34 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.585728146	Coef	7.27 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.659245629	Coef	8.27 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Light Extinction	0.898324247	Coef	9.29 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	2.850468185	Coef	0.27 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	0.811124907	Coef	1.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	0.78074524	Coef	2.26 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	0.850727128	Coef	4.22 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	0.823991589	Coef	6.21 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Light Extinction	1.282474679	Coef	8.21 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Light Extinction	3.860270511	Coef	0.35 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Light Extinction	1.501129609	Coef	1.28 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Light Extinction	1.069624752	Coef	2.28 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Light Extinction	1.577880306	Coef	3.3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Nitrite (NO2) + Nitrate (NO3) as N	0.704	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Nitrite (NO2) + Nitrate (NO3) as N	0.747	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.747	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrite (NO2) + Nitrate (NO3) as N	0.747	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrite (NO2) + Nitrate (NO3) as N	0.741	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrite (NO2) + Nitrate (NO3) as N	0.759	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Nitrite (NO2) + Nitrate (NO3) as N	0.083	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Nitrite (NO2) + Nitrate (NO3) as N	0.083	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Nitrite (NO2) + Nitrate (NO3) as N	0.265	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Nitrite (NO2) + Nitrate (NO3) as N	0.217	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Nitrite (NO2) + Nitrate (NO3) as N	0.075	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrogen, ammonia as N	0.16	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrogen, ammonia as N	0.19	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Nitrogen, ammonia as N	0.248	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrogen, ammonia as N	0.246	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrogen, ammonia as N	0.247	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrogen, ammonia as N	0.177	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrogen, ammonia as N	0.101	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Nitrogen, ammonia as N	0.256	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Nitrogen, ammonia as N	0.201	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Nitrogen, ammonia as N	0.147	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Nitrogen, ammonia as N	1.36	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Nitrogen, ammonia as N	0.03	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Nitrogen, ammonia as N	0.03	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrogen, Kjeldahl	1.4	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Nitrogen, Kjeldahl	1.6	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Nitrogen, Kjeldahl	1.67	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Nitrogen, Kjeldahl	1.56	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrogen, Kjeldahl	1.61	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Nitrogen, Kjeldahl	1.6	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrogen, Kjeldahl	1.15	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Nitrogen, Kjeldahl	1.32	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Nitrogen, Kjeldahl	1.6	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Nitrogen, Kjeldahl	1.7	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Nitrogen, Kjeldahl	2.05	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Nitrogen, Kjeldahl	1.99	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Nitrogen, Kjeldahl	1.14	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Nitrogen, Kjeldahl	1.16	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Nitrogen, Kjeldahl	0.99	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Nitrogen, Kjeldahl	1.77	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Nitrogen, Kjeldahl	1.1	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Nitrogen, Kjeldahl	1.42	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Nitrogen, Kjeldahl	2.92	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Nitrogen, Kjeldahl	1.18	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Nitrogen, Kjeldahl	0.98	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Nitrogen, Kjeldahl	1.15	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Orthophosphate as P, Dissolved	0.02	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Orthophosphate as P, Dissolved	0.013	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Orthophosphate as P, Dissolved	0.085	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Orthophosphate as P, Dissolved	0.04	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Orthophosphate as P, Dissolved	0.064	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Orthophosphate as P, Dissolved	0.071	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Orthophosphate as P, Dissolved	0.005	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Orthophosphate as P, Dissolved	0.029	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Orthophosphate as P, Dissolved	0.268	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Orthophosphate as P, Dissolved	0.007	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		рН	7.5	SU	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		рН	7.6	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.47	SU	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.67	SU	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	7.85	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	7.72	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	7.67	SU	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	7.62	SU	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.67	SU	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.66	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.68	SU	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.68	SU	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.66	SU	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.63	SU	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.59	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		рН	8.51	SU	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.02	SU	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.02	SU	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	7.98	SU	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	7.99	SU	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.02	SU	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.01	SU	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.01	SU	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8	SU	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.01	SU	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8.01	SU	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		рН	8	SU	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	8.25	SU	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	8.01	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	7.79	SU	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	8.16	SU	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	8.14	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	8.01	SU	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	7.98	SU	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		рН	7.98	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.58	SU	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.57	SU	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.16	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	7.97	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	7.92	SU	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	7.94	SU	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.59	SU	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.57	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.5	SU	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.49	SU	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.41	SU	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.3	SU	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.26	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		рН	8.24	SU	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.57	SU	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.6	SU	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.64	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.64	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.64	SU	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.61	SU	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.61	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.62	SU	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.62	SU	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.63	SU	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.63	SU	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.63	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		рН	8.64	SU	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		рН	8.05	SU	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		рН	8.66	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		рН	8.55	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		рН	7.84	SU	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		рН	8.56	SU	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		рН	8.04	SU	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		рН	8.05	SU	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		рН	8.8	SU	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Pheophytin a	NA	ug/L	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Pheophytin a	NA	ug/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Pheophytin a	0.84	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Pheophytin a	8.49	ug/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Phosphorus	0.015	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Phosphorus	0.063	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Phosphorus	0.013	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Phosphorus	0.082	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Phosphorus	0.045	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Phosphorus	0.037	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Phosphorus	0.065	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Phosphorus	0.049	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Phosphorus	0.084	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Phosphorus	0.104	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Phosphorus	0.157	mg/L	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Phosphorus	0.16	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Phosphorus	0.223	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Phosphorus	0.214	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Phosphorus	0.049	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Phosphorus	0.049	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Phosphorus	0.04	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Phosphorus	0.101	mg/L	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Phosphorus	0.061	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Phosphorus	0.131	mg/L	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Phosphorus	0.406	mg/L	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Phosphorus	0.094	mg/L	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Phosphorus	0.029	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Phosphorus	0.006	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Phosphorus	0.031	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Phosphorus	0.061	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Secchi	2.333	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Secchi	2.3	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Secchi	3.69	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Secchi	2.79	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Secchi	1.71	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Secchi	1.38	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Secchi	3.12	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Secchi	5.74	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Secchi	3.94	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Secchi	1.97	ft	ft
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Solids, suspended, volatile	NA	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Solids, suspended, volatile	NA	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Solids, suspended, volatile	6	mg/L	10 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Solids, Total Suspended (TSS)	6	mg/L	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	964.6	uS/cm	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	959.3	uS/cm	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	1035	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	1056	uS/cm	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	1062	uS/cm	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	1073	uS/cm	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	964.3	uS/cm	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	963.9	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	964.2	uS/cm	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	964.4	uS/cm	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	965.8	uS/cm	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	968.9	uS/cm	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	974.7	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Specific conductance	984	uS/cm	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.3	uS/cm	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.1	uS/cm	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	905.7	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	906	uS/cm	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	907.3	uS/cm	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	907.3	uS/cm	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	903.6	uS/cm	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	903.5	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	903.5	uS/cm	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	903.8	uS/cm	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.1	uS/cm	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.7	uS/cm	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.4	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Specific conductance	904.7	uS/cm	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	659.9	uS/cm	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	672.5	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	671	uS/cm	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	667.1	uS/cm	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	672.9	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	673.2	uS/cm	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	676.5	uS/cm	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Specific conductance	676.4	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	645.1	uS/cm	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	646.4	uS/cm	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	657.9	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	663.3	uS/cm	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	665.9	uS/cm	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	665.7	uS/cm	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	645.7	uS/cm	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	646.7	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	648.9	uS/cm	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	648.8	uS/cm	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	651	uS/cm	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	655.2	uS/cm	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	655.7	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Specific conductance	654.8	uS/cm	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	703	uS/cm	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	703	uS/cm	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	707	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	709	uS/cm	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	710	uS/cm	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	703	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	704	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Specific conductance	703	uS/cm	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Specific conductance	1073	uS/cm	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-05-08		Specific conductance	1051	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Specific conductance	1059	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-06-12		Specific conductance	1078	uS/cm	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Specific conductance	1055	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-07-10		Specific conductance	1081	uS/cm	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Specific conductance	1053	uS/cm	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2007-08-07		Specific conductance	909	uS/cm	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2012-05-13	6:41	Temperature, sample	6	deg C	
RTZQ	TIMBER LAKE (SOUTH)	2012-07-01	7:00	Temperature, sample	7	deg C	
RTZQ	TIMBER LAKE (SOUTH)	2013-06-10	19:00	Temperature, sample	10	deg C	
RTZQ	TIMBER LAKE (SOUTH)	2013-08-04	7:13	Temperature, sample	7	deg C	
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	0 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	1 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.6	с	11 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.5	с	13 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	2 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	3 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	5 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	7 ft
RTZQ	TIMBER LAKE (SOUTH)	1989-08-15		Temperature, water	23.7	с	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.49	с	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.48	с	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	12.72	с	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	11.52	с	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	11.29	с	12 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	10.81	с	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.52	с	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.47	с	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.5	с	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.43	с	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.4	с	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	15.21	с	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	14.81	с	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-05-02		Temperature, water	14.4	С	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	19.06	С	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	19	с	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.46	С	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.45	С	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.41	С	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.41	С	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.74	С	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.65	С	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.62	с	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.59	С	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.59	С	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.56	С	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.51	С	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-06-06		Temperature, water	18.48	с	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	26.12	С	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	24.5	С	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	23.76	с	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	25.22	с	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	25.01	с	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	24.88	с	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	24.62	с	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-07-12		Temperature, water	24.6	с	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	25.08	с	0.25 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	25.07	с	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.62	с	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.43	с	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.34	с	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.33	с	13 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	25.07	с	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	24.96	с	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	24.67	с	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	24.67	с	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	24.35	с	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.94	с	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.85	с	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-08-08		Temperature, water	23.73	с	9 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.92	с	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	С	1 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	С	10 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	11 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	12 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	2 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	3 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	4 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	5 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	6 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	7 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	С	8 ft
RTZQ	TIMBER LAKE (SOUTH)	2000-09-05		Temperature, water	22.95	с	9 ft
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Alkalinity	180	mg/l CaCO3	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Alkalinity	171	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Alkalinity	193	mg/l CaCO3	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Alkalinity	193	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Alkalinity	181	mg/l CaCO3	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Alkalinity	183	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Alkalinity	190	mg/l CaCO3	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Alkalinity	187	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Alkalinity	197	mg/l CaCO3	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Alkalinity	196	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Alkalinity	215	mg/l CaCO3	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Alkalinity	215	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Alkalinity	207	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Alkalinity	226	mg/l CaCO3	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Alkalinity	190	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Alkalinity	212	mg/l CaCO3	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Alkalinity	213	mg/l CaCO3	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Alkalinity	156	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Alkalinity	193	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Alkalinity	199	mg/l CaCO3	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Alkalinity	169	mg/l CaCO3	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Alkalinity	162	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Alkalinity	174	mg/l CaCO3	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Alkalinity	164	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Alkalinity	184	mg/l CaCO3	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Alkalinity	141	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Alkalinity	170	mg/l CaCO3	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Alkalinity	138	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Alkalinity	128	mg/l CaCO3	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Alkalinity	130	mg/l CaCO3	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Ammonia as N	0.248	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Ammonia as N	0.246	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Ammonia as N	0.247	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Ammonia as N	0.177	mg/L	12

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Ammonia as N	0.101	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Ammonia as N	0.256	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Ammonia as N	0.201	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Ammonia as N	0.147	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Ammonia as N	1.36	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Ammonia as N	0.32	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Ammonia as N	0.847	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Ammonia as N	0.551	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Ammonia as N	0.28	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Ammonia as N	0.978	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Ammonia as N	1.04	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Ammonia as N	0.191	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Chloride	169	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Chloride	170	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Chloride	180	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Chloride	177	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Chloride	187	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Chloride	185	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Chloride	185	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Chloride	163	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Chloride	95.5	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Chloride	98.5	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Chloride	110	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Chloride	108	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Chloride	118	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Chloride	123	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Chloride	102	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Chloride	79	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Chloride	95.5	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Chloride	90.4	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Chloride	92.8	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Chloride	93.5	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Chlorophyll a	0	ug/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Chlorophyll a	0	ug/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Chlorophyll a	0	ug/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Chlorophyll a	0	ug/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Chlorophyll a	0	ug/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Chlorophyll a	0	ug/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Chlorophyll a	0	ug/L	9

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Chlorophyll a	0	ug/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Chlorophyll a	0	ug/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Chlorophyll a	0	ug/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Chlorophyll a	0	ug/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Depth, Secchi Disk Depth	2.3	ft	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Depth, Secchi Disk Depth	3.69	ft	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Depth, Secchi Disk Depth	2.79	ft	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Depth, Secchi Disk Depth	1.71	ft	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Depth, Secchi Disk Depth	1.38	ft	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Depth, Secchi Disk Depth	3.12	ft	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Depth, Secchi Disk Depth	5.74	ft	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Depth, Secchi Disk Depth	3.94	ft	3
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Depth, Secchi Disk Depth	1.97	ft	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Depth, Secchi Disk Depth	2.79	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Depth, Secchi Disk Depth	4.3	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Depth, Secchi Disk Depth	4.87	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Depth, Secchi Disk Depth	4.33	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Depth, Secchi Disk Depth	4.32	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Depth, Secchi Disk Depth	3.5	ft	3
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Dissolved oxygen (DO)	0.35	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Dissolved oxygen (DO)	10.24	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Dissolved oxygen (DO)	15.31	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Dissolved oxygen (DO)	9.23	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Dissolved oxygen (DO)	0.36	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Dissolved oxygen (DO)	6.47	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Dissolved oxygen (DO)	1.22	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Dissolved oxygen (DO)	10.62	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Dissolved oxygen (DO)	6.53	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Dissolved oxygen (DO)	5.89	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Nitrogen, Kjeldahl	1.67	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Nitrogen, Kjeldahl	1.56	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Nitrogen, Kjeldahl	1.61	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Nitrogen, Kjeldahl	1.6	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Nitrogen, Kjeldahl	1.15	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Nitrogen, Kjeldahl	1.32	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Nitrogen, Kjeldahl	1.6	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Nitrogen, Kjeldahl	1.7	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Nitrogen, Kjeldahl	2.05	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Nitrogen, Kjeldahl	1.99	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Nitrogen, Kjeldahl	1.14	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Nitrogen, Kjeldahl	1.16	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Nitrogen, Kjeldahl	0.99	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Nitrogen, Kjeldahl	1.77	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Nitrogen, Kjeldahl	1.1	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Nitrogen, Kjeldahl	1.42	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Nitrogen, Kjeldahl	2.92	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Nitrogen, Kjeldahl	1.18	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Nitrogen, Kjeldahl	1.98	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Nitrogen, Kjeldahl	2.51	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Nitrogen, Kjeldahl	1.6	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Nitrogen, Kjeldahl	1.21	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Nitrogen, Kjeldahl	1.37	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Nitrogen, Kjeldahl	1.11	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Nitrogen, Kjeldahl	2.36	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Nitrogen, Kjeldahl	1.26	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Nitrogen, Kjeldahl	2.43	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Nitrogen, Kjeldahl	1.31	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Nitrogen, Kjeldahl	1.57	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Nitrogen, Kjeldahl	1.82	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Nitrogen, Nitrate (NO3) as N	0.704	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Nitrogen, Nitrate (NO3) as N	0.747	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Nitrogen, Nitrate (NO3) as N	0.747	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Nitrogen, Nitrate (NO3) as N	0.747	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Nitrogen, Nitrate (NO3) as N	0.741	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Nitrogen, Nitrate (NO3) as N	0.759	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Nitrogen, Nitrate (NO3) as N	0.083	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Nitrogen, Nitrate (NO3) as N	0.083	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Nitrogen, Nitrate (NO3) as N	0.265	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Nitrogen, Nitrate (NO3) as N	0.217	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Nitrogen, Nitrate (NO3) as N	0.075	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Nitrogen, Nitrate (NO3) as N	0.15	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Nitrogen, Nitrate (NO3) as N	0.34	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Nitrogen, Nitrate (NO3) as N	0.142	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Nitrogen, Nitrate (NO3) as N	0.15	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-05-02		рН	7.67	SU	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		рН	8.66	SU	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		рН	7.98	SU	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		рН	8.01	SU	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		рН	7.79	SU	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		рН	8.14	SU	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		рН	7.92	SU	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		рН	8.57	SU	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		рН	8.64	SU	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		рН	8.61	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		рН	8.06	SU	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		рН	8.66	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		рН	8.55	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		рН	7.84	SU	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		рН	8.56	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		рН	8.04	SU	8

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2007-08-07		рН	8.05	SU	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		рН	8.8	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		рН	8.27	SU	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		рН	7.88	SU	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		рН	7.32	SU	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		рН	8.51	SU	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		рН	7.53	SU	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		рН	8.41	SU	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		рН	7.4	SU	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		рН	8.49	SU	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		рН	7.73	SU	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		рН	8.78	SU	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		рН	8.39	SU	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		рН	8.39	SU	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Phosphorus	0.045	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Phosphorus	0.037	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Phosphorus	0.065	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Phosphorus	0.049	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Phosphorus	0.084	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Phosphorus	0.104	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Phosphorus	0.157	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Phosphorus	0.16	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Phosphorus	0.223	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Phosphorus	0.214	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Phosphorus	0.049	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Phosphorus	0.049	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Phosphorus	0.04	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Phosphorus	0.101	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Phosphorus	0.061	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Phosphorus	0.131	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Phosphorus	0.406	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Phosphorus	0.094	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Phosphorus	0.18	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Phosphorus	0.293	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Phosphorus	0.061	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Phosphorus	0.054	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Phosphorus	0.043	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Phosphorus	0.04	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Phosphorus	0.306	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Phosphorus	0.066	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Phosphorus	0.288	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Phosphorus	0.066	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Phosphorus	0.128	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Phosphorus	0.178	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Phosphorus, Soluble Reactive	0.02	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Phosphorus, Soluble Reactive	0.013	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Phosphorus, Soluble Reactive	0.085	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Phosphorus, Soluble Reactive	0.04	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Phosphorus, Soluble Reactive	0.064	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Phosphorus, Soluble Reactive	0.071	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Phosphorus, Soluble Reactive	0.005	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Phosphorus, Soluble Reactive	0.029	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Phosphorus, Soluble Reactive	0.268	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Phosphorus, Soluble Reactive	0.081	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Phosphorus, Soluble Reactive	0.18	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Phosphorus, Soluble Reactive	0.219	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Phosphorus, Soluble Reactive	0.007	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Phosphorus, Soluble Reactive	0.179	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Phosphorus, Soluble Reactive	0.033	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Phosphorus, Soluble Reactive	0.044	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Solids, Total Dissolved (TDS)	638	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Solids, Total Dissolved (TDS)	602	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Solids, Total Dissolved (TDS)	534	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Solids, Total Dissolved (TDS)	545	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Solids, Total Dissolved (TDS)	408	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Solids, Total Dissolved (TDS)	452	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Solids, Total Dissolved (TDS)	406	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Solids, Total Dissolved (TDS)	397	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Solids, Total Dissolved (TDS)	433	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Solids, Total Dissolved (TDS)	440	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Solids, Total Suspended (TSS)	8.4	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Solids, Total Suspended (TSS)	5.7	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Solids, Total Suspended (TSS)	16	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Solids, Total Suspended (TSS)	7.7	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Solids, Total Suspended (TSS)	9.4	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Solids, Total Suspended (TSS)	11	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Solids, Total Suspended (TSS)	17	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Solids, Total Suspended (TSS)	23	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Solids, Total Suspended (TSS)	28.5	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Solids, Total Suspended (TSS)	27.6	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Solids, Total Suspended (TSS)	7	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Solids, Total Suspended (TSS)	8.7	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Solids, Total Suspended (TSS)	4.2	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Solids, Total Suspended (TSS)	12	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Solids, Total Suspended (TSS)	6.7	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Solids, Total Suspended (TSS)	11	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Solids, Total Suspended (TSS)	18	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Solids, Total Suspended (TSS)	44.6	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Solids, Total Suspended (TSS)	8.1	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Solids, Total Suspended (TSS)	8.6	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Solids, Total Suspended (TSS)	8.2	mg/L	10

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Solids, Total Suspended (TSS)	3.1	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Solids, Total Suspended (TSS)	3.8	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Solids, Total Suspended (TSS)	3.3	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Solids, Total Suspended (TSS)	9.5	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Solids, Total Suspended (TSS)	5.3	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Solids, Total Suspended (TSS)	9	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Solids, Total Suspended (TSS)	4.8	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Solids, Total Suspended (TSS)	9.8	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Solids, Total Suspended (TSS)	13	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Specific conductance	1.062	mS/cm	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Specific conductance	0.9639	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Specific conductance	0.9073	mS/cm	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Specific conductance	0.9035	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Specific conductance	0.671	mS/cm	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Specific conductance	0.6729	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Specific conductance	0.6659	mS/cm	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Specific conductance	0.6467	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Specific conductance	0.709	mS/cm	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Specific conductance	0.703	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Specific conductance	1.073	mS/cm	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Specific conductance	1.051	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Specific conductance	1.059	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Specific conductance	1.078	mS/cm	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Specific conductance	1.055	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Specific conductance	1.081	mS/cm	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Specific conductance	1.053	mS/cm	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Specific conductance	0.909	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Specific conductance	0.733	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Specific conductance	0.783	mS/cm	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Specific conductance	0.784	mS/cm	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Specific conductance	0.724	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Specific conductance	0.786	mS/cm	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Specific conductance	0.784	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Specific conductance	0.791	mS/cm	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Specific conductance	0.569	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Specific conductance	0.758	mS/cm	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Specific conductance	0.585	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Specific conductance	0.576	mS/cm	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Specific conductance	0.58	mS/cm	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Total solids	692	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Total solids	627	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Total solids	614	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Total solids	612	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Total solids	451	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Total solids	451	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Total solids	434	mg/L	12

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Total solids	448	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Total solids	466	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Total solids	470	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Total solids	594	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Total solids	597	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Total solids	628	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Total solids	621	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Total solids	611	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Total solids	633	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Total solids	630	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Total solids	568	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Total solids	439	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Total solids	446	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Total solids	475	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Total solids	460	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Total solids	495	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Total solids	510	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Total solids	440	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Total solids	371	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Total solids	402	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Total solids	367	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Total solids	366	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Total solids	368	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Total volatile solids	214	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		Total volatile solids	160	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Total volatile solids	222	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		Total volatile solids	183	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Total volatile solids	135	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		Total volatile solids	129	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Total volatile solids	119	mg/L	12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		Total volatile solids	125	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Total volatile solids	128	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		Total volatile solids	120	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Total volatile solids	112	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		Total volatile solids	118	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Total volatile solids	145	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		Total volatile solids	140	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Total volatile solids	132	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		Total volatile solids	145	mg/L	8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Total volatile solids	148	mg/L	11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		Total volatile solids	123	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Total volatile solids	92	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		Total volatile solids	109	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Total volatile solids	110	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-05-21		Total volatile solids	116	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Total volatile solids	111	mg/L	10

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZQ	TIMBER LAKE SOUTH	2013-06-18		Total volatile solids	117	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Total volatile solids	93	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-07-16		Total volatile solids	87	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Total volatile solids	96	mg/L	10
RTZQ	TIMBER LAKE SOUTH	2013-08-20		Total volatile solids	88	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Total volatile solids	89	mg/L	3
RTZQ	TIMBER LAKE SOUTH	2013-09-17		Total volatile solids	85	mg/L	9
RTZQ	TIMBER LAKE SOUTH	2000-05-02		TRP	0		12
RTZQ	TIMBER LAKE SOUTH	2000-05-02		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2000-06-06		TRP	0		12
RTZQ	TIMBER LAKE SOUTH	2000-06-06		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2000-07-12		TRP	0		12
RTZQ	TIMBER LAKE SOUTH	2000-07-12		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2000-08-08		TRP	0		12
RTZQ	TIMBER LAKE SOUTH	2000-08-08		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2000-09-05		TRP	0		11
RTZQ	TIMBER LAKE SOUTH	2000-09-05		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-05-08		TRP	0		10
RTZQ	TIMBER LAKE SOUTH	2007-05-08		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-06-12		TRP	0		9
RTZQ	TIMBER LAKE SOUTH	2007-07-10		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-07-10		TRP	0		8
RTZQ	TIMBER LAKE SOUTH	2007-08-07		TRP	0		11
RTZQ	TIMBER LAKE SOUTH	2007-08-07		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		TRP	0		3
RTZQ	TIMBER LAKE SOUTH	2007-09-11		TRP	0		9
RTZR	ECHO LAKE	1995-05-09		Alkalinity	176	mg/l CaCO3	3
RTZR	ECHO LAKE	1995-05-09		Alkalinity	177	mg/l CaCO3	7
RTZR	ECHO LAKE	1995-06-05		Alkalinity	168	mg/l CaCO3	3
RTZR	ECHO LAKE	1995-06-05		Alkalinity	196	mg/l CaCO3	9
RTZR	ECHO LAKE	1995-07-10		Alkalinity	169	mg/l CaCO3	3
RTZR	ECHO LAKE	1995-07-10		Alkalinity	172	mg/l CaCO3	9
RTZR	ECHO LAKE	1995-08-08		Alkalinity	155	mg/l CaCO3	2
RTZR	ECHO LAKE	1995-08-08		Alkalinity	158	mg/l CaCO3	4
RTZR	ECHO LAKE	1995-09-05		Alkalinity	158	mg/l CaCO3	3
RTZR	ECHO LAKE	1995-09-05		Alkalinity	160	mg/I CaCO3	8
RTZR	ECHO LAKE	2000-05-04		Alkalinity	160	mg/l CaCO3	3
RTZR	ECHO LAKE	2000-05-04		Alkalinity	168	mg/l CaCO3	8.5
RTZR	ECHO LAKE	2000-06-08		Alkalinity	164	mg/l CaCO3	3
RTZR	ECHO LAKE	2000-06-08		Alkalinity	161	mg/l CaCO3	8
RTZR	ECHO LAKE	2000-07-06		Alkalinity	170	mg/l CaCO3	3
RTZR	ECHO LAKE	2000-07-06		Alkalinity	185	mg/l CaCO3	8
RTZR	ECHO LAKE	2000-08-10		Alkalinity	161	mg/I CaCO3	3
RTZR	ECHO LAKE	2000-08-10		Alkalinity	170	mg/l CaCO3	8
RTZR	ECHO LAKE	2000-09-07		Alkalinity	138	mg/I CaCO3	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-09-07		Alkalinity	138	mg/l CaCO3	8
RTZR	ECHO LAKE	2008-05-13		Alkalinity	177	mg/l CaCO3	3
RTZR	ECHO LAKE	2008-06-10		Alkalinity	183	mg/l CaCO3	3
RTZR	ECHO LAKE	2008-06-10		Alkalinity	187	mg/l CaCO3	7
RTZR	ECHO LAKE	2008-07-08		Alkalinity	178	mg/l CaCO3	3
RTZR	ECHO LAKE	2008-07-08		Alkalinity	181	mg/l CaCO3	8
RTZR	ECHO LAKE	2008-08-12		Alkalinity	183	mg/l CaCO3	3
RTZR	ECHO LAKE	2008-08-12		Alkalinity	187	mg/l CaCO3	7
RTZR	ECHO LAKE	2008-09-09		Alkalinity	150	mg/l CaCO3	3
RTZR	ECHO LAKE	2008-09-09		Alkalinity	151	mg/l CaCO3	8
RTZR	ECHO LAKE	2015-05-12		Alkalinity	174	mg/l CaCO3	3
RTZR	ECHO LAKE	2015-05-12		Alkalinity	173	mg/l CaCO3	8
RTZR	ECHO LAKE	2015-06-16		Alkalinity	182	mg/l CaCO3	3
RTZR	ECHO LAKE	2015-06-16		Alkalinity	181	mg/l CaCO3	7
RTZR	ECHO LAKE	2015-07-14		Alkalinity	133	mg/l CaCO3	3
RTZR	ECHO LAKE	2015-07-14		Alkalinity	138	mg/l CaCO3	8
RTZR	ECHO LAKE	2015-08-11		Alkalinity	129	mg/l CaCO3	3
RTZR	ECHO LAKE	2015-08-11		Alkalinity	130	mg/l CaCO3	7
RTZR	ECHO LAKE	2015-09-16		Alkalinity	120	mg/l CaCO3	3
RTZR	ECHO LAKE	2015-09-16		Alkalinity	121	mg/l CaCO3	7
RTZR	ECHO LAKE	1995-05-09		Ammonia as N	0.121	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Ammonia as N	0.525	mg/L	9
RTZR	ECHO LAKE	2000-05-04		Ammonia as N	0.133	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Ammonia as N	0.194	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Ammonia as N	0.483	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Ammonia as N	0.441	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Ammonia as N	0.139	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Ammonia as N	0.155	mg/L	8
RTZR	ECHO LAKE	2008-06-10		Ammonia as N	0.465	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Ammonia as N	0.493	mg/L	7
RTZR	ECHO LAKE	2008-08-12		Ammonia as N	0.302	mg/L	7
RTZR	ECHO LAKE	2008-05-13		Chloride	290	mg/L	3 ft
RTZR	ECHO LAKE	2008-05-13		Chloride	290	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Chloride	275	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Chloride	275	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Chloride	276	mg/L	7 ft
RTZR	ECHO LAKE	2008-06-10		Chloride	276	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Chloride	267	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Chloride	267	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Chloride	272	mg/L	8 ft
RTZR	ECHO LAKE	2008-07-08		Chloride	272	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Chloride	244	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Chloride	244	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Chloride	240	mg/L	7 ft
RTZR	ECHO LAKE	2008-08-12		Chloride	240	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Chloride	226	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2008-09-09		Chloride	226	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Chloride	226	mg/L	8 ft
RTZR	ECHO LAKE	2008-09-09		Chloride	226	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Chloride	234	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Chloride	236	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Chloride	233	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Chloride	230	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Chloride	224	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Chloride	221	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Chloride	224	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Chloride	225	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Chloride	223	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Chloride	224	mg/L	7
RTZR	ECHO LAKE	1995-05-09		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	1995-05-09		Chlorophyll a	0	ug/L	7
RTZR	ECHO LAKE	1995-06-05		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	1995-06-05		Chlorophyll a	0	ug/L	9
RTZR	ECHO LAKE	1995-07-10		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	1995-07-10		Chlorophyll a	0	ug/L	9
RTZR	ECHO LAKE	1995-08-08		Chlorophyll a	0	ug/L	2
RTZR	ECHO LAKE	1995-08-08		Chlorophyll a	0	ug/L	4
RTZR	ECHO LAKE	1995-09-05		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	1995-09-05		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2000-05-04		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2000-05-04		Chlorophyll a	0	ug/L	8.5
RTZR	ECHO LAKE	2000-06-08		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2000-06-08		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2000-07-06		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2000-07-06		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2000-08-10		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2000-08-10		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2000-09-07		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2000-09-07		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2008-05-13		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2008-06-10		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2008-06-10		Chlorophyll a	0	ug/L	7
RTZR	ECHO LAKE	2008-07-08		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2008-07-08		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2008-08-12		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2008-08-12		Chlorophyll a	0	ug/L	7
RTZR	ECHO LAKE	2008-09-09		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2008-09-09		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2015-05-12		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2015-05-12		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2015-06-16		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2015-06-16		Chlorophyll a	0	ug/L	7

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2015-07-14		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2015-07-14		Chlorophyll a	0	ug/L	8
RTZR	ECHO LAKE	2015-08-11		Chlorophyll a	0	ug/L	3
RTZR	ECHO LAKE	2015-08-11		Chlorophyll a	0	ug/L	7
RTZR	ECHO LAKE	1995-05-09		Depth, Secchi Disk Depth	1.25	ft	3
RTZR	ECHO LAKE	1995-06-05		Depth, Secchi Disk Depth	3.42	ft	3
RTZR	ECHO LAKE	1995-07-10		Depth, Secchi Disk Depth	1.33	ft	3
RTZR	ECHO LAKE	1995-08-08		Depth, Secchi Disk Depth	1.75	ft	2
RTZR	ECHO LAKE	1995-09-05		Depth, Secchi Disk Depth	1.25	ft	3
RTZR	ECHO LAKE	2000-05-04		Depth, Secchi Disk Depth	3.81	ft	3
RTZR	ECHO LAKE	2000-06-08		Depth, Secchi Disk Depth	3.77	ft	3
RTZR	ECHO LAKE	2000-07-06		Depth, Secchi Disk Depth	2.92	ft	3
RTZR	ECHO LAKE	2000-08-10		Depth, Secchi Disk Depth	3.45	ft	3
RTZR	ECHO LAKE	2000-09-07		Depth, Secchi Disk Depth	4.36	ft	3
RTZR	ECHO LAKE	2008-05-13		Depth, Secchi Disk Depth	2.46	ft	3
RTZR	ECHO LAKE	2008-06-10		Depth, Secchi Disk Depth	2.76	ft	3
RTZR	ECHO LAKE	2008-07-08		Depth, Secchi Disk Depth	2.297	ft	3
RTZR	ECHO LAKE	2008-08-12		Depth, Secchi Disk Depth	1.97	ft	3
RTZR	ECHO LAKE	2008-09-09		Depth, Secchi Disk Depth	1.05	ft	3
RTZR	ECHO LAKE	2015-05-12		Depth, Secchi Disk Depth	1.95	ft	3
RTZR	ECHO LAKE	2015-06-16		Depth, Secchi Disk Depth	2.2	ft	3
RTZR	ECHO LAKE	2015-07-14		Depth, Secchi Disk Depth	2.7	ft	3
RTZR	ECHO LAKE	2015-08-11		Depth, Secchi Disk Depth	1.8	ft	3
RTZR	ECHO LAKE	2015-09-16		Depth, Secchi Disk Depth	2.92	ft	3
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	10.88	mg/L	0.25 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	10.89	mg/L	1 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	0.33	mg/L	10 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	10.96	mg/L	2 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	10.99	mg/L	3 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	10.97	mg/L	4 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	9.28	mg/L	5 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	8.12	mg/L	6 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	6.34	mg/L	7 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	2.94	mg/L	8 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen (DO)	0.59	mg/L	9 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.93	mg/L	0.25 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.87	mg/L	1 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	0	mg/L	10 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.93	mg/L	2 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.96	mg/L	3 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.84	mg/L	4 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	7.62	mg/L	5 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	6	mg/L	6 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	3.8	mg/L	7 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	0.63	mg/L	8 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen (DO)	0.02	mg/L	9 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	12.99	mg/L	0.25 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	13.04	mg/L	1 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	0.05	mg/L	10 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	13.22	mg/L	2 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	10.57	mg/L	3 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	7.35	mg/L	4 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	4.11	mg/L	5 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	2.18	mg/L	6 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	0.13	mg/L	7 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	0.06	mg/L	8 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen (DO)	0.07	mg/L	9 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	8.07	mg/L	0.25 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	8.13	mg/L	1 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	0.07	mg/L	10 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	8.31	mg/L	2 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	7.95	mg/L	3 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	7.74	mg/L	4 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	7.25	mg/L	5 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	2.54	mg/L	6 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	0.85	mg/L	7 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	0.44	mg/L	8 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen (DO)	0.1	mg/L	9 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.79	mg/L	0.25 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.68	mg/L	1 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	5.3	mg/L	10 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.67	mg/L	2 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.63	mg/L	3 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.59	mg/L	4 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.62	mg/L	5 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.54	mg/L	6 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.48	mg/L	7 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	6.03	mg/L	8 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen (DO)	5.79	mg/L	9 ft
RTZR	ECHO LAKE	2008-05-13		Dissolved oxygen (DO)	8.69	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Dissolved oxygen (DO)	5.43	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Dissolved oxygen (DO)	4.46	mg/L	7 ft
RTZR	ECHO LAKE	2008-07-08		Dissolved oxygen (DO)	6.44	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Dissolved oxygen (DO)	0.37	mg/L	8 ft
RTZR	ECHO LAKE	2008-08-12		Dissolved oxygen (DO)	9.04	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Dissolved oxygen (DO)	1.64	mg/L	7 ft
RTZR	ECHO LAKE	2008-09-09		Dissolved oxygen (DO)	8.69	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09		Dissolved oxygen (DO)	7.68	mg/L	8 ft
RTZR	ECHO LAKE	2015-05-12		Dissolved oxygen (DO)	7.29	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Dissolved oxygen (DO)	7.21	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Dissolved oxygen (DO)	7.8	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Dissolved oxygen (DO)	7.23	mg/L	7

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2015-07-14		Dissolved oxygen (DO)	10.3	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Dissolved oxygen (DO)	6.42	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Dissolved oxygen (DO)	5.91	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Dissolved oxygen (DO)	5.06	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Dissolved oxygen (DO)	9.49	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Dissolved oxygen (DO)	9.41	mg/L	7
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	10.88	%	0.25 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	10.89	%	1 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	0.33	%	10 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	10.96	%	2 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	10.99	%	3 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	10.97	%	4 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	9.28	%	5 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	8.12	%	6 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	6.34	%	7 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	2.94	%	8 ft
RTZR	ECHO LAKE	2000-05-04		Dissolved oxygen saturation	0.59	%	9 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	91.8	%	0.25 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	91.2	%	1 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	0	%	10 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	91.7	%	2 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	92	%	3 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	90.5	%	4 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	87.8	%	5 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	67.6	%	6 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	41.1	%	7 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	6.6	%	8 ft
RTZR	ECHO LAKE	2000-06-08		Dissolved oxygen saturation	0.2	%	9 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	159.7	%	0.25 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	160.1	%	1 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	0.5	%	10 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	161.6	%	2 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	127.8	%	3 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	87.8	%	4 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	48.4	%	5 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	26.5	%	6 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	1.5	%	7 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	0.7	%	8 ft
RTZR	ECHO LAKE	2000-07-06		Dissolved oxygen saturation	0.7	%	9 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	102.9	%	0.25 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	104	%	1 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	0.9	%	10 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	105.8	%	2 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	101	%	3 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	98.2	%	4 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	91.4	%	5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	31.4	%	6 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	10.4	%	7 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	5.4	%	8 ft
RTZR	ECHO LAKE	2000-08-10		Dissolved oxygen saturation	1.2	%	9 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	78	%	0.25 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	76.8	%	1 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	60.4	%	10 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	76.7	%	2 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	76.2	%	3 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	75.6	%	4 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	75.9	%	5 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	74.9	%	6 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	74.3	%	7 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	69	%	8 ft
RTZR	ECHO LAKE	2000-09-07		Dissolved oxygen saturation	65.9	%	9 ft
RTZR	ECHO LAKE	1995-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.065	mg/L	3 ft
RTZR	ECHO LAKE	1995-05-09		Nitrite (NO2) + Nitrate (NO3) as N	0.081	mg/L	7 ft
RTZR	ECHO LAKE	1995-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.053	mg/L	9 ft
RTZR	ECHO LAKE	1995-09-05		Nitrite (NO2) + Nitrate (NO3) as N	0.08	mg/L	3 ft
RTZR	ECHO LAKE	1995-09-05		Nitrite (NO2) + Nitrate (NO3) as N	0.11	mg/L	8 ft
RTZR	ECHO LAKE	2000-05-04		Nitrite (NO2) + Nitrate (NO3) as N	0.065	mg/L	3 ft
RTZR	ECHO LAKE	2000-05-04		Nitrite (NO2) + Nitrate (NO3) as N	0.126	mg/L	8.5 ft
RTZR	ECHO LAKE	2000-06-08		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	3 ft
RTZR	ECHO LAKE	2000-06-08		Nitrite (NO2) + Nitrate (NO3) as N	0.063	mg/L	8 ft
RTZR	ECHO LAKE	2000-07-06		Nitrite (NO2) + Nitrate (NO3) as N	0.071	mg/L	3 ft
RTZR	ECHO LAKE	2000-07-06		Nitrite (NO2) + Nitrate (NO3) as N	0.071	mg/L	8 ft
RTZR	ECHO LAKE	2000-08-10		Nitrite (NO2) + Nitrate (NO3) as N	0.057	mg/L	8 ft
RTZR	ECHO LAKE	2008-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Nitrite (NO2) + Nitrate (NO3) as N	0.065	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Nitrite (NO2) + Nitrate (NO3) as N	0.076	mg/L	7 ft
RTZR	ECHO LAKE	2008-07-08		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	8 ft
RTZR	ECHO LAKE	2008-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	7 ft
RTZR	ECHO LAKE	2008-09-09		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09		Nitrite (NO2) + Nitrate (NO3) as N	0.144	mg/L	8 ft
RTZR	ECHO LAKE	1995-05-09		Nitrogen, ammonia as N	0.121	mg/L	7 ft
RTZR	ECHO LAKE	1995-06-05		Nitrogen, ammonia as N	0.525	mg/L	9 ft
RTZR	ECHO LAKE	1995-07-10		Nitrogen, ammonia as N	0.064	mg/L	3 ft
RTZR	ECHO LAKE	1995-07-10		Nitrogen, ammonia as N	0.065	mg/L	9 ft
RTZR	ECHO LAKE	1995-08-08		Nitrogen, ammonia as N	0.079	mg/L	2 ft
RTZR	ECHO LAKE	1995-08-08		Nitrogen, ammonia as N	0.083	mg/L	4 ft
RTZR	ECHO LAKE	2000-05-04		Nitrogen, ammonia as N	0.133	mg/L	8.5 ft
RTZR	ECHO LAKE	2000-06-08		Nitrogen, ammonia as N	0.194	mg/L	8 ft
RTZR	ECHO LAKE	2000-07-06		Nitrogen, ammonia as N	0.483	mg/L	8 ft
RTZR	ECHO LAKE	2000-08-10		Nitrogen, ammonia as N	0.441	mg/L	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-09-07		Nitrogen, ammonia as N	0.139	mg/L	3 ft
RTZR	ECHO LAKE	2000-09-07		Nitrogen, ammonia as N	0.155	mg/L	8 ft
RTZR	ECHO LAKE	2008-05-13		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Nitrogen, ammonia as N	0.465	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Nitrogen, ammonia as N	0.493	mg/L	7 ft
RTZR	ECHO LAKE	2008-07-08		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Nitrogen, ammonia as N	0.1	mg/L	8 ft
RTZR	ECHO LAKE	2008-08-12		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Nitrogen, ammonia as N	0.302	mg/L	7 ft
RTZR	ECHO LAKE	2008-09-09		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09		Nitrogen, ammonia as N	0.1	mg/L	8 ft
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Kjeldahl	1.02	mg/L	3 ft
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Kjeldahl	1.02	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Kjeldahl	1.03	mg/L	7 ft
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Kjeldahl	1.03	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Nitrogen, Kjeldahl	0.64	mg/L	3 ft
RTZR	ECHO LAKE	1995-06-05		Nitrogen, Kjeldahl	0.64	mg/L	3
RTZR	ECHO LAKE	1995-06-05		Nitrogen, Kjeldahl	1.54	mg/L	9 ft
RTZR	ECHO LAKE	1995-06-05		Nitrogen, Kjeldahl	1.54	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Kjeldahl	1.96	mg/L	3 ft
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Kjeldahl	1.96	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Kjeldahl	1.97	mg/L	9 ft
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Kjeldahl	1.97	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Kjeldahl	1.39	mg/L	2 ft
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Kjeldahl	1.39	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Kjeldahl	1.75	mg/L	4 ft
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Kjeldahl	1.75	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Kjeldahl	4.7	mg/L	3 ft
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Kjeldahl	4.7	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Kjeldahl	4.7	mg/L	8 ft
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Kjeldahl	4.7	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Kjeldahl	1.14	mg/L	3 ft
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Kjeldahl	1.14	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Kjeldahl	1.2	mg/L	8.5 ft
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Kjeldahl	1.2	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Kjeldahl	0.94	mg/L	3 ft
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Kjeldahl	0.94	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Kjeldahl	1.35	mg/L	8 ft
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Kjeldahl	1.35	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Kjeldahl	1.01	mg/L	3 ft
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Kjeldahl	1.01	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Kjeldahl	1.3	mg/L	8 ft
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Kjeldahl	1.3	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Nitrogen, Kjeldahl	1.1	mg/L	3 ft
RTZR	ECHO LAKE	2000-08-10		Nitrogen, Kjeldahl	1.1	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Nitrogen, Kjeldahl	1.3	mg/L	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-08-10		Nitrogen, Kjeldahl	1.3	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Nitrogen, Kjeldahl	1.25	mg/L	3 ft
RTZR	ECHO LAKE	2000-09-07		Nitrogen, Kjeldahl	1.25	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Nitrogen, Kjeldahl	1.25	mg/L	8 ft
RTZR	ECHO LAKE	2000-09-07		Nitrogen, Kjeldahl	1.25	mg/L	8
RTZR	ECHO LAKE	2008-05-13		Nitrogen, Kjeldahl	0.836	mg/L	3 ft
RTZR	ECHO LAKE	2008-05-13		Nitrogen, Kjeldahl	0.836	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Kjeldahl	1.44	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Kjeldahl	1.44	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Kjeldahl	1.7	mg/L	7 ft
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Kjeldahl	1.7	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Nitrogen, Kjeldahl	1.68	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Nitrogen, Kjeldahl	1.68	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Nitrogen, Kjeldahl	1.54	mg/L	8 ft
RTZR	ECHO LAKE	2008-07-08		Nitrogen, Kjeldahl	1.54	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Nitrogen, Kjeldahl	1.61	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Nitrogen, Kjeldahl	1.61	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Nitrogen, Kjeldahl	1.79	mg/L	7 ft
RTZR	ECHO LAKE	2008-08-12		Nitrogen, Kjeldahl	1.79	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Nitrogen, Kjeldahl	2.19	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09		Nitrogen, Kjeldahl	2.19	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Nitrogen, Kjeldahl	2.21	mg/L	8 ft
RTZR	ECHO LAKE	2008-09-09		Nitrogen, Kjeldahl	2.21	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Nitrogen, Kjeldahl	0.993	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Nitrogen, Kjeldahl	0.975	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Nitrogen, Kjeldahl	1.36	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Nitrogen, Kjeldahl	1.24	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Nitrogen, Kjeldahl	0.971	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Nitrogen, Kjeldahl	0.96	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Nitrogen, Kjeldahl	1.17	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Nitrogen, Kjeldahl	1.09	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Nitrogen, Kjeldahl	0.988	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Nitrogen, Kjeldahl	1.04	mg/L	7
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Nitrogen, Nitrate (NO3) as N	0.081	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Nitrogen, Nitrate (NO3) as N	0.053	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Nitrate (NO3) as N	0.064	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Nitrate (NO3) as N	0.079	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Nitrogen, Nitrate (NO3) as N	0.083	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Nitrate (NO3) as N	0.08	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Nitrogen, Nitrate (NO3) as N	0.11	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Nitrogen, Nitrate (NO3) as N	0.126	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Nitrogen, Nitrate (NO3) as N	0.063	mg/L	8

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Nitrate (NO3) as N	0.071	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Nitrogen, Nitrate (NO3) as N	0.071	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Nitrogen, Nitrate (NO3) as N	0.057	mg/L	8
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Nitrogen, Nitrate (NO3) as N	0.076	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Nitrogen, Nitrate (NO3) as N	0.144	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Nitrogen, Nitrate (NO3) as N	0.085	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Nitrogen, Nitrate (NO3) as N	0.084	mg/L	8
RTZR	ECHO LAKE	1995-05-09		Orthophosphate as P, Dissolved	0.016	mg/L	3 ft
RTZR	ECHO LAKE	1995-05-09		Orthophosphate as P, Dissolved	0.02	mg/L	7 ft
RTZR	ECHO LAKE	1995-06-05		Orthophosphate as P, Dissolved	0.026	mg/L	9 ft
RTZR	ECHO LAKE	1995-07-10		Orthophosphate as P, Dissolved	0.018	mg/L	3 ft
RTZR	ECHO LAKE	1995-07-10		Orthophosphate as P, Dissolved	0.018	mg/L	9 ft
RTZR	ECHO LAKE	1995-08-08		Orthophosphate as P, Dissolved	0.017	mg/L	2 ft
RTZR	ECHO LAKE	1995-08-08		Orthophosphate as P, Dissolved	0.02	mg/L	4 ft
RTZR	ECHO LAKE	1995-09-05		Orthophosphate as P, Dissolved	0.018	mg/L	3 ft
RTZR	ECHO LAKE	1995-09-05		Orthophosphate as P, Dissolved	0.029	mg/L	8 ft
RTZR	ECHO LAKE	2000-06-08		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTZR	ECHO LAKE	2000-06-08		Orthophosphate as P, Dissolved	0.022	mg/L	8 ft
RTZR	ECHO LAKE	2000-07-06		Orthophosphate as P, Dissolved	0.017	mg/L	3 ft
RTZR	ECHO LAKE	2000-07-06		Orthophosphate as P, Dissolved	0.063	mg/L	8 ft
RTZR	ECHO LAKE	2000-08-10		Orthophosphate as P, Dissolved	0.011	mg/L	3 ft
RTZR	ECHO LAKE	2000-08-10		Orthophosphate as P, Dissolved	0.104	mg/L	8 ft
RTZR	ECHO LAKE	2000-09-07		Orthophosphate as P, Dissolved	0.025	mg/L	3 ft
RTZR	ECHO LAKE	2000-09-07		Orthophosphate as P, Dissolved	0.034	mg/L	8 ft
RTZR	ECHO LAKE	1995-05-09		рН	8.2	SU	3
RTZR	ECHO LAKE	1995-05-09		рН	8.1	SU	7
RTZR	ECHO LAKE	1995-06-05		рН	7.89	SU	3
RTZR	ECHO LAKE	1995-06-05		рН	7.22	SU	9
RTZR	ECHO LAKE	1995-07-10		рН	8.31	SU	3
RTZR	ECHO LAKE	1995-07-10		рН	7.31	SU	9
RTZR	ECHO LAKE	1995-08-08		рН	8.26	SU	2
RTZR	ECHO LAKE	1995-08-08		рН	7.78	SU	4
RTZR	ECHO LAKE	1995-09-05		рН	8.41	SU	3
RTZR	ECHO LAKE	1995-09-05		рН	7.39	SU	8
RTZR	ECHO LAKE	2000-05-04		рН	8.67	SU	3
RTZR	ECHO LAKE	2000-05-04		рН	7.48	SU	8.5
RTZR	ECHO LAKE	2000-06-08		рН	8.11	SU	3
RTZR	ECHO LAKE	2000-06-08		рН	7.34	SU	8
RTZR	ECHO LAKE	2000-07-06		рН	8.49	SU	3
RTZR	ECHO LAKE	2000-07-06		рН	7.32	SU	8
RTZR	ECHO LAKE	2000-08-10		рН	8.7	SU	3
RTZR	ECHO LAKE	2000-08-10		рН	7.8	SU	8
RTZR	ECHO LAKE	2000-09-07		рН	8.16	SU	3
RTZR	ECHO LAKE	2000-09-07		рН	8.08	SU	8
RTZR	ECHO LAKE	2008-05-13		рН	8.02	SU	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2008-06-10		рН	7.64	SU	3
RTZR	ECHO LAKE	2008-06-10		рН	7.52	SU	7
RTZR	ECHO LAKE	2008-07-08		рН	8.31	SU	3
RTZR	ECHO LAKE	2008-07-08		рН	7.7	SU	8
RTZR	ECHO LAKE	2008-08-12		рН	8.34	SU	3
RTZR	ECHO LAKE	2008-08-12		рН	8.05	SU	7
RTZR	ECHO LAKE	2008-09-09		рН	8.3	SU	3
RTZR	ECHO LAKE	2008-09-09		рН	8.28	SU	8
RTZR	ECHO LAKE	2015-05-12		рН	7.87	SU	3
RTZR	ECHO LAKE	2015-05-12		рН	7.88	SU	8
RTZR	ECHO LAKE	2015-06-16		рН	8.19	SU	3
RTZR	ECHO LAKE	2015-06-16		рН	8.1	SU	7
RTZR	ECHO LAKE	2015-07-14		рН	8.75	SU	3
RTZR	ECHO LAKE	2015-07-14		рН	8.17	SU	8
RTZR	ECHO LAKE	2015-08-11		рН	8.28	SU	3
RTZR	ECHO LAKE	2015-08-11		рН	8.15	SU	7
RTZR	ECHO LAKE	2015-09-16		рН	8.77	SU	3
RTZR	ECHO LAKE	2015-09-16		рН	8.78	SU	7
RTZR	ECHO LAKE	1995-05-09		Phosphorus	0.06	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Phosphorus	0.051	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Phosphorus	0.041	mg/L	3
RTZR	ECHO LAKE	1995-06-05		Phosphorus	0.14	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Phosphorus	0.14	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Phosphorus	0.173	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Phosphorus	0.127	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Phosphorus	0.159	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Phosphorus	0.146	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Phosphorus	0.171	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Phosphorus	0.046	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Phosphorus	0.035	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Phosphorus	0.071	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Phosphorus	0.099	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Phosphorus	0.132	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Phosphorus	0.218	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Phosphorus	0.085	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Phosphorus	0.218	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Phosphorus	0.062	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Phosphorus	0.062	mg/L	8
RTZR	ECHO LAKE	2008-05-13		Phosphorus	0.065	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Phosphorus	0.102	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Phosphorus	0.114	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Phosphorus	0.112	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Phosphorus	0.114	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Phosphorus	0.178	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Phosphorus	0.211	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Phosphorus	0.167	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2008-09-09		Phosphorus	0.154	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Phosphorus	0.102	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Phosphorus	0.068	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Phosphorus	0.098	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Phosphorus	0.08	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Phosphorus	0.068	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Phosphorus	0.072	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Phosphorus	0.074	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Phosphorus	0.072	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Phosphorus	0.054	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Phosphorus	0.055	mg/L	7
RTZR	ECHO LAKE	1995-05-09		Phosphorus, Soluble Reactive	0.016	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Phosphorus, Soluble Reactive	0.02	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Phosphorus, Soluble Reactive	0.026	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Phosphorus, Soluble Reactive	0.018	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Phosphorus, Soluble Reactive	0.018	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Phosphorus, Soluble Reactive	0.017	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Phosphorus, Soluble Reactive	0.02	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Phosphorus, Soluble Reactive	0.018	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Phosphorus, Soluble Reactive	0.029	mg/L	8
RTZR	ECHO LAKE	2000-06-08		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Phosphorus, Soluble Reactive	0.022	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Phosphorus, Soluble Reactive	0.017	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Phosphorus, Soluble Reactive	0.063	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Phosphorus, Soluble Reactive	0.011	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Phosphorus, Soluble Reactive	0.104	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Phosphorus, Soluble Reactive	0.025	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Phosphorus, Soluble Reactive	0.034	mg/L	8
RTZR	ECHO LAKE	2008-06-10		Phosphorus, Soluble Reactive	0.022	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Phosphorus, Soluble Reactive	0.034	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Phosphorus, Soluble Reactive	0.01	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Phosphorus, Soluble Reactive	0.01	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Phosphorus, Soluble Reactive	0.019	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Phosphorus, Soluble Reactive	0.027	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Phosphorus, Soluble Reactive	0.013	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Phosphorus, Soluble Reactive	0.022	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Phosphorus, Soluble Reactive	0.005	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Phosphorus, Soluble Reactive	0.009	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Phosphorus, Soluble Reactive	0.013	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Phosphorus, Soluble Reactive	0.02	mg/L	7
RTZR	ECHO LAKE	1995-05-09		Secchi	1.25	ft	ft
RTZR	ECHO LAKE	1995-06-05		Secchi	3.42	ft	ft
RTZR	ECHO LAKE	1995-07-10		Secchi	1.33	ft	ft
RTZR	ECHO LAKE	1995-08-08		Secchi	1.75	ft	ft
RTZR	ECHO LAKE	1995-09-05		Secchi	1.25	ft	ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	-----------	------------	------	-------------------------------	--------	-------	-------
RTZR	ECHO LAKE	2000-05-04		Secchi	3.81	ft	ft
RTZR	ECHO LAKE	2000-06-08		Secchi	3.77	ft	ft
RTZR	ECHO LAKE	2000-07-06		Secchi	2.92	ft	ft
RTZR	ECHO LAKE	2000-08-10		Secchi	3.45	ft	ft
RTZR	ECHO LAKE	2000-09-07		Secchi	4.36	ft	ft
RTZR	ECHO LAKE	2008-05-13		Secchi	2.46	ft	3 ft
RTZR	ECHO LAKE	2008-06-10		Secchi	2.76	ft	3 ft
RTZR	ECHO LAKE	2008-07-08		Secchi	2.297	ft	3 ft
RTZR	ECHO LAKE	2008-08-12		Secchi	1.97	ft	3 ft
RTZR	ECHO LAKE	2008-09-09		Secchi	1.05	ft	3 ft
RTZR	ECHO LAKE	2000-05-04		Solids, Total Dissolved (TDS)	622	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Solids, Total Dissolved (TDS)	716	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Solids, Total Dissolved (TDS)	552	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Solids, Total Dissolved (TDS)	570	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Solids, Total Dissolved (TDS)	530	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Solids, Total Dissolved (TDS)	566	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Solids, Total Dissolved (TDS)	466	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Solids, Total Dissolved (TDS)	448	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Solids, Total Dissolved (TDS)	454	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Solids, Total Dissolved (TDS)	452	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Solids, Total Dissolved (TDS)	606	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Solids, Total Suspended (TSS)	22	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Solids, Total Suspended (TSS)	31	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Solids, Total Suspended (TSS)	4.9	mg/L	3
RTZR	ECHO LAKE	1995-06-05		Solids, Total Suspended (TSS)	11	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Solids, Total Suspended (TSS)	34	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Solids, Total Suspended (TSS)	43	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Solids, Total Suspended (TSS)	14	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Solids, Total Suspended (TSS)	22	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Solids, Total Suspended (TSS)	21	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Solids, Total Suspended (TSS)	18	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Solids, Total Suspended (TSS)	6	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Solids, Total Suspended (TSS)	9.8	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Solids, Total Suspended (TSS)	7.9	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Solids, Total Suspended (TSS)	11	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Solids, Total Suspended (TSS)	18	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Solids, Total Suspended (TSS)	17	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Solids, Total Suspended (TSS)	8.4	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Solids, Total Suspended (TSS)	12	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Solids, Total Suspended (TSS)	8	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Solids, Total Suspended (TSS)	12	mg/L	8
RTZR	ECHO LAKE	2008-05-13		Solids, Total Suspended (TSS)	11	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Solids, Total Suspended (TSS)	7.5	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Solids, Total Suspended (TSS)	9.3	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Solids, Total Suspended (TSS)	15	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Solids. Total Suspended (TSS)	16	mg/L	8

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2008-08-12		Solids, Total Suspended (TSS)	13	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Solids, Total Suspended (TSS)	11	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Solids, Total Suspended (TSS)	21	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Solids, Total Suspended (TSS)	26	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Solids, Total Suspended (TSS)	12	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Solids, Total Suspended (TSS)	10	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Solids, Total Suspended (TSS)	13	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Solids, Total Suspended (TSS)	12	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Solids, Total Suspended (TSS)	9.4	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Solids, Total Suspended (TSS)	16	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Solids, Total Suspended (TSS)	11	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Solids, Total Suspended (TSS)	13	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Solids, Total Suspended (TSS)	5.7	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Solids, Total Suspended (TSS)	6.1	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Specific conductance	0.761	mS/cm	3
RTZR	ECHO LAKE	1995-06-05		Specific conductance	761	uS/cm	3 ft
RTZR	ECHO LAKE	1995-06-05		Specific conductance	0.84	mS/cm	9
RTZR	ECHO LAKE	1995-06-05		Specific conductance	840	uS/cm	9 ft
RTZR	ECHO LAKE	1995-07-10		Specific conductance	0.768	mS/cm	3
RTZR	ECHO LAKE	1995-07-10		Specific conductance	768	uS/cm	3 ft
RTZR	ECHO LAKE	1995-07-10		Specific conductance	0.804	mS/cm	9
RTZR	ECHO LAKE	1995-07-10		Specific conductance	804	uS/cm	9 ft
RTZR	ECHO LAKE	1995-08-08		Specific conductance	0.731	mS/cm	2
RTZR	ECHO LAKE	1995-08-08		Specific conductance	731	uS/cm	2 ft
RTZR	ECHO LAKE	1995-08-08		Specific conductance	0.737	mS/cm	4
RTZR	ECHO LAKE	1995-08-08		Specific conductance	737	uS/cm	4 ft
RTZR	ECHO LAKE	1995-09-05		Specific conductance	0.74	mS/cm	3
RTZR	ECHO LAKE	1995-09-05		Specific conductance	740	uS/cm	3 ft
RTZR	ECHO LAKE	1995-09-05		Specific conductance	0.75	mS/cm	8
RTZR	ECHO LAKE	1995-09-05		Specific conductance	750	uS/cm	8 ft
RTZR	ECHO LAKE	2000-05-04		Specific conductance	1.064	mS/cm	3
RTZR	ECHO LAKE	2000-05-04		Specific conductance	1064	uS/cm	3 ft
RTZR	ECHO LAKE	2000-05-04		Specific conductance	1.095	mS/cm	8.5
RTZR	ECHO LAKE	2000-05-04		Specific conductance	1095	uS/cm	8.5 ft
RTZR	ECHO LAKE	2000-06-08		Specific conductance	0.9442	mS/cm	3
RTZR	ECHO LAKE	2000-06-08		Specific conductance	944.2	uS/cm	3 ft
RTZR	ECHO LAKE	2000-06-08		Specific conductance	0.9456	mS/cm	8
RTZR	ECHO LAKE	2000-06-08		Specific conductance	945.6	uS/cm	8 ft
RTZR	ECHO LAKE	2000-07-06		Specific conductance	0.8445	mS/cm	3
RTZR	ECHO LAKE	2000-07-06		Specific conductance	844.5	uS/cm	3 ft
RTZR	ECHO LAKE	2000-07-06		Specific conductance	0.9425	mS/cm	8
RTZR	ECHO LAKE	2000-07-06		Specific conductance	942.5	uS/cm	8 ft
RTZR	ECHO LAKE	2000-08-10		Specific conductance	0.7874	mS/cm	3
RTZR	ECHO LAKE	2000-08-10		Specific conductance	787.4	uS/cm	3 ft
RTZR	ECHO LAKE	2000-08-10		Specific conductance	0.8048	mS/cm	8
RTZR	ECHO LAKE	2000-08-10		Specific conductance	804.8	uS/cm	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-09-07		Specific conductance	0.7959	mS/cm	3
RTZR	ECHO LAKE	2000-09-07		Specific conductance	795.9	uS/cm	3 ft
RTZR	ECHO LAKE	2000-09-07		Specific conductance	0.7977	mS/cm	8
RTZR	ECHO LAKE	2000-09-07		Specific conductance	797.7	uS/cm	8 ft
RTZR	ECHO LAKE	2008-05-13		Specific conductance	1.386	mS/cm	3
RTZR	ECHO LAKE	2008-05-13		Specific conductance	1386	uS/cm	3 ft
RTZR	ECHO LAKE	2008-06-10		Specific conductance	1.317	mS/cm	3
RTZR	ECHO LAKE	2008-06-10		Specific conductance	1317	uS/cm	3 ft
RTZR	ECHO LAKE	2008-06-10		Specific conductance	1.327	mS/cm	7
RTZR	ECHO LAKE	2008-06-10		Specific conductance	1327	uS/cm	7 ft
RTZR	ECHO LAKE	2008-07-08		Specific conductance	1.223	mS/cm	3
RTZR	ECHO LAKE	2008-07-08		Specific conductance	1223	uS/cm	3 ft
RTZR	ECHO LAKE	2008-07-08		Specific conductance	1.238	mS/cm	8
RTZR	ECHO LAKE	2008-07-08		Specific conductance	1238	uS/cm	8 ft
RTZR	ECHO LAKE	2008-08-12		Specific conductance	1.167	mS/cm	3
RTZR	ECHO LAKE	2008-08-12		Specific conductance	1167	uS/cm	3 ft
RTZR	ECHO LAKE	2008-08-12		Specific conductance	1.178	mS/cm	7
RTZR	ECHO LAKE	2008-08-12		Specific conductance	1178	uS/cm	7 ft
RTZR	ECHO LAKE	2008-09-09		Specific conductance	1.049	mS/cm	3
RTZR	ECHO LAKE	2008-09-09		Specific conductance	1049	uS/cm	3 ft
RTZR	ECHO LAKE	2008-09-09		Specific conductance	1.05	mS/cm	8
RTZR	ECHO LAKE	2008-09-09		Specific conductance	1050	uS/cm	8 ft
RTZR	ECHO LAKE	2015-05-12		Specific conductance	1.096	mS/cm	3
RTZR	ECHO LAKE	2015-05-12		Specific conductance	1.096	mS/cm	8
RTZR	ECHO LAKE	2015-06-16		Specific conductance	1.138	mS/cm	3
RTZR	ECHO LAKE	2015-06-16		Specific conductance	1.136	mS/cm	7
RTZR	ECHO LAKE	2015-07-14		Specific conductance	1.038	mS/cm	3
RTZR	ECHO LAKE	2015-07-14		Specific conductance	1.049	mS/cm	8
RTZR	ECHO LAKE	2015-08-11		Specific conductance	1.03	mS/cm	3
RTZR	ECHO LAKE	2015-08-11		Specific conductance	1.03	mS/cm	7
RTZR	ECHO LAKE	2015-09-16		Specific conductance	0.9494	mS/cm	3
RTZR	ECHO LAKE	2015-09-16		Specific conductance	0.9503	mS/cm	7
RTZR	ECHO LAKE	2000-05-04		Temperature, water	19.36	с	0.25 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	19.39	с	1 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	10.63	с	10 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	19.37	с	2 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	19.29	с	3 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	19.19	с	4 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	17.27	с	5 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	14.6	с	6 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	13.33	с	7 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	11.67	с	8 ft
RTZR	ECHO LAKE	2000-05-04		Temperature, water	11.16	с	9 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	21.04	с	0.25 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	21.05	с	1 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	13.79	с	10 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-06-08		Temperature, water	20.99	С	2 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	20.98	С	3 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	20.93	С	4 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	20.84	С	5 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	19.72	С	6 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	17.72	С	7 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	16.19	с	8 ft
RTZR	ECHO LAKE	2000-06-08		Temperature, water	14.5	с	9 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	25.71	с	0.25 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	25.65	с	1 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	17.27	с	10 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	25.44	с	2 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	24.84	с	3 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	24.19	с	4 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	23.33	с	5 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	22.91	с	6 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	22.27	с	7 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	20.55	с	8 ft
RTZR	ECHO LAKE	2000-07-06		Temperature, water	18.51	с	9 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.57	с	0.25 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.72	с	1 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	22.65	с	10 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.47	с	2 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.35	с	3 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.29	с	4 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	26.1	с	5 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	24.83	с	6 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	24.27	с	7 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	23.88	с	8 ft
RTZR	ECHO LAKE	2000-08-10		Temperature, water	23.15	с	9 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.24	с	0.25 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.25	с	1 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	20.72	С	10 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.23	с	2 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.24	с	3 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.14	С	4 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.13	с	5 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.11	с	6 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	21.11	с	7 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	20.99	с	8 ft
RTZR	ECHO LAKE	2000-09-07		Temperature, water	20.78	с	9 ft
RTZR	ECHO LAKE	1995-05-09		Total solids	641	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Total solids	664	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Total solids	539	mg/L	3
RTZR	ECHO LAKE	1995-06-05		Total solids	613	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Total solids	639	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	1995-07-10		Total solids	628	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Total solids	573	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Total solids	602	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Total solids	532	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Total solids	527	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Total solids	697	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Total solids	746	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Total solids	616	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Total solids	623	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Total solids	553	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Total solids	575	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Total solids	482	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Total solids	477	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Total solids	459	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Total solids	474	mg/L	8
RTZR	ECHO LAKE	2008-05-13		Total solids	776	mg/L	3 ft
RTZR	ECHO LAKE	2008-05-13		Total solids	776	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Total solids	766	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10		Total solids	766	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Total solids	739	mg/L	7 ft
RTZR	ECHO LAKE	2008-06-10		Total solids	739	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Total solids	744	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08		Total solids	744	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Total solids	759	mg/L	8 ft
RTZR	ECHO LAKE	2008-07-08		Total solids	759	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Total solids	669	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12		Total solids	669	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Total solids	681	mg/L	7 ft
RTZR	ECHO LAKE	2008-08-12		Total solids	681	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Total solids	606	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09		Total solids	606	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Total solids	622	mg/L	8 ft
RTZR	ECHO LAKE	2008-09-09		Total solids	622	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Total solids	685	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Total solids	668	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Total solids	687	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Total solids	688	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Total solids	653	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Total solids	657	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Total solids	666	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Total solids	649	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Total solids	591	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Total solids	602	mg/L	7
RTZR	ECHO LAKE	1995-05-09		Total volatile solids	163	mg/L	3
RTZR	ECHO LAKE	1995-05-09		Total volatile solids	173	mg/L	7
RTZR	ECHO LAKE	1995-06-05		Total volatile solids	163	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	1995-06-05		Total volatile solids	197	mg/L	9
RTZR	ECHO LAKE	1995-07-10		Total volatile solids	200	mg/L	3
RTZR	ECHO LAKE	1995-07-10		Total volatile solids	188	mg/L	9
RTZR	ECHO LAKE	1995-08-08		Total volatile solids	179	mg/L	2
RTZR	ECHO LAKE	1995-08-08		Total volatile solids	209	mg/L	4
RTZR	ECHO LAKE	1995-09-05		Total volatile solids	125	mg/L	3
RTZR	ECHO LAKE	1995-09-05		Total volatile solids	131	mg/L	8
RTZR	ECHO LAKE	2000-05-04		Total volatile solids	181	mg/L	3
RTZR	ECHO LAKE	2000-05-04		Total volatile solids	207	mg/L	8.5
RTZR	ECHO LAKE	2000-06-08		Total volatile solids	180	mg/L	3
RTZR	ECHO LAKE	2000-06-08		Total volatile solids	189	mg/L	8
RTZR	ECHO LAKE	2000-07-06		Total volatile solids	178	mg/L	3
RTZR	ECHO LAKE	2000-07-06		Total volatile solids	151	mg/L	8
RTZR	ECHO LAKE	2000-08-10		Total volatile solids	163	mg/L	3
RTZR	ECHO LAKE	2000-08-10		Total volatile solids	120	mg/L	8
RTZR	ECHO LAKE	2000-09-07		Total volatile solids	105	mg/L	3
RTZR	ECHO LAKE	2000-09-07		Total volatile solids	111	mg/L	8
RTZR	ECHO LAKE	2008-05-13		Total volatile solids	126	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Total volatile solids	129	mg/L	3
RTZR	ECHO LAKE	2008-06-10		Total volatile solids	109	mg/L	7
RTZR	ECHO LAKE	2008-07-08		Total volatile solids	136	mg/L	3
RTZR	ECHO LAKE	2008-07-08		Total volatile solids	151	mg/L	8
RTZR	ECHO LAKE	2008-08-12		Total volatile solids	132	mg/L	3
RTZR	ECHO LAKE	2008-08-12		Total volatile solids	136	mg/L	7
RTZR	ECHO LAKE	2008-09-09		Total volatile solids	119	mg/L	3
RTZR	ECHO LAKE	2008-09-09		Total volatile solids	129	mg/L	8
RTZR	ECHO LAKE	2015-05-12		Total volatile solids	114	mg/L	3
RTZR	ECHO LAKE	2015-05-12		Total volatile solids	101	mg/L	8
RTZR	ECHO LAKE	2015-06-16		Total volatile solids	131	mg/L	3
RTZR	ECHO LAKE	2015-06-16		Total volatile solids	140	mg/L	7
RTZR	ECHO LAKE	2015-07-14		Total volatile solids	137	mg/L	3
RTZR	ECHO LAKE	2015-07-14		Total volatile solids	134	mg/L	8
RTZR	ECHO LAKE	2015-08-11		Total volatile solids	142	mg/L	3
RTZR	ECHO LAKE	2015-08-11		Total volatile solids	141	mg/L	7
RTZR	ECHO LAKE	2015-09-16		Total volatile solids	131	mg/L	3
RTZR	ECHO LAKE	2015-09-16		Total volatile solids	138	mg/L	7
RTZR	ECHO LAKE	1995-05-09		TRP	0		3
RTZR	ECHO LAKE	1995-05-09		TRP	0		7
RTZR	ECHO LAKE	1995-06-05		TRP	0		3
RTZR	ECHO LAKE	1995-06-05		TRP	0		9
RTZR	ECHO LAKE	1995-07-10		TRP	0		3
RTZR	ECHO LAKE	1995-07-10		TRP	0		9
RTZR	ECHO LAKE	1995-08-08		TRP	0		2
RTZR	ECHO LAKE	1995-08-08		TRP	0		4
RTZR	ECHO LAKE	1995-09-05		TRP	0		3
RTZR	ECHO LAKE	1995-09-05		TRP	0		8

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-05-04		TRP	0		3
RTZR	ECHO LAKE	2000-05-04		TRP	0		8.5
RTZR	ECHO LAKE	2000-06-08		TRP	0		3
RTZR	ECHO LAKE	2000-06-08		TRP	0		8
RTZR	ECHO LAKE	2000-07-06		TRP	0		3
RTZR	ECHO LAKE	2000-07-06		TRP	0		8
RTZR	ECHO LAKE	2000-08-10		TRP	0		3
RTZR	ECHO LAKE	2000-08-10		TRP	0		8
RTZR	ECHO LAKE	2000-09-07		TRP	0		3
RTZR	ECHO LAKE	2000-09-07		TRP	0		8
RTZR	ECHO LAKE	2008-05-13		TRP	0		3
RTZR	ECHO LAKE	2008-06-10		TRP	0		3
RTZR	ECHO LAKE	2008-06-10		TRP	0		7
RTZR	ECHO LAKE	2008-07-08		TRP	0		3
RTZR	ECHO LAKE	2008-07-08		TRP	0		8
RTZR	ECHO LAKE	2008-08-12		TRP	0		3
RTZR	ECHO LAKE	2008-08-12		TRP	0		7
RTZR	ECHO LAKE	2008-09-09		TRP	0		3
RTZR	ECHO LAKE	2008-09-09		TRP	0		8
RTZR	ECHO LAKE	2015-05-12		TRP	0		3
RTZR	ECHO LAKE	2015-05-12		TRP	0		8
RTZR	ECHO LAKE	2015-06-16		TRP	0		3
RTZR	ECHO LAKE	2015-06-16		TRP	0		7
RTZR	ECHO LAKE	2015-07-14		TRP	0		3
RTZR	ECHO LAKE	2015-07-14		TRP	0		8
RTZR	ECHO LAKE	2015-08-11		TRP	0		3
RTZR	ECHO LAKE	2015-08-11		TRP	0		7
RTZR	ECHO LAKE	2000-05-04			6.020987654		10 ft
RTZR	ECHO LAKE	2000-05-04			2.479012346		3 ft
RTZR	ECHO LAKE	2000-05-04			2.479012346		4 ft
RTZR	ECHO LAKE	2000-05-04			43.62716049		5 ft
RTZR	ECHO LAKE	2000-05-04			51.60246914		6 ft
RTZR	ECHO LAKE	2000-05-04			22.19506173		7 ft
RTZR	ECHO LAKE	2000-05-04			25.15802469		8 ft
RTZR	ECHO LAKE	2000-05-04			6.672839506		9 ft
RTZR	ECHO LAKE	2000-06-08			13.85061728		10 ft
RTZR	ECHO LAKE	2000-06-08			2.608641975		2 ft
RTZR	ECHO LAKE	2000-06-08			2.608641975		5 ft
RTZR	ECHO LAKE	2000-06-08			28.30617284		6 ft
RTZR	ECHO LAKE	2000-06-08			47.45185185		7 ft
RTZR	ECHO LAKE	2000-06-08			34.12469136		8 ft
RTZR	ECHO LAKE	2000-06-08			30.31358025		9 ft
RTZR	ECHO LAKE	2000-07-06			3.22345679		1 ft
RTZR	ECHO LAKE	2000-07-06			29.41358025		10 ft
RTZR	ECHO LAKE	2000-07-06			6.44691358		2 ft
RTZR	ECHO LAKE	2000-07-06			19.10864198		3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZR	ECHO LAKE	2000-07-06			21.75185185		4 ft
RTZR	ECHO LAKE	2000-07-06			24.0037037		5 ft
RTZR	ECHO LAKE	2000-07-06			11.81851852		6 ft
RTZR	ECHO LAKE	2000-07-06			20.04074074		7 ft
RTZR	ECHO LAKE	2000-07-06			46.13950617		8 ft
RTZR	ECHO LAKE	2000-07-06			49.56790123		9 ft
RTZR	ECHO LAKE	2000-08-10			-6.683950617		1 ft
RTZR	ECHO LAKE	2000-08-10			14.43703704		10 ft
RTZR	ECHO LAKE	2000-08-10			10.02592593		2 ft
RTZR	ECHO LAKE	2000-08-10			3.341975309		3 ft
RTZR	ECHO LAKE	2000-08-10			3.341975309		4 ft
RTZR	ECHO LAKE	2000-08-10			3.341975309		5 ft
RTZR	ECHO LAKE	2000-08-10			41.79135802		6 ft
RTZR	ECHO LAKE	2000-08-10			18.6444444		7 ft
RTZR	ECHO LAKE	2000-08-10			12.18518519		8 ft
RTZR	ECHO LAKE	2000-08-10			20.8962963		9 ft
RTZR	ECHO LAKE	2008-05-13			177	mg/L	3 ft
RTZR	ECHO LAKE	2008-05-13			126	mg/L	3 ft
RTZR	ECHO LAKE	2008-05-13			0.005	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10			183	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10			129	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10			0.022	mg/L	3 ft
RTZR	ECHO LAKE	2008-06-10			187	mg/L	7 ft
RTZR	ECHO LAKE	2008-06-10			109	mg/L	7 ft
RTZR	ECHO LAKE	2008-06-10			0.034	mg/L	7 ft
RTZR	ECHO LAKE	2008-07-08			178	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08			136	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08			0.01	mg/L	3 ft
RTZR	ECHO LAKE	2008-07-08			181	mg/L	8 ft
RTZR	ECHO LAKE	2008-07-08			151	mg/L	8 ft
RTZR	ECHO LAKE	2008-07-08			0.1	mg/L	8 ft
RTZR	ECHO LAKE	2008-08-12			183	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12			132	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12			0.019	mg/L	3 ft
RTZR	ECHO LAKE	2008-08-12			187	mg/L	7 ft
RTZR	ECHO LAKE	2008-08-12			136	mg/L	7 ft
RTZR	ECHO LAKE	2008-08-12			0.027	mg/L	7 ft
RTZR	ECHO LAKE	2008-09-09			150	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09			119	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09			0.013	mg/L	3 ft
RTZR	ECHO LAKE	2008-09-09			151	mg/L	8 ft
RTZR	ECHO LAKE	2008-09-09			129	mg/L	8 ft
RTZR	ECHO LAKE	2008-09-09			0.022	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-05-23		Alkalinity	175	mg/l CaCO3	11
RTZT	BARRINGTON LAKE	2001-05-23		Alkalinity	174	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2001-06-27		Alkalinity	169	mg/l CaCO3	10

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-06-27		Alkalinity	164	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2001-08-01		Alkalinity	142	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2001-08-01		Alkalinity	167	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2001-08-29		Alkalinity	154	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2001-08-29		Alkalinity	156	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2001-09-25		Alkalinity	151	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2001-09-25		Alkalinity	152	mg/l CaCO3	8
RTZT	BARRINGTON LAKE	2007-05-09		Alkalinity	165	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2007-05-09		Alkalinity	161	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2007-06-13		Alkalinity	160	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2007-06-13		Alkalinity	159	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2007-07-11		Alkalinity	163	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2007-07-11		Alkalinity	163	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2007-08-08		Alkalinity	141	mg/I CaCO3	11
RTZT	BARRINGTON LAKE	2007-08-08		Alkalinity	112	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2007-09-12		Alkalinity	138	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2007-09-12		Alkalinity	138	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2013-05-21		Alkalinity	155	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2013-05-21		Alkalinity	155	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2013-06-18		Alkalinity	156	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2013-06-18		Alkalinity	156	mg/l CaCO3	8
RTZT	BARRINGTON LAKE	2013-07-16		Alkalinity	145	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2013-07-16		Alkalinity	152	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2013-08-20		Alkalinity	136	mg/l CaCO3	3
RTZT	BARRINGTON LAKE	2013-08-20		Alkalinity	145	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2013-09-17		Alkalinity	134	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2013-09-17		Alkalinity	133	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-04-16		Alkalinity	163	mg/I CaCO3	10
RTZT	BARRINGTON LAKE	2015-04-16		Alkalinity	163	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-04-28		Alkalinity	135	mg/I CaCO3	12
RTZT	BARRINGTON LAKE	2015-04-28		Alkalinity	134	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-05-13		Alkalinity	143	mg/I CaCO3	10
RTZT	BARRINGTON LAKE	2015-05-13		Alkalinity	144	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-06-17		Alkalinity	152	mg/I CaCO3	10
RTZT	BARRINGTON LAKE	2015-06-17		Alkalinity	152	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-07-15		Alkalinity	154	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2015-07-15		Alkalinity	151	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-08-12		Alkalinity	160	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	2015-08-12		Alkalinity	159	mg/l CaCO3	9
RTZT	BARRINGTON LAKE	2015-09-17		Alkalinity	153	mg/l CaCO3	10
RTZT	BARRINGTON LAKE	2015-09-17		Alkalinity	153	mg/I CaCO3	3
RTZT	BARRINGTON LAKE	1989-06-21		Ammonia as N	0.16	mg/L	11.5
RTZT	BARRINGTON LAKE	1989-07-26		Ammonia as N	0.85	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Ammonia as N	0.5	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Ammonia as N	0.49	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Ammonia as N	1.1	mg/L	12

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	1989-09-20		Ammonia as N	0.19	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Ammonia as N	0.24	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Ammonia as N	0.11	mg/L	8
RTZT	BARRINGTON LAKE	2001-08-01		Ammonia as N	0.393	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Ammonia as N	0.382	mg/L	9
RTZT	BARRINGTON LAKE	2007-08-08		Ammonia as N	0.92	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Ammonia as N	0.257	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Ammonia as N	0.287	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Ammonia as N	0.295	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Ammonia as N	0.394	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Ammonia as N	0.309	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Ammonia as N	0.318	mg/L	3
RTZT	BARRINGTON LAKE	2007-05-09		Chloride	128	mg/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Chloride	127	mg/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Chloride	131	mg/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Chloride	131	mg/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Chloride	133	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Chloride	133	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Chloride	132	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Chloride	124	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Chloride	113	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Chloride	114	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Chloride	122	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Chloride	121	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Chloride	121	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Chloride	120	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Chloride	106	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Chloride	103	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Chloride	109	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Chloride	109	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Chloride	109	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Chloride	108	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Chloride	122	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Chloride	124	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Chloride	123	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Chloride	127	mg/L	3
RTZT	BARRINGTON LAKE	2015-05-13		Chloride	121	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Chloride	122	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Chloride	121	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Chloride	120	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Chloride	111	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Chloride	116	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Chloride	117	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Chloride	117	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Chloride	126	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Chloride	125	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	1989-04-19		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	1989-04-19		Chlorophyll a	2	ug/L	2
RTZT	BARRINGTON LAKE	1989-04-19		Chlorophyll a	1.87	ug/L	6
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a	2.94	ug/L	11
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a	0.534	ug/L	3
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a	1.07	ug/L	7
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a	11.1	ug/L	11.5
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a	2.94	ug/L	3
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a	2.54	ug/L	7
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a	5.47	ug/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a	6.14	ug/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a	13.4	ug/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a	11.6	ug/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a	18.2	ug/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a	14.5	ug/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a	21.2	ug/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a	17.9	ug/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a	16.4	ug/L	8
RTZT	BARRINGTON LAKE	2001-05-23		Chlorophyll a	0	ug/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Chlorophyll a	0	ug/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Chlorophyll a	0	ug/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Chlorophyll a	0	ug/L	8
RTZT	BARRINGTON LAKE	2007-05-09		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Chlorophyll a	0	ug/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Chlorophyll a	0	ug/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Chlorophyll a	0	ug/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Chlorophyll a	0	ug/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Chlorophyll a	0	ug/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Chlorophyll a	0	ug/L	9

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2013-09-17		Chlorophyll a	0	ug/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Chlorophyll a	0	ug/L	3
RTZT	BARRINGTON LAKE	1989-04-19		Chlorophyll a, uncorrected for pheophytin	2	ug/L	2 ft
RTZT	BARRINGTON LAKE	1989-04-19		Chlorophyll a, uncorrected for pheophytin	1.87	ug/L	6 ft
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a, uncorrected for pheophytin	2.94	ug/L	11 ft
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a, uncorrected for pheophytin	0.534	ug/L	3 ft
RTZT	BARRINGTON LAKE	1989-05-17		Chlorophyll a, uncorrected for pheophytin	1.07	ug/L	7 ft
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a, uncorrected for pheophytin	11.1	ug/L	11.5 ft
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a, uncorrected for pheophytin	2.94	ug/L	3 ft
RTZT	BARRINGTON LAKE	1989-06-21		Chlorophyll a, uncorrected for pheophytin	2.54	ug/L	7 ft
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a, uncorrected for pheophytin	5.47	ug/L	11 ft
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a, uncorrected for pheophytin	6.14	ug/L	3 ft
RTZT	BARRINGTON LAKE	1989-07-26		Chlorophyll a, uncorrected for pheophytin	13.4	ug/L	6 ft
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a, uncorrected for pheophytin	11.6	ug/L	12 ft
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a, uncorrected for pheophytin	18.2	ug/L	3 ft
RTZT	BARRINGTON LAKE	1989-08-23		Chlorophyll a, uncorrected for pheophytin	14.5	ug/L	7 ft
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a, uncorrected for pheophytin	21.2	ug/L	13 ft
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a, uncorrected for pheophytin	17.9	ug/L	3 ft
RTZT	BARRINGTON LAKE	1989-09-20		Chlorophyll a, uncorrected for pheophytin	16.4	ug/L	8 ft
RTZT	BARRINGTON LAKE	1989-04-19		Depth, Secchi Disk Depth	13	ft	2
RTZT	BARRINGTON LAKE	1989-05-17		Depth, Secchi Disk Depth	13	ft	3
RTZT	BARRINGTON LAKE	1989-06-21		Depth, Secchi Disk Depth	8.25	ft	3
RTZT	BARRINGTON LAKE	1989-08-23		Depth, Secchi Disk Depth	3.67	ft	3
RTZT	BARRINGTON LAKE	1989-09-20		Depth, Secchi Disk Depth	3	ft	3
RTZT	BARRINGTON LAKE	2001-06-27		Depth, Secchi Disk Depth	12.67	ft	3
RTZT	BARRINGTON LAKE	2001-08-01		Depth, Secchi Disk Depth	1.72	ft	3
RTZT	BARRINGTON LAKE	2001-08-29		Depth, Secchi Disk Depth	1.74	ft	3
RTZT	BARRINGTON LAKE	2001-09-25		Depth, Secchi Disk Depth	1.51	ft	3
RTZT	BARRINGTON LAKE	2007-05-09		Depth, Secchi Disk Depth	9.48	ft	3
RTZT	BARRINGTON LAKE	2007-06-13		Depth, Secchi Disk Depth	11.81	ft	3
RTZT	BARRINGTON LAKE	2007-07-11		Depth, Secchi Disk Depth	4.43	ft	3
RTZT	BARRINGTON LAKE	2007-08-08		Depth, Secchi Disk Depth	1.64	ft	3
RTZT	BARRINGTON LAKE	2007-09-12		Depth, Secchi Disk Depth	2.62	ft	3
RTZT	BARRINGTON LAKE	2013-05-21		Depth, Secchi Disk Depth	10.67	ft	3
RTZT	BARRINGTON LAKE	2013-07-16		Depth, Secchi Disk Depth	6.95	ft	3
RTZT	BARRINGTON LAKE	2013-08-20		Depth, Secchi Disk Depth	3.425	ft	3
RTZT	BARRINGTON LAKE	2013-09-17		Depth, Secchi Disk Depth	3.45	ft	3
RTZT	BARRINGTON LAKE	2015-04-16		Depth, Secchi Disk Depth	3.62	ft	3
RTZT	BARRINGTON LAKE	2015-04-28		Depth, Secchi Disk Depth	6.66	ft	3
RTZT	BARRINGTON LAKE	2015-05-13		Depth, Secchi Disk Depth	6.72	ft	3
RTZT	BARRINGTON LAKE	2015-06-17		Depth, Secchi Disk Depth	10.6	ft	3
RTZT	BARRINGTON LAKE	2015-07-15	Ì	Depth, Secchi Disk Depth	4.5	ft	3
RTZT	BARRINGTON LAKE	2015-08-12		Depth, Secchi Disk Depth	7.49	ft	3
RTZT	BARRINGTON LAKE	2015-09-17		Depth, Secchi Disk Depth	8.13	ft	3
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.43	mg/L	0.25 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.4	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.43	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.45	mg/L	11 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.35	mg/L	12 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.36	mg/L	2 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.36	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.29	mg/L	4 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.17	mg/L	5 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.27	mg/L	6 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.34	mg/L	7 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.4	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen (DO)	7.42	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.8	mg/L	0.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.74	mg/L	1 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	4.68	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	2.44	mg/L	11 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	0.58	mg/L	12 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.9	mg/L	2 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.65	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.44	mg/L	4 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.47	mg/L	5 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.46	mg/L	6 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	8.61	mg/L	7 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	7.6	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen (DO)	6.43	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	13.77	mg/L	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	13.58	mg/L	1 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	0.06	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	0.05	mg/L	11 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	13.47	mg/L	2 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	12.94	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	10.39	mg/L	4 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	3.69	mg/L	5 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	3.6	mg/L	6 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	0.4	mg/L	7 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	0.09	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen (DO)	0.05	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	8.83	mg/L	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	8.46	mg/L	1 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	0.05	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	0.05	mg/L	11 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	0.03	mg/L	12 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	8.47	mg/L	2 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	8.41	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	6.54	mg/L	4 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	6.4	mg/L	5 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	5.8	mg/L	6 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	2.98	mg/L	7 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	0.28	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen (DO)	0.07	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	7.09	mg/L	0.25 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.91	mg/L	1 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.52	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.44	mg/L	11 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.88	mg/L	2 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.75	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.63	mg/L	4 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.7	mg/L	5 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.64	mg/L	6 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.6	mg/L	7 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.62	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen (DO)	6.46	mg/L	9 ft
RTZT	BARRINGTON LAKE	2013-05-21		Dissolved oxygen (DO)	9.14	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Dissolved oxygen (DO)	7.19	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Dissolved oxygen (DO)	8.68	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Dissolved oxygen (DO)	8.55	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Dissolved oxygen (DO)	9.54	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Dissolved oxygen (DO)	2.11	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Dissolved oxygen (DO)	11.58	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Dissolved oxygen (DO)	0.37	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Dissolved oxygen (DO)	4.57	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Dissolved oxygen (DO)	4.86	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Dissolved oxygen (DO)	9.48	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Dissolved oxygen (DO)	12.13	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Dissolved oxygen (DO)	10.16	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Dissolved oxygen (DO)	11.2	mg/L	3
RTZT	BARRINGTON LAKE	2015-05-13		Dissolved oxygen (DO)	8.17	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Dissolved oxygen (DO)	8.27	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Dissolved oxygen (DO)	6.06	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Dissolved oxygen (DO)	7.25	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Dissolved oxygen (DO)	4.99	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Dissolved oxygen (DO)	7.51	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Dissolved oxygen (DO)	5.35	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Dissolved oxygen (DO)	5.22	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Dissolved oxygen (DO)	8.51	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Dissolved oxygen (DO)	8.56	mg/L	3
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.8	%	0.25 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.6	%	1 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.9	%	10 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	84	%	11 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83	%	12 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.2	%	2 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.1	%	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	82.2	%	4 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	81.1	%	5 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	82.1	%	6 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	82.9	%	7 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.6	%	8 ft
RTZT	BARRINGTON LAKE	2001-05-23		Dissolved oxygen saturation	83.7	%	9 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	110	%	0.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	109.3	%	1 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	56.8	%	10 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	29.4	%	11 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	6.9	%	12 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	111.1	%	2 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	108.1	%	3 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	105.1	%	4 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	105.5	%	5 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	105.3	%	6 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	106.8	%	7 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	93.7	%	8 ft
RTZT	BARRINGTON LAKE	2001-06-27		Dissolved oxygen saturation	78.8	%	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	182.5	%	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	180	%	1 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	0.7	%	10 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	0.6	%	11 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	178.4	%	2 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	171.3	%	3 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	136.9	%	4 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	47.6	%	5 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	46	%	6 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	5	%	7 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	1.1	%	8 ft
RTZT	BARRINGTON LAKE	2001-08-01		Dissolved oxygen saturation	0.7	%	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	109.1	%	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	104.2	%	1 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	0.6	%	10 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	0.6	%	11 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	0.4	%	12 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	104.1	%	2 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	103.3	%	3 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	80.3	%	4 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	78.5	%	5 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	71.1	%	6 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	36.4	%	7 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	3.5	%	8 ft
RTZT	BARRINGTON LAKE	2001-08-29		Dissolved oxygen saturation	0.8	%	9 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	74.3	%	0.25 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	72.7	%	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	68.5	%	10 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	67.8	%	11 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	72.4	%	2 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	71	%	3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	69.8	%	4 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	70.5	%	5 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	69.9	%	6 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	69.5	%	7 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	69.7	%	8 ft
RTZT	BARRINGTON LAKE	2001-09-25		Dissolved oxygen saturation	68	%	9 ft
RTZT	BARRINGTON LAKE	2002-05-07		E. coli	0	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-05-07		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-05-21		E. coli	0	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-06-10		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-06-10		E. coli	8.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-06-24		E. coli	30.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-06-24		E. coli	29.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-07-08		E. coli	17.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-07-08		E. coli	15.8	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-07-22		E. coli	18.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-07-22		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-05		E. coli	2419.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-06		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-06		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-19		E. coli	1413.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-19		E. coli	2419.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-20		E. coli	33.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2002-08-20		E. coli	24.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-05-06		E. coli	313	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-05-06		E. coli	222.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-05-13		E. coli	9.7	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-05-13		E. coli	7.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-06-09		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-06-09		E. coli	6.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-06-23		E. coli	93.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-06-23		E. coli	161.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-07-07		E. coli	28.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-07-07		E. coli	22.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-07-21		E. coli	3.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-07-21		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-08-04		E. coli	47.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-08-04		E. coli	42.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-08-18		E. coli	7.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2003-08-18		E. coli	12.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-05-24		E. coli	38	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-05-24		E. coli	40	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2004-05-27		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-05-27		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-06-07		E. coli	10.7	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-06-07		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-06-21		E. coli	3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-06-21		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-06		E. coli	579.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-06		E. coli	816.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-07		E. coli	7.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-07		E. coli	8.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-19		E. coli	10.9	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-07-19		E. coli	8.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-08-02		E. coli	7.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-08-16		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2004-08-16		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-05-18		E. coli	6.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-05-18		E. coli	7.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-05-25		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-05-25		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-06-06		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-06-06		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-06-20		E. coli	21.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-06-20		E. coli	30.9	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-11		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-11		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-25		E. coli	166.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-25		E. coli	770.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-26		E. coli	23.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-07-26		E. coli	23.8	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-08-08		E. coli	17.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-08-08		E. coli	21.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-08-22		E. coli	10.8	Col/100ml	ft
RTZT	BARRINGTON LAKE	2005-08-22		E. coli	13.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-05-23		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-05-23		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-05-24		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-06-05		E. coli	2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-06-05		E. coli	9.8	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-06-19		E. coli	1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-07-10		E. coli	12	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-07-10		E. coli	8.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-07-24		E. coli	14.8	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-07-24		E. coli	20.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-08-07		E. coli	104.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-08-07		E. coli	60.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2006-08-21		E. coli	1	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2007-05-22		E. coli	3.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-05-22		E. coli	4.1	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-06-11		E. coli	17.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-06-11		E. coli	54.7	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-06-25		E. coli	13.5	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-06-25		E. coli	22.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-07-09		E. coli	5.2	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-07-09		E. coli	6.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-07-23		E. coli	50.4	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-07-23		E. coli	6.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-08-13		E. coli	11	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-08-13		E. coli	20.3	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-08-27		E. coli	15.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2007-08-27		E. coli	90.6	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-09		Fecal coliform	750	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-09		Fecal coliform	890	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-11		Fecal coliform	150	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-11		Fecal coliform	240	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-30		Fecal coliform	90	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-30		Fecal coliform	140	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-06-12		Fecal coliform	180	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-06-12		Fecal coliform	280	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-06-26		Fecal coliform	150	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-06-26		Fecal coliform	170	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-07-17		Fecal coliform	50	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-07-17		Fecal coliform	60	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-07-31		Fecal coliform	60	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-07-31		Fecal coliform	10	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-08-14		Fecal coliform	10	Col/100ml	ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	3.13341821	Coef	0.24 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.196052269	Coef	1.3 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.081682687	Coef	10.31 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.346150204	Coef	2.29 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.236433389	Coef	3.31 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.109776784	Coef	4.28 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.1894564	Coef	5.29 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.25680216	Coef	6.28 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.248905417	Coef	7.32 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	0.213479463	Coef	8.26 ft
RTZT	BARRINGTON LAKE	2001-05-23		Light Extinction	-0.013793322	Coef	9.26 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	3.851713121	Coef	0.24 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.244299421	Coef	1.12 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.243842279	Coef	10.18 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.249404673	Coef	2.23 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.222502736	Coef	3.06 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.18536234	Coef	4.23 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.184893304	Coef	5.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.156524003	Coef	6.26 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.147687537	Coef	7.31 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.200060337	Coef	8.17 ft
RTZT	BARRINGTON LAKE	2001-06-27		Light Extinction	0.214631124	Coef	9.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	4.182392069	Coef	0.26 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	1.174593299	Coef	1.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	1.010778894	Coef	2.29 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	1.057790294	Coef	3.29 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	0.954628549	Coef	4.15 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	0.911352173	Coef	5.26 ft
RTZT	BARRINGTON LAKE	2001-08-01		Light Extinction	1.444056626	Coef	6.22 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	4.993610945	Coef	0.26 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	1.091166828	Coef	1.27 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	1.01919205	Coef	2.26 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	1.039263507	Coef	3.29 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	1.039356715	Coef	4.27 ft
RTZT	BARRINGTON LAKE	2001-08-29		Light Extinction	2.490242095	Coef	5.3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Light Extinction	4.69967775	Coef	0.29 ft
RTZT	BARRINGTON LAKE	2001-09-25		Light Extinction	1.557158834	Coef	1.28 ft
RTZT	BARRINGTON LAKE	2001-09-25		Light Extinction	1.29416899	Coef	2.18 ft
RTZT	BARRINGTON LAKE	2001-09-25		Light Extinction	1.36562078	Coef	3.34 ft
RTZT	BARRINGTON LAKE	1989-04-19		Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	6 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrite (NO2) + Nitrate (NO3) as N	0.051	mg/L	11 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrite (NO2) + Nitrate (NO3) as N	0.072	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrite (NO2) + Nitrate (NO3) as N	0.066	mg/L	6 ft
RTZT	BARRINGTON LAKE	1989-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.058	mg/L	12 ft
RTZT	BARRINGTON LAKE	1989-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.053	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-08-23		Nitrite (NO2) + Nitrate (NO3) as N	0.053	mg/L	7 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrite (NO2) + Nitrate (NO3) as N	0.059	mg/L	13 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrite (NO2) + Nitrate (NO3) as N	0.063	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrite (NO2) + Nitrate (NO3) as N	0.059	mg/L	8 ft
RTZT	BARRINGTON LAKE	1989-06-21		Nitrogen, ammonia as N	0.16	mg/L	11.5 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, ammonia as N	0.85	mg/L	11 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, ammonia as N	0.5	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, ammonia as N	0.49	mg/L	6 ft
RTZT	BARRINGTON LAKE	1989-08-23		Nitrogen, ammonia as N	1.1	mg/L	12 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, ammonia as N	0.19	mg/L	13 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, ammonia as N	0.24	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, ammonia as N	0.11	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-08-01		Nitrogen, ammonia as N	0.393	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Nitrogen, ammonia as N	0.382	mg/L	9 ft
RTZT	BARRINGTON LAKE	1989-04-19		Nitrogen, Kjeldahl	1.2	mg/L	2 ft
RTZT	BARRINGTON LAKE	1989-04-19		Nitrogen, Kjeldahl	1.2	mg/L	2
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, Kjeldahl	1.6	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, Kjeldahl	1.6	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-06-27		Nitrogen, Kjeldahl	0.77	mg/L	10 ft
RTZT	BARRINGTON LAKE	2001-06-27		Nitrogen, Kjeldahl	0.77	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Nitrogen, Kjeldahl	0.73	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-06-27		Nitrogen, Kjeldahl	0.73	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Nitrogen, Kjeldahl	2.31	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-08-01		Nitrogen, Kjeldahl	2.31	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Nitrogen, Kjeldahl	1.62	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		Nitrogen, Kjeldahl	1.62	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Nitrogen, Kjeldahl	2.16	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-08-29		Nitrogen, Kjeldahl	2.16	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Nitrogen, Kjeldahl	2.1	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Nitrogen, Kjeldahl	2.1	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Nitrogen, Kjeldahl	2.07	mg/L	3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Nitrogen, Kjeldahl	2.07	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Nitrogen, Kjeldahl	2.04	mg/L	8 ft
RTZT	BARRINGTON LAKE	2001-09-25		Nitrogen, Kjeldahl	2.04	mg/L	8
RTZT	BARRINGTON LAKE	2007-05-09		Nitrogen, Kjeldahl	0.713	mg/L	10 ft
RTZT	BARRINGTON LAKE	2007-05-09		Nitrogen, Kjeldahl	0.713	mg/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Nitrogen, Kjeldahl	0.687	mg/L	3 ft
RTZT	BARRINGTON LAKE	2007-05-09		Nitrogen, Kjeldahl	0.687	mg/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Nitrogen, Kjeldahl	0.807	mg/L	10 ft
RTZT	BARRINGTON LAKE	2007-06-13		Nitrogen, Kjeldahl	0.807	mg/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Nitrogen, Kjeldahl	0.71	mg/L	3 ft
RTZT	BARRINGTON LAKE	2007-06-13		Nitrogen, Kjeldahl	0.71	mg/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Nitrogen, Kjeldahl	1.17	mg/L	10 ft
RTZT	BARRINGTON LAKE	2007-07-11		Nitrogen, Kjeldahl	1.17	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Nitrogen, Kjeldahl	1.15	mg/L	3 ft
RTZT	BARRINGTON LAKE	2007-07-11		Nitrogen, Kjeldahl	1.15	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Nitrogen, Kjeldahl	2.12	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Nitrogen, Kjeldahl	2.63	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Nitrogen, Kjeldahl	1.92	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Nitrogen, Kjeldahl	1.89	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Nitrogen, Kjeldahl	0.727	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Nitrogen, Kjeldahl	0.698	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Nitrogen, Kjeldahl	0.775	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Nitrogen, Kjeldahl	0.834	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Nitrogen, Kjeldahl	0.89	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Nitrogen, Kjeldahl	1.01	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Nitrogen, Kjeldahl	1.55	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Nitrogen, Kjeldahl	1.44	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Nitrogen, Kjeldahl	1.88	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Nitrogen, Kjeldahl	1.81	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Nitrogen, Kjeldahl	1.04	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Nitrogen, Kjeldahl	1.01	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Nitrogen, Kjeldahl	0.76	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28	1	Nitrogen, Kjeldahl	0.714	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2015-05-13		Nitrogen, Kjeldahl	0.795	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Nitrogen, Kjeldahl	0.745	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Nitrogen, Kjeldahl	0.73	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Nitrogen, Kjeldahl	0.701	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Nitrogen, Kjeldahl	0.742	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Nitrogen, Kjeldahl	0.66	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Nitrogen, Kjeldahl	0.8	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Nitrogen, Kjeldahl	0.84	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Nitrogen, Kjeldahl	0.712	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Nitrogen, Kjeldahl	0.724	mg/L	3
RTZT	BARRINGTON LAKE	1989-04-19		Nitrogen, Nitrate (NO3) as N	0.056	mg/L	6
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, Nitrate (NO3) as N	0.051	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, Nitrate (NO3) as N	0.072	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Nitrogen, Nitrate (NO3) as N	0.066	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Nitrogen, Nitrate (NO3) as N	0.058	mg/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Nitrogen, Nitrate (NO3) as N	0.053	mg/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Nitrogen, Nitrate (NO3) as N	0.053	mg/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, Nitrate (NO3) as N	0.059	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, Nitrate (NO3) as N	0.063	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Nitrogen, Nitrate (NO3) as N	0.059	mg/L	8
RTZT	BARRINGTON LAKE	2001-08-01		Orthophosphate as P, Dissolved	0.079	mg/L	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Orthophosphate as P, Dissolved	0.009	mg/L	9 ft
RTZT	BARRINGTON LAKE	2007-07-11		Orthophosphate as P, Dissolved	0.01	mg/L	10 ft
RTZT	BARRINGTON LAKE	2007-07-11		Orthophosphate as P, Dissolved	0.012	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-04-19		Orthophosphate as P, Total	0.013	mg/L	6 ft
RTZT	BARRINGTON LAKE	1989-06-21		Orthophosphate as P, Total	0.156	mg/L	11.5 ft
RTZT	BARRINGTON LAKE	1989-06-21		Orthophosphate as P, Total	0.08	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-06-21		Orthophosphate as P, Total	0.085	mg/L	7 ft
RTZT	BARRINGTON LAKE	1989-07-26		Orthophosphate as P, Total	0.288	mg/L	11 ft
RTZT	BARRINGTON LAKE	1989-07-26		Orthophosphate as P, Total	0.096	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-07-26		Orthophosphate as P, Total	0.105	mg/L	6 ft
RTZT	BARRINGTON LAKE	1989-08-23		Orthophosphate as P, Total	0.332	mg/L	12 ft
RTZT	BARRINGTON LAKE	1989-08-23		Orthophosphate as P, Total	0.061	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-08-23		Orthophosphate as P, Total	0.166	mg/L	7 ft
RTZT	BARRINGTON LAKE	1989-09-20		Orthophosphate as P, Total	0.102	mg/L	13 ft
RTZT	BARRINGTON LAKE	1989-09-20		Orthophosphate as P, Total	0.056	mg/L	3 ft
RTZT	BARRINGTON LAKE	1989-09-20		Orthophosphate as P, Total	0.077	mg/L	8 ft
RTZT	BARRINGTON LAKE	1989-04-19		рН	9.3	SU	10
RTZT	BARRINGTON LAKE	1989-04-19		рН	9.3	SU	2
RTZT	BARRINGTON LAKE	1989-04-19		рН	9.3	SU	6
RTZT	BARRINGTON LAKE	1989-05-17		рН	9.4	SU	11
RTZT	BARRINGTON LAKE	1989-05-17		рН	10.2	SU	3
RTZT	BARRINGTON LAKE	1989-05-17		рН	10.1	SU	7
RTZT	BARRINGTON LAKE	1989-06-21		pH	8.4	SU	11.5
RTZT	BARRINGTON LAKE	1989-06-21		рН	8.9	SU	3
RTZT	BARRINGTON LAKE	1989-06-21		рН	8.8	SU	7

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	1989-07-26		рН	8.5	SU	11
RTZT	BARRINGTON LAKE	1989-07-26		рН	8.7	SU	3
RTZT	BARRINGTON LAKE	1989-07-26		рН	8.7	SU	6
RTZT	BARRINGTON LAKE	1989-08-23		рН	8.2	SU	12
RTZT	BARRINGTON LAKE	1989-08-23		рН	9.1	SU	3
RTZT	BARRINGTON LAKE	1989-08-23		рН	9	SU	7
RTZT	BARRINGTON LAKE	1989-09-20		рН	8.2	SU	13
RTZT	BARRINGTON LAKE	1989-09-20		рН	9.1	SU	3
RTZT	BARRINGTON LAKE	1989-09-20		рН	8.6	SU	8
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	0.25 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	1 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.06	SU	10 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.06	SU	11
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.06	SU	12 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	2 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.05	SU	3
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	4 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	5 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.05	SU	6 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.04	SU	7 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.05	SU	8 ft
RTZT	BARRINGTON LAKE	2001-05-23		рН	8.07	SU	9 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.23	SU	0.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.24	SU	1 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	7.71	SU	10
RTZT	BARRINGTON LAKE	2001-06-27		рН	7.47	SU	11 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	7.37	SU	12 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.25	SU	2 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.25	SU	3
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.24	SU	4 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.24	SU	5 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.22	SU	6 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.22	SU	7 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	8.1	SU	8 ft
RTZT	BARRINGTON LAKE	2001-06-27		рН	7.94	SU	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	8.7	SU	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	8.68	SU	1 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.48	SU	10 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.47	SU	11 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	8.68	SU	2 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	8.63	su	3
RTZT	BARRINGTON LAKE	2001-08-01		рН	8.49	SU	4 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.83	SU	5 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.83	SU	6 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.5	SU	7 ft
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.5	SU	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-08-01		рН	7.51	SU	9
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.49	SU	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.48	SU	1 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	7.23	SU	10 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	7.21	SU	11 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	7.13	SU	12 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.48	SU	2 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.49	SU	3
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.36	SU	4 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.36	SU	5 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.28	SU	6 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	8.01	SU	7 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	7.52	SU	8 ft
RTZT	BARRINGTON LAKE	2001-08-29		рН	7.29	SU	9
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.01	SU	0.25 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.02	SU	1 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.03	SU	10 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.03	SU	11 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.02	SU	2 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.04	SU	3
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.03	SU	4 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.04	SU	5 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.04	SU	6 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.03	SU	7 ft
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.04	SU	8
RTZT	BARRINGTON LAKE	2001-09-25		рН	8.03	SU	9 ft
RTZT	BARRINGTON LAKE	2007-05-09		рН	8.19	SU	10
RTZT	BARRINGTON LAKE	2007-05-09		рН	8.52	SU	3
RTZT	BARRINGTON LAKE	2007-06-13		рН	8.21	SU	10
RTZT	BARRINGTON LAKE	2007-06-13		рН	8.39	SU	3
RTZT	BARRINGTON LAKE	2007-07-08		рН	7.55	SU	11 ft
RTZT	BARRINGTON LAKE	2007-07-08		рН	8.36	SU	3 ft
RTZT	BARRINGTON LAKE	2007-07-11		рН	8.6	SU	10
RTZT	BARRINGTON LAKE	2007-07-11		рН	0.821	SU	10 ft
RTZT	BARRINGTON LAKE	2007-07-11		рН	8.59	SU	3
RTZT	BARRINGTON LAKE	2007-07-11		рН	0.823	SU	3 ft
RTZT	BARRINGTON LAKE	2007-08-08		рН	7.55	SU	11
RTZT	BARRINGTON LAKE	2007-08-08		рН	8.36	SU	3
RTZT	BARRINGTON LAKE	2007-09-12		рН	8.29	SU	3
RTZT	BARRINGTON LAKE	2007-09-12		рН	8.18	SU	9
RTZT	BARRINGTON LAKE	2013-05-21		рН	8.2	SU	3
RTZT	BARRINGTON LAKE	2013-05-21		рН	7.93	SU	9
RTZT	BARRINGTON LAKE	2013-06-18		рН	8.15	SU	3
RTZT	BARRINGTON LAKE	2013-06-18		рН	8.12	SU	8
RTZT	BARRINGTON LAKE	2013-07-16		рН	8.59	SU	3
RTZT	BARRINGTON LAKE	2013-07-16		рН	7.54	SU	9

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2013-08-20		рН	8.65	SU	3
RTZT	BARRINGTON LAKE	2013-08-20		рН	7.42	SU	9
RTZT	BARRINGTON LAKE	2013-09-17		рН	7.89	SU	10
RTZT	BARRINGTON LAKE	2013-09-17		рН	7.95	SU	3
RTZT	BARRINGTON LAKE	2015-04-16		рН	7.52	SU	10
RTZT	BARRINGTON LAKE	2015-04-16		рН	7.45	SU	3
RTZT	BARRINGTON LAKE	2015-04-28		рН	7.14	SU	12
RTZT	BARRINGTON LAKE	2015-04-28		рН	7.41	SU	3
RTZT	BARRINGTON LAKE	2015-05-13		рН	7.93	SU	10
RTZT	BARRINGTON LAKE	2015-05-13		рН	8	SU	3
RTZT	BARRINGTON LAKE	2015-06-17		рН	7.82	SU	10
RTZT	BARRINGTON LAKE	2015-06-17		рН	8.05	SU	3
RTZT	BARRINGTON LAKE	2015-07-15		рН	7.9	SU	10
RTZT	BARRINGTON LAKE	2015-07-15		рН	8.14	SU	3
RTZT	BARRINGTON LAKE	2015-08-12		рН	8.02	SU	3
RTZT	BARRINGTON LAKE	2015-08-12		рН	7.91	SU	9
RTZT	BARRINGTON LAKE	2015-09-17		рН	8.36	SU	10
RTZT	BARRINGTON LAKE	2015-09-17		рН	8.37	SU	3
RTZT	BARRINGTON LAKE	1989-04-19		Phosphorus	0.013	mg/L	2
RTZT	BARRINGTON LAKE	1989-04-19		Phosphorus	0.01	mg/L	6
RTZT	BARRINGTON LAKE	1989-05-17		Phosphorus	0.026	mg/L	11
RTZT	BARRINGTON LAKE	1989-05-17		Phosphorus	0.021	mg/L	3
RTZT	BARRINGTON LAKE	1989-05-17		Phosphorus	0.026	mg/L	7
RTZT	BARRINGTON LAKE	1989-06-21		Phosphorus	0.219	mg/L	11.5
RTZT	BARRINGTON LAKE	1989-06-21		Phosphorus	0.113	mg/L	3
RTZT	BARRINGTON LAKE	1989-06-21		Phosphorus	0.12	mg/L	7
RTZT	BARRINGTON LAKE	1989-07-26		Phosphorus	0.418	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Phosphorus	0.174	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Phosphorus	0.193	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Phosphorus	0.403	mg/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Phosphorus	0.134	mg/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Phosphorus	0.222	mg/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Phosphorus	0.213	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Phosphorus	0.176	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Phosphorus	0.199	mg/L	8
RTZT	BARRINGTON LAKE	2001-05-23		Phosphorus	0.015	mg/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Phosphorus	0.027	mg/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Phosphorus	0.032	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Phosphorus	0.023	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Phosphorus	0.117	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Phosphorus	0.152	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Phosphorus	0.154	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Phosphorus	0.163	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Phosphorus	0.157	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Phosphorus	0.142	mg/L	8
RTZT	BARRINGTON LAKE	2007-05-09		Phosphorus	0.023	mg/L	10

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2007-06-13		Phosphorus	0.015	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Phosphorus	0.07	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Phosphorus	0.088	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Phosphorus	0.264	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Phosphorus	0.114	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Phosphorus	0.114	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Phosphorus	0.121	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Phosphorus	0.015	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Phosphorus	0.013	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Phosphorus	0.015	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Phosphorus	0.04	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Phosphorus	0.033	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Phosphorus	0.038	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Phosphorus	0.088	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Phosphorus	0.22	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Phosphorus	0.175	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Phosphorus	0.15	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Phosphorus	0.048	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Phosphorus	0.051	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Phosphorus	0.03	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Phosphorus	0.027	mg/L	3
RTZT	BARRINGTON LAKE	2015-05-13		Phosphorus	0.027	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Phosphorus	0.025	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Phosphorus	0.015	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Phosphorus	0.013	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Phosphorus	0.02	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Phosphorus	0.017	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Phosphorus	0.031	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Phosphorus	0.029	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Phosphorus	0.017	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Phosphorus	0.024	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Phosphorus, Soluble Reactive	0.079	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Phosphorus, Soluble Reactive	0.009	mg/L	9
RTZT	BARRINGTON LAKE	2007-07-11		Phosphorus, Soluble Reactive	0.01	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Phosphorus, Soluble Reactive	0.012	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Phosphorus, Soluble Reactive	0.179	mg/L	11
RTZT	BARRINGTON LAKE	2007-09-12		Phosphorus, Soluble Reactive	0.009	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Phosphorus, Soluble Reactive	0.006	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Phosphorus, Soluble Reactive	0.162	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Phosphorus, Soluble Reactive	0.075	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Phosphorus, Soluble Reactive	0.07	mg/L	3
RTZT	BARRINGTON LAKE	1989-04-19		Secchi	13	ft	ft
RTZT	BARRINGTON LAKE	1989-05-17		Secchi	13	ft	ft
RTZT	BARRINGTON LAKE	1989-06-21		Secchi	8.25	ft	ft
RTZT	BARRINGTON LAKE	1989-08-23		Secchi	3.67	ft	ft
RTZT	BARRINGTON LAKE	1989-09-20		Secchi	3	ft	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-06-27		Secchi	12.67	ft	ft
RTZT	BARRINGTON LAKE	2001-08-01		Secchi	1.72	ft	ft
RTZT	BARRINGTON LAKE	2001-08-29		Secchi	1.74	ft	ft
RTZT	BARRINGTON LAKE	2001-09-25		Secchi	1.51	ft	ft
RTZT	BARRINGTON LAKE	2007-05-09		Secchi	9.48	ft	ft
RTZT	BARRINGTON LAKE	2007-06-13		Secchi	11.81	ft	ft
RTZT	BARRINGTON LAKE	2007-07-08		Secchi	1.64	ft	ft
RTZT	BARRINGTON LAKE	2007-07-11		Secchi	4.43	ft	ft
RTZT	BARRINGTON LAKE	2001-05-23		Solids, Total Dissolved (TDS)	372	mg/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Solids, Total Dissolved (TDS)	384	mg/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Solids, Total Dissolved (TDS)	358	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Solids, Total Dissolved (TDS)	370	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Solids, Total Dissolved (TDS)	344	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Solids, Total Dissolved (TDS)	352	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Solids, Total Dissolved (TDS)	306	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Solids, Total Dissolved (TDS)	308	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Solids, Total Dissolved (TDS)	346	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Solids, Total Dissolved (TDS)	349	mg/L	8
RTZT	BARRINGTON LAKE	1989-04-19		Solids, Total Suspended (TSS)	2	mg/L	10
RTZT	BARRINGTON LAKE	1989-04-19		Solids, Total Suspended (TSS)	5	mg/L	2
RTZT	BARRINGTON LAKE	1989-04-19		Solids, Total Suspended (TSS)	2	mg/L	6
RTZT	BARRINGTON LAKE	1989-05-17		Solids, Total Suspended (TSS)	13	mg/L	11
RTZT	BARRINGTON LAKE	1989-05-17		Solids, Total Suspended (TSS)	2	mg/L	3
RTZT	BARRINGTON LAKE	1989-05-17		Solids, Total Suspended (TSS)	13	mg/L	7
RTZT	BARRINGTON LAKE	1989-06-21		Solids, Total Suspended (TSS)	16	mg/L	11.5
RTZT	BARRINGTON LAKE	1989-06-21		Solids, Total Suspended (TSS)	2	mg/L	3
RTZT	BARRINGTON LAKE	1989-06-21		Solids, Total Suspended (TSS)	2.4	mg/L	7
RTZT	BARRINGTON LAKE	1989-07-26		Solids, Total Suspended (TSS)	4	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Solids, Total Suspended (TSS)	2.4	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Solids, Total Suspended (TSS)	2.6	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Solids, Total Suspended (TSS)	6	mg/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Solids, Total Suspended (TSS)	6.4	mg/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Solids, Total Suspended (TSS)	4	mg/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Solids, Total Suspended (TSS)	12	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Solids, Total Suspended (TSS)	12	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Solids, Total Suspended (TSS)	8.8	mg/L	8
RTZT	BARRINGTON LAKE	2001-05-23		Solids, Total Suspended (TSS)	1.6	mg/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Solids, Total Suspended (TSS)	2	mg/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Solids, Total Suspended (TSS)	1.5	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Solids, Total Suspended (TSS)	0.2	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Solids, Total Suspended (TSS)	18	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Solids, Total Suspended (TSS)	8.4	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Solids, Total Suspended (TSS)	12	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Solids, Total Suspended (TSS)	9.4	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Solids, Total Suspended (TSS)	15.8	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Solids, Total Suspended (TSS)	16.4	mg/L	8

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2007-05-09		Solids, Total Suspended (TSS)	2.4	mg/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Solids, Total Suspended (TSS)	2.4	mg/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Solids, Total Suspended (TSS)	2.2	mg/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Solids, Total Suspended (TSS)	1.2	mg/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Solids, Total Suspended (TSS)	6.6	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Solids, Total Suspended (TSS)	7.8	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Solids, Total Suspended (TSS)	7.2	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Solids, Total Suspended (TSS)	13	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Solids, Total Suspended (TSS)	9.2	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Solids, Total Suspended (TSS)	8.6	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Solids, Total Suspended (TSS)	1.2	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Solids, Total Suspended (TSS)	2.1	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Solids, Total Suspended (TSS)	1.6	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Solids, Total Suspended (TSS)	3.2	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Solids, Total Suspended (TSS)	5.2	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Solids, Total Suspended (TSS)	9.7	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Solids, Total Suspended (TSS)	4.8	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Solids, Total Suspended (TSS)	5.8	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Solids, Total Suspended (TSS)	5.6	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Solids, Total Suspended (TSS)	6.2	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Solids, Total Suspended (TSS)	5.8	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Solids, Total Suspended (TSS)	4.4	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Solids, Total Suspended (TSS)	4.5	mg/L	3
RTZT	BARRINGTON LAKE	2015-05-13		Solids, Total Suspended (TSS)	3.9	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Solids, Total Suspended (TSS)	4	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Solids, Total Suspended (TSS)	1.4	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Solids, Total Suspended (TSS)	2	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Solids, Total Suspended (TSS)	1.4	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Solids, Total Suspended (TSS)	2.9	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Solids, Total Suspended (TSS)	2.4	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Solids, Total Suspended (TSS)	2.3	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Solids, Total Suspended (TSS)	2.2	mg/L	3
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.6	uS/cm	0.25 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.8	uS/cm	1 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.8	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	0.6351	mS/cm	11
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	635.1	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	635	uS/cm	12 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.8	uS/cm	2 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	0.6345	mS/cm	3
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.5	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.8	uS/cm	4 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.8	uS/cm	5 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	634.9	uS/cm	6 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	635.3	uS/cm	7 ft
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	635.1	uS/cm	8 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-05-23		Specific conductance	635	uS/cm	9 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	626.8	uS/cm	0.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	626.4	uS/cm	1 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	0.6349	mS/cm	10
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	634.9	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	638.4	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	647.6	uS/cm	12 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.3	uS/cm	2 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	0.6272	mS/cm	3
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.2	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.3	uS/cm	4 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.3	uS/cm	5 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.4	uS/cm	6 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	627.2	uS/cm	7 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	629.5	uS/cm	8 ft
RTZT	BARRINGTON LAKE	2001-06-27		Specific conductance	632.2	uS/cm	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	575.5	uS/cm	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	575.5	uS/cm	1 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	643.4	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	649.6	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	577.6	uS/cm	2 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	0.5791	mS/cm	3
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	579.1	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	586.8	uS/cm	4 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	621.8	uS/cm	5 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	623.8	uS/cm	6 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	629	uS/cm	7 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	632.1	uS/cm	8 ft
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	0.637	mS/cm	9
RTZT	BARRINGTON LAKE	2001-08-01		Specific conductance	637	uS/cm	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	580.9	uS/cm	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	581.9	uS/cm	1 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	610.9	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	613.2	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	624.3	uS/cm	12 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	582.2	uS/cm	2 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	0.5821	mS/cm	3
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	582.1	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	583.7	uS/cm	4 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	585.8	uS/cm	5 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	586.7	uS/cm	6 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	591.2	uS/cm	7 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	596.2	uS/cm	8 ft
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	0.6068	mS/cm	9
RTZT	BARRINGTON LAKE	2001-08-29		Specific conductance	606.8	uS/cm	9 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.4	uS/cm	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.3	uS/cm	1 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.2	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.3	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.2	uS/cm	2 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	0.5749	mS/cm	3
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	574.9	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	574.8	uS/cm	4 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575.1	uS/cm	5 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	574.9	uS/cm	6 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575	uS/cm	7 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	0.5749	mS/cm	8
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	574.9	uS/cm	8 ft
RTZT	BARRINGTON LAKE	2001-09-25		Specific conductance	575	uS/cm	9 ft
RTZT	BARRINGTON LAKE	2007-05-09		Specific conductance	0.799	mS/cm	10
RTZT	BARRINGTON LAKE	2007-05-09		Specific conductance	799	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2007-05-09		Specific conductance	0.791	mS/cm	3
RTZT	BARRINGTON LAKE	2007-05-09		Specific conductance	791	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2007-06-13		Specific conductance	0.791	mS/cm	10
RTZT	BARRINGTON LAKE	2007-06-13		Specific conductance	791	uS/cm	10 ft
RTZT	BARRINGTON LAKE	2007-06-13		Specific conductance	0.787	mS/cm	3
RTZT	BARRINGTON LAKE	2007-06-13		Specific conductance	787	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2007-07-08		Specific conductance	784	uS/cm	11 ft
RTZT	BARRINGTON LAKE	2007-07-08		Specific conductance	683	uS/cm	3 ft
RTZT	BARRINGTON LAKE	2007-07-11		Specific conductance	0.821	mS/cm	10
RTZT	BARRINGTON LAKE	2007-07-11		Specific conductance	0.823	mS/cm	3
RTZT	BARRINGTON LAKE	2007-08-08		Specific conductance	0.784	mS/cm	11
RTZT	BARRINGTON LAKE	2007-08-08		Specific conductance	0.683	mS/cm	3
RTZT	BARRINGTON LAKE	2007-09-12		Specific conductance	0.675	mS/cm	3
RTZT	BARRINGTON LAKE	2007-09-12		Specific conductance	0.674	mS/cm	9
RTZT	BARRINGTON LAKE	2013-05-21		Specific conductance	0.6463	mS/cm	3
RTZT	BARRINGTON LAKE	2013-05-21		Specific conductance	0.6475	mS/cm	9
RTZT	BARRINGTON LAKE	2013-06-18		Specific conductance	0.7706	mS/cm	3
RTZT	BARRINGTON LAKE	2013-06-18		Specific conductance	0.7703	mS/cm	8
RTZT	BARRINGTON LAKE	2013-07-16		Specific conductance	0.6439	mS/cm	3
RTZT	BARRINGTON LAKE	2013-07-16		Specific conductance	0.6491	mS/cm	9
RTZT	BARRINGTON LAKE	2013-08-20		Specific conductance	0.6178	mS/cm	3
RTZT	BARRINGTON LAKE	2013-08-20		Specific conductance	0.6335	mS/cm	9
RTZT	BARRINGTON LAKE	2013-09-17		Specific conductance	0.5928	mS/cm	10
RTZT	BARRINGTON LAKE	2013-09-17		Specific conductance	0.5421	mS/cm	3
RTZT	BARRINGTON LAKE	2015-04-16		Specific conductance	0.717	mS/cm	10
RTZT	BARRINGTON LAKE	2015-04-16		Specific conductance	0.707	mS/cm	3
RTZT	BARRINGTON LAKE	2015-04-28		Specific conductance	0.743	mS/cm	12
RTZT	BARRINGTON LAKE	2015-04-28		Specific conductance	0.742	mS/cm	3
RTZT	BARRINGTON LAKE	2015-05-13		Specific conductance	0.7019	mS/cm	10
RTZT	BARRINGTON LAKE	2015-05-13		Specific conductance	0.7021	mS/cm	3
RTZT	BARRINGTON LAKE	2015-06-17		Specific conductance	0.7602	mS/cm	10

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2015-06-17		Specific conductance	0.7512	mS/cm	3
RTZT	BARRINGTON LAKE	2015-07-15		Specific conductance	0.7304	mS/cm	10
RTZT	BARRINGTON LAKE	2015-07-15		Specific conductance	0.728	mS/cm	3
RTZT	BARRINGTON LAKE	2015-08-12		Specific conductance	0.7411	mS/cm	3
RTZT	BARRINGTON LAKE	2015-08-12		Specific conductance	0.7409	mS/cm	9
RTZT	BARRINGTON LAKE	2015-09-17		Specific conductance	0.709	mS/cm	10
RTZT	BARRINGTON LAKE	2015-09-17		Specific conductance	0.708	mS/cm	3
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.23	с	0.25 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	1 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.22	с	10 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.22	с	11 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.21	с	12 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	2 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	3 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	4 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.28	с	5 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	6 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.28	с	7 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.27	с	8 ft
RTZT	BARRINGTON LAKE	2001-05-23		Temperature, water	19.24	с	9 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.78	с	0.25 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.79	с	1 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	24.19	с	10 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	23.82	с	11 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	23.21	с	12 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.68	с	2 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.64	с	3 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.57	с	4 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.55	с	5 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.49	с	6 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25.34	с	7 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	25	с	8 ft
RTZT	BARRINGTON LAKE	2001-06-27		Temperature, water	24.6	с	9 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	28.79	с	0.25 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	28.81	с	1 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	25.57	с	10 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	25.43	с	11 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	28.79	с	2 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	28.72	с	3 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	28.48	с	4 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	27.29	с	5 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	26.73	с	6 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	26.12	с	7 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	25.94	с	8 ft
RTZT	BARRINGTON LAKE	2001-08-01		Temperature, water	25.71	с	9 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.7	с	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.57	с	1 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	23.31	С	10 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	23.24	С	11 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	23.03	С	12 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.43	С	2 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.4	С	3 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.37	с	4 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.31	с	5 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.3	с	6 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.13	с	7 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	24.04	с	8 ft
RTZT	BARRINGTON LAKE	2001-08-29		Temperature, water	23.49	С	9 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.67	С	0.25 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.69	с	1 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	с	10 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	с	11 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	с	2 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.69	с	3 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	с	4 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.69	с	5 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.69	с	6 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	С	7 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	С	8 ft
RTZT	BARRINGTON LAKE	2001-09-25		Temperature, water	16.68	С	9 ft
RTZT	BARRINGTON LAKE	1989-04-19		Total solids	114	mg/L	10
RTZT	BARRINGTON LAKE	1989-04-19		Total solids	110	mg/L	2
RTZT	BARRINGTON LAKE	1989-04-19		Total solids	106	mg/L	6
RTZT	BARRINGTON LAKE	1989-05-17		Total solids	202	mg/L	11
RTZT	BARRINGTON LAKE	1989-05-17		Total solids	202	mg/L	3
RTZT	BARRINGTON LAKE	1989-05-17		Total solids	133	mg/L	7
RTZT	BARRINGTON LAKE	1989-06-21		Total solids	330	mg/L	11.5
RTZT	BARRINGTON LAKE	1989-06-21		Total solids	292	mg/L	3
RTZT	BARRINGTON LAKE	1989-06-21		Total solids	299	mg/L	7
RTZT	BARRINGTON LAKE	1989-07-26		Total solids	290	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Total solids	266	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Total solids	281	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Total solids	300	mg/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Total solids	306	mg/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Total solids	300	mg/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Total solids	292	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Total solids	304	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Total solids	297	mg/L	8
RTZT	BARRINGTON LAKE	2001-05-23		Total solids	379	mg/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Total solids	384	mg/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Total solids	381	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Total solids	382	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2001-08-01		Total solids	369	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Total solids	383	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Total solids	354	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Total solids	353	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Total solids	352	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Total solids	356	mg/L	8
RTZT	BARRINGTON LAKE	2007-05-09		Total solids	447	mg/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Total solids	442	mg/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Total solids	489	mg/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Total solids	467	mg/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Total solids	472	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Total solids	494	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Total solids	439	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Total solids	417	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Total solids	401	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Total solids	403	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Total solids	465	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Total solids	444	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Total solids	494	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Total solids	489	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Total solids	421	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Total solids	410	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Total solids	402	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Total solids	389	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Total solids	388	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Total solids	389	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Total solids	439	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Total solids	439	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Total solids	468	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Total solids	463	mg/L	3
RTZT	BARRINGTON LAKE	2015-05-13		Total solids	467	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Total solids	473	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Total solids	483	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Total solids	473	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Total solids	475	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Total solids	472	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Total solids	470	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Total solids	473	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Total solids	451	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Total solids	466	mg/L	3
RTZT	BARRINGTON LAKE	1989-04-19		Total volatile solids	84	mg/L	10
RTZT	BARRINGTON LAKE	1989-04-19		Total volatile solids	30	mg/L	2
RTZT	BARRINGTON LAKE	1989-04-19		Total volatile solids	56	mg/L	6
RTZT	BARRINGTON LAKE	1989-05-17		Total volatile solids	140	mg/L	11
RTZT	BARRINGTON LAKE	1989-05-17		Total volatile solids	174	mg/L	3
RTZT	BARRINGTON LAKE	1989-05-17		Total volatile solids	37	mg/L	7

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	1989-06-21		Total volatile solids	150	mg/L	11.5
RTZT	BARRINGTON LAKE	1989-06-21		Total volatile solids	134	mg/L	3
RTZT	BARRINGTON LAKE	1989-06-21		Total volatile solids	138	mg/L	7
RTZT	BARRINGTON LAKE	1989-07-26		Total volatile solids	112	mg/L	11
RTZT	BARRINGTON LAKE	1989-07-26		Total volatile solids	126	mg/L	3
RTZT	BARRINGTON LAKE	1989-07-26		Total volatile solids	110	mg/L	6
RTZT	BARRINGTON LAKE	1989-08-23		Total volatile solids	140	mg/L	12
RTZT	BARRINGTON LAKE	1989-08-23		Total volatile solids	120	mg/L	3
RTZT	BARRINGTON LAKE	1989-08-23		Total volatile solids	110	mg/L	7
RTZT	BARRINGTON LAKE	1989-09-20		Total volatile solids	122	mg/L	13
RTZT	BARRINGTON LAKE	1989-09-20		Total volatile solids	138	mg/L	3
RTZT	BARRINGTON LAKE	1989-09-20		Total volatile solids	123	mg/L	8
RTZT	BARRINGTON LAKE	2001-05-23		Total volatile solids	118	mg/L	11
RTZT	BARRINGTON LAKE	2001-05-23		Total volatile solids	104	mg/L	3
RTZT	BARRINGTON LAKE	2001-06-27		Total volatile solids	97	mg/L	10
RTZT	BARRINGTON LAKE	2001-06-27		Total volatile solids	112	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Total volatile solids	123	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-01		Total volatile solids	129	mg/L	9
RTZT	BARRINGTON LAKE	2001-08-29		Total volatile solids	109	mg/L	3
RTZT	BARRINGTON LAKE	2001-08-29		Total volatile solids	103	mg/L	9
RTZT	BARRINGTON LAKE	2001-09-25		Total volatile solids	103	mg/L	3
RTZT	BARRINGTON LAKE	2001-09-25		Total volatile solids	110	mg/L	8
RTZT	BARRINGTON LAKE	2007-05-09		Total volatile solids	103	mg/L	10
RTZT	BARRINGTON LAKE	2007-05-09		Total volatile solids	93	mg/L	3
RTZT	BARRINGTON LAKE	2007-06-13		Total volatile solids	141	mg/L	10
RTZT	BARRINGTON LAKE	2007-06-13		Total volatile solids	121	mg/L	3
RTZT	BARRINGTON LAKE	2007-07-11		Total volatile solids	127	mg/L	10
RTZT	BARRINGTON LAKE	2007-07-11		Total volatile solids	148	mg/L	3
RTZT	BARRINGTON LAKE	2007-08-08		Total volatile solids	144	mg/L	11
RTZT	BARRINGTON LAKE	2007-08-08		Total volatile solids	134	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Total volatile solids	103	mg/L	3
RTZT	BARRINGTON LAKE	2007-09-12		Total volatile solids	99	mg/L	9
RTZT	BARRINGTON LAKE	2013-05-21		Total volatile solids	122	mg/L	3
RTZT	BARRINGTON LAKE	2013-05-21		Total volatile solids	96	mg/L	9
RTZT	BARRINGTON LAKE	2013-06-18		Total volatile solids	137	mg/L	3
RTZT	BARRINGTON LAKE	2013-06-18		Total volatile solids	141	mg/L	8
RTZT	BARRINGTON LAKE	2013-07-16		Total volatile solids	99	mg/L	3
RTZT	BARRINGTON LAKE	2013-07-16		Total volatile solids	99	mg/L	9
RTZT	BARRINGTON LAKE	2013-08-20		Total volatile solids	116	mg/L	3
RTZT	BARRINGTON LAKE	2013-08-20		Total volatile solids	90	mg/L	9
RTZT	BARRINGTON LAKE	2013-09-17		Total volatile solids	97	mg/L	10
RTZT	BARRINGTON LAKE	2013-09-17		Total volatile solids	102	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-16		Total volatile solids	93	mg/L	10
RTZT	BARRINGTON LAKE	2015-04-16		Total volatile solids	96	mg/L	3
RTZT	BARRINGTON LAKE	2015-04-28		Total volatile solids	100	mg/L	12
RTZT	BARRINGTON LAKE	2015-04-28		Total volatile solids	102	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2015-05-13		Total volatile solids	99	mg/L	10
RTZT	BARRINGTON LAKE	2015-05-13		Total volatile solids	111	mg/L	3
RTZT	BARRINGTON LAKE	2015-06-17		Total volatile solids	131	mg/L	10
RTZT	BARRINGTON LAKE	2015-06-17		Total volatile solids	125	mg/L	3
RTZT	BARRINGTON LAKE	2015-07-15		Total volatile solids	115	mg/L	10
RTZT	BARRINGTON LAKE	2015-07-15		Total volatile solids	109	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Total volatile solids	112	mg/L	3
RTZT	BARRINGTON LAKE	2015-08-12		Total volatile solids	118	mg/L	9
RTZT	BARRINGTON LAKE	2015-09-17		Total volatile solids	118	mg/L	10
RTZT	BARRINGTON LAKE	2015-09-17		Total volatile solids	132	mg/L	3
RTZT	BARRINGTON LAKE	1989-04-19		TRP	0		10
RTZT	BARRINGTON LAKE	1989-04-19		TRP	0		2
RTZT	BARRINGTON LAKE	1989-04-19		TRP	0.013		6
RTZT	BARRINGTON LAKE	1989-05-17		TRP	0		11
RTZT	BARRINGTON LAKE	1989-05-17		TRP	0		3
RTZT	BARRINGTON LAKE	1989-05-17		TRP	0		7
RTZT	BARRINGTON LAKE	1989-06-21		TRP	0.156		11.5
RTZT	BARRINGTON LAKE	1989-06-21		TRP	0.08		3
RTZT	BARRINGTON LAKE	1989-06-21		TRP	0.085		7
RTZT	BARRINGTON LAKE	1989-07-26		TRP	0.288		11
RTZT	BARRINGTON LAKE	1989-07-26		TRP	0.096		3
RTZT	BARRINGTON LAKE	1989-07-26		TRP	0.105		6
RTZT	BARRINGTON LAKE	1989-08-23		TRP	0.332		12
RTZT	BARRINGTON LAKE	1989-08-23		TRP	0.061		3
RTZT	BARRINGTON LAKE	1989-08-23		TRP	0.166		7
RTZT	BARRINGTON LAKE	1989-09-20		TRP	0.102		13
RTZT	BARRINGTON LAKE	1989-09-20		TRP	0.056		3
RTZT	BARRINGTON LAKE	1989-09-20		TRP	0.077		8
RTZT	BARRINGTON LAKE	2001-05-23		TRP	0		11
RTZT	BARRINGTON LAKE	2001-05-23		TRP	0		3
RTZT	BARRINGTON LAKE	2001-06-27		TRP	0		10
RTZT	BARRINGTON LAKE	2001-06-27		TRP	0		3
RTZT	BARRINGTON LAKE	2001-08-01		TRP	0		3
RTZT	BARRINGTON LAKE	2001-08-01		TRP	0		9
RTZT	BARRINGTON LAKE	2001-08-29		TRP	0		3
RTZT	BARRINGTON LAKE	2001-08-29		TRP	0		9
RTZT	BARRINGTON LAKE	2001-09-25		TRP	0		3
RTZT	BARRINGTON LAKE	2001-09-25		TRP	0		8
RTZT	BARRINGTON LAKE	2007-05-09		TRP	0		10
RTZT	BARRINGTON LAKE	2007-05-09		TRP	0		3
RTZT	BARRINGTON LAKE	2007-06-13		TRP	0		10
RTZT	BARRINGTON LAKE	2007-06-13		TRP	0		3
RTZT	BARRINGTON LAKE	2007-07-11		TRP	0		10
RTZT	BARRINGTON LAKE	2007-07-11		TRP	0		3
RTZT	BARRINGTON LAKE	2007-08-08		TRP	0		11
RTZT	BARRINGTON LAKE	2007-08-08		TRP	0		3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZT	BARRINGTON LAKE	2007-09-12		TRP	0		3
RTZT	BARRINGTON LAKE	2007-09-12		TRP	0		9
RTZT	BARRINGTON LAKE	2013-05-21		TRP	0		3
RTZT	BARRINGTON LAKE	2013-05-21		TRP	0		9
RTZT	BARRINGTON LAKE	2013-06-18		TRP	0		3
RTZT	BARRINGTON LAKE	2013-06-18		TRP	0		8
RTZT	BARRINGTON LAKE	2013-07-16		TRP	0		3
RTZT	BARRINGTON LAKE	2013-07-16		TRP	0		9
RTZT	BARRINGTON LAKE	2013-08-20		TRP	0		3
RTZT	BARRINGTON LAKE	2013-08-20		TRP	0		9
RTZT	BARRINGTON LAKE	2013-09-17		TRP	0		10
RTZT	BARRINGTON LAKE	2013-09-17		TRP	0		3
RTZU	HONEY LAKE	1998-05-13		Alkalinity	220	mg/l CaCO3	16
RTZU	HONEY LAKE	1998-05-13		Alkalinity	203	mg/l CaCO3	3
RTZU	HONEY LAKE	1998-07-15		Alkalinity	263	mg/l CaCO3	16
RTZU	HONEY LAKE	1998-07-15		Alkalinity	187	mg/l CaCO3	3
RTZU	HONEY LAKE	1998-08-12		Alkalinity	295	mg/l CaCO3	15
RTZU	HONEY LAKE	1998-08-12		Alkalinity	175	mg/l CaCO3	3
RTZU	HONEY LAKE	1998-09-16		Alkalinity	246	mg/l CaCO3	15
RTZU	HONEY LAKE	1998-09-16		Alkalinity	153	mg/l CaCO3	3
RTZU	HONEY LAKE	2001-05-09		Alkalinity	213	mg/l CaCO3	16
RTZU	HONEY LAKE	2001-05-09		Alkalinity	197	mg/l CaCO3	3
RTZU	HONEY LAKE	2001-06-13		Alkalinity	199	mg/l CaCO3	16
RTZU	HONEY LAKE	2001-06-13		Alkalinity	186	mg/l CaCO3	3
RTZU	HONEY LAKE	2001-07-18		Alkalinity	213	mg/l CaCO3	15
RTZU	HONEY LAKE	2001-07-18		Alkalinity	150	mg/l CaCO3	3
RTZU	HONEY LAKE	2001-08-15		Alkalinity	193	mg/l CaCO3	14
RTZU	HONEY LAKE	2001-08-15		Alkalinity	147	mg/l CaCO3	3
RTZU	HONEY LAKE	2001-09-12		Alkalinity	205	mg/l CaCO3	15
RTZU	HONEY LAKE	2001-09-12		Alkalinity	151	mg/l CaCO3	3
RTZU	HONEY LAKE	2008-05-13		Alkalinity	196	mg/I CaCO3	15
RTZU	HONEY LAKE	2008-05-13		Alkalinity	191	mg/I CaCO3	3
RTZU	HONEY LAKE	2008-06-10		Alkalinity	198	mg/I CaCO3	15
RTZU	HONEY LAKE	2008-06-10		Alkalinity	171	mg/I CaCO3	3
RTZU	HONEY LAKE	2008-07-08		Alkalinity	194	mg/l CaCO3	14
RTZU	HONEY LAKE	2008-07-08		Alkalinity	144	mg/I CaCO3	3
RTZU	HONEY LAKE	2008-08-12		Alkalinity	253	mg/I CaCO3	15
RTZU	HONEY LAKE	2008-08-12		Alkalinity	150	mg/l CaCO3	3
RTZU	HONEY LAKE	2008-09-09		Alkalinity	274	mg/l CaCO3	16
RTZU	HONEY LAKE	2008-09-09		Alkalinity	148	mg/I CaCO3	3
RTZU	HONEY LAKE	2015-05-12		Alkalinity	206	mg/l CaCO3	13
RTZU	HONEY LAKE	2015-05-12		Alkalinity	187	mg/l CaCO3	3
RTZU	HONEY LAKE	2015-06-16		Alkalinity	243	mg/l CaCO3	15
RTZU	HONEY LAKE	2015-06-16		Alkalinity	182	mg/l CaCO3	3
RTZU	HONEY LAKE	2015-07-14		Alkalinity	204	mg/l CaCO3	14
RTZU	HONEY LAKE	2015-07-14		Alkalinity	183	mg/l CaCO3	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2015-08-11		Alkalinity	205	mg/l CaCO3	13
RTZU	HONEY LAKE	2015-08-11		Alkalinity	195	mg/l CaCO3	3
RTZU	HONEY LAKE	2015-09-16		Alkalinity	283	mg/l CaCO3	14
RTZU	HONEY LAKE	2015-09-16		Alkalinity	188	mg/l CaCO3	3
RTZU	HONEY LAKE	2008-05-19	14:16	Alkalinity, total	198	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Alkalinity, total	153	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Alkalinity, total	142	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Alkalinity, total	148	mg/L	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Alkalinity, total	166	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Alkalinity, total	190	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Alkalinity, total	190	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Alkalinity, total	170	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Alkalinity, total	165	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Alkalinity, total	185	mg/L	1 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Alkalinity, total	200	mg/L	1 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Alkalinity, total	180	mg/L	1 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Alkalinity, total	165	mg/L	1 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Alkalinity, total	155	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Alkalinity, total	160	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Alkalinity, total	135	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Alkalinity, total	145	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Alkalinity, total	155	mg/L	1 ft
RTZU	HONEY LAKE	1988-05-04		Ammonia as N	0.03	mg/L	11
RTZU	HONEY LAKE	1988-05-04		Ammonia as N	0.06	mg/L	17
RTZU	HONEY LAKE	1988-05-04		Ammonia as N	0.04	mg/L	5
RTZU	HONEY LAKE	1998-05-13		Ammonia as N	1.36	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Ammonia as N	0.385	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Ammonia as N	3.59	mg/L	16
RTZU	HONEY LAKE	1998-08-12		Ammonia as N	5.05	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Ammonia as N	3.72	mg/L	15
RTZU	HONEY LAKE	2001-05-09		Ammonia as N	0.602	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Ammonia as N	0.104	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Ammonia as N	0.291	mg/L	16
RTZU	HONEY LAKE	2001-09-12		Ammonia as N	1.25	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Ammonia as N	0.288	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Ammonia as N	3.54	mg/L	15
RTZU	HONEY LAKE	2008-09-09		Ammonia as N	5.33	mg/L	16
RTZU	HONEY LAKE	2015-05-12		Ammonia as N	0.218	mg/L	13
RTZU	HONEY LAKE	2015-06-16		Ammonia as N	1.95	mg/L	15
RTZU	HONEY LAKE	2015-07-14		Ammonia as N	0.382	mg/L	14
RTZU	HONEY LAKE	2015-08-11		Ammonia as N	3.16	mg/L	13
RTZU	HONEY LAKE	2015-09-16		Ammonia as N	7.18	mg/L	14
RTZU	HONEY LAKE	2008-05-13		Chloride	300	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Chloride	300	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Chloride	296	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13		Chloride	296	mg/L	3
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	------------	------------	-------	---------------	--------	-------	-------
RTZU	HONEY LAKE	2008-05-19	14:16	Chloride	298	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-10		Chloride	310	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Chloride	310	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Chloride	286	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10		Chloride	286	mg/L	3
RTZU	HONEY LAKE	2008-06-24	11:30	Chloride	318	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-08		Chloride	314	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08		Chloride	314	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Chloride	295	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08		Chloride	295	mg/L	3
RTZU	HONEY LAKE	2008-07-22	10:45	Chloride	310	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-12		Chloride	309	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Chloride	309	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Chloride	300	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12		Chloride	300	mg/L	3
RTZU	HONEY LAKE	2008-08-19	13:00	Chloride	324	mg/L	1 ft
RTZU	HONEY LAKE	2008-09-09		Chloride	308	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Chloride	308	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Chloride	303	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09		Chloride	303	mg/L	3
RTZU	HONEY LAKE	2008-10-28	14:05	Chloride	230	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Chloride	249	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Chloride	229	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Chloride	220	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Chloride	181	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Chloride	203	mg/L	1 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Chloride	217	mg/L	1 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Chloride	244	mg/L	1 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Chloride	253	mg/L	1 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Chloride	504	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Chloride	224	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Chloride	138	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Chloride	135	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Chloride	141	mg/L	1 ft
RTZU	HONEY LAKE	2015-05-12		Chloride	258	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Chloride	237	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Chloride	252	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Chloride	218	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Chloride	233	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Chloride	211	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Chloride	240	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Chloride	211	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Chloride	267	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Chloride	236	mg/L	3
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a	2	ug/L	11
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a	5.21	ug/L	17

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a	0.134	ug/L	5
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a	16.8	ug/L	15
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a	21.4	ug/L	3
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a	17.5	ug/L	7
RTZU	HONEY LAKE	1998-05-13		Chlorophyll a	0	ug/L	16
RTZU	HONEY LAKE	1998-05-13		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	1998-07-15		Chlorophyll a	0	ug/L	16
RTZU	HONEY LAKE	1998-07-15		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	1998-08-12		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	1998-08-12		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	1998-09-16		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	1998-09-16		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2001-05-09		Chlorophyll a	0	ug/L	16
RTZU	HONEY LAKE	2001-05-09		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2001-06-13		Chlorophyll a	0	ug/L	16
RTZU	HONEY LAKE	2001-06-13		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2001-07-18		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2001-07-18		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2001-08-15		Chlorophyll a	0	ug/L	14
RTZU	HONEY LAKE	2001-08-15		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2001-09-12		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2001-09-12		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2008-05-13		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2008-05-13		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2008-06-10		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2008-06-10		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2008-07-08		Chlorophyll a	0	ug/L	14
RTZU	HONEY LAKE	2008-07-08		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2008-08-12		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2008-08-12		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2008-09-09		Chlorophyll a	0	ug/L	16
RTZU	HONEY LAKE	2008-09-09		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2015-05-12		Chlorophyll a	0	ug/L	13
RTZU	HONEY LAKE	2015-05-12		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2015-06-16		Chlorophyll a	0	ug/L	15
RTZU	HONEY LAKE	2015-06-16		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2015-07-14		Chlorophyll a	0	ug/L	14
RTZU	HONEY LAKE	2015-07-14		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2015-08-11		Chlorophyll a	0	ug/L	13
RTZU	HONEY LAKE	2015-08-11		Chlorophyll a	0	ug/L	3
RTZU	HONEY LAKE	2012-05-23	11:05	Chlorophyll a, corrected for pheophytin	61.6	ug/L	17 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Chlorophyll a, corrected for pheophytin	64	ug/L	23 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Chlorophyll a, corrected for pheophytin	20.2	ug/L	8 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Chlorophyll a, corrected for pheophytin	32	ug/L	5 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Chlorophyll a, corrected for pheophytin	28.9	ug/L	16 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Chlorophyll a, corrected for pheophytin	65.4	ug/L	15 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2013-09-03	13:29	Chlorophyll a, corrected for pheophytin	80.1	ug/L	16 ft
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a, uncorrected for pheophytin	2	ug/L	11 ft
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a, uncorrected for pheophytin	5.21	ug/L	17 ft
RTZU	HONEY LAKE	1988-05-04		Chlorophyll a, uncorrected for pheophytin	0.134	ug/L	5 ft
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a, uncorrected for pheophytin	16.8	ug/L	15 ft
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a, uncorrected for pheophytin	21.4	ug/L	3 ft
RTZU	HONEY LAKE	1988-09-08		Chlorophyll a, uncorrected for pheophytin	17.5	ug/L	7 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Chlorophyll a, uncorrected for pheophytin	59.5	ug/L	17 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Chlorophyll a, uncorrected for pheophytin	58.3	ug/L	23 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Chlorophyll a, uncorrected for pheophytin	20.9	ug/L	8 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Chlorophyll a, uncorrected for pheophytin	32.8	ug/L	5 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Chlorophyll a, uncorrected for pheophytin	29.3	ug/L	16 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Chlorophyll a, uncorrected for pheophytin	69.1	ug/L	15 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Chlorophyll a, uncorrected for pheophytin	72.6	ug/L	16 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Chlorophyll b	64.6	ug/L	17 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Chlorophyll b	105	ug/L	23 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Chlorophyll b	NA	ug/L	8 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Chlorophyll b	NA	ug/L	5 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Chlorophyll b	NA	ug/L	16 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Chlorophyll b	31.8	ug/L	15 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Chlorophyll b	28	ug/L	16 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Chlorophyll c	NA	ug/L	17 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Chlorophyll c	NA	ug/L	23 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Chlorophyll c	0.61	ug/L	8 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Chlorophyll c	1.55	ug/L	5 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Chlorophyll c	2	ug/L	16 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Chlorophyll c	NA	ug/L	15 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Chlorophyll c	NA	ug/L	16 ft
RTZU	HONEY LAKE	2008-04-04		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-04-04		Depth, bottom	15	ft	
RTZU	HONEY LAKE	2008-04-04		Depth, bottom	18	ft	
RTZU	HONEY LAKE	2008-04-29		Depth, bottom	18	ft	
RTZU	HONEY LAKE	2008-04-29		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-04-29		Depth, bottom	15	ft	
RTZU	HONEY LAKE	2008-05-13		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-05-13		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-05-13		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-05-19		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-05-19		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-05-19		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-06-03		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-06-03		Depth, bottom	17.5	ft	
RTZU	HONEY LAKE	2008-06-03		Depth, bottom	16.5	ft	
RTZU	HONEY LAKE	2008-06-10		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-06-10		Depth, bottom	18	ft	
RTZU	HONEY LAKE	2008-06-10		Depth, bottom	16	ft	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-06-24		Depth, bottom	19	ft	
RTZU	HONEY LAKE	2008-06-24		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-06-24		Depth, bottom	18	ft	
RTZU	HONEY LAKE	2008-07-22		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-07-22		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-07-22		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-08-07		Depth, bottom	16.5	ft	
RTZU	HONEY LAKE	2008-08-07		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-08-07		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-08-19		Depth, bottom	16.5	ft	
RTZU	HONEY LAKE	2008-08-19		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-08-19		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-09-10		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-09-10		Depth, bottom	17	ft	
RTZU	HONEY LAKE	2008-09-10		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-09-23		Depth, bottom	16.5	ft	
RTZU	HONEY LAKE	2008-09-23		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-09-23		Depth, bottom	15	ft	
RTZU	HONEY LAKE	2008-10-09		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-10-09		Depth, bottom	15	ft	
RTZU	HONEY LAKE	2008-10-09		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-10-28		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-10-28		Depth, bottom	16	ft	
RTZU	HONEY LAKE	2008-10-28		Depth, bottom	15.5	ft	
RTZU	HONEY LAKE	1988-05-04		Depth, Secchi Disk Depth	10.5	ft	5
RTZU	HONEY LAKE	1988-09-08		Depth, Secchi Disk Depth	3.83	ft	3
RTZU	HONEY LAKE	1998-05-13		Depth, Secchi Disk Depth	7.6	ft	3
RTZU	HONEY LAKE	1998-07-15		Depth, Secchi Disk Depth	7.6	ft	3
RTZU	HONEY LAKE	1998-08-12		Depth, Secchi Disk Depth	2.6	ft	3
RTZU	HONEY LAKE	1998-09-16		Depth, Secchi Disk Depth	4.9	ft	3
RTZU	HONEY LAKE	2001-05-09		Depth, Secchi Disk Depth	13.42	ft	3
RTZU	HONEY LAKE	2001-06-13		Depth, Secchi Disk Depth	7.81	ft	3
RTZU	HONEY LAKE	2001-07-18		Depth, Secchi Disk Depth	7.58	ft	3
RTZU	HONEY LAKE	2001-08-15		Depth, Secchi Disk Depth	6.92	ft	3
RTZU	HONEY LAKE	2001-09-12		Depth, Secchi Disk Depth	6.27	ft	3
RTZU	HONEY LAKE	2008-04-04	14:30	Depth, Secchi Disk Depth	35	in	
RTZU	HONEY LAKE	2008-04-04	15:00	Depth, Secchi Disk Depth	40	in	
RTZU	HONEY LAKE	2008-04-04	14:45	Depth, Secchi Disk Depth	36	in	
RTZU	HONEY LAKE	2008-04-29	13:30	Depth, Secchi Disk Depth	58	in	
RTZU	HONEY LAKE	2008-04-29	13:15	Depth, Secchi Disk Depth	56	in	
RTZU	HONEY LAKE	2008-04-29	13:00	Depth, Secchi Disk Depth	60	in	
RTZU	HONEY LAKE	2008-05-13	13:00	Depth, Secchi Disk Depth	72	in	
RTZU	HONEY LAKE	2008-05-13	13:15	Depth, Secchi Disk Depth	70	in	
RTZU	HONEY LAKE	2008-05-13	13:30	Depth, Secchi Disk Depth	78	in	
RTZU	HONEY LAKE	2008-05-13		Depth, Secchi Disk Depth	6.1	ft	3
RTZU	HONEY LAKE	2008-05-19	14:16	Depth, Secchi Disk Depth	86	in	

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-05-19	14:30	Depth, Secchi Disk Depth	90	in	
RTZU	HONEY LAKE	2008-05-19	14:50	Depth, Secchi Disk Depth	92	in	
RTZU	HONEY LAKE	2008-06-03	13:25	Depth, Secchi Disk Depth	140	in	
RTZU	HONEY LAKE	2008-06-03	13:40	Depth, Secchi Disk Depth	141	in	
RTZU	HONEY LAKE	2008-06-03	13:15	Depth, Secchi Disk Depth	138	in	
RTZU	HONEY LAKE	2008-06-10	13:30	Depth, Secchi Disk Depth	52	in	
RTZU	HONEY LAKE	2008-06-10	13:40	Depth, Secchi Disk Depth	54	in	
RTZU	HONEY LAKE	2008-06-10	13:50	Depth, Secchi Disk Depth	56	in	
RTZU	HONEY LAKE	2008-06-10		Depth, Secchi Disk Depth	5.085	ft	3
RTZU	HONEY LAKE	2008-06-24	11:15	Depth, Secchi Disk Depth	116	in	
RTZU	HONEY LAKE	2008-06-24	11:20	Depth, Secchi Disk Depth	124	in	
RTZU	HONEY LAKE	2008-06-24	11:30	Depth, Secchi Disk Depth	110	in	
RTZU	HONEY LAKE	2008-07-08		Depth, Secchi Disk Depth	12.63	ft	3
RTZU	HONEY LAKE	2008-07-22	10:45	Depth, Secchi Disk Depth	102	in	
RTZU	HONEY LAKE	2008-07-22	11:20	Depth, Secchi Disk Depth	108	in	
RTZU	HONEY LAKE	2008-07-22	11:00	Depth, Secchi Disk Depth	93	in	
RTZU	HONEY LAKE	2008-08-07	13:15	Depth, Secchi Disk Depth	88	in	
RTZU	HONEY LAKE	2008-08-07	13:00	Depth, Secchi Disk Depth	93	in	
RTZU	HONEY LAKE	2008-08-07	12:45	Depth, Secchi Disk Depth	96	in	
RTZU	HONEY LAKE	2008-08-12		Depth, Secchi Disk Depth	5.84	ft	3
RTZU	HONEY LAKE	2008-08-19	13:00	Depth, Secchi Disk Depth	75	in	
RTZU	HONEY LAKE	2008-08-19	13:45	Depth, Secchi Disk Depth	73	in	
RTZU	HONEY LAKE	2008-08-19	13:25	Depth, Secchi Disk Depth	66	in	
RTZU	HONEY LAKE	2008-09-09		Depth, Secchi Disk Depth	6.17	ft	3
RTZU	HONEY LAKE	2008-09-10	13:10	Depth, Secchi Disk Depth	75	in	
RTZU	HONEY LAKE	2008-09-10	13:23	Depth, Secchi Disk Depth	77	in	
RTZU	HONEY LAKE	2008-09-10	12:50	Depth, Secchi Disk Depth	78	in	
RTZU	HONEY LAKE	2008-09-23	13:45	Depth, Secchi Disk Depth	58	in	
RTZU	HONEY LAKE	2008-09-23	13:55	Depth, Secchi Disk Depth	50	in	
RTZU	HONEY LAKE	2008-09-23	13:27	Depth, Secchi Disk Depth	60	in	
RTZU	HONEY LAKE	2008-10-09	13:15	Depth, Secchi Disk Depth	60	in	
RTZU	HONEY LAKE	2008-10-09	14:05	Depth, Secchi Disk Depth	62	in	
RTZU	HONEY LAKE	2008-10-09	13:40	Depth, Secchi Disk Depth	56	in	
RTZU	HONEY LAKE	2008-10-28	14:05	Depth, Secchi Disk Depth	56	in	
RTZU	HONEY LAKE	2008-10-28	13:50	Depth, Secchi Disk Depth	56	in	
RTZU	HONEY LAKE	2008-10-28	13:35	Depth, Secchi Disk Depth	60	in	
RTZU	HONEY LAKE	2015-05-12		Depth, Secchi Disk Depth	3.9	ft	3
RTZU	HONEY LAKE	2015-06-16		Depth, Secchi Disk Depth	1.7	ft	3
RTZU	HONEY LAKE	2015-07-14		Depth, Secchi Disk Depth	3.2	ft	3
RTZU	HONEY LAKE	2015-08-11		Depth, Secchi Disk Depth	2.8	ft	3
RTZU	HONEY LAKE	2015-09-16		Depth, Secchi Disk Depth	3.94	ft	3
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	8.25	mg/L	0.25 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	8.23	mg/L	1 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	7.95	mg/L	10 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	7.31	mg/L	12 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	7.04	mg/L	14 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	0.36	mg/L	16 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	8.15	mg/L	2 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	8.3	mg/L	3 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	8.2	mg/L	4 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	7.95	mg/L	6 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen (DO)	7.94	mg/L	8 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	10.36	mg/L	0.25 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	10.37	mg/L	1 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	4.31	mg/L	10 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	3.03	mg/L	12 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	1.54	mg/L	14 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	0.89	mg/L	16 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	0.17	mg/L	18 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	10.28	mg/L	2 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	10.33	mg/L	3 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	10.15	mg/L	4 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	9.92	mg/L	6 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen (DO)	6.8	mg/L	8 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.78	mg/L	0.25 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.79	mg/L	1 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	4.88	mg/L	10 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	2.93	mg/L	12 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	0.19	mg/L	14 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	0.12	mg/L	16 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.7	mg/L	2 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.7	mg/L	3 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.66	mg/L	4 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	7.38	mg/L	6 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen (DO)	3.92	mg/L	8 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	8.18	mg/L	0.25 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	8.7	mg/L	1 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7	mg/L	10 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	4	mg/L	12 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	0.44	mg/L	14 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	0.24	mg/L	16 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7.68	mg/L	2 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7.62	mg/L	3 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7.57	mg/L	4 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7.5	mg/L	6 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen (DO)	7.44	mg/L	8 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	6.43	mg/L	0.25 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	6.31	mg/L	1 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	3.86	mg/L	10 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	0.84	mg/L	12 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	0.03	mg/L	14 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	0.02	mg/L	16 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	6.29	mg/L	2 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	6.24	mg/L	3 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	6.19	mg/L	4 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	5.62	mg/L	6 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen (DO)	4.75	mg/L	8 ft
RTZU	HONEY LAKE	2008-05-13		Dissolved oxygen (DO)	0.935	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Dissolved oxygen (DO)	9.82	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10		Dissolved oxygen (DO)	0.85	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Dissolved oxygen (DO)	12.15	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08		Dissolved oxygen (DO)	0.9	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08		Dissolved oxygen (DO)	6.55	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12		Dissolved oxygen (DO)	0.615	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Dissolved oxygen (DO)	8.07	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09		Dissolved oxygen (DO)	0.17	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Dissolved oxygen (DO)	6.4	mg/L	3 ft
RTZU	HONEY LAKE	2015-05-12		Dissolved oxygen (DO)	6.14	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Dissolved oxygen (DO)	7.89	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Dissolved oxygen (DO)	0	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Dissolved oxygen (DO)	10.86	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Dissolved oxygen (DO)	0	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Dissolved oxygen (DO)	7.72	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Dissolved oxygen (DO)	0.03	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Dissolved oxygen (DO)	5.85	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Dissolved oxygen (DO)	0.04	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Dissolved oxygen (DO)	8	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	89.6	%	0.25 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	89.3	%	1 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	85.8	%	10 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	78.5	%	12 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	75.4	%	14 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	3.7	%	16 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	88.4	%	2 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	90	%	3 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	88.9	%	4 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	86	%	6 ft
RTZU	HONEY LAKE	2001-05-09		Dissolved oxygen saturation	85.7	%	8 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	128.2	%	0.25 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	128.1	%	1 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	44.9	%	10 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	31.1	%	12 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	15.8	%	14 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	9.1	%	16 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	1.7	%	18 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	126.8	%	2 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	127.3	%	3 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	124.7	%	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	112.1	%	6 ft
RTZU	HONEY LAKE	2001-06-13		Dissolved oxygen saturation	72.5	%	8 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	100.8	%	0.25 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	100.9	%	1 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	58	%	10 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	32.5	%	12 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	2	%	14 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	1.2	%	16 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	99.8	%	2 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	99.7	%	3 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	99.2	%	4 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	95.4	%	6 ft
RTZU	HONEY LAKE	2001-07-18		Dissolved oxygen saturation	49	%	8 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	103.1	%	0.25 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	109.7	%	1 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	87.8	%	10 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	47	%	12 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	4.9	%	14 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	2.4	%	16 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	96.9	%	2 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	96.1	%	3 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	95.5	%	4 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	94.7	%	6 ft
RTZU	HONEY LAKE	2001-08-15		Dissolved oxygen saturation	93.9	%	8 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	75.6	%	0.25 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	74.1	%	1 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	45.1	%	10 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	9.7	%	12 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	0.4	%	14 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	0.2	%	16 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	74	%	2 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	73.3	%	3 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	72.7	%	4 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	66	%	6 ft
RTZU	HONEY LAKE	2001-09-12		Dissolved oxygen saturation	55.7	%	8 ft
RTZU	HONEY LAKE	2002-05-07		E. coli	3	Col/100ml	ft
RTZU	HONEY LAKE	2002-05-07		E. coli	5.1	Col/100ml	ft
RTZU	HONEY LAKE	2002-05-21		E. coli	1	Col/100ml	ft
RTZU	HONEY LAKE	2002-05-21		E. coli	5.2	Col/100ml	ft
RTZU	HONEY LAKE	2002-06-10		E. coli	24.9	Col/100ml	ft
RTZU	HONEY LAKE	2002-06-10		E. coli	27.5	Col/100ml	ft
RTZU	HONEY LAKE	2002-06-24		E. coli	2	Col/100ml	ft
RTZU	HONEY LAKE	2002-06-24		E. coli	0	Col/100ml	ft
RTZU	HONEY LAKE	2002-07-08		E. coli	9.8	Col/100ml	ft
RTZU	HONEY LAKE	2002-07-08		E. coli	12.1	Col/100ml	ft
RTZU	HONEY LAKE	2002-07-22		E. coli	7.4	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2002-07-22		E. coli	20.1	Col/100ml	ft
RTZU	HONEY LAKE	2002-08-05		E. coli	2	Col/100ml	ft
RTZU	HONEY LAKE	2002-08-05		E. coli	1	Col/100ml	ft
RTZU	HONEY LAKE	2002-08-19		E. coli	178.5	Col/100ml	ft
RTZU	HONEY LAKE	2002-08-19		E. coli	118.7	Col/100ml	ft
RTZU	HONEY LAKE	2003-05-06		E. coli	5.2	Col/100ml	ft
RTZU	HONEY LAKE	2003-05-06		E. coli	4.1	Col/100ml	ft
RTZU	HONEY LAKE	2003-05-13		E. coli	8.6	Col/100ml	ft
RTZU	HONEY LAKE	2003-05-13		E. coli	15.8	Col/100ml	ft
RTZU	HONEY LAKE	2003-06-09		E. coli	24	Col/100ml	ft
RTZU	HONEY LAKE	2003-06-09		E. coli	27.2	Col/100ml	ft
RTZU	HONEY LAKE	2003-06-23		E. coli	6.3	Col/100ml	ft
RTZU	HONEY LAKE	2003-07-07		E. coli	85.7	Col/100ml	ft
RTZU	HONEY LAKE	2003-07-07		E. coli	75.1	Col/100ml	ft
RTZU	HONEY LAKE	2003-07-21		E. coli	10.8	Col/100ml	ft
RTZU	HONEY LAKE	2003-07-21		E. coli	5.2	Col/100ml	ft
RTZU	HONEY LAKE	2003-08-14		E. coli	28.2	Col/100ml	ft
RTZU	HONEY LAKE	2003-08-14		E. coli	28.8	Col/100ml	ft
RTZU	HONEY LAKE	2003-08-18		E. coli	29.2	Col/100ml	ft
RTZU	HONEY LAKE	2003-08-18		E. coli	29.5	Col/100ml	ft
RTZU	HONEY LAKE	2004-05-24		E. coli	163	Col/100ml	ft
RTZU	HONEY LAKE	2004-05-24		E. coli	179	Col/100ml	ft
RTZU	HONEY LAKE	2004-05-27		E. coli	17.3	Col/100ml	ft
RTZU	HONEY LAKE	2004-05-27		E. coli	26.2	Col/100ml	ft
RTZU	HONEY LAKE	2004-06-07		E. coli	1046.2	Col/100ml	ft
RTZU	HONEY LAKE	2004-06-07		E. coli	920.8	Col/100ml	ft
RTZU	HONEY LAKE	2004-06-08		E. coli	35.9	Col/100ml	ft
RTZU	HONEY LAKE	2004-06-08		E. coli	55.7	Col/100ml	ft
RTZU	HONEY LAKE	2004-06-21		E. coli	1	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-06		E. coli	138.5	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-06		E. coli	64.6	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-19		E. coli	201.4	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-19		E. coli	307.6	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-20		E. coli	13.2	Col/100ml	ft
RTZU	HONEY LAKE	2004-07-20		E. coli	14.8	Col/100ml	ft
RTZU	HONEY LAKE	2004-08-02		E. coli	131.7	Col/100ml	ft
RTZU	HONEY LAKE	2004-08-02		E. coli	172.2	Col/100ml	ft
RTZU	HONEY LAKE	2004-08-16		E. coli	117.8	Col/100ml	ft
RTZU	HONEY LAKE	2004-08-16		E. coli	151.5	Col/100ml	ft
RTZU	HONEY LAKE	2005-05-18		E. coli	5.2	Col/100ml	ft
RTZU	HONEY LAKE	2005-05-25		E. coli	10.7	Col/100ml	ft
RTZU	HONEY LAKE	2005-05-25		E. coli	10.8	Col/100ml	ft
RTZU	HONEY LAKE	2005-06-06		E. coli	16	Col/100ml	ft
RTZU	HONEY LAKE	2005-06-06		E. coli	9.8	Col/100ml	ft
RTZU	HONEY LAKE	2005-06-20		E. coli	14.8	Col/100ml	ft
RTZU	HONEY LAKE	2005-06-20		E. coli	3.1	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2005-07-11		E. coli	12.1	Col/100ml	ft
RTZU	HONEY LAKE	2005-07-11		E. coli	14.5	Col/100ml	ft
RTZU	HONEY LAKE	2005-07-25		E. coli	275.5	Col/100ml	ft
RTZU	HONEY LAKE	2005-07-25		E. coli	365.4	Col/100ml	ft
RTZU	HONEY LAKE	2005-07-26		E. coli	63.8	Col/100ml	ft
RTZU	HONEY LAKE	2005-07-26		E. coli	73.3	Col/100ml	ft
RTZU	HONEY LAKE	2005-08-08		E. coli	159.4	Col/100ml	ft
RTZU	HONEY LAKE	2005-08-08		E. coli	172.3	Col/100ml	ft
RTZU	HONEY LAKE	2005-08-22		E. coli	24.6	Col/100ml	ft
RTZU	HONEY LAKE	2005-08-22		E. coli	26.5	Col/100ml	ft
RTZU	HONEY LAKE	2006-05-23		E. coli	6.3	Col/100ml	ft
RTZU	HONEY LAKE	2006-05-23		E. coli	7.4	Col/100ml	ft
RTZU	HONEY LAKE	2006-05-24		E. coli	36.9	Col/100ml	ft
RTZU	HONEY LAKE	2006-05-24		E. coli	39.3	Col/100ml	ft
RTZU	HONEY LAKE	2006-06-05		E. coli	16.9	Col/100ml	ft
RTZU	HONEY LAKE	2006-06-05		E. coli	8.6	Col/100ml	ft
RTZU	HONEY LAKE	2006-06-19		E. coli	125.9	Col/100ml	ft
RTZU	HONEY LAKE	2006-06-19		E. coli	165.8	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-10		E. coli	7.4	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-10		E. coli	8.6	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-24		E. coli	410.6	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-24		E. coli	770.1	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-25		E. coli	1413.6	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-25		E. coli	1553.1	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-26		E. coli	547.5	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-26		E. coli	770.1	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-27		E. coli	221.1	Col/100ml	ft
RTZU	HONEY LAKE	2006-07-27		E. coli	97.4	Col/100ml	ft
RTZU	HONEY LAKE	2006-08-07		E. coli	111.9	Col/100ml	ft
RTZU	HONEY LAKE	2006-08-07		E. coli	139.6	Col/100ml	ft
RTZU	HONEY LAKE	2006-08-21		E. coli	28.8	Col/100ml	ft
RTZU	HONEY LAKE	2006-08-21		E. coli	37.3	Col/100ml	ft
RTZU	HONEY LAKE	2007-05-22		E. coli	13.2	Col/100ml	ft
RTZU	HONEY LAKE	2007-05-22		E. coli	23.3	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-11		E. coli	3.1	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-11		E. coli	7.4	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-25		E. coli	22.6	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-25		E. coli	461.1	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-26		E. coli	79.8	Col/100ml	ft
RTZU	HONEY LAKE	2007-06-26		E. coli	93.3	Col/100ml	ft
RTZU	HONEY LAKE	2007-07-09		E. coli	191.8	Col/100ml	ft
RTZU	HONEY LAKE	2007-07-09		E. coli	85.7	Col/100ml	ft
RTZU	HONEY LAKE	2007-07-23		E. coli	14.8	Col/100ml	ft
RTZU	HONEY LAKE	2007-07-23		E. coli	21.6	Col/100ml	ft
RTZU	HONEY LAKE	2007-08-13		E. coli	108.6	Col/100ml	ft
RTZU	HONEY LAKE	2007-08-13		E. coli	88.4	Col/100ml	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2007-08-27		E. coli	17.3	Col/100ml	ft
RTZU	HONEY LAKE	2007-08-27		E. coli	20.3	Col/100ml	ft
RTZU	HONEY LAKE	2001-05-09		Fecal coliform	20	Col/100ml	ft
RTZU	HONEY LAKE	2001-05-09		Fecal coliform	10	Col/100ml	ft
RTZU	HONEY LAKE	2001-05-30		Fecal coliform	80	Col/100ml	ft
RTZU	HONEY LAKE	2001-05-30		Fecal coliform	70	Col/100ml	ft
RTZU	HONEY LAKE	2001-06-12		Fecal coliform	30	Col/100ml	ft
RTZU	HONEY LAKE	2001-06-12		Fecal coliform	80	Col/100ml	ft
RTZU	HONEY LAKE	2001-06-26		Fecal coliform	100	Col/100ml	ft
RTZU	HONEY LAKE	2001-06-26		Fecal coliform	60	Col/100ml	ft
RTZU	HONEY LAKE	2001-07-17		Fecal coliform	140	Col/100ml	ft
RTZU	HONEY LAKE	2001-07-31		Fecal coliform	1300	Col/100ml	ft
RTZU	HONEY LAKE	2001-07-31		Fecal coliform	1500	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-02		Fecal coliform	590	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-02		Fecal coliform	350	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-03		Fecal coliform	390	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-03		Fecal coliform	1700	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-04		Fecal coliform	830	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-04		Fecal coliform	880	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-05		Fecal coliform	320	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-05		Fecal coliform	230	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-14		Fecal coliform	200	Col/100ml	ft
RTZU	HONEY LAKE	2001-08-14		Fecal coliform	190	Col/100ml	ft
RTZU	HONEY LAKE	2011-05-02	8:54	Inorganic nitrogen (nitrate and nitrite)	0.131	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Inorganic nitrogen (nitrate and nitrite)	0.03	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Inorganic nitrogen (nitrate and nitrite)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	3.586584588	Coef	0.29 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.133837942	Coef	1.37 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.326359222	Coef	10.25 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.264676489	Coef	12.18 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.311746322	Coef	14.23 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.392869911	Coef	2.27 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.586506333	Coef	4.23 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.104215949	Coef	6.26 ft
RTZU	HONEY LAKE	2001-05-09		Light Extinction	0.253138699	Coef	8.23 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	9.255832795	Coef	0.13 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.463723108	Coef	1.31 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.362768216	Coef	10.25 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.378255868	Coef	12.2 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.493463859	Coef	14.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.710920185	Coef	16.2 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.022667148	Coef	2.32 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.42162234	Coef	4.29 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.264230679	Coef	6.26 ft
RTZU	HONEY LAKE	2001-06-13		Light Extinction	0.476255819	Coef	8.28 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	3.401358957	Coef	0.29 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.366851581	Coef	1.23 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.438146018	Coef	10.32 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	1.132589988	Coef	12.26 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.30092366	Coef	2.29 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.353002171	Coef	4.27 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.34657359	Coef	6.27 ft
RTZU	HONEY LAKE	2001-07-18		Light Extinction	0.333411772	Coef	8.28 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	4.811749068	Coef	0.27 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.500955789	Coef	1.28 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	-0.059187455	Coef	10.29 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.831273497	Coef	12.26 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.26775875	Coef	14.35 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.902579191	Coef	2.23 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.321450808	Coef	4.27 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.324148307	Coef	6.27 ft
RTZU	HONEY LAKE	2001-08-15		Light Extinction	0.284391805	Coef	8.3 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	3.650355459	Coef	0.35 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.323928552	Coef	1.27 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.412956952	Coef	10.33 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.684847585	Coef	12.26 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.703702721	Coef	14.23 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.575877233	Coef	2.22 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.436241379	Coef	4.35 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.36955107	Coef	6.37 ft
RTZU	HONEY LAKE	2001-09-12		Light Extinction	0.384206795	Coef	8.21 ft
RTZU	HONEY LAKE	1988-05-04		Nitrite (NO2) + Nitrate (NO3) as N	0.075	mg/L	11 ft
RTZU	HONEY LAKE	1988-05-04		Nitrite (NO2) + Nitrate (NO3) as N	0.091	mg/L	17 ft
RTZU	HONEY LAKE	1988-05-04		Nitrite (NO2) + Nitrate (NO3) as N	0.075	mg/L	5 ft
RTZU	HONEY LAKE	1988-09-08		Nitrite (NO2) + Nitrate (NO3) as N	0.061	mg/L	15 ft
RTZU	HONEY LAKE	1988-09-08		Nitrite (NO2) + Nitrate (NO3) as N	0.061	mg/L	3 ft
RTZU	HONEY LAKE	1988-09-08		Nitrite (NO2) + Nitrate (NO3) as N	0.061	mg/L	7 ft
RTZU	HONEY LAKE	1998-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.053	mg/L	16 ft
RTZU	HONEY LAKE	1998-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.129	mg/L	3 ft
RTZU	HONEY LAKE	1998-07-15		Nitrite (NO2) + Nitrate (NO3) as N	0.089	mg/L	16 ft
RTZU	HONEY LAKE	1998-07-15		Nitrite (NO2) + Nitrate (NO3) as N	0.062	mg/L	3 ft
RTZU	HONEY LAKE	1998-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.082	mg/L	15 ft
RTZU	HONEY LAKE	1998-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.059	mg/L	3 ft
RTZU	HONEY LAKE	1998-09-16		Nitrite (NO2) + Nitrate (NO3) as N	0.088	mg/L	15 ft
RTZU	HONEY LAKE	1998-09-16		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	15 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
RTZU	HONEY LAKE	1988-05-04		Nitrogen, ammonia as N	0.03	mg/L	11 ft
RTZU	HONEY LAKE	1988-05-04		Nitrogen, ammonia as N	0.06	mg/L	17 ft
RTZU	HONEY LAKE	1988-05-04		Nitrogen, ammonia as N	0.04	mg/L	5 ft
RTZU	HONEY LAKE	1998-05-13		Nitrogen, ammonia as N	1.36	mg/L	16 ft
RTZU	HONEY LAKE	1998-05-13		Nitrogen, ammonia as N	0.385	mg/L	3 ft
RTZU	HONEY LAKE	1998-07-15		Nitrogen, ammonia as N	3.59	mg/L	16 ft
RTZU	HONEY LAKE	1998-08-12		Nitrogen, ammonia as N	5.05	mg/L	15 ft
RTZU	HONEY LAKE	1998-09-16		Nitrogen, ammonia as N	3.72	mg/L	15 ft
RTZU	HONEY LAKE	2001-05-09		Nitrogen, ammonia as N	0.602	mg/L	16 ft
RTZU	HONEY LAKE	2001-05-09		Nitrogen, ammonia as N	0.104	mg/L	3 ft
RTZU	HONEY LAKE	2001-06-13		Nitrogen, ammonia as N	0.291	mg/L	16 ft
RTZU	HONEY LAKE	2001-09-12		Nitrogen, ammonia as N	1.25	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Nitrogen, ammonia as N	0.1	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-19	14:16	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-10		Nitrogen, ammonia as N	0.288	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-08		Nitrogen, ammonia as N	0.1	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-12		Nitrogen, ammonia as N	3.54	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Nitrogen, ammonia as N	0.3	mg/L	1 ft
RTZU	HONEY LAKE	2008-09-09		Nitrogen, ammonia as N	5.33	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Nitrogen, ammonia as N	0.1	mg/L	3 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Nitrogen, ammonia as N	0.04	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Nitrogen, ammonia as N	3.2	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Nitrogen, ammonia as N	0.11	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Nitrogen, ammonia as N	0.03	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Nitrogen, ammonia as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Kjeldahl	2.55	mg/L	16 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Kjeldahl	2.55	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Kjeldahl	1.28	mg/L	3 ft
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Kjeldahl	1.28	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Kjeldahl	4.83	mg/L	16 ft
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Kjeldahl	4.83	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Kjeldahl	0.92	mg/L	3 ft
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Kjeldahl	0.92	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Kjeldahl	5.81	mg/L	15 ft
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Kjeldahl	5.81	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Kjeldahl	0.91	mg/L	3 ft
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Kjeldahl	0.91	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Kjeldahl	7.1	mg/L	15 ft
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Kjeldahl	7.1	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Kjeldahl	1.2	mg/L	3 ft
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Kjeldahl	1.2	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Nitrogen, Kjeldahl	1.49	mg/L	16 ft
RTZU	HONEY LAKE	2001-05-09		Nitrogen, Kjeldahl	1.49	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Nitrogen, Kjeldahl	1.01	mg/L	3 ft
RTZU	HONEY LAKE	2001-05-09		Nitrogen, Kjeldahl	1.01	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Nitrogen, Kjeldahl	1.2	mg/L	16 ft
RTZU	HONEY LAKE	2001-06-13		Nitrogen, Kjeldahl	1.2	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Nitrogen, Kjeldahl	1.13	mg/L	3 ft
RTZU	HONEY LAKE	2001-06-13		Nitrogen, Kjeldahl	1.13	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Nitrogen, Kjeldahl	2.17	mg/L	15 ft
RTZU	HONEY LAKE	2001-07-18		Nitrogen, Kjeldahl	2.17	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Nitrogen, Kjeldahl	0.866	mg/L	3 ft
RTZU	HONEY LAKE	2001-07-18		Nitrogen, Kjeldahl	0.866	mg/L	3
RTZU	HONEY LAKE	2001-08-15		Nitrogen, Kjeldahl	2.15	mg/L	14 ft
RTZU	HONEY LAKE	2001-08-15		Nitrogen, Kjeldahl	2.15	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Nitrogen, Kjeldahl	1.04	mg/L	3 ft
RTZU	HONEY LAKE	2001-08-15		Nitrogen, Kjeldahl	1.04	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Nitrogen, Kjeldahl	2.95	mg/L	15 ft
RTZU	HONEY LAKE	2001-09-12		Nitrogen, Kjeldahl	2.95	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Nitrogen, Kjeldahl	1.22	mg/L	3 ft
RTZU	HONEY LAKE	2001-09-12		Nitrogen, Kjeldahl	1.22	mg/L	3
RTZU	HONEY LAKE	2008-05-13		Nitrogen, Kjeldahl	1.65	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Nitrogen, Kjeldahl	1.65	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Nitrogen, Kjeldahl	0.954	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13		Nitrogen, Kjeldahl	0.954	mg/L	3
RTZU	HONEY LAKE	2008-05-19	14:16	Nitrogen, Kjeldahl	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-10		Nitrogen, Kjeldahl	1.5	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Nitrogen, Kjeldahl	1.5	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Nitrogen, Kjeldahl	1.18	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10		Nitrogen, Kieldahl	1.18	mg/L	3
RTZU	HONEY LAKE	2008-06-24	11:30	Nitrogen, Kjeldahl	1.03	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-08		Nitrogen, Kjeldahl	2.64	mg/L	14 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-07-08		Nitrogen, Kjeldahl	2.64	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Nitrogen, Kjeldahl	0.974	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08		Nitrogen, Kjeldahl	0.974	mg/L	3
RTZU	HONEY LAKE	2008-07-22	10:45	Nitrogen, Kjeldahl	1.12	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-12		Nitrogen, Kjeldahl	4.73	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Nitrogen, Kjeldahl	4.73	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Nitrogen, Kjeldahl	0.917	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12		Nitrogen, Kjeldahl	0.917	mg/L	3
RTZU	HONEY LAKE	2008-08-19	13:00	Nitrogen, Kjeldahl	0.725	mg/L	1 ft
RTZU	HONEY LAKE	2008-09-09		Nitrogen, Kjeldahl	6.65	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Nitrogen, Kjeldahl	6.65	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Nitrogen, Kjeldahl	1.05	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09		Nitrogen, Kjeldahl	1.05	mg/L	3
RTZU	HONEY LAKE	2008-10-28	14:05	Nitrogen, Kjeldahl	1.34	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Nitrogen, Kjeldahl	1.09	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Nitrogen, Kjeldahl	1.49	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Nitrogen, Kjeldahl	0.974	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Nitrogen, Kjeldahl	0.739	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Nitrogen, Kjeldahl	1.72	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Nitrogen, Kjeldahl	0.956	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Nitrogen, Kjeldahl	0.809	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Nitrogen, Kjeldahl	1.31	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Nitrogen, Kjeldahl	1.01	mg/L	1 ft
RTZU	HONEY LAKE	2015-05-12		Nitrogen, Kjeldahl	1.32	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Nitrogen, Kjeldahl	1.18	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Nitrogen, Kjeldahl	3.43	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Nitrogen, Kjeldahl	1.93	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Nitrogen, Kjeldahl	1.88	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Nitrogen, Kjeldahl	1.38	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Nitrogen, Kjeldahl	4.57	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Nitrogen, Kjeldahl	1.36	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Nitrogen, Kjeldahl	8.12	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Nitrogen, Kjeldahl	1.31	mg/L	3
RTZU	HONEY LAKE	1988-05-04		Nitrogen, Nitrate (NO3) as N	0.075	mg/L	11
RTZU	HONEY LAKE	1988-05-04		Nitrogen, Nitrate (NO3) as N	0.091	mg/L	17
RTZU	HONEY LAKE	1988-05-04		Nitrogen, Nitrate (NO3) as N	0.075	mg/L	5
RTZU	HONEY LAKE	1988-09-08		Nitrogen, Nitrate (NO3) as N	0.061	mg/L	15
RTZU	HONEY LAKE	1988-09-08		Nitrogen, Nitrate (NO3) as N	0.061	mg/L	3
RTZU	HONEY LAKE	1988-09-08		Nitrogen, Nitrate (NO3) as N	0.061	mg/L	7
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Nitrate (NO3) as N	0.053	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Nitrogen, Nitrate (NO3) as N	0.129	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Nitrate (NO3) as N	0.089	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Nitrogen, Nitrate (NO3) as N	0.062	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Nitrate (NO3) as N	0.082	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Nitrogen, Nitrate (NO3) as N	0.059	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Nitrate (NO3) as N	0.088	mg/L	15

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-09-16		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	3
RTZU	HONEY LAKE	2008-05-19	14:16	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2015-05-12		Nitrogen, Nitrate (NO3) as N	0.068	mg/L	3
RTZU	HONEY LAKE	2008-05-19	14:16	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-05-19	14:16	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
RTZU	HONEY LAKE	1998-05-13		Orthophosphate as P, Dissolved	0.276	mg/L	16 ft
RTZU	HONEY LAKE	1998-05-13		Orthophosphate as P, Dissolved	0.037	mg/L	3 ft
RTZU	HONEY LAKE	1998-07-15		Orthophosphate as P, Dissolved	0.76	mg/L	16 ft
RTZU	HONEY LAKE	1998-08-12		Orthophosphate as P, Dissolved	0.972	mg/L	15 ft
RTZU	HONEY LAKE	1998-09-16		Orthophosphate as P, Dissolved	0.594	mg/L	15 ft
RTZU	HONEY LAKE	2001-05-09		Orthophosphate as P, Dissolved	0.141	mg/L	16 ft
RTZU	HONEY LAKE	2001-05-09		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
RTZU	HONEY LAKE	2001-06-13		Orthophosphate as P, Dissolved	0.053	mg/L	16 ft
RTZU	HONEY LAKE	2001-07-18		Orthophosphate as P, Dissolved	0.236	mg/L	15 ft
RTZU	HONEY LAKE	2001-08-15		Orthophosphate as P, Dissolved	0.06	mg/L	14 ft
RTZU	HONEY LAKE	2001-09-12		Orthophosphate as P, Dissolved	0.335	mg/L	15 ft
RTZU	HONEY LAKE	1998-05-13		рН	7.29	SU	16
RTZU	HONEY LAKE	1998-05-13		рН	7.67	SU	3
RTZU	HONEY LAKE	1998-07-15		рН	7.01	SU	16
RTZU	HONEY LAKE	1998-07-15		рН	8.25	SU	3
RTZU	HONEY LAKE	1998-08-12		рН	7.03	SU	15
RTZU	HONEY LAKE	1998-08-12		рН	8.64	SU	3
RTZU	HONEY LAKE	1998-09-16		рН	6.81	SU	15
RTZU	HONEY LAKE	1998-09-16		рН	8.2	SU	3
RTZU	HONEY LAKE	2001-05-09		рН	7.93	SU	0.25 ft
RTZU	HONEY LAKE	2001-05-09		рН	7.92	SU	1 ft
RTZU	HONEY LAKE	2001-05-09		рН	7.9	SU	10 ft
RTZU	HONEY LAKE	2001-05-09		рН	7.82	SU	12 ft
RTZU	HONEY LAKE	2001-05-09		pH	7.8	SU	14 ft
RTZU	HONEY LAKE	2001-05-09		рН	7.22	SU	16
RTZU	HONEY LAKE	2001-05-09		рН	7.92	SU	2 ft
RTZU	HONEY LAKE	2001-05-09		рН	7.92	SU	3
RTZU	HONEY LAKE	2001-05-09		рН	7.92	SU	4 ft
RTZU	HONEY LAKE	2001-05-09		pH	7.91	SU	6 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-05-09		рН	7.9	SU	8 ft
RTZU	HONEY LAKE	2001-06-13		рН	8.39	SU	0.25 ft
RTZU	HONEY LAKE	2001-06-13		рН	8.4	SU	1 ft
RTZU	HONEY LAKE	2001-06-13		рН	7.43	SU	10 ft
RTZU	HONEY LAKE	2001-06-13		рН	7.33	SU	12 ft
RTZU	HONEY LAKE	2001-06-13		рН	7.26	SU	14 ft
RTZU	HONEY LAKE	2001-06-13		рН	7.23	SU	16
RTZU	HONEY LAKE	2001-06-13		рН	7.19	SU	18 ft
RTZU	HONEY LAKE	2001-06-13		рН	8.4	SU	2 ft
RTZU	HONEY LAKE	2001-06-13		рН	8.39	SU	3
RTZU	HONEY LAKE	2001-06-13		рН	8.37	SU	4 ft
RTZU	HONEY LAKE	2001-06-13		рН	8.11	SU	6 ft
RTZU	HONEY LAKE	2001-06-13		рН	7.73	SU	8 ft
RTZU	HONEY LAKE	2001-07-18		рН	8.19	SU	0.25 ft
RTZU	HONEY LAKE	2001-07-18		рН	8.2	SU	1 ft
RTZU	HONEY LAKE	2001-07-18		рН	7.54	SU	10 ft
RTZU	HONEY LAKE	2001-07-18		рН	7.29	SU	12 ft
RTZU	HONEY LAKE	2001-07-18		рН	7.02	SU	14 ft
RTZU	HONEY LAKE	2001-07-18		рН	6.95	SU	15
RTZU	HONEY LAKE	2001-07-18		рН	6.87	SU	16 ft
RTZU	HONEY LAKE	2001-07-18		рН	8.19	SU	2 ft
RTZU	HONEY LAKE	2001-07-18		рН	8.19	SU	3
RTZU	HONEY LAKE	2001-07-18		рН	8.19	SU	4 ft
RTZU	HONEY LAKE	2001-07-18		рН	8.11	SU	6 ft
RTZU	HONEY LAKE	2001-07-18		рН	7.55	SU	8 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.09	SU	0.25 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.09	SU	1 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.05	SU	10 ft
RTZU	HONEY LAKE	2001-08-15		рН	7.44	SU	12 ft
RTZU	HONEY LAKE	2001-08-15		рН	6.87	SU	14
RTZU	HONEY LAKE	2001-08-15		рН	6.66	SU	16 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.1	SU	2 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.1	SU	3
RTZU	HONEY LAKE	2001-08-15		рН	8.1	SU	4 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.1	SU	6 ft
RTZU	HONEY LAKE	2001-08-15		рН	8.1	SU	8 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.7	SU	0.25 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.7	SU	1 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.44	SU	10 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.15	SU	12 ft
RTZU	HONEY LAKE	2001-09-12		рН	6.97	SU	14 ft
RTZU	HONEY LAKE	2001-09-12		рН	6.81	SU	15
RTZU	HONEY LAKE	2001-09-12		рН	6.64	SU	16 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.71	SU	2 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.7	SU	3
RTZU	HONEY LAKE	2001-09-12		рН	7.7	SU	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-09-12		рН	7.63	SU	6 ft
RTZU	HONEY LAKE	2001-09-12		рН	7.54	SU	8 ft
RTZU	HONEY LAKE	2008-05-13		рН	7.53	SU	15
RTZU	HONEY LAKE	2008-05-13		рН	8.24	SU	3
RTZU	HONEY LAKE	2008-06-10		рН	7.59	SU	15
RTZU	HONEY LAKE	2008-06-10		рН	8.63	SU	3
RTZU	HONEY LAKE	2008-07-08		рН	7.76	SU	14
RTZU	HONEY LAKE	2008-07-08		рН	8.41	SU	3
RTZU	HONEY LAKE	2008-08-12		рН	7.43	SU	15
RTZU	HONEY LAKE	2008-08-12		рН	8.13	SU	3
RTZU	HONEY LAKE	2008-09-09		рН	7.22	SU	16
RTZU	HONEY LAKE	2008-09-09		рН	8.1	SU	3
RTZU	HONEY LAKE	2015-05-12		рН	8.02	SU	13
RTZU	HONEY LAKE	2015-05-12		рН	8.23	SU	3
RTZU	HONEY LAKE	2015-06-16		рН	7.33	SU	15
RTZU	HONEY LAKE	2015-06-16		рН	8.66	SU	3
RTZU	HONEY LAKE	2015-07-14		рН	7.09	SU	14
RTZU	HONEY LAKE	2015-07-14		рН	8.26	SU	3
RTZU	HONEY LAKE	2015-08-11		рН	7.15	SU	13
RTZU	HONEY LAKE	2015-08-11		рН	8.01	SU	3
RTZU	HONEY LAKE	2015-09-16		рН	6.88	SU	14
RTZU	HONEY LAKE	2015-09-16		рН	8.08	SU	3
RTZU	HONEY LAKE	2012-05-23	11:05	Pheophytin a	0.75	ug/L	17 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Pheophytin a	NA	ug/L	23 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Pheophytin a	NA	ug/L	8 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Pheophytin a	NA	ug/L	5 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Pheophytin a	NA	ug/L	16 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Pheophytin a	5.92	ug/L	15 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Pheophytin a	NA	ug/L	16 ft
RTZU	HONEY LAKE	1988-05-04		Phosphorus	0.02	mg/L	11
RTZU	HONEY LAKE	1988-05-04		Phosphorus	0.02	mg/L	17
RTZU	HONEY LAKE	1988-05-04		Phosphorus	0.033	mg/L	5
RTZU	HONEY LAKE	1988-09-08		Phosphorus	0.049	mg/L	15
RTZU	HONEY LAKE	1988-09-08		Phosphorus	0.056	mg/L	3
RTZU	HONEY LAKE	1988-09-08		Phosphorus	0.053	mg/L	7
RTZU	HONEY LAKE	1998-05-13		Phosphorus	0.326	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Phosphorus	NA	mg/L	16 ft
RTZU	HONEY LAKE	1998-05-13		Phosphorus	0.06	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Phosphorus	1.07	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Phosphorus	0.026	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Phosphorus	1.05	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Phosphorus	0.038	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Phosphorus	0.738	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Phosphorus	0.035	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Phosphorus	0.214	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Phosphorus	0.038	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-06-13		Phosphorus	0.097	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Phosphorus	0.043	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Phosphorus	0.364	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Phosphorus	0.195	mg/L	3
RTZU	HONEY LAKE	2001-08-15		Phosphorus	0.178	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Phosphorus	0.029	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Phosphorus	0.454	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Phosphorus	0.04	mg/L	3
RTZU	HONEY LAKE	2008-05-13		Phosphorus	0.108	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Phosphorus	0.05	mg/L	3
RTZU	HONEY LAKE	2008-05-19	14:16	Phosphorus	0.034	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-10		Phosphorus	0.14	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Phosphorus	0.05	mg/L	3
RTZU	HONEY LAKE	2008-06-24	11:30	Phosphorus	0.021	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-08		Phosphorus	0.233	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Phosphorus	0.02	mg/L	3
RTZU	HONEY LAKE	2008-07-22	10:45	Phosphorus	0.031	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-12		Phosphorus	0.948	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Phosphorus	0.017	mg/L	3
RTZU	HONEY LAKE	2008-08-19	13:00	Phosphorus	0.024	mg/L	1 ft
RTZU	HONEY LAKE	2008-09-09		Phosphorus	1.09	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Phosphorus	0.032	mg/L	3
RTZU	HONEY LAKE	2008-10-28	14:05	Phosphorus	0.056	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Phosphorus	0.043	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Phosphorus	0.038	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Phosphorus	0.027	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Phosphorus	0.041	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Phosphorus	0.103	mg/L	1 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Phosphorus	0.018	mg/L	1 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Phosphorus	0.022	mg/L	1 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Phosphorus	0.033	mg/L	1 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Phosphorus	0.038	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Phosphorus	0.033	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Phosphorus	0.064	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Phosphorus	0.039	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Phosphorus	0.048	mg/L	1 ft
RTZU	HONEY LAKE	2015-05-12		Phosphorus	0.076	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Phosphorus	0.067	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Phosphorus	0.718	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Phosphorus	0.097	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Phosphorus	0.084	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Phosphorus	0.048	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Phosphorus	0.635	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Phosphorus	0.039	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Phosphorus	1.32	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Phosphorus	0.042	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-05-13		Phosphorus, Soluble Reactive	0.276	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Phosphorus, Soluble Reactive	0.037	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Phosphorus, Soluble Reactive	0.76	mg/L	16
RTZU	HONEY LAKE	1998-08-12		Phosphorus, Soluble Reactive	0.972	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Phosphorus, Soluble Reactive	0.594	mg/L	15
RTZU	HONEY LAKE	2001-05-09		Phosphorus, Soluble Reactive	0.141	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Phosphorus, Soluble Reactive	0.006	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Phosphorus, Soluble Reactive	0.053	mg/L	16
RTZU	HONEY LAKE	2001-07-18		Phosphorus, Soluble Reactive	0.236	mg/L	15
RTZU	HONEY LAKE	2001-08-15		Phosphorus, Soluble Reactive	0.06	mg/L	14
RTZU	HONEY LAKE	2001-09-12		Phosphorus, Soluble Reactive	0.335	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Phosphorus, Soluble Reactive	0.006	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Phosphorus, Soluble Reactive	0.068	mg/L	15
RTZU	HONEY LAKE	2008-07-08		Phosphorus, Soluble Reactive	0.01	mg/L	14
RTZU	HONEY LAKE	2008-08-12		Phosphorus, Soluble Reactive	0.152	mg/L	15
RTZU	HONEY LAKE	2008-09-09		Phosphorus, Soluble Reactive	0.895	mg/L	16
RTZU	HONEY LAKE	2015-05-12		Phosphorus, Soluble Reactive	0.026	mg/L	13
RTZU	HONEY LAKE	2015-06-16		Phosphorus, Soluble Reactive	0.618	mg/L	15
RTZU	HONEY LAKE	2015-07-14		Phosphorus, Soluble Reactive	0.027	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Phosphorus, Soluble Reactive	0.009	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Phosphorus, Soluble Reactive	0.339	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Phosphorus, Soluble Reactive	0.01	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Phosphorus, Soluble Reactive	1.13	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Phosphorus, Soluble Reactive	0.008	mg/L	3
RTZU	HONEY LAKE	1988-05-04		Secchi	10.5	ft	ft
RTZU	HONEY LAKE	1988-09-08		Secchi	3.83	ft	ft
RTZU	HONEY LAKE	1998-05-13		Secchi	7.6	ft	ft
RTZU	HONEY LAKE	1998-07-15		Secchi	7.6	ft	ft
RTZU	HONEY LAKE	1998-08-12		Secchi	2.6	ft	ft
RTZU	HONEY LAKE	1998-09-16		Secchi	4.9	ft	ft
RTZU	HONEY LAKE	2001-05-09		Secchi	13.42	ft	ft
RTZU	HONEY LAKE	2001-06-13		Secchi	7.81	ft	ft
RTZU	HONEY LAKE	2001-07-18		Secchi	7.58	ft	ft
RTZU	HONEY LAKE	2001-08-15		Secchi	6.92	ft	ft
RTZU	HONEY LAKE	2001-09-12		Secchi	6.27	ft	ft
RTZU	HONEY LAKE	2008-05-13		Secchi	6.1	ft	3 ft
RTZU	HONEY LAKE	2008-06-10		Secchi	5.085	ft	3 ft
RTZU	HONEY LAKE	2008-07-08		Secchi	12.63	ft	3 ft
RTZU	HONEY LAKE	2008-08-12		Secchi	5.84	ft	3 ft
RTZU	HONEY LAKE	2008-09-09		Secchi	6.17	ft	3 ft
RTZU	HONEY LAKE	2008-05-19	14:16	Solids, Dissolved	718	mg/L	1 ft
RTZU	HONEY LAKE	2008-05-19	14:16	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Solids, suspended, volatile	8.5	mg/L	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2011-05-02	8:54	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Solids, suspended, volatile	6	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Solids, suspended, volatile	6	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Solids, suspended, volatile	10	mg/L	1 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Solids, suspended, volatile	NA	mg/L	1 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Solids, suspended, volatile	8	mg/L	1 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Solids, suspended, volatile	9	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Solids, suspended, volatile	5	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Solids, suspended, volatile	7	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Solids, suspended, volatile	9	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Solids, suspended, volatile	9	mg/L	1 ft
RTZU	HONEY LAKE	1998-05-13		Solids, Total Dissolved (TDS)	624	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Solids, Total Dissolved (TDS)	558	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Solids, Total Dissolved (TDS)	640	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Solids, Total Dissolved (TDS)	542	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Solids, Total Dissolved (TDS)	632	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Solids, Total Dissolved (TDS)	548	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Solids, Total Dissolved (TDS)	580	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Solids, Total Dissolved (TDS)	502	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Solids, Total Dissolved (TDS)	730	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Solids, Total Dissolved (TDS)	726	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Solids, Total Dissolved (TDS)	676	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Solids, Total Dissolved (TDS)	662	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Solids, Total Dissolved (TDS)	672	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Solids, Total Dissolved (TDS)	652	mg/L	3
RTZU	HONEY LAKE	2001-08-15		Solids, Total Dissolved (TDS)	636	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Solids, Total Dissolved (TDS)	624	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Solids, Total Dissolved (TDS)	646	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Solids, Total Dissolved (TDS)	606	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Solids, Total Dissolved (TDS)	624	mg/L	3
RTZU	HONEY LAKE	1998-05-13		Solids, Total Suspended (TSS)	3.3	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Solids, Total Suspended (TSS)	2.3	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Solids, Total Suspended (TSS)	7.5	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Solids, Total Suspended (TSS)	1.6	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Solids, Total Suspended (TSS)	8.4	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Solids, Total Suspended (TSS)	5	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Solids, Total Suspended (TSS)	16	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Solids, Total Suspended (TSS)	4.8	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Solids, Total Suspended (TSS)	2.5	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Solids, Total Suspended (TSS)	1.1	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Solids, Total Suspended (TSS)	1	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Solids, Total Suspended (TSS)	2	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Solids, Total Suspended (TSS)	16	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Solids, Total Suspended (TSS)	1.3	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-08-15		Solids, Total Suspended (TSS)	16	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Solids, Total Suspended (TSS)	1.9	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Solids, Total Suspended (TSS)	6.7	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Solids, Total Suspended (TSS)	2.5	mg/L	3
RTZU	HONEY LAKE	2008-05-13		Solids, Total Suspended (TSS)	9.9	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Solids, Total Suspended (TSS)	2.4	mg/L	3
RTZU	HONEY LAKE	2008-05-19	14:16	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-06-10		Solids, Total Suspended (TSS)	5.4	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Solids, Total Suspended (TSS)	6.3	mg/L	3
RTZU	HONEY LAKE	2008-06-24	11:30	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-07-08		Solids, Total Suspended (TSS)	34.6	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Solids, Total Suspended (TSS)	1.1	mg/L	3
RTZU	HONEY LAKE	2008-07-22	10:45	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2008-08-12		Solids, Total Suspended (TSS)	8.4	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Solids, Total Suspended (TSS)	3.4	mg/L	3
RTZU	HONEY LAKE	2008-08-19	13:00	Solids, Total Suspended (TSS)	4	mg/L	1 ft
RTZU	HONEY LAKE	2008-09-09		Solids, Total Suspended (TSS)	7.6	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Solids, Total Suspended (TSS)	3.9	mg/L	3
RTZU	HONEY LAKE	2008-10-28	14:05	Solids, Total Suspended (TSS)	6.5	mg/L	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2011-06-22	11:30	Solids, Total Suspended (TSS)	4	mg/L	1 ft
RTZU	HONEY LAKE	2011-07-12	11:00	Solids, Total Suspended (TSS)	5	mg/L	1 ft
RTZU	HONEY LAKE	2011-08-16	10:45	Solids, Total Suspended (TSS)	7	mg/L	1 ft
RTZU	HONEY LAKE	2011-10-18	13:00	Solids, Total Suspended (TSS)	10	mg/L	1 ft
RTZU	HONEY LAKE	2012-05-23	11:05	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2012-06-27	10:14	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
RTZU	HONEY LAKE	2012-07-31	9:14	Solids, Total Suspended (TSS)	9	mg/L	1 ft
RTZU	HONEY LAKE	2012-08-28	10:59	Solids, Total Suspended (TSS)	15	mg/L	1 ft
RTZU	HONEY LAKE	2013-05-29	10:30	Solids, Total Suspended (TSS)	5	mg/L	1 ft
RTZU	HONEY LAKE	2013-07-02	10:00	Solids, Total Suspended (TSS)	8	mg/L	1 ft
RTZU	HONEY LAKE	2013-08-04	13:59	Solids, Total Suspended (TSS)	9	mg/L	1 ft
RTZU	HONEY LAKE	2013-09-03	13:29	Solids, Total Suspended (TSS)	9	mg/L	1 ft
RTZU	HONEY LAKE	2015-05-12		Solids, Total Suspended (TSS)	2.2	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Solids, Total Suspended (TSS)	2.6	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Solids, Total Suspended (TSS)	6.4	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Solids, Total Suspended (TSS)	15	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Solids, Total Suspended (TSS)	9	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Solids, Total Suspended (TSS)	4.5	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Solids, Total Suspended (TSS)	6.5	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Solids, Total Suspended (TSS)	6.2	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Solids, Total Suspended (TSS)	8.1	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Solids, Total Suspended (TSS)	4.6	mg/L	3
RTZU	HONEY LAKE	1998-05-13		Specific conductance	1.12	mS/cm	16
RTZU	HONEY LAKE	1998-05-13		Specific conductance	1120	uS/cm	16 ft
RTZU	HONEY LAKE	1998-05-13		Specific conductance	1.018	mS/cm	3
RTZU	HONEY LAKE	1998-05-13		Specific conductance	1018	uS/cm	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-07-15		Specific conductance	1.13	mS/cm	16
RTZU	HONEY LAKE	1998-07-15		Specific conductance	1130	uS/cm	16 ft
RTZU	HONEY LAKE	1998-07-15		Specific conductance	0.921	mS/cm	3
RTZU	HONEY LAKE	1998-07-15		Specific conductance	921	uS/cm	3 ft
RTZU	HONEY LAKE	1998-08-12		Specific conductance	1.124	mS/cm	15
RTZU	HONEY LAKE	1998-08-12		Specific conductance	1124	uS/cm	15 ft
RTZU	HONEY LAKE	1998-08-12		Specific conductance	0.923	mS/cm	3
RTZU	HONEY LAKE	1998-08-12		Specific conductance	923	uS/cm	3 ft
RTZU	HONEY LAKE	1998-09-16		Specific conductance	1.113	mS/cm	15
RTZU	HONEY LAKE	1998-09-16		Specific conductance	1113	uS/cm	15 ft
RTZU	HONEY LAKE	1998-09-16		Specific conductance	0.887	mS/cm	3
RTZU	HONEY LAKE	1998-09-16		Specific conductance	887	uS/cm	3 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1155	uS/cm	0.25 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1153	uS/cm	1 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1155	uS/cm	10 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1159	uS/cm	12 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1159	uS/cm	14 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1.166	mS/cm	16
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1166	uS/cm	16 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1156	uS/cm	2 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1.157	mS/cm	3
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1157	uS/cm	3 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1157	uS/cm	4 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1156	uS/cm	6 ft
RTZU	HONEY LAKE	2001-05-09		Specific conductance	1158	uS/cm	8 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1088	uS/cm	0.25 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1089	uS/cm	1 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1106	uS/cm	10 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1112	uS/cm	12 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1117	uS/cm	14 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1.121	mS/cm	16
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1121	uS/cm	16 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1123	uS/cm	18 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1089	uS/cm	2 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1.09	mS/cm	3
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1090	uS/cm	3 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1092	uS/cm	4 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1100	uS/cm	6 ft
RTZU	HONEY LAKE	2001-06-13		Specific conductance	1104	uS/cm	8 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1102	uS/cm	0.25 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1104	uS/cm	1 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1127	uS/cm	10 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1131	uS/cm	12 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1138	uS/cm	14 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1.148	mS/cm	15
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1157	uS/cm	16 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1105	uS/cm	2 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1.103	mS/cm	3
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1103	uS/cm	3 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1104	uS/cm	4 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1105	uS/cm	6 ft
RTZU	HONEY LAKE	2001-07-18		Specific conductance	1122	uS/cm	8 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1087	uS/cm	0.25 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1089	uS/cm	1 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1088	uS/cm	10 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1107	uS/cm	12 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1.131	mS/cm	14
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1131	uS/cm	14 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1157	uS/cm	16 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1088	uS/cm	2 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1.088	mS/cm	3
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1088	uS/cm	3 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1089	uS/cm	4 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1089	uS/cm	6 ft
RTZU	HONEY LAKE	2001-08-15		Specific conductance	1089	uS/cm	8 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	0.25 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	1 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1126	uS/cm	10 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1130	uS/cm	12 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1146	uS/cm	14 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1.175	mS/cm	15
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1203	uS/cm	16 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	2 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1.125	mS/cm	3
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	3 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	4 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1126	uS/cm	6 ft
RTZU	HONEY LAKE	2001-09-12		Specific conductance	1125	uS/cm	8 ft
RTZU	HONEY LAKE	2008-05-13		Specific conductance	1.429	mS/cm	15
RTZU	HONEY LAKE	2008-05-13		Specific conductance	1429	uS/cm	15 ft
RTZU	HONEY LAKE	2008-05-13		Specific conductance	1.391	mS/cm	3
RTZU	HONEY LAKE	2008-05-13		Specific conductance	1391	uS/cm	3 ft
RTZU	HONEY LAKE	2008-06-10		Specific conductance	1.421	mS/cm	15
RTZU	HONEY LAKE	2008-06-10		Specific conductance	1421	uS/cm	15 ft
RTZU	HONEY LAKE	2008-06-10		Specific conductance	1.308	mS/cm	3
RTZU	HONEY LAKE	2008-06-10		Specific conductance	1308	uS/cm	3 ft
RTZU	HONEY LAKE	2008-07-08		Specific conductance	1.368	mS/cm	14
RTZU	HONEY LAKE	2008-07-08		Specific conductance	1368	uS/cm	14 ft
RTZU	HONEY LAKE	2008-07-08		Specific conductance	1.233	mS/cm	3
RTZU	HONEY LAKE	2008-07-08		Specific conductance	1233	uS/cm	3 ft
RTZU	HONEY LAKE	2008-08-12		Specific conductance	1.444	mS/cm	15
RTZU	HONEY LAKE	2008-08-12		Specific conductance	1444	uS/cm	15 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-08-12		Specific conductance	1.32	mS/cm	3
RTZU	HONEY LAKE	2008-08-12		Specific conductance	1320	uS/cm	3 ft
RTZU	HONEY LAKE	2008-09-09		Specific conductance	1.503	mS/cm	16
RTZU	HONEY LAKE	2008-09-09		Specific conductance	1503	uS/cm	16 ft
RTZU	HONEY LAKE	2008-09-09		Specific conductance	1.335	mS/cm	3
RTZU	HONEY LAKE	2008-09-09		Specific conductance	1335	uS/cm	3 ft
RTZU	HONEY LAKE	2015-05-12		Specific conductance	1.194	mS/cm	13
RTZU	HONEY LAKE	2015-05-12		Specific conductance	1.107	mS/cm	3
RTZU	HONEY LAKE	2015-06-16		Specific conductance	1.246	mS/cm	15
RTZU	HONEY LAKE	2015-06-16		Specific conductance	1.064	mS/cm	3
RTZU	HONEY LAKE	2015-07-14		Specific conductance	1.267	mS/cm	14
RTZU	HONEY LAKE	2015-07-14		Specific conductance	1.058	mS/cm	3
RTZU	HONEY LAKE	2015-08-11		Specific conductance	1.234	mS/cm	13
RTZU	HONEY LAKE	2015-08-11		Specific conductance	1.06	mS/cm	3
RTZU	HONEY LAKE	2015-09-16		Specific conductance	1.273	mS/cm	14
RTZU	HONEY LAKE	2015-09-16		Specific conductance	1.083	mS/cm	3
RTZU	HONEY LAKE	2008-05-19	14:16	Temperature, sample	0.9	deg C	1 ft
RTZU	HONEY LAKE	2008-06-24	11:30	Temperature, sample	1.3	deg C	1 ft
RTZU	HONEY LAKE	2008-07-22	10:45	Temperature, sample	0.5	deg C	1 ft
RTZU	HONEY LAKE	2008-08-19	13:00	Temperature, sample	4.6	deg C	1 ft
RTZU	HONEY LAKE	2008-10-28	14:05	Temperature, sample	0.3	deg C	1 ft
RTZU	HONEY LAKE	2011-05-02	8:54	Temperature, sample	2	deg C	
RTZU	HONEY LAKE	2011-06-22	11:30	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2011-07-12	11:00	Temperature, sample	5	deg C	
RTZU	HONEY LAKE	2011-08-16	10:45	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2011-10-18	13:00	Temperature, sample	2	deg C	
RTZU	HONEY LAKE	2012-05-23	11:05	Temperature, sample	19	deg C	
RTZU	HONEY LAKE	2012-06-27	10:14	Temperature, sample	4	deg C	
RTZU	HONEY LAKE	2012-07-31	9:14	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2012-08-28	10:59	Temperature, sample	7	deg C	
RTZU	HONEY LAKE	2013-05-29	10:30	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2013-07-02	10:00	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2013-08-04	13:59	Temperature, sample	3	deg C	
RTZU	HONEY LAKE	2013-09-03	13:29	Temperature, sample	2	deg C	
RTZU	HONEY LAKE	2001-05-09		Temperature, water	18.07	с	0.25 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	18.06	с	1 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.78	с	10 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.55	с	12 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.45	С	14 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	15.69	С	16 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	18.04	С	2 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	18.02	С	3 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.97	С	4 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.89	С	6 ft
RTZU	HONEY LAKE	2001-05-09		Temperature, water	17.78	С	8 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	24.18	С	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2001-06-13		Temperature, water	24.16	С	1 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	15.52	С	10 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	15.03	С	12 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	14.84	С	14 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	14.74	С	16 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	14.64	С	18 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	24.13	С	2 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	24.07	с	3 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	23.87	с	4 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	19.56	с	6 ft
RTZU	HONEY LAKE	2001-06-13		Temperature, water	16.65	с	8 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	27.03	с	0.25 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	27.02	с	1 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	22.35	с	10 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	18.85	С	12 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	16.17	с	14 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	15.04	С	16 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	27.02	С	2 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	27.02	С	3 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	26.99	С	4 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	26.9	С	6 ft
RTZU	HONEY LAKE	2001-07-18		Temperature, water	25.12	С	8 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.58	С	0.25 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.63	С	1 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.26	С	10 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	21.84	С	12 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	18.49	с	14 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	16.17	с	16 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.63	с	2 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.62	С	3 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.62	с	4 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.61	с	6 ft
RTZU	HONEY LAKE	2001-08-15		Temperature, water	25.58	с	8 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.1	с	0.25 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.1	с	1 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	21.76	с	10 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	21.44	с	12 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	20.77	с	14 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	18.56	с	16 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.12	с	2 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.12	с	3 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.11	С	4 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	22.05	с	6 ft
RTZU	HONEY LAKE	2001-09-12		Temperature, water	21.92	с	8 ft
RTZU	HONEY LAKE	1998-05-13		Total solids	667	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Total solids	619	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-07-15		Total solids	665	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Total solids	552	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Total solids	656	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Total solids	555	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Total solids	632	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Total solids	538	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Total solids	743	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Total solids	731	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Total solids	704	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Total solids	693	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Total solids	711	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Total solids	680	mg/L	3
RTZU	HONEY LAKE	2001-08-15		Total solids	698	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Total solids	700	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Total solids	695	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Total solids	675	mg/L	3
RTZU	HONEY LAKE	2008-05-13		Total solids	791	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13		Total solids	791	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Total solids	777	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13		Total solids	777	mg/L	3
RTZU	HONEY LAKE	2008-06-10		Total solids	867	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10		Total solids	867	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Total solids	737	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10		Total solids	737	mg/L	3
RTZU	HONEY LAKE	2008-07-08		Total solids	867	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08		Total solids	867	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Total solids	759	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08		Total solids	759	mg/L	3
RTZU	HONEY LAKE	2008-08-12		Total solids	847	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12		Total solids	847	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Total solids	745	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12		Total solids	745	mg/L	3
RTZU	HONEY LAKE	2008-09-09		Total solids	875	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09		Total solids	875	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Total solids	751	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09		Total solids	751	mg/L	3
RTZU	HONEY LAKE	2015-05-12		Total solids	757	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Total solids	690	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Total solids	761	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Total solids	675	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Total solids	712	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Total solids	669	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Total solids	750	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Total solids	670	mg/L	3
RTZU	HONEY LAKE	2015-09-16		Total solids	800	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Total solids	677	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-05-13		Total volatile solids	130	mg/L	16
RTZU	HONEY LAKE	1998-05-13		Total volatile solids	136	mg/L	3
RTZU	HONEY LAKE	1998-07-15		Total volatile solids	128	mg/L	16
RTZU	HONEY LAKE	1998-07-15		Total volatile solids	119	mg/L	3
RTZU	HONEY LAKE	1998-08-12		Total volatile solids	117	mg/L	15
RTZU	HONEY LAKE	1998-08-12		Total volatile solids	104	mg/L	3
RTZU	HONEY LAKE	1998-09-16		Total volatile solids	131	mg/L	15
RTZU	HONEY LAKE	1998-09-16		Total volatile solids	117	mg/L	3
RTZU	HONEY LAKE	2001-05-09		Total volatile solids	218	mg/L	16
RTZU	HONEY LAKE	2001-05-09		Total volatile solids	189	mg/L	3
RTZU	HONEY LAKE	2001-06-13		Total volatile solids	202	mg/L	16
RTZU	HONEY LAKE	2001-06-13		Total volatile solids	205	mg/L	3
RTZU	HONEY LAKE	2001-07-18		Total volatile solids	156	mg/L	15
RTZU	HONEY LAKE	2001-07-18		Total volatile solids	157	mg/L	3
RTZU	HONEY LAKE	2001-08-15		Total volatile solids	182	mg/L	14
RTZU	HONEY LAKE	2001-08-15		Total volatile solids	183	mg/L	3
RTZU	HONEY LAKE	2001-09-12		Total volatile solids	169	mg/L	15
RTZU	HONEY LAKE	2001-09-12		Total volatile solids	158	mg/L	3
RTZU	HONEY LAKE	2008-05-13		Total volatile solids	120	mg/L	15
RTZU	HONEY LAKE	2008-05-13		Total volatile solids	121	mg/L	3
RTZU	HONEY LAKE	2008-06-10		Total volatile solids	187	mg/L	15
RTZU	HONEY LAKE	2008-06-10		Total volatile solids	119	mg/L	3
RTZU	HONEY LAKE	2008-07-08		Total volatile solids	178	mg/L	14
RTZU	HONEY LAKE	2008-07-08		Total volatile solids	152	mg/L	3
RTZU	HONEY LAKE	2008-08-12		Total volatile solids	113	mg/L	15
RTZU	HONEY LAKE	2008-08-12		Total volatile solids	130	mg/L	3
RTZU	HONEY LAKE	2008-09-09		Total volatile solids	179	mg/L	16
RTZU	HONEY LAKE	2008-09-09		Total volatile solids	135	mg/L	3
RTZU	HONEY LAKE	2015-05-12		Total volatile solids	122	mg/L	13
RTZU	HONEY LAKE	2015-05-12		Total volatile solids	110	mg/L	3
RTZU	HONEY LAKE	2015-06-16		Total volatile solids	155	mg/L	15
RTZU	HONEY LAKE	2015-06-16		Total volatile solids	147	mg/L	3
RTZU	HONEY LAKE	2015-07-14		Total volatile solids	133	mg/L	14
RTZU	HONEY LAKE	2015-07-14		Total volatile solids	152	mg/L	3
RTZU	HONEY LAKE	2015-08-11		Total volatile solids	132	mg/L	13
RTZU	HONEY LAKE	2015-08-11		Total volatile solids	137	mg/L	3
RTZU	HONEY LAKE	2015-09-16	!	Total volatile solids	163	mg/L	14
RTZU	HONEY LAKE	2015-09-16		Total volatile solids	136	mg/L	3
RTZU	HONEY LAKE	1988-05-04		TRP	0		11
RTZU	HONEY LAKE	1988-05-04		TRP	0		17
RTZU	HONEY LAKE	1988-05-04		TRP	0		5
RTZU	HONEY LAKE	1988-09-08		TRP	0		15
RTZU	HONEY LAKE	1988-09-08		TRP	0		3
RTZU	HONEY LAKE	1988-09-08		TRP	0		7
RTZU	HONEY LAKE	1998-05-13		TRP	0		16
RTZU	HONEY LAKE	1998-05-13		TRP	0		3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	1998-07-15		TRP	0		16
RTZU	HONEY LAKE	1998-07-15		TRP	0		3
RTZU	HONEY LAKE	1998-08-12		TRP	0		15
RTZU	HONEY LAKE	1998-08-12		TRP	0		3
RTZU	HONEY LAKE	1998-09-16		TRP	0		15
RTZU	HONEY LAKE	1998-09-16		TRP	0		3
RTZU	HONEY LAKE	2001-05-09		TRP	0		16
RTZU	HONEY LAKE	2001-05-09		TRP	0		3
RTZU	HONEY LAKE	2001-06-13		TRP	0		16
RTZU	HONEY LAKE	2001-06-13		TRP	0		3
RTZU	HONEY LAKE	2001-07-18		TRP	0		15
RTZU	HONEY LAKE	2001-07-18		TRP	0		3
RTZU	HONEY LAKE	2001-08-15		TRP	0		14
RTZU	HONEY LAKE	2001-08-15		TRP	0		3
RTZU	HONEY LAKE	2001-09-12		TRP	0		15
RTZU	HONEY LAKE	2001-09-12		TRP	0		3
RTZU	HONEY LAKE	2008-05-13		TRP	0		15
RTZU	HONEY LAKE	2008-05-13		TRP	0		3
RTZU	HONEY LAKE	2008-06-10		TRP	0		15
RTZU	HONEY LAKE	2008-06-10		TRP	0		3
RTZU	HONEY LAKE	2008-07-08		TRP	0		14
RTZU	HONEY LAKE	2008-07-08		TRP	0		3
RTZU	HONEY LAKE	2008-08-12		TRP	0		15
RTZU	HONEY LAKE	2008-08-12		TRP	0		3
RTZU	HONEY LAKE	2008-09-09		TRP	0		16
RTZU	HONEY LAKE	2008-09-09		TRP	0		3
RTZU	HONEY LAKE	2015-05-12		TRP	0		13
RTZU	HONEY LAKE	2015-05-12		TRP	0		3
RTZU	HONEY LAKE	2015-06-16		TRP	0		15
RTZU	HONEY LAKE	2015-06-16		TRP	0		3
RTZU	HONEY LAKE	2015-07-14		TRP	0		14
RTZU	HONEY LAKE	2015-07-14		TRP	0		3
RTZU	HONEY LAKE	2015-08-11		TRP	0		13
RTZU	HONEY LAKE	2015-08-11		TRP	0		3
RTZU	HONEY LAKE	2008-05-13			196	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13			120	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13			0.006	mg/L	15 ft
RTZU	HONEY LAKE	2008-05-13			191	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13			121	mg/L	3 ft
RTZU	HONEY LAKE	2008-05-13			0.005	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10			198	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10			187	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10			0.068	mg/L	15 ft
RTZU	HONEY LAKE	2008-06-10			171	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10			119	mg/L	3 ft
RTZU	HONEY LAKE	2008-06-10			0.005	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
RTZU	HONEY LAKE	2008-07-08			194	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08			178	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08			0.01	mg/L	14 ft
RTZU	HONEY LAKE	2008-07-08			144	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08			152	mg/L	3 ft
RTZU	HONEY LAKE	2008-07-08			0.005	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12			253	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12			113	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12			0.152	mg/L	15 ft
RTZU	HONEY LAKE	2008-08-12			150	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12			130	mg/L	3 ft
RTZU	HONEY LAKE	2008-08-12			0.005	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09			274	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09			179	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09			0.895	mg/L	16 ft
RTZU	HONEY LAKE	2008-09-09			148	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09			135	mg/L	3 ft
RTZU	HONEY LAKE	2008-09-09			0.005	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Alkalinity	102	mg/l CaCO3	3
sтк	LAKE FAIRVIEW	2000-05-18		Alkalinity	103	mg/l CaCO3	6
ѕтк	LAKE FAIRVIEW	2000-06-22		Alkalinity	125	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2000-06-22		Alkalinity	125	mg/l CaCO3	7
STK	LAKE FAIRVIEW	2000-07-20		Alkalinity	129	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2000-07-20		Alkalinity	130	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2000-08-24		Alkalinity	134	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2000-08-24		Alkalinity	134	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2000-09-21		Alkalinity	140	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2000-09-21		Alkalinity	139	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2007-05-08		Alkalinity	96.4	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2007-05-08		Alkalinity	96	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2007-06-12		Alkalinity	115	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2007-06-12		Alkalinity	132	mg/l CaCO3	7
STK	LAKE FAIRVIEW	2007-07-10		Alkalinity	137	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2007-07-10		Alkalinity	154	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2007-08-07		Alkalinity	137	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2007-08-07		Alkalinity	157	mg/l CaCO3	7
STK	LAKE FAIRVIEW	2007-09-11		Alkalinity	147	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2007-09-11		Alkalinity	147	mg/l CaCO3	6
STK	LAKE FAIRVIEW	2013-05-21		Alkalinity	99.5	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2013-06-18		Alkalinity	112	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2013-07-16		Alkalinity	119	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2013-08-20		Alkalinity	150	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2013-09-17		Alkalinity	156	mg/l CaCO3	3
STK	LAKE FAIRVIEW	2000-07-20		Ammonia as N	0.19	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Ammonia as N	0.194	mg/L	6
STK	LAKE FAIRVIEW	2000-08-24		Ammonia as N	0.395	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2000-08-24		Ammonia as N	0.476	mg/L	6
sтк	LAKE FAIRVIEW	2007-07-10		Ammonia as N	0.404	mg/L	6
sтк	LAKE FAIRVIEW	2007-08-07		Ammonia as N	0.694	mg/L	7
sтк	LAKE FAIRVIEW	2007-09-11		Ammonia as N	0.278	mg/L	3
sтк	LAKE FAIRVIEW	2007-09-11		Ammonia as N	0.28	mg/L	6
sтк	LAKE FAIRVIEW	2013-09-17		Ammonia as N	0.285	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Chloride	202	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Chloride	203	mg/L	6
STK	LAKE FAIRVIEW	2007-06-12		Chloride	202	mg/L	3
STK	LAKE FAIRVIEW	2007-06-12		Chloride	208	mg/L	7
STK	LAKE FAIRVIEW	2007-07-10		Chloride	214	mg/L	3
sтк	LAKE FAIRVIEW	2007-07-10		Chloride	213	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Chloride	201	mg/L	3
STK	LAKE FAIRVIEW	2007-08-07		Chloride	207	mg/L	7
STK	LAKE FAIRVIEW	2007-09-11		Chloride	183	mg/L	3
STK	LAKE FAIRVIEW	2007-09-11		Chloride	181	mg/L	6
sтк	LAKE FAIRVIEW	2013-05-21		Chloride	170	mg/L	3
STK	LAKE FAIRVIEW	2013-06-18		Chloride	175	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Chloride	156	mg/L	3
sтк	LAKE FAIRVIEW	2013-08-20		Chloride	163	mg/L	3
STK	LAKE FAIRVIEW	2013-09-17		Chloride	167	mg/L	3
sтк	LAKE FAIRVIEW	2000-05-18		Chlorophyll a	0	ug/L	3
sтк	LAKE FAIRVIEW	2000-05-18		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2000-06-22		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2000-06-22		Chlorophyll a	0	ug/L	7
STK	LAKE FAIRVIEW	2000-07-20		Chlorophyll a	0	ug/L	3
sтк	LAKE FAIRVIEW	2000-07-20		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2000-08-24		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2000-08-24		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2000-09-21		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2000-09-21		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2007-05-08		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2007-05-08		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2007-06-12		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2007-06-12		Chlorophyll a	0	ug/L	7
STK	LAKE FAIRVIEW	2007-07-10		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2007-07-10		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2007-08-07		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2007-08-07		Chlorophyll a	0	ug/L	7
STK	LAKE FAIRVIEW	2007-09-11		Chlorophyll a	0	ug/L	3
STK	LAKE FAIRVIEW	2007-09-11		Chlorophyll a	0	ug/L	6
STK	LAKE FAIRVIEW	2000-05-18		Depth, Secchi Disk Depth	7.51	ft	3
sтк	LAKE FAIRVIEW	2000-06-22		Depth, Secchi Disk Depth	5.25	ft	3
sтк	LAKE FAIRVIEW	2000-07-20		Depth, Secchi Disk Depth	3.12	ft	3
STK	LAKE FAIRVIEW	2000-08-24		Depth, Secchi Disk Depth	8.04	ft	3
STK	LAKE FAIRVIEW	2000-09-21		Depth, Secchi Disk Depth	3.25	ft	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2007-05-08		Depth, Secchi Disk Depth	9.1	ft	3
STK	LAKE FAIRVIEW	2007-06-12		Depth, Secchi Disk Depth	7.55	ft	3
STK	LAKE FAIRVIEW	2007-07-10		Depth, Secchi Disk Depth	2.95	ft	3
STK	LAKE FAIRVIEW	2007-08-07		Depth, Secchi Disk Depth	3.44	ft	3
STK	LAKE FAIRVIEW	2007-09-11		Depth, Secchi Disk Depth	4.92	ft	3
STK	LAKE FAIRVIEW	2013-06-18		Depth, Secchi Disk Depth	5.25	ft	3
STK	LAKE FAIRVIEW	2013-07-16		Depth, Secchi Disk Depth	3.11	ft	3
STK	LAKE FAIRVIEW	2013-08-20		Depth, Secchi Disk Depth	1.32	ft	3
sтк	LAKE FAIRVIEW	2013-09-17		Depth, Secchi Disk Depth	3.07	ft	3
sтк	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.54	mg/L	0.25 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.52	mg/L	1 ft
sтк	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.54	mg/L	2 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.5	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.45	mg/L	4 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	7.41	mg/L	5 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	6.36	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	1.71	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen (DO)	0.33	mg/L	8 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.76	mg/L	0.25 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.84	mg/L	1 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.88	mg/L	2 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.8	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.8	mg/L	4 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.67	mg/L	5 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.57	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	7.25	mg/L	7 ft
sтк	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen (DO)	6.87	mg/L	8 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	5	mg/L	0.25 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.85	mg/L	1 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.7	mg/L	2 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.6	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.41	mg/L	4 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.34	mg/L	5 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	4.29	mg/L	6 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	3.64	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen (DO)	3.34	mg/L	8 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	4.59	mg/L	0.25 ft
sтк	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	4.55	mg/L	1 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	4.49	mg/L	2 ft
sтк	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	4.47	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	2.87	mg/L	4 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	1.05	mg/L	5 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	0.25	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	0.13	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen (DO)	0.09	mg/L	8 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.68	mg/L	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.49	mg/L	1 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.31	mg/L	2 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.31	mg/L	3 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.26	mg/L	4 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.23	mg/L	5 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.24	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.22	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen (DO)	7.18	mg/L	8 ft
sтк	LAKE FAIRVIEW	2013-05-21		Dissolved oxygen (DO)	12.54	mg/L	3
sтк	LAKE FAIRVIEW	2013-06-18		Dissolved oxygen (DO)	5.89	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Dissolved oxygen (DO)	1.45	mg/L	3
sтк	LAKE FAIRVIEW	2013-08-20		Dissolved oxygen (DO)	7.92	mg/L	3
STK	LAKE FAIRVIEW	2013-09-17		Dissolved oxygen (DO)	4.5	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	81.6	%	0.25 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	81.4	%	1 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	81.6	%	2 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	81.3	%	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	80.7	%	4 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	80.3	%	5 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	68.8	%	6 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	18.6	%	7 ft
STK	LAKE FAIRVIEW	2000-05-18		Dissolved oxygen saturation	3.5	%	8 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	93.8	%	0.25 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	94.7	%	1 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	95.2	%	2 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	94.3	%	3 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	94.2	%	4 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	92.7	%	5 ft
sтк	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	91.3	%	6 ft
STK	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	87.4	%	7 ft
sтк	LAKE FAIRVIEW	2000-06-22		Dissolved oxygen saturation	82.7	%	8 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	61.7	%	0.25 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	59.9	%	1 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	58	%	2 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	56.7	%	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	54.4	%	4 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	53.6	%	5 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	52.8	%	6 ft
STK	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	44.9	%	7 ft
sтк	LAKE FAIRVIEW	2000-07-20		Dissolved oxygen saturation	41.1	%	8 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	56.7	%	0.25 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	56.2	%	1 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	55.6	%	2 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	55.2	%	3 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	35.4	%	4 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	12.9	%	5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	3	%	6 ft
sтк	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	1.4	%	7 ft
STK	LAKE FAIRVIEW	2000-08-24		Dissolved oxygen saturation	1.1	%	8 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.68	%	0.25 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.49	%	1 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.31	%	2 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.31	%	3 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.26	%	4 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.23	%	5 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.24	%	6 ft
sтк	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.22	%	7 ft
STK	LAKE FAIRVIEW	2000-09-21		Dissolved oxygen saturation	7.18	%	8 ft
STK	LAKE FAIRVIEW	2000-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.051	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-06-22		Nitrite (NO2) + Nitrate (NO3) as N	0.051	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-07-20		Nitrite (NO2) + Nitrate (NO3) as N	0.053	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Nitrite (NO2) + Nitrate (NO3) as N	0.06	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-08-24		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Nitrogen, ammonia as N	0.19	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Nitrogen, ammonia as N	0.194	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-08-24		Nitrogen, ammonia as N	1.8	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-08-24		Nitrogen, ammonia as N	1.7	mg/L	6 ft
STK	LAKE FAIRVIEW	2007-07-10		Nitrogen, ammonia as N	0.404	mg/L	6 ft
STK	LAKE FAIRVIEW	2007-08-07		Nitrogen, ammonia as N	0.694	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-05-18		Nitrogen, Kjeldahl	1.21	mg/L	3 ft
sтк	LAKE FAIRVIEW	2000-05-18		Nitrogen, Kjeldahl	1.21	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Nitrogen, Kjeldahl	1.25	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-05-18		Nitrogen, Kjeldahl	1.25	mg/L	6
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Kjeldahl	1.17	mg/L	3 ft
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Kjeldahl	1.17	mg/L	3
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Kjeldahl	1.24	mg/L	7 ft
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Kjeldahl	1.24	mg/L	7
STK	LAKE FAIRVIEW	2000-07-20		Nitrogen, Kjeldahl	1.3	mg/L	3 ft
sтк	LAKE FAIRVIEW	2000-07-20		Nitrogen, Kjeldahl	1.3	mg/L	3
sтк	LAKE FAIRVIEW	2000-07-20		Nitrogen, Kjeldahl	1.5	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-07-20		Nitrogen, Kjeldahl	1.5	mg/L	6
sтк	LAKE FAIRVIEW	2000-08-24		Nitrogen, Kjeldahl	1.8	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-08-24		Nitrogen, Kjeldahl	1.8	mg/L	3
STK	LAKE FAIRVIEW	2000-08-24		Nitrogen, Kjeldahl	1.7	mg/L	6 ft
sтк	LAKE FAIRVIEW	2000-08-24		Nitrogen, Kjeldahl	1.7	mg/L	6
STK	LAKE FAIRVIEW	2000-09-21		Nitrogen, Kjeldahl	1.86	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-09-21		Nitrogen, Kjeldahl	1.86	mg/L	3
STK	LAKE FAIRVIEW	2000-09-21		Nitrogen, Kjeldahl	2	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-09-21		Nitrogen, Kjeldahl	2	mg/L	6
sтк	LAKE FAIRVIEW	2007-05-08		Nitrogen, Kjeldahl	0.788	mg/L	3 ft
STK	LAKE FAIRVIEW	2007-05-08		Nitrogen, Kjeldahl	0.788	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Nitrogen, Kjeldahl	0.781	mg/L	6 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STK	LAKE FAIRVIEW	2007-05-08		Nitrogen, Kjeldahl	0.781	mg/L	6
sтк	LAKE FAIRVIEW	2007-06-12		Nitrogen, Kjeldahl	1.02	mg/L	3 ft
sтк	LAKE FAIRVIEW	2007-06-12		Nitrogen, Kjeldahl	1.02	mg/L	3
sтк	LAKE FAIRVIEW	2007-06-12		Nitrogen, Kjeldahl	1.16	mg/L	7 ft
STK	LAKE FAIRVIEW	2007-06-12		Nitrogen, Kjeldahl	1.16	mg/L	7
STK	LAKE FAIRVIEW	2007-07-10		Nitrogen, Kjeldahl	1.25	mg/L	3 ft
sтк	LAKE FAIRVIEW	2007-07-10		Nitrogen, Kjeldahl	1.25	mg/L	3
sтк	LAKE FAIRVIEW	2007-07-10		Nitrogen, Kjeldahl	1.98	mg/L	6 ft
STK	LAKE FAIRVIEW	2007-07-10		Nitrogen, Kjeldahl	1.98	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Nitrogen, Kjeldahl	1.29	mg/L	3 ft
STK	LAKE FAIRVIEW	2007-08-07		Nitrogen, Kjeldahl	1.29	mg/L	3
STK	LAKE FAIRVIEW	2007-08-07		Nitrogen, Kjeldahl	2.57	mg/L	7 ft
STK	LAKE FAIRVIEW	2007-08-07		Nitrogen, Kjeldahl	2.57	mg/L	7
STK	LAKE FAIRVIEW	2007-09-11		Nitrogen, Kjeldahl	1.57	mg/L	3
STK	LAKE FAIRVIEW	2007-09-11		Nitrogen, Kjeldahl	1.53	mg/L	6
sтк	LAKE FAIRVIEW	2013-05-21		Nitrogen, Kjeldahl	0.741	mg/L	3
sтк	LAKE FAIRVIEW	2013-06-18		Nitrogen, Kjeldahl	1.04	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Nitrogen, Kjeldahl	1.48	mg/L	3
STK	LAKE FAIRVIEW	2013-08-20		Nitrogen, Kjeldahl	1.34	mg/L	3
sтк	LAKE FAIRVIEW	2013-09-17		Nitrogen, Kjeldahl	1.48	mg/L	3
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Nitrate (NO3) as N	0.051	mg/L	3
sтк	LAKE FAIRVIEW	2000-06-22		Nitrogen, Nitrate (NO3) as N	0.051	mg/L	7
sтк	LAKE FAIRVIEW	2000-07-20		Nitrogen, Nitrate (NO3) as N	0.053	mg/L	3
sтк	LAKE FAIRVIEW	2000-07-20		Nitrogen, Nitrate (NO3) as N	0.06	mg/L	6
STK	LAKE FAIRVIEW	2000-08-24		Nitrogen, Nitrate (NO3) as N	0.05	mg/L	3
ѕтк	LAKE FAIRVIEW	2000-05-18		Orthophosphate as P, Dissolved	0.02	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Orthophosphate as P, Dissolved	0.022	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-06-22		Orthophosphate as P, Dissolved	0.006	mg/L	3 ft
STK	LAKE FAIRVIEW	2000-06-22		Orthophosphate as P, Dissolved	0.01	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-07-20		Orthophosphate as P, Dissolved	0.008	mg/L	3 ft
STК	LAKE FAIRVIEW	2000-07-20		Orthophosphate as P, Dissolved	0.006	mg/L	6 ft
STK	LAKE FAIRVIEW	2000-08-24		Orthophosphate as P, Dissolved	0.006	mg/L	6 ft
STK	LAKE FAIRVIEW	2007-06-12		Orthophosphate as P, Dissolved	0.024	mg/L	3 ft
STK	LAKE FAIRVIEW	2007-06-12		Orthophosphate as P, Dissolved	0.03	mg/L	7 ft
STK	LAKE FAIRVIEW	2007-07-10		Orthophosphate as P, Dissolved	0.036	mg/L	6 ft
STK	LAKE FAIRVIEW	2007-08-07		Orthophosphate as P, Dissolved	0.012	mg/L	7 ft
STK	LAKE FAIRVIEW	2000-05-18		рН	9.24	SU	3
STK	LAKE FAIRVIEW	2000-05-18		рН	9.15	SU	6
STK	LAKE FAIRVIEW	2000-06-22		рН	8.69	SU	3
STK	LAKE FAIRVIEW	2000-06-22		рН	8.65	SU	7
STK	LAKE FAIRVIEW	2000-07-20		рН	8.26	SU	3
STK	LAKE FAIRVIEW	2000-07-20		рН	8.24	SU	6
ѕтк	LAKE FAIRVIEW	2000-08-24		рН	8.18	SU	3
ѕтк	LAKE FAIRVIEW	2000-08-24		рН	7.71	SU	6
ѕтк	LAKE FAIRVIEW	2000-09-21		рН	8.49	SU	3
STK	LAKE FAIRVIEW	2000-09-21		рН	8.48	SU	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2007-05-08		рН	9.96	SU	3
sтк	LAKE FAIRVIEW	2007-05-08		рН	9.97	SU	3 ft
sтк	LAKE FAIRVIEW	2007-05-08		рН	9.78	SU	6
STK	LAKE FAIRVIEW	2007-05-08		рН	9.79	SU	6 ft
STK	LAKE FAIRVIEW	2007-06-12		рН	8.58	SU	3
STK	LAKE FAIRVIEW	2007-06-12		рН	8.07	SU	7
STK	LAKE FAIRVIEW	2007-07-10		рН	8.17	SU	3
STK	LAKE FAIRVIEW	2007-07-10		рН	7.59	SU	6
sтк	LAKE FAIRVIEW	2007-08-07		рН	8.44	SU	3
sтк	LAKE FAIRVIEW	2007-08-07		рН	7.99	SU	7
sтк	LAKE FAIRVIEW	2007-08-07		рН	8.16	SU	7 ft
sтк	LAKE FAIRVIEW	2007-09-11		рН	7.96	SU	3
sтк	LAKE FAIRVIEW	2007-09-11		рН	7.9	SU	6
sтк	LAKE FAIRVIEW	2013-05-21		рН	10.215	SU	3
sтк	LAKE FAIRVIEW	2013-06-18		рН	9.21	SU	3
sтк	LAKE FAIRVIEW	2013-07-16		рН	8.29	SU	3
STK	LAKE FAIRVIEW	2013-08-20		рН	8.02	SU	3
STK	LAKE FAIRVIEW	2013-09-17		рН	7.78	SU	3
STK	LAKE FAIRVIEW	2000-05-18		Phosphorus	0.051	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Phosphorus	0.079	mg/L	6
STK	LAKE FAIRVIEW	2000-06-22		Phosphorus	0.073	mg/L	3
STK	LAKE FAIRVIEW	2000-06-22		Phosphorus	0.068	mg/L	7
STK	LAKE FAIRVIEW	2000-07-20		Phosphorus	0.087	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Phosphorus	0.077	mg/L	6
STK	LAKE FAIRVIEW	2000-08-24		Phosphorus	0.066	mg/L	3
STK	LAKE FAIRVIEW	2000-08-24		Phosphorus	0.059	mg/L	6
sтк	LAKE FAIRVIEW	2000-09-21		Phosphorus	0.085	mg/L	3
sтк	LAKE FAIRVIEW	2000-09-21		Phosphorus	0.085	mg/L	6
STK	LAKE FAIRVIEW	2007-05-08		Phosphorus	0.015	mg/L	3
sтк	LAKE FAIRVIEW	2007-05-08		Phosphorus	0.016	mg/L	6
sтк	LAKE FAIRVIEW	2007-06-12		Phosphorus	0.074	mg/L	3
sтк	LAKE FAIRVIEW	2007-06-12		Phosphorus	0.138	mg/L	7
sтк	LAKE FAIRVIEW	2007-07-10		Phosphorus	0.085	mg/L	3
STK	LAKE FAIRVIEW	2007-07-10		Phosphorus	0.224	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Phosphorus	0.061	mg/L	3
ѕтк	LAKE FAIRVIEW	2007-08-07		Phosphorus	0.223	mg/L	7
ѕтк	LAKE FAIRVIEW	2007-09-11		Phosphorus	0.089	mg/L	3
STK	LAKE FAIRVIEW	2007-09-11		Phosphorus	0.094	mg/L	6
STK	LAKE FAIRVIEW	2013-05-21		Phosphorus	0.085	mg/L	3
ѕтк	LAKE FAIRVIEW	2013-06-18		Phosphorus	0.102	mg/L	3
ѕтк	LAKE FAIRVIEW	2013-07-16		Phosphorus	0.077	mg/L	3
STK	LAKE FAIRVIEW	2013-08-20		Phosphorus	0.074	mg/L	3
ѕтк	LAKE FAIRVIEW	2013-09-17		Phosphorus	0.086	mg/L	3
ѕтк	LAKE FAIRVIEW	2000-05-18		Phosphorus, Soluble Reactive	0.02	mg/L	3
ѕтк	LAKE FAIRVIEW	2000-05-18		Phosphorus, Soluble Reactive	0.022	mg/L	6
STK	LAKE FAIRVIEW	2000-06-22		Phosphorus, Soluble Reactive	0.006	mg/L	3
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	---------------	------------	------	-------------------------------	--------	-------	-------
STK	LAKE FAIRVIEW	2000-06-22		Phosphorus, Soluble Reactive	0.01	mg/L	7
STK	LAKE FAIRVIEW	2000-07-20		Phosphorus, Soluble Reactive	0.008	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Phosphorus, Soluble Reactive	0.006	mg/L	6
STK	LAKE FAIRVIEW	2000-08-24		Phosphorus, Soluble Reactive	0.006	mg/L	6
STK	LAKE FAIRVIEW	2007-06-12		Phosphorus, Soluble Reactive	0.024	mg/L	3
STK	LAKE FAIRVIEW	2007-06-12		Phosphorus, Soluble Reactive	0.03	mg/L	7
STK	LAKE FAIRVIEW	2007-07-10		Phosphorus, Soluble Reactive	0.036	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Phosphorus, Soluble Reactive	0.012	mg/L	7
STK	LAKE FAIRVIEW	2013-05-21		Phosphorus, Soluble Reactive	0.039	mg/L	3
sтк	LAKE FAIRVIEW	2013-06-18		Phosphorus, Soluble Reactive	0.045	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Secchi	7.51	ft	ft
STK	LAKE FAIRVIEW	2000-06-22		Secchi	5.25	ft	ft
STK	LAKE FAIRVIEW	2000-07-20		Secchi	3.12	ft	ft
sтк	LAKE FAIRVIEW	2000-08-24		Secchi	8.04	ft	ft
sтк	LAKE FAIRVIEW	2000-09-21		Secchi	3.25	ft	ft
STK	LAKE FAIRVIEW	2007-05-08		Secchi	9.1	ft	ft
sтк	LAKE FAIRVIEW	2007-06-12		Secchi	7.55	ft	ft
STK	LAKE FAIRVIEW	2007-07-10		Secchi	2.95	ft	ft
STK	LAKE FAIRVIEW	2007-08-07		Secchi	3.44	ft	ft
STK	LAKE FAIRVIEW	2000-05-18		Solids, Total Dissolved (TDS)	464	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Solids, Total Dissolved (TDS)	450	mg/L	6
STK	LAKE FAIRVIEW	2000-06-22		Solids, Total Dissolved (TDS)	454	mg/L	3
STK	LAKE FAIRVIEW	2000-06-22		Solids, Total Dissolved (TDS)	440	mg/L	7
STK	LAKE FAIRVIEW	2000-07-20		Solids, Total Dissolved (TDS)	428	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Solids, Total Dissolved (TDS)	431	mg/L	6
STK	LAKE FAIRVIEW	2000-08-24		Solids, Total Dissolved (TDS)	466	mg/L	3
STK	LAKE FAIRVIEW	2000-08-24		Solids, Total Dissolved (TDS)	454	mg/L	6
STK	LAKE FAIRVIEW	2000-09-21		Solids, Total Dissolved (TDS)	436	mg/L	3
STK	LAKE FAIRVIEW	2000-09-21		Solids, Total Dissolved (TDS)	436	mg/L	6
STK	LAKE FAIRVIEW	2000-05-18		Solids, Total Suspended (TSS)	1.6	mg/L	3
sтк	LAKE FAIRVIEW	2000-05-18		Solids, Total Suspended (TSS)	2.9	mg/L	6
sтк	LAKE FAIRVIEW	2000-06-22		Solids, Total Suspended (TSS)	4.9	mg/L	3
STK	LAKE FAIRVIEW	2000-06-22		Solids, Total Suspended (TSS)	4.6	mg/L	7
STK	LAKE FAIRVIEW	2000-07-20		Solids, Total Suspended (TSS)	5.8	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Solids, Total Suspended (TSS)	5.8	mg/L	6
sтк	LAKE FAIRVIEW	2000-08-24		Solids, Total Suspended (TSS)	3.7	mg/L	3
STK	LAKE FAIRVIEW	2000-08-24		Solids, Total Suspended (TSS)	3.5	mg/L	6
STK	LAKE FAIRVIEW	2000-09-21		Solids, Total Suspended (TSS)	8.4	mg/L	3
STK	LAKE FAIRVIEW	2000-09-21		Solids, Total Suspended (TSS)	8	mg/L	6
STK	LAKE FAIRVIEW	2007-05-08		Solids, Total Suspended (TSS)	1	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Solids, Total Suspended (TSS)	1.3	mg/L	6
STK	LAKE FAIRVIEW	2007-06-12		Solids, Total Suspended (TSS)	2.3	mg/L	3
STK	LAKE FAIRVIEW	2007-06-12		Solids, Total Suspended (TSS)	8.2	mg/L	7
STK	LAKE FAIRVIEW	2007-07-10		Solids, Total Suspended (TSS)	9.2	mg/L	3
sтк	LAKE FAIRVIEW	2007-07-10		Solids, Total Suspended (TSS)	13	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Solids, Total Suspended (TSS)	7.8	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STK	LAKE FAIRVIEW	2007-08-07		Solids, Total Suspended (TSS)	24	mg/L	7
sтк	LAKE FAIRVIEW	2007-09-11		Solids, Total Suspended (TSS)	6	mg/L	3
sтк	LAKE FAIRVIEW	2007-09-11		Solids, Total Suspended (TSS)	5.2	mg/L	6
STК	LAKE FAIRVIEW	2013-05-21		Solids, Total Suspended (TSS)	3.6	mg/L	3
STK	LAKE FAIRVIEW	2013-06-18		Solids, Total Suspended (TSS)	1.5	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Solids, Total Suspended (TSS)	9	mg/L	3
STК	LAKE FAIRVIEW	2013-08-20		Solids, Total Suspended (TSS)	6.8	mg/L	3
STK	LAKE FAIRVIEW	2013-09-17		Solids, Total Suspended (TSS)	5.8	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Specific conductance	0.7553	mS/cm	3
STK	LAKE FAIRVIEW	2000-05-18		Specific conductance	755.3	uS/cm	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Specific conductance	0.7575	mS/cm	6
STK	LAKE FAIRVIEW	2000-05-18		Specific conductance	757.5	uS/cm	6 ft
STK	LAKE FAIRVIEW	2000-06-22		Specific conductance	0.7883	mS/cm	3
STК	LAKE FAIRVIEW	2000-06-22		Specific conductance	788.3	uS/cm	3 ft
<u>STK</u>	LAKE FAIRVIEW	2000-06-22		Specific conductance	0.7894	mS/cm	7
STK	LAKE FAIRVIEW	2000-06-22		Specific conductance	789.4	uS/cm	7 ft
STK	LAKE FAIRVIEW	2000-07-20		Specific conductance	0.758	mS/cm	3
STK	LAKE FAIRVIEW	2000-07-20		Specific conductance	758	uS/cm	3 ft
STK	LAKE FAIRVIEW	2000-07-20		Specific conductance	0.7596	mS/cm	6
STK	LAKE FAIRVIEW	2000-07-20		Specific conductance	759.6	uS/cm	6 ft
sтк	LAKE FAIRVIEW	2000-08-24		Specific conductance	0.8076	mS/cm	3
sтк	LAKE FAIRVIEW	2000-08-24		Specific conductance	807.6	uS/cm	3 ft
sтк	LAKE FAIRVIEW	2000-08-24		Specific conductance	0.8096	mS/cm	6
sтк	LAKE FAIRVIEW	2000-08-24		Specific conductance	809.6	uS/cm	6 ft
sтк	LAKE FAIRVIEW	2000-09-21		Specific conductance	0.8098	mS/cm	3
STK	LAKE FAIRVIEW	2000-09-21		Specific conductance	809.8	uS/cm	3 ft
sтк	LAKE FAIRVIEW	2000-09-21		Specific conductance	0.8096	mS/cm	6
sтк	LAKE FAIRVIEW	2000-09-21		Specific conductance	809.6	uS/cm	6 ft
sтк	LAKE FAIRVIEW	2007-05-08		Specific conductance	0.896	mS/cm	3
STK	LAKE FAIRVIEW	2007-05-08		Specific conductance	895	uS/cm	3 ft
STK	LAKE FAIRVIEW	2007-05-08		Specific conductance	0.867	mS/cm	6
ѕтк	LAKE FAIRVIEW	2007-05-08		Specific conductance	897	uS/cm	6 ft
ѕтк	LAKE FAIRVIEW	2007-06-12		Specific conductance	0.93	mS/cm	3
STK	LAKE FAIRVIEW	2007-06-12		Specific conductance	1293	uS/cm	3 ft
ѕтк	LAKE FAIRVIEW	2007-06-12		Specific conductance	0.969	mS/cm	7
STK	LAKE FAIRVIEW	2007-06-12		Specific conductance	969	uS/cm	7 ft
STK	LAKE FAIRVIEW	2007-07-10		Specific conductance	1.003	mS/cm	3
STK	LAKE FAIRVIEW	2007-07-10		Specific conductance	1003	uS/cm	3 ft
ѕтк	LAKE FAIRVIEW	2007-07-10		Specific conductance	1.018	mS/cm	6
ѕтк	LAKE FAIRVIEW	2007-07-10		Specific conductance	1018	uS/cm	6 ft
STK	LAKE FAIRVIEW	2007-08-07		Specific conductance	0.946	mS/cm	3
STK	LAKE FAIRVIEW	2007-08-07		Specific conductance	946	uS/cm	3 ft
STK	LAKE FAIRVIEW	2007-08-07		Specific conductance	0.969	mS/cm	7
STK	LAKE FAIRVIEW	2007-08-07		Specific conductance	969	uS/cm	7 ft
STK	LAKE FAIRVIEW	2007-09-11		Specific conductance	0.901	mS/cm	3
sтк	LAKE FAIRVIEW	2007-09-11		Specific conductance	0.901	mS/cm	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STK	LAKE FAIRVIEW	2013-05-21		Specific conductance	0.751	mS/cm	3
STK	LAKE FAIRVIEW	2013-06-18		Specific conductance	0.77	mS/cm	3
STK	LAKE FAIRVIEW	2013-07-16		Specific conductance	0.722	mS/cm	3
STK	LAKE FAIRVIEW	2013-08-20		Specific conductance	0.787	mS/cm	3
sтк	LAKE FAIRVIEW	2013-09-17		Specific conductance	0.808	mS/cm	3
sтк	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.48	с	0.25 ft
sтк	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.49	с	1 ft
sтк	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.5	с	2 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.54	с	3 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.54	с	4 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.54	с	5 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	17.47	с	6 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	16.96	с	7 ft
STK	LAKE FAIRVIEW	2000-05-18		Temperature, water	16.28	с	8 ft
STK	LAKE FAIRVIEW	2000-06-22		Temperature, water	23	с	0.25 ft
STK	LAKE FAIRVIEW	2000-06-22		Temperature, water	23.02	с	1 ft
sтк	LAKE FAIRVIEW	2000-06-22		Temperature, water	23.02	с	2 ft
sтк	LAKE FAIRVIEW	2000-06-22		Temperature, water	23.02	с	3 ft
sтк	LAKE FAIRVIEW	2000-06-22		Temperature, water	23.01	с	4 ft
sтк	LAKE FAIRVIEW	2000-06-22		Temperature, water	23	с	5 ft
sтк	LAKE FAIRVIEW	2000-06-22		Temperature, water	22.93	с	6 ft
STK	LAKE FAIRVIEW	2000-06-22		Temperature, water	22.88	с	7 ft
STK	LAKE FAIRVIEW	2000-06-22		Temperature, water	22.82	с	8 ft
sтк	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.6	с	0.25 ft
sтк	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.65	с	1 ft
STK	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.64	с	2 ft
STK	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.62	с	3 ft
sтк	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.59	с	4 ft
sтк	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.57	с	5 ft
STK	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.55	с	6 ft
sтк	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.49	с	7 ft
STK	LAKE FAIRVIEW	2000-07-20		Temperature, water	24.34	с	8 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.95	с	0.25 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.97	с	1 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.97	с	2 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.97	с	3 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.87	с	4 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.64	с	5 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.42	с	6 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	24.07	с	7 ft
STK	LAKE FAIRVIEW	2000-08-24		Temperature, water	23.66	с	8 ft
STK	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.26	с	0.25 ft
sтк	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.26	с	1 ft
sтк	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.27	с	2 ft
STK	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.28	с	3 ft
STK	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.26	с	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
sтк	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.24	с	5 ft
sтк	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.24	С	6 ft
sтк	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.24	С	7 ft
STK	LAKE FAIRVIEW	2000-09-21		Temperature, water	18.23	с	8 ft
STK	LAKE FAIRVIEW	2000-05-18		Total solids	456	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Total solids	460	mg/L	6
STK	LAKE FAIRVIEW	2000-06-22		Total solids	476	mg/L	3
STK	LAKE FAIRVIEW	2000-06-22		Total solids	479	mg/L	7
sтк	LAKE FAIRVIEW	2000-07-20		Total solids	457	mg/L	3
sтк	LAKE FAIRVIEW	2000-07-20		Total solids	469	mg/L	6
sтк	LAKE FAIRVIEW	2000-08-24		Total solids	480	mg/L	3
sтк	LAKE FAIRVIEW	2000-08-24		Total solids	506	mg/L	6
STK	LAKE FAIRVIEW	2000-09-21		Total solids	475	mg/L	3
STK	LAKE FAIRVIEW	2000-09-21		Total solids	477	mg/L	6
STK	LAKE FAIRVIEW	2007-05-08		Total solids	489	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Total solids	475	mg/L	6
STK	LAKE FAIRVIEW	2007-06-12		Total solids	508	mg/L	3
STK	LAKE FAIRVIEW	2007-06-12		Total solids	544	mg/L	7
sтк	LAKE FAIRVIEW	2007-07-10		Total solids	568	mg/L	3
STK	LAKE FAIRVIEW	2007-07-10		Total solids	572	mg/L	6
sтк	LAKE FAIRVIEW	2007-08-07		Total solids	525	mg/L	3
sтк	LAKE FAIRVIEW	2007-08-07		Total solids	561	mg/L	7
sтк	LAKE FAIRVIEW	2007-09-11		Total solids	497	mg/L	3
STK	LAKE FAIRVIEW	2007-09-11		Total solids	496	mg/L	6
sтк	LAKE FAIRVIEW	2013-05-21		Total solids	429	mg/L	3
sтк	LAKE FAIRVIEW	2013-06-18		Total solids	469	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Total solids	433	mg/L	3
STK	LAKE FAIRVIEW	2013-08-20		Total solids	469	mg/L	3
sтк	LAKE FAIRVIEW	2013-09-17		Total solids	473	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Total volatile solids	129	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		Total volatile solids	130	mg/L	6
sтк	LAKE FAIRVIEW	2000-06-22		Total volatile solids	124	mg/L	3
STK	LAKE FAIRVIEW	2000-06-22		Total volatile solids	124	mg/L	7
sтк	LAKE FAIRVIEW	2000-07-20		Total volatile solids	132	mg/L	3
STK	LAKE FAIRVIEW	2000-07-20		Total volatile solids	121	mg/L	6
sтк	LAKE FAIRVIEW	2000-08-24		Total volatile solids	118	mg/L	3
sтк	LAKE FAIRVIEW	2000-08-24		Total volatile solids	149	mg/L	6
STK	LAKE FAIRVIEW	2000-09-21		Total volatile solids	129	mg/L	3
sтк	LAKE FAIRVIEW	2000-09-21		Total volatile solids	134	mg/L	6
sтк	LAKE FAIRVIEW	2007-05-08		Total volatile solids	117	mg/L	3
STK	LAKE FAIRVIEW	2007-05-08		Total volatile solids	103	mg/L	6
STK	LAKE FAIRVIEW	2007-06-12		Total volatile solids	108	mg/L	3
STK	LAKE FAIRVIEW	2007-06-12		Total volatile solids	128	mg/L	7
STK	LAKE FAIRVIEW	2007-07-10		Total volatile solids	132	mg/L	3
STK	LAKE FAIRVIEW	2007-07-10		Total volatile solids	131	mg/L	6
STK	LAKE FAIRVIEW	2007-08-07		Total volatile solids	108	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STK	LAKE FAIRVIEW	2007-08-07		Total volatile solids	111	mg/L	7
STK	LAKE FAIRVIEW	2007-09-11		Total volatile solids	89	mg/L	3
STK	LAKE FAIRVIEW	2007-09-11		Total volatile solids	103	mg/L	6
sтк	LAKE FAIRVIEW	2013-05-21		Total volatile solids	93	mg/L	3
STK	LAKE FAIRVIEW	2013-06-18		Total volatile solids	113	mg/L	3
STK	LAKE FAIRVIEW	2013-07-16		Total volatile solids	98	mg/L	3
STK	LAKE FAIRVIEW	2013-08-20		Total volatile solids	99	mg/L	3
STK	LAKE FAIRVIEW	2013-09-17		Total volatile solids	83	mg/L	3
STK	LAKE FAIRVIEW	2000-05-18		TRP	0		3
STK	LAKE FAIRVIEW	2000-05-18		TRP	0		6
STK	LAKE FAIRVIEW	2000-06-22		TRP	0		3
STK	LAKE FAIRVIEW	2000-06-22		TRP	0		7
STK	LAKE FAIRVIEW	2000-07-20		TRP	0		3
STK	LAKE FAIRVIEW	2000-07-20		TRP	0		6
STK	LAKE FAIRVIEW	2000-08-24		TRP	0		3
STK	LAKE FAIRVIEW	2000-08-24		TRP	0		6
STK	LAKE FAIRVIEW	2000-09-21		TRP	0		3
STK	LAKE FAIRVIEW	2000-09-21		TRP	0		6
STK	LAKE FAIRVIEW	2007-05-08		TRP	0		3
STK	LAKE FAIRVIEW	2007-05-08		TRP	0		6
STK	LAKE FAIRVIEW	2007-06-12		TRP	0		3
STK	LAKE FAIRVIEW	2007-06-12		TRP	0		7
STK	LAKE FAIRVIEW	2007-07-10		TRP	0		3
STK	LAKE FAIRVIEW	2007-07-10		TRP	0		6
STK	LAKE FAIRVIEW	2007-08-07		TRP	0		3
STK	LAKE FAIRVIEW	2007-08-07		TRP	0		7
sтк	LAKE FAIRVIEW	2007-09-11		TRP	0		3
sтк	LAKE FAIRVIEW	2007-09-11		TRP	0		6
sтк	LAKE FAIRVIEW	2000-08-24			3.107407407		4 ft
sтк	LAKE FAIRVIEW	2000-08-24			6.214814815		5 ft
sтк	LAKE FAIRVIEW	2000-08-24			6.214814815		6 ft
STK	LAKE FAIRVIEW	2000-08-24			12.42962963		7 ft
STK	LAKE FAIRVIEW	2000-08-24			11.94074074		8 ft
STN	BROBERG MARSH	2000-05-15		Alkalinity	228	mg/l CaCO3	1
STN	BROBERG MARSH	2000-05-15		Alkalinity	164	mg/l CaCO3	4
STN	BROBERG MARSH	2000-06-19		Alkalinity	110	mg/l CaCO3	2.5
STN	BROBERG MARSH	2000-07-17		Alkalinity	113	mg/l CaCO3	3
STN	BROBERG MARSH	2000-08-21		Alkalinity	132	mg/l CaCO3	3
STN	BROBERG MARSH	2000-09-18		Alkalinity	120	mg/l CaCO3	3
STN	BROBERG MARSH	2000-05-15		Ammonia as N	0.524	mg/L	1
STN	BROBERG MARSH	2000-05-15		Ammonia as N	0.538	mg/L	4
STN	BROBERG MARSH	2000-09-18		Ammonia as N	0.129	mg/L	3
STN	BROBERG MARSH	2000-05-15		Chlorophyll a	0	ug/L	1
STN	BROBERG MARSH	2000-05-15		Chlorophyll a	0	ug/L	4
STN	BROBERG MARSH	2000-06-19		Chlorophyll a	0	ug/L	2.5
STN	BROBERG MARSH	2000-07-17		Chlorophyll a	0	ug/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-08-21		Chlorophyll a	0	ug/L	3
STN	BROBERG MARSH	2000-09-18		Chlorophyll a	0	ug/L	3
STN	BROBERG MARSH	2000-05-15		Depth, Secchi Disk Depth	1.9	ft	1
STN	BROBERG MARSH	2000-06-19		Depth, Secchi Disk Depth	3.281	ft	2.5
STN	BROBERG MARSH	2000-08-21		Depth, Secchi Disk Depth	3.97	ft	3
STN	BROBERG MARSH	2000-09-18		Depth, Secchi Disk Depth	3.48	ft	3
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	8.87	mg/L	0.25 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	9.01	mg/L	1 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	8.92	mg/L	2 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	8.29	mg/L	3 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	7.69	mg/L	4 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen (DO)	7.27	mg/L	5 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen (DO)	9.77	mg/L	0.25 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen (DO)	9.52	mg/L	1 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen (DO)	9.75	mg/L	2 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen (DO)	9.16	mg/L	3 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen (DO)	7.82	mg/L	4 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	4.76	mg/L	0.25 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	4.53	mg/L	1 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	3.93	mg/L	2 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	2.67	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	2.46	mg/L	4 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen (DO)	1.95	mg/L	5 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen (DO)	8.41	mg/L	0.25 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen (DO)	8.5	mg/L	1 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen (DO)	8.31	mg/L	2 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen (DO)	8.15	mg/L	3 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen (DO)	7.54	mg/L	4 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen (DO)	5.57	mg/L	1 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen (DO)	5.24	mg/L	2 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen (DO)	4.99	mg/L	3 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen (DO)	4.8	mg/L	4 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	100.3	%	0.25 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	97.3	%	1 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	94.1	%	2 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	86.1	%	3 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	79.5	%	4 ft
STN	BROBERG MARSH	2000-05-15		Dissolved oxygen saturation	74.8	%	5 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen saturation	119.3	%	0.25 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen saturation	111.2	%	1 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen saturation	112.5	%	2 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen saturation	105.5	%	3 ft
STN	BROBERG MARSH	2000-06-19		Dissolved oxygen saturation	89.6	%	4 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	61.8	%	0.25 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	58.2	%	1 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	50	%	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	33.6	%	3 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	30.9	%	4 ft
STN	BROBERG MARSH	2000-07-17		Dissolved oxygen saturation	24.7	%	5 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen saturation	100.9	%	0.25 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen saturation	101.9	%	1 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen saturation	98.8	%	2 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen saturation	95.8	%	3 ft
STN	BROBERG MARSH	2000-08-21		Dissolved oxygen saturation	88.1	%	4 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen saturation	62.7	%	1 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen saturation	58.2	%	2 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen saturation	55.3	%	3 ft
STN	BROBERG MARSH	2000-09-18		Dissolved oxygen saturation	53.2	%	4 ft
STN	BROBERG MARSH	2000-05-15		Light Extinction	4.447166916	Coef	2 ft
STN	BROBERG MARSH	2000-05-15		Light Extinction	1.081104811	Coef	3 ft
STN	BROBERG MARSH	2000-05-15		Light Extinction	1.51364278	Coef	4 ft
STN	BROBERG MARSH	2000-05-15		Light Extinction	1.731070703	Coef	5 ft
STN	BROBERG MARSH	2000-06-19		Light Extinction	3.136781565	Coef	0.27 ft
STN	BROBERG MARSH	2000-06-19		Light Extinction	0.637108495	Coef	1.33 ft
STN	BROBERG MARSH	2000-06-19		Light Extinction	0.584790795	Coef	2.21 ft
STN	BROBERG MARSH	2000-07-17		Light Extinction	2.961091266	Coef	0.27 ft
STN	BROBERG MARSH	2000-07-17		Light Extinction	0.502368264	Coef	1.31 ft
STN	BROBERG MARSH	2000-07-17		Light Extinction	0.503327461	Coef	2.21 ft
STN	BROBERG MARSH	2000-07-17		Light Extinction	0.393747021	Coef	3.18 ft
STN	BROBERG MARSH	2000-08-21		Light Extinction	3.15098928	Coef	0.28 ft
STN	BROBERG MARSH	2000-08-21		Light Extinction	1.029146258	Coef	1.3 ft
STN	BROBERG MARSH	2000-08-21		Light Extinction	0.30244287	Coef	2.28 ft
STN	BROBERG MARSH	2000-09-18		Light Extinction	4.788239098	Coef	0.28 ft
STN	BROBERG MARSH	2000-09-18		Light Extinction	0.671412616	Coef	1.3 ft
STN	BROBERG MARSH	2000-09-18		Light Extinction	0.805349636	Coef	2.28 ft
STN	BROBERG MARSH	2000-05-15		Nitrite (NO2) + Nitrate (NO3) as N	0.111	mg/L	1 ft
STN	BROBERG MARSH	2000-05-15		Nitrite (NO2) + Nitrate (NO3) as N	0.107	mg/L	4 ft
STN	BROBERG MARSH	2000-06-19		Nitrite (NO2) + Nitrate (NO3) as N	0.085	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Nitrite (NO2) + Nitrate (NO3) as N	0.075	mg/L	3 ft
STN	BROBERG MARSH	2000-09-18		Nitrite (NO2) + Nitrate (NO3) as N	0.059	mg/L	3 ft
STN	BROBERG MARSH	2000-05-15		Nitrogen, ammonia as N	0.524	mg/L	1 ft
STN	BROBERG MARSH	2000-05-15		Nitrogen, ammonia as N	0.538	mg/L	4 ft
STN	BROBERG MARSH	2000-09-18		Nitrogen, ammonia as N	0.129	mg/L	3 ft
STN	BROBERG MARSH	2000-05-15		Nitrogen, Kjeldahl	2.62	mg/L	1 ft
STN	BROBERG MARSH	2000-05-15		Nitrogen, Kjeldahl	2.62	mg/L	1
STN	BROBERG MARSH	2000-05-15		Nitrogen, Kjeldahl	2.95	mg/L	4 ft
STN	BROBERG MARSH	2000-05-15		Nitrogen, Kjeldahl	2.95	mg/L	4
STN	BROBERG MARSH	2000-06-19		Nitrogen, Kjeldahl	1.38	mg/L	2.5
STN	BROBERG MARSH	2000-06-19		Nitrogen, Kjeldahl	1.38	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Nitrogen, Kjeldahl	1.05	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Nitrogen, Kjeldahl	1.05	mg/L	3
STN	BROBERG MARSH	2000-08-21		Nitrogen, Kjeldahl	1.3	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-08-21		Nitrogen, Kjeldahl	1.3	mg/L	3
STN	BROBERG MARSH	2000-09-18		Nitrogen, Kjeldahl	1.68	mg/L	3 ft
STN	BROBERG MARSH	2000-09-18		Nitrogen, Kjeldahl	1.68	mg/L	3
STN	BROBERG MARSH	2000-05-15		Nitrogen, Nitrate (NO3) as N	0.111	mg/L	1
STN	BROBERG MARSH	2000-05-15		Nitrogen, Nitrate (NO3) as N	0.107	mg/L	4
STN	BROBERG MARSH	2000-06-19		Nitrogen, Nitrate (NO3) as N	0.085	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Nitrogen, Nitrate (NO3) as N	0.075	mg/L	3
STN	BROBERG MARSH	2000-09-18		Nitrogen, Nitrate (NO3) as N	0.059	mg/L	3
STN	BROBERG MARSH	2000-05-15		Orthophosphate as P, Dissolved	0.04	mg/L	1 ft
STN	BROBERG MARSH	2000-05-15		Orthophosphate as P, Dissolved	0.042	mg/L	4 ft
STN	BROBERG MARSH	2000-06-19		Orthophosphate as P, Dissolved	0.013	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Orthophosphate as P, Dissolved	0.012	mg/L	3 ft
STN	BROBERG MARSH	2000-05-15		рН	8.27	SU	0.25 ft
STN	BROBERG MARSH	2000-05-15		рН	8.31	SU	1
STN	BROBERG MARSH	2000-05-15		рН	8.36	SU	2 ft
STN	BROBERG MARSH	2000-05-15		рН	8.25	SU	3 ft
STN	BROBERG MARSH	2000-05-15		рН	8.15	SU	4
STN	BROBERG MARSH	2000-05-15		рН	8.12	SU	5 ft
STN	BROBERG MARSH	2000-06-19		рН	9.36	SU	0.25 ft
STN	BROBERG MARSH	2000-06-19		рН	9.36	SU	1 ft
STN	BROBERG MARSH	2000-06-19		рН	9.37	SU	2 ft
STN	BROBERG MARSH	2000-06-19		рН	9.35	SU	2.5
STN	BROBERG MARSH	2000-06-19		рН	9.33	SU	3 ft
STN	BROBERG MARSH	2000-06-19		рН	9.27	SU	4 ft
STN	BROBERG MARSH	2000-07-17		рН	8.33	SU	0.25 ft
STN	BROBERG MARSH	2000-07-17		рН	8.35	SU	1 ft
STN	BROBERG MARSH	2000-07-17		рН	8.27	SU	2 ft
STN	BROBERG MARSH	2000-07-17		рН	8.04	SU	3
STN	BROBERG MARSH	2000-07-17		рН	7.94	SU	4 ft
STN	BROBERG MARSH	2000-07-17		рН	7.84	SU	5 ft
STN	BROBERG MARSH	2000-08-21		рН	8.76	SU	0.25 ft
STN	BROBERG MARSH	2000-08-21		рН	8.76	SU	1 ft
STN	BROBERG MARSH	2000-08-21		рН	8.72	SU	2 ft
STN	BROBERG MARSH	2000-08-21		рН	8.7	SU	3
STN	BROBERG MARSH	2000-08-21		рН	8.62	SU	4 ft
STN	BROBERG MARSH	2000-09-18		рН	8.12	SU	1 ft
STN	BROBERG MARSH	2000-09-18		рН	8.07	SU	2 ft
STN	BROBERG MARSH	2000-09-18		рН	8.04	SU	3
STN	BROBERG MARSH	2000-09-18		рН	8.03	SU	4 ft
STN	BROBERG MARSH	2000-05-15		Phosphorus	0.134	mg/L	1
STN	BROBERG MARSH	2000-05-15		Phosphorus	0.146	mg/L	4
STN	BROBERG MARSH	2000-06-19		Phosphorus	0.056	mg/L	2.5
STN	BROBERG MARSH	2000-06-19		Phosphorus	0.056	mg/L	3 ft
STN	BROBERG MARSH	2000-07-17		Phosphorus	0.056	mg/L	3
STN	BROBERG MARSH	2000-08-21		Phosphorus	0.088	mg/L	3
STN	BROBERG MARSH	2000-09-18		Phosphorus	0.057	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-05-15		Phosphorus, Soluble Reactive	0.04	mg/L	1
STN	BROBERG MARSH	2000-05-15		Phosphorus, Soluble Reactive	0.042	mg/L	4
STN	BROBERG MARSH	2000-06-19		Phosphorus, Soluble Reactive	0.013	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Phosphorus, Soluble Reactive	0.012	mg/L	3
STN	BROBERG MARSH	2000-05-15		Secchi	1.9	ft	ft
STN	BROBERG MARSH	2000-06-19		Secchi	3.281	ft	ft
STN	BROBERG MARSH	2000-08-21		Secchi	3.97	ft	ft
STN	BROBERG MARSH	2000-09-18		Secchi	3.48	ft	ft
STN	BROBERG MARSH	2000-05-15		Solids, Total Dissolved (TDS)	266	mg/L	1
STN	BROBERG MARSH	2000-05-15		Solids, Total Dissolved (TDS)	272	mg/L	4
STN	BROBERG MARSH	2000-06-19		Solids, Total Dissolved (TDS)	180	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Solids, Total Dissolved (TDS)	160	mg/L	3
STN	BROBERG MARSH	2000-08-21		Solids, Total Dissolved (TDS)	180	mg/L	3
STN	BROBERG MARSH	2000-09-18		Solids, Total Dissolved (TDS)	190	mg/L	3
STN	BROBERG MARSH	2000-05-15		Solids, Total Suspended (TSS)	11	mg/L	1
STN	BROBERG MARSH	2000-05-15		Solids, Total Suspended (TSS)	14	mg/L	4
STN	BROBERG MARSH	2000-06-19		Solids, Total Suspended (TSS)	9.4	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Solids, Total Suspended (TSS)	5.4	mg/L	3
STN	BROBERG MARSH	2000-08-21		Solids, Total Suspended (TSS)	11	mg/L	3
STN	BROBERG MARSH	2000-09-18		Solids, Total Suspended (TSS)	11	mg/L	3
STN	BROBERG MARSH	2000-05-15		Specific conductance	439.6	uS/cm	0.25 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	0.4382	mS/cm	1
STN	BROBERG MARSH	2000-05-15		Specific conductance	438.2	uS/cm	1 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	0.4382	uS/cm	1 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	438.6	uS/cm	2 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	438.2	uS/cm	3 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	0.4394	mS/cm	4
STN	BROBERG MARSH	2000-05-15		Specific conductance	439.4	uS/cm	4 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	0.4394	uS/cm	4 ft
STN	BROBERG MARSH	2000-05-15		Specific conductance	440.2	uS/cm	5 ft
STN	BROBERG MARSH	2000-06-19		Specific conductance	260.3	uS/cm	0.25 ft
STN	BROBERG MARSH	2000-06-19		Specific conductance	258.9	uS/cm	1 ft
STN	BROBERG MARSH	2000-06-19		Specific conductance	256	uS/cm	2 ft
STN	BROBERG MARSH	2000-06-19		Specific conductance	0.2584	mS/cm	2.5
STN	BROBERG MARSH	2000-06-19		Specific conductance	260.8	uS/cm	3 ft
STN	BROBERG MARSH	2000-06-19		Specific conductance	255.5	uS/cm	4 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	253.5	uS/cm	0.25 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	253.9	uS/cm	1 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	259.9	uS/cm	2 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	0.2542	mS/cm	3
STN	BROBERG MARSH	2000-07-17		Specific conductance	254.2	uS/cm	3 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	251.1	uS/cm	4 ft
STN	BROBERG MARSH	2000-07-17		Specific conductance	248.8	uS/cm	5 ft
STN	BROBERG MARSH	2000-08-21		Specific conductance	297.7	uS/cm	0.25 ft
STN	BROBERG MARSH	2000-08-21		Specific conductance	297	uS/cm	1 ft
STN	BROBERG MARSH	2000-08-21		Specific conductance	297.3	uS/cm	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-08-21		Specific conductance	0.2978	mS/cm	3
STN	BROBERG MARSH	2000-08-21		Specific conductance	297.8	uS/cm	3 ft
STN	BROBERG MARSH	2000-08-21		Specific conductance	297.9	uS/cm	4 ft
STN	BROBERG MARSH	2000-09-18		Specific conductance	316.9	uS/cm	1 ft
STN	BROBERG MARSH	2000-09-18		Specific conductance	318.5	uS/cm	2 ft
STN	BROBERG MARSH	2000-09-18		Specific conductance	0.3179	mS/cm	3
STN	BROBERG MARSH	2000-09-18		Specific conductance	317.9	uS/cm	3 ft
STN	BROBERG MARSH	2000-09-18		Specific conductance	317	uS/cm	4 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	20.45	с	0.25 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	18.14	с	1 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	17.05	с	2 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	16.33	с	3 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	16.08	с	4 ft
STN	BROBERG MARSH	2000-05-15		Temperature, water	15.91	с	5 ft
STN	BROBERG MARSH	2000-06-19		Temperature, water	24.4	с	0.25 ft
STN	BROBERG MARSH	2000-06-19		Temperature, water	22.03	с	1 ft
STN	BROBERG MARSH	2000-06-19		Temperature, water	21.39	с	2 ft
STN	BROBERG MARSH	2000-06-19		Temperature, water	21.31	с	3 ft
STN	BROBERG MARSH	2000-06-19		Temperature, water	21.08	с	4 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	27.43	с	0.25 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	26.86	с	1 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	26.27	с	2 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	25.72	с	3 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	25.6	с	4 ft
STN	BROBERG MARSH	2000-07-17		Temperature, water	25.43	с	5 ft
STN	BROBERG MARSH	2000-08-21		Temperature, water	23.65	с	0.25 ft
STN	BROBERG MARSH	2000-08-21		Temperature, water	23.6	с	1 ft
STN	BROBERG MARSH	2000-08-21		Temperature, water	23.19	с	2 ft
STN	BROBERG MARSH	2000-08-21		Temperature, water	22.62	с	3 ft
STN	BROBERG MARSH	2000-08-21		Temperature, water	22.25	с	4 ft
STN	BROBERG MARSH	2000-09-18		Temperature, water	19.9	с	1 ft
STN	BROBERG MARSH	2000-09-18		Temperature, water	19.27	с	2 ft
STN	BROBERG MARSH	2000-09-18		Temperature, water	19.16	с	3 ft
STN	BROBERG MARSH	2000-09-18		Temperature, water	19.06	с	4 ft
STN	BROBERG MARSH	2000-05-15		Total solids	301	mg/L	1
STN	BROBERG MARSH	2000-05-15		Total solids	290	mg/L	4
STN	BROBERG MARSH	2000-06-19		Total solids	194	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Total solids	172	mg/L	3
STN	BROBERG MARSH	2000-08-21		Total solids	205	mg/L	3
STN	BROBERG MARSH	2000-09-18		Total solids	217	mg/L	3
STN	BROBERG MARSH	2000-05-15		Total volatile solids	89	mg/L	1
STN	BROBERG MARSH	2000-05-15		Total volatile solids	105	mg/L	4
STN	BROBERG MARSH	2000-06-19		Total volatile solids	84	mg/L	2.5
STN	BROBERG MARSH	2000-07-17		Total volatile solids	75	mg/L	3
STN	BROBERG MARSH	2000-08-21		Total volatile solids	82	mg/L	3
STN	BROBERG MARSH	2000-09-18		Total volatile solids	73	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STN	BROBERG MARSH	2000-05-15		TRP	0		1
STN	BROBERG MARSH	2000-05-15		TRP	0		4
STN	BROBERG MARSH	2000-06-19		TRP	0		2.5
STN	BROBERG MARSH	2000-07-17		TRP	0		3
STN	BROBERG MARSH	2000-08-21		TRP	0		3
STN	BROBERG MARSH	2000-09-18		TRP	0		3
STO	LAKE PA SUWE	2002-04-30		Alkalinity	266	mg/l CaCO3	3
STO	LAKE PA SUWE	2002-04-30		Alkalinity	259	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-06-05		Alkalinity	239	mg/l CaCO3	3
STO	LAKE PA SUWE	2002-06-05		Alkalinity	238	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-07-09		Alkalinity	233	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-07-09		Alkalinity	238	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-08-06		Alkalinity	207	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-08-06		Alkalinity	224	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-09-04		Alkalinity	192	mg/l CaCO3	0
STO	LAKE PA SUWE	2002-09-04		Alkalinity	199	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-05-12		Alkalinity	187	mg/l CaCO3	3
STO	LAKE PA SUWE	2009-05-12		Alkalinity	141	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-06-09		Alkalinity	152	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-06-09		Alkalinity	108	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-07-14		Alkalinity	132	mg/l CaCO3	3
STO	LAKE PA SUWE	2009-07-14		Alkalinity	122	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-08-11		Alkalinity	120	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-08-11		Alkalinity	125	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-09-15		Alkalinity	135	mg/l CaCO3	0
STO	LAKE PA SUWE	2009-09-15		Alkalinity	126	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-05-15		Alkalinity	167	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-05-15		Alkalinity	165	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-06-12		Alkalinity	217	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-06-12		Alkalinity	217	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-07-09		Alkalinity	204	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-07-09		Alkalinity	184	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-08-14		Alkalinity	167	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-08-14		Alkalinity	204	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-09-11		Alkalinity	167	mg/l CaCO3	0
STO	LAKE PA SUWE	2013-09-11		Alkalinity	163	mg/l CaCO3	0
STO	LAKE PA SUWE	2008-05-26	14:23	Alkalinity, total	174	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Alkalinity, total	128	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Alkalinity, total	100	mg/L	1 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Alkalinity, total	200	mg/L	1 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Alkalinity, total	190	mg/L	1 ft
STO	LAKE PA SUWE	2002-06-05		Ammonia as N	0.153	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Ammonia as N	0.242	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Ammonia as N	0.721	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Ammonia as N	0.123	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Ammonia as N	0.197	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2008-05-26	14:23	Chloride	162	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Chloride	146	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Chloride	156	mg/L	1 ft
STO	LAKE PA SUWE	2009-05-12		Chloride	102	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Chloride	105	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Chloride	107	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Chloride	106	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Chloride	105	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Chloride	109	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Chloride	105	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Chloride	109	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Chloride	107	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Chloride	105	mg/L	0
STO	LAKE PA SUWE	2012-05-14	16:00	Chloride	142	mg/L	1 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Chloride	176	mg/L	1 ft
STO	LAKE PA SUWE	2013-05-15		Chloride	123	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Chloride	120	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Chloride	137	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Chloride	137	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Chloride	129	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Chloride	134	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Chloride	168	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Chloride	143	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Chloride	168	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Chloride	167	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Chlorophyll a	0	ug/L	3
STO	LAKE PA SUWE	2002-04-30		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-06-05		Chlorophyll a	0	ug/L	3
STO	LAKE PA SUWE	2002-06-05		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-07-09		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-07-09		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-08-06		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-08-06		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-09-04		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2002-09-04		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-05-12		Chlorophyll a	0	ug/L	3
STO	LAKE PA SUWE	2009-05-12		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-06-09		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-06-09		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-07-14		Chlorophyll a	0	ug/L	3
STO	LAKE PA SUWE	2009-07-14		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-08-11		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-08-11		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-09-15		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2009-09-15		Chlorophyll a	0	ug/L	0
STO	LAKE PA SUWE	2012-05-14	16:00	Chlorophyll a, corrected for pheophytin	24.9	ug/L	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2012-06-19	15:40	Chlorophyll a, corrected for pheophytin	33.8	ug/L	2 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Chlorophyll a, uncorrected for pheophytin	25.8	ug/L	2 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Chlorophyll a, uncorrected for pheophytin	35	ug/L	2 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Chlorophyll b	NA	ug/L	2 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Chlorophyll b	NA	ug/L	2 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Chlorophyll c	2.59	ug/L	2 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Chlorophyll c	1.37	ug/L	2 ft
STO	LAKE PA SUWE	2002-04-30		Depth, Secchi Disk Depth	1.38	ft	3
STO	LAKE PA SUWE	2002-04-30		Depth, Secchi Disk Depth	1.28	ft	0
STO	LAKE PA SUWE	2002-06-05		Depth, Secchi Disk Depth	1.05	ft	3
STO	LAKE PA SUWE	2002-06-05		Depth, Secchi Disk Depth	0.92	ft	0
STO	LAKE PA SUWE	2002-07-09		Depth, Secchi Disk Depth	0.79	ft	0
STO	LAKE PA SUWE	2002-07-09		Depth, Secchi Disk Depth	0.56	ft	0
STO	LAKE PA SUWE	2002-08-06		Depth, Secchi Disk Depth	0.85	ft	0
STO	LAKE PA SUWE	2002-08-06		Depth, Secchi Disk Depth	0.72	ft	0
STO	LAKE PA SUWE	2002-09-04		Depth, Secchi Disk Depth	0.82	ft	0
STO	LAKE PA SUWE	2002-09-04		Depth, Secchi Disk Depth	0.59	ft	0
STO	LAKE PA SUWE	2009-05-12		Depth, Secchi Disk Depth	1.87	ft	3
STO	LAKE PA SUWE	2009-05-12		Depth, Secchi Disk Depth	1.87	ft	0
STO	LAKE PA SUWE	2009-06-09		Depth, Secchi Disk Depth	1.48	ft	0
STO	LAKE PA SUWE	2009-06-09		Depth, Secchi Disk Depth	2.13	ft	0
STO	LAKE PA SUWE	2009-07-14		Depth, Secchi Disk Depth	2.03	ft	3
STO	LAKE PA SUWE	2009-08-11		Depth, Secchi Disk Depth	3.6	ft	0
STO	LAKE PA SUWE	2009-09-15		Depth, Secchi Disk Depth	4.33	ft	0
STO	LAKE PA SUWE	2013-05-15		Depth, Secchi Disk Depth	1.1	ft	0
STO	LAKE PA SUWE	2013-05-15		Depth, Secchi Disk Depth	1.7	ft	0
STO	LAKE PA SUWE	2013-06-12		Depth, Secchi Disk Depth	1.5	ft	0
STO	LAKE PA SUWE	2013-06-12		Depth, Secchi Disk Depth	1.5	ft	0
STO	LAKE PA SUWE	2013-09-11		Depth, Secchi Disk Depth	0.583	ft	0
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	9.46	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	9.39	mg/L	1 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	9.4	mg/L	2 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	9.29	mg/L	3 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	8.99	mg/L	4 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	9.08	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	8.41	mg/L	1 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen (DO)	7.94	mg/L	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	5.63	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	5.3	mg/L	1 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	5.19	mg/L	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	4.96	mg/L	3 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	4.44	mg/L	4 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	5.63	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	5.29	mg/L	1 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	4.85	mg/L	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen (DO)	4.45	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	6.07	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	5.79	mg/L	1 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	5.37	mg/L	2 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	4.8	mg/L	3 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	3.46	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	3.41	mg/L	1 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen (DO)	3.1	mg/L	2 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	6.06	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	5.97	mg/L	1 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	5.84	mg/L	2 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	4.62	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	4.4	mg/L	1 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen (DO)	4.26	mg/L	2 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	7.35	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	6.54	mg/L	1 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	6.49	mg/L	2 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	5.06	mg/L	3 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	3.06	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	2.11	mg/L	1 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen (DO)	1.36	mg/L	2 ft
STO	LAKE PA SUWE	2013-06-12		Dissolved oxygen (DO)	9.54	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Dissolved oxygen (DO)	8.1	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Dissolved oxygen (DO)	7.58	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Dissolved oxygen (DO)	8.02	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Dissolved oxygen (DO)	9.78	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Dissolved oxygen (DO)	8.9	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Dissolved oxygen (DO)	10.23	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Dissolved oxygen (DO)	8.54	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	88.9	%	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	88.3	%	1 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	88.2	%	2 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	87.2	%	3 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	84.3	%	4 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	85.8	%	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	79	%	1 ft
STO	LAKE PA SUWE	2002-04-30		Dissolved oxygen saturation	74.3	%	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	60.8	%	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	57.2	%	1 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	56.1	%	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	53.6	%	3 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	48	%	4 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	60.5	%	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	57	%	1 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	51.9	%	2 ft
STO	LAKE PA SUWE	2002-06-05		Dissolved oxygen saturation	47.9	%	3 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	79.6	%	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	75.8	%	1 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	70.3	%	2 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	62.8	%	3 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	45.5	%	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	44.8	%	1 ft
STO	LAKE PA SUWE	2002-07-09		Dissolved oxygen saturation	40.7	%	2 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	73.3	%	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	72.2	%	1 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	70.6	%	2 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	56	%	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	53.3	%	1 ft
STO	LAKE PA SUWE	2002-08-06		Dissolved oxygen saturation	51.6	%	2 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	91.3	%	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	79.5	%	1 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	78.4	%	2 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	60.3	%	3 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	36.6	%	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	24.7	%	1 ft
STO	LAKE PA SUWE	2002-09-04		Dissolved oxygen saturation	15.8	%	2 ft
STO	LAKE PA SUWE	2002-04-30		Light Extinction	4.602858584	Coef	0.24 ft
STO	LAKE PA SUWE	2002-04-30		Light Extinction	1.613786096	Coef	1.28 ft
STO	LAKE PA SUWE	2002-04-30		Light Extinction	1.64489567	Coef	2.25 ft
STO	LAKE PA SUWE	2002-04-30		Light Extinction	6.248217037	Coef	0.22 ft
STO	LAKE PA SUWE	2002-06-05		Light Extinction	5.768288588	Coef	0.22 ft
STO	LAKE PA SUWE	2002-06-05		Light Extinction	1.970901315	Coef	1.23 ft
STO	LAKE PA SUWE	2002-06-05		Light Extinction	3.187005767	Coef	2.24 ft
STO	LAKE PA SUWE	2002-06-05		Light Extinction	4.763478317	Coef	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Light Extinction	2.471273994	Coef	1.23 ft
STO	LAKE PA SUWE	2002-07-09		Light Extinction	4.25820638	Coef	0.37 ft
STO	LAKE PA SUWE	2002-07-09		Light Extinction	2.263935978	Coef	1.26 ft
STO	LAKE PA SUWE	2002-07-09		Light Extinction	4.461849282	Coef	0.35 ft
STO	LAKE PA SUWE	2002-08-06		Light Extinction	5.703700716	Coef	0.29 ft
STO	LAKE PA SUWE	2002-08-06		Light Extinction	7.307760528	Coef	0.24 ft
STO	LAKE PA SUWE	2002-09-04		Light Extinction	4.957084678	Coef	0.3 ft
STO	LAKE PA SUWE	2002-09-04		Light Extinction	2.498895105	Coef	1.34 ft
STO	LAKE PA SUWE	2002-09-04		Light Extinction	5.699734567	Coef	0.29 ft
STO	LAKE PA SUWE	2002-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.056	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Nitrogen, ammonia as N	0.153	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Nitrogen, ammonia as N	0.242	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Nitrogen, ammonia as N	0.721	mg/L	0.25 ft
STO	LAKE PA SUWE	2008-05-26	14:23	Nitrogen, ammonia as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Nitrogen, ammonia as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Nitrogen, ammonia as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2002-04-30		Nitrogen, Kjeldahl	2.28	mg/L	3 ft
STO	LAKE PA SUWE	2002-04-30		Nitrogen, Kjeldahl	2.28	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Nitrogen, Kjeldahl	2.21	mg/L	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-04-30		Nitrogen, Kjeldahl	2.21	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Nitrogen, Kjeldahl	2.95	mg/L	3 ft
STO	LAKE PA SUWE	2002-06-05		Nitrogen, Kjeldahl	2.95	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Nitrogen, Kjeldahl	2.72	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Nitrogen, Kjeldahl	2.72	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Nitrogen, Kjeldahl	1.23	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Nitrogen, Kjeldahl	1.23	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Nitrogen, Kjeldahl	3.46	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Nitrogen, Kjeldahl	3.46	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Nitrogen, Kjeldahl	4.62	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Nitrogen, Kjeldahl	4.62	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Nitrogen, Kjeldahl	5.62	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Nitrogen, Kjeldahl	5.62	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Nitrogen, Kjeldahl	3.15	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Nitrogen, Kjeldahl	3.15	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Nitrogen, Kjeldahl	3.49	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Nitrogen, Kjeldahl	3.49	mg/L	0
STO	LAKE PA SUWE	2008-05-26	14:23	Nitrogen, Kjeldahl	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Nitrogen, Kjeldahl	1.19	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Nitrogen, Kjeldahl	1.52	mg/L	1 ft
STO	LAKE PA SUWE	2009-05-12		Nitrogen, Kjeldahl	1.58	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Nitrogen, Kjeldahl	0.87	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Nitrogen, Kjeldahl	1.68	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Nitrogen, Kjeldahl	1.2	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Nitrogen, Kjeldahl	1.55	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Nitrogen, Kjeldahl	1.67	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Nitrogen, Kjeldahl	1.25	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Nitrogen, Kjeldahl	1.47	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Nitrogen, Kjeldahl	1.24	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Nitrogen, Kjeldahl	1.26	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Nitrogen, Kjeldahl	2.62	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Nitrogen, Kjeldahl	2.29	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Nitrogen, Kjeldahl	2.77	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Nitrogen, Kjeldahl	2.69	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Nitrogen, Kjeldahl	3.67	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Nitrogen, Kjeldahl	3.32	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Nitrogen, Kjeldahl	3.47	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Nitrogen, Kjeldahl	5.53	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Nitrogen, Kjeldahl	4.6	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Nitrogen, Kjeldahl	5.4	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Nitrogen, Nitrate (NO3) as N	0.056	mg/L	0
STO	LAKE PA SUWE	2008-05-26	14:23	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Nitrogen, Nitrate (NO3) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2013-06-12		Nitrogen, Nitrate (NO3) as N	0.06	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Nitrogen, Nitrate (NO3) as N	0.146	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2008-05-26	14:23	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.022	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-05-26	14:23	Nitrogen, Nitrite (NO2) as N	0.022	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Nitrogen, Nitrite (NO2) as N	NA	mg/L	1 ft
STO	LAKE PA SUWE	2002-07-09		Orthophosphate as P, Dissolved	0.006	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Orthophosphate as P, Dissolved	0.014	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Orthophosphate as P, Dissolved	0.008	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Orthophosphate as P, Dissolved	0.029	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Orthophosphate as P, Dissolved	0.02	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.17	SU	0.25 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.17	SU	1 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.18	SU	2 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.19	SU	3 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.19	SU	4 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.19	SU	3
STO	LAKE PA SUWE	2002-04-30		рН	8.17	SU	0.25 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.12	SU	1 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.1	SU	2 ft
STO	LAKE PA SUWE	2002-04-30		рН	8.17	SU	0
STO	LAKE PA SUWE	2002-06-05		рН	7.8	SU	0.25 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.81	SU	1 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.82	SU	2 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.81	SU	3 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.77	SU	4 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.81	SU	3
STO	LAKE PA SUWE	2002-06-05		рН	7.74	SU	0.25 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.73	SU	1 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.7	SU	2 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.68	SU	3 ft
STO	LAKE PA SUWE	2002-06-05		рН	7.74	SU	0
STO	LAKE PA SUWE	2002-07-09		рН	8.31	SU	0.25 ft
STO	LAKE PA SUWE	2002-07-09		рН	8.3	SU	1 ft
STO	LAKE PA SUWE	2002-07-09		рН	8.25	SU	2 ft
STO	LAKE PA SUWE	2002-07-09		рН	8.2	SU	3 ft
STO	LAKE PA SUWE	2002-07-09		рН	8.31	SU	0
STO	LAKE PA SUWE	2002-07-09		рН	7.94	SU	0.25 ft
STO	LAKE PA SUWE	2002-07-09		рН	7.93	SU	1 ft
STO	LAKE PA SUWE	2002-07-09		рН	7.91	SU	2 ft
STO	LAKE PA SUWE	2002-07-09		рН	7.94	SU	0
STO	LAKE PA SUWE	2002-08-06		рН	8.45	SU	0.25 ft
STO	LAKE PA SUWE	2002-08-06		рН	8.45	SU	1 ft
STO	LAKE PA SUWE	2002-08-06		pH	8.45	SU	2 ft
STO	LAKE PA SUWE	2002-08-06		рН	8.45	SU	0
STO	LAKE PA SUWE	2002-08-06		pH	8.04	SU	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-08-06		рН	8.04	SU	1 ft
STO	LAKE PA SUWE	2002-08-06		рН	8.03	SU	2 ft
STO	LAKE PA SUWE	2002-08-06		рН	8.04	SU	0
STO	LAKE PA SUWE	2002-09-04		рН	8.13	SU	0.25 ft
STO	LAKE PA SUWE	2002-09-04		рН	8.02	SU	1 ft
STO	LAKE PA SUWE	2002-09-04		рН	8.02	SU	2 ft
STO	LAKE PA SUWE	2002-09-04		рН	7.81	SU	3 ft
STO	LAKE PA SUWE	2002-09-04		рН	8.13	SU	0
STO	LAKE PA SUWE	2002-09-04		рН	7.61	SU	0.25 ft
STO	LAKE PA SUWE	2002-09-04		рН	7.53	SU	1 ft
STO	LAKE PA SUWE	2002-09-04		рН	7.49	SU	2 ft
STO	LAKE PA SUWE	2002-09-04		рН	7.61	SU	0
STO	LAKE PA SUWE	2009-05-12		рН	9.29	SU	3
STO	LAKE PA SUWE	2009-05-12		рН	9.83	SU	0
STO	LAKE PA SUWE	2009-06-09		рН	8.9	SU	0
STO	LAKE PA SUWE	2009-06-09		рН	9.66	SU	0
STO	LAKE PA SUWE	2009-07-14		рН	9.13	SU	3
STO	LAKE PA SUWE	2009-07-14		рН	9.61	SU	0
STO	LAKE PA SUWE	2009-08-11		рН	9.29	SU	0
STO	LAKE PA SUWE	2009-08-11		рН	9.37	SU	0
STO	LAKE PA SUWE	2009-09-15		рН	8.97	SU	0
STO	LAKE PA SUWE	2009-09-15		рН	9.2	SU	0
STO	LAKE PA SUWE	2013-06-12		рН	8.26	SU	0
STO	LAKE PA SUWE	2013-06-12		рН	8.09	SU	0
STO	LAKE PA SUWE	2013-07-09		рН	8.36	SU	0
STO	LAKE PA SUWE	2013-07-09		рН	8.33	SU	0
STO	LAKE PA SUWE	2013-08-14		рН	8.59	SU	0
STO	LAKE PA SUWE	2013-08-14		рН	8.39	SU	0
STO	LAKE PA SUWE	2013-09-11		рН	8.82	SU	0
STO	LAKE PA SUWE	2013-09-11		рН	8.62	SU	0
STO	LAKE PA SUWE	2012-05-14	16:00	Pheophytin a	NA	ug/L	2 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Pheophytin a	NA	ug/L	2 ft
STO	LAKE PA SUWE	2002-04-30		Phosphorus	0.165	mg/L	3 ft
STO	LAKE PA SUWE	2002-04-30		Phosphorus	0.165	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Phosphorus	0.127	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Phosphorus	0.127	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Phosphorus	0.195	mg/L	3 ft
STO	LAKE PA SUWE	2002-06-05		Phosphorus	0.195	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Phosphorus	0.181	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Phosphorus	0.181	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Phosphorus	0.206	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Phosphorus	0.206	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Phosphorus	0.245	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Phosphorus	0.245	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Phosphorus	0.267	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Phosphorus	0.267	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-08-06		Phosphorus	0.373	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Phosphorus	0.373	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Phosphorus	0.184	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Phosphorus	0.184	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Phosphorus	0.226	mg/L	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Phosphorus	0.226	mg/L	0
STO	LAKE PA SUWE	2008-05-26	14:23	Phosphorus	0.08	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Phosphorus	0.082	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Phosphorus	0.035	mg/L	1 ft
STO	LAKE PA SUWE	2009-05-12		Phosphorus	0.103	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Phosphorus	0.034	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Phosphorus	0.095	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Phosphorus	0.045	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Phosphorus	0.075	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Phosphorus	0.102	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Phosphorus	0.041	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Phosphorus	0.082	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Phosphorus	0.029	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Phosphorus	0.02	mg/L	0
STO	LAKE PA SUWE	2012-05-14	16:00	Phosphorus	0.093	mg/L	1 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Phosphorus	0.133	mg/L	1 ft
STO	LAKE PA SUWE	2013-05-15		Phosphorus	0.138	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Phosphorus	0.141	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Phosphorus	0.156	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Phosphorus	0.151	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Phosphorus	0.231	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Phosphorus	0.173	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Phosphorus	0.222	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Phosphorus	0.219	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Phosphorus	0.222	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Phosphorus	0.29	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Phosphorus, Soluble Reactive	0.006	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Phosphorus, Soluble Reactive	0.014	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Phosphorus, Soluble Reactive	0.008	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Phosphorus, Soluble Reactive	0.029	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Phosphorus, Soluble Reactive	0.02	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Phosphorus, Soluble Reactive	0.007	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Phosphorus, Soluble Reactive	0.006	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Phosphorus, Soluble Reactive	0.04	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Phosphorus, Soluble Reactive	0.006	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Phosphorus, Soluble Reactive	0.006	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Phosphorus, Soluble Reactive	0.01	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Secchi	1.38	ft	ft
STO	LAKE PA SUWE	2002-04-30		Secchi	1.28	ft	ft
STO	LAKE PA SUWE	2002-06-05		Secchi	1.05	ft	ft
STO	LAKE PA SUWE	2002-06-05		Secchi	0.92	ft	ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-07-09		Secchi	0.79	ft	ft
STO	LAKE PA SUWE	2002-07-09		Secchi	0.56	ft	ft
STO	LAKE PA SUWE	2002-08-06		Secchi	0.85	ft	ft
STO	LAKE PA SUWE	2002-08-06		Secchi	0.72	ft	ft
STO	LAKE PA SUWE	2002-09-04		Secchi	0.82	ft	ft
STO	LAKE PA SUWE	2002-09-04		Secchi	0.59	ft	ft
STO	LAKE PA SUWE	2008-05-26	14:23	Solids, Dissolved	548	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Solids, Dissolved	402	mg/L	1 ft
STO	LAKE PA SUWE	2008-05-26	14:23	Solids, suspended, volatile	10.5	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Solids, suspended, volatile	11.5	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Solids, suspended, volatile	8	mg/L	1 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Solids, suspended, volatile	14	mg/L	1 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Solids, suspended, volatile	27	mg/L	1 ft
STO	LAKE PA SUWE	2002-04-30		Solids, Total Dissolved (TDS)	632	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Solids, Total Dissolved (TDS)	594	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Solids, Total Dissolved (TDS)	640	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Solids, Total Dissolved (TDS)	576	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Solids, Total Dissolved (TDS)	612	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Solids, Total Dissolved (TDS)	577	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Solids, Total Dissolved (TDS)	607	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Solids, Total Dissolved (TDS)	587	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Solids, Total Dissolved (TDS)	516	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Solids, Total Dissolved (TDS)	536	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Solids, Total Suspended (TSS)	31	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Solids, Total Suspended (TSS)	25	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Solids, Total Suspended (TSS)	42.2	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Solids, Total Suspended (TSS)	52	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Solids, Total Suspended (TSS)	45	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Solids, Total Suspended (TSS)	59	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Solids, Total Suspended (TSS)	69	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Solids, Total Suspended (TSS)	122	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Solids, Total Suspended (TSS)	30	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Solids, Total Suspended (TSS)	44	mg/L	0
STO	LAKE PA SUWE	2008-05-26	14:23	Solids, Total Suspended (TSS)	17	mg/L	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Solids, Total Suspended (TSS)	15.5	mg/L	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Solids, Total Suspended (TSS)	10	mg/L	1 ft
STO	LAKE PA SUWE	2009-05-12		Solids, Total Suspended (TSS)	16	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Solids, Total Suspended (TSS)	9.6	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Solids, Total Suspended (TSS)	18	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Solids, Total Suspended (TSS)	6.5	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Solids, Total Suspended (TSS)	12	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Solids, Total Suspended (TSS)	92.4	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Solids, Total Suspended (TSS)	9.4	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Solids, Total Suspended (TSS)	20	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Solids, Total Suspended (TSS)	5.1	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Solids, Total Suspended (TSS)	3.5	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2012-05-14	16:00	Solids, Total Suspended (TSS)	14	mg/L	1 ft
STO	LAKE PA SUWE	2012-06-19	15:40	Solids, Total Suspended (TSS)	42	mg/L	1 ft
STO	LAKE PA SUWE	2013-05-15		Solids, Total Suspended (TSS)	27	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Solids, Total Suspended (TSS)	32	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Solids, Total Suspended (TSS)	21	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Solids, Total Suspended (TSS)	34	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Solids, Total Suspended (TSS)	63	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Solids, Total Suspended (TSS)	45	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Solids, Total Suspended (TSS)	72	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Solids, Total Suspended (TSS)	70	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Solids, Total Suspended (TSS)	72	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Solids, Total Suspended (TSS)	90	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1030	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1030	uS/cm	1 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1030	uS/cm	2 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1030	uS/cm	3 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1030	uS/cm	4 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1.03	mS/cm	3
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1018	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1018	uS/cm	1 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1021	uS/cm	2 ft
STO	LAKE PA SUWE	2002-04-30		Specific conductance	1.018	mS/cm	0
STO	LAKE PA SUWE	2002-06-05		Specific conductance	952.5	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	952.3	uS/cm	1 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	951.8	uS/cm	2 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	952.3	uS/cm	3 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	951.4	uS/cm	4 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	0.9523	mS/cm	3
STO	LAKE PA SUWE	2002-06-05		Specific conductance	887.8	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	887.3	uS/cm	1 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	886.5	uS/cm	2 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	886.3	uS/cm	3 ft
STO	LAKE PA SUWE	2002-06-05		Specific conductance	0.8878	mS/cm	0
STO	LAKE PA SUWE	2002-07-09		Specific conductance	993.6	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	994.2	uS/cm	1 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	994.9	uS/cm	2 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	995.7	uS/cm	3 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	0.9936	mS/cm	0
STO	LAKE PA SUWE	2002-07-09		Specific conductance	994.9	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	994.5	uS/cm	1 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	994.6	uS/cm	2 ft
STO	LAKE PA SUWE	2002-07-09		Specific conductance	0.9949	mS/cm	0
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1009	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1009	uS/cm	1 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1009	uS/cm	2 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1.009	mS/cm	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1019	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1019	uS/cm	1 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1018	uS/cm	2 ft
STO	LAKE PA SUWE	2002-08-06		Specific conductance	1.019	mS/cm	0
STO	LAKE PA SUWE	2002-09-04		Specific conductance	890.2	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	883.2	uS/cm	1 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	885.7	uS/cm	2 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	887	uS/cm	3 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	0.8902	mS/cm	0
STO	LAKE PA SUWE	2002-09-04		Specific conductance	884.6	uS/cm	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	880.3	uS/cm	1 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	880.5	uS/cm	2 ft
STO	LAKE PA SUWE	2002-09-04		Specific conductance	0.8846	mS/cm	0
STO	LAKE PA SUWE	2009-05-12		Specific conductance	0.746	mS/cm	3
STO	LAKE PA SUWE	2009-05-12		Specific conductance	0.748	mS/cm	0
STO	LAKE PA SUWE	2009-06-09		Specific conductance	0.692	mS/cm	0
STO	LAKE PA SUWE	2009-06-09		Specific conductance	0.598	mS/cm	0
STO	LAKE PA SUWE	2009-07-14		Specific conductance	0.63	mS/cm	3
STO	LAKE PA SUWE	2009-07-14		Specific conductance	0.608	mS/cm	0
STO	LAKE PA SUWE	2009-08-11		Specific conductance	0.613	mS/cm	0
STO	LAKE PA SUWE	2009-08-11		Specific conductance	0.634	mS/cm	0
STO	LAKE PA SUWE	2009-09-15		Specific conductance	0.641	mS/cm	0
STO	LAKE PA SUWE	2009-09-15		Specific conductance	0.607	mS/cm	0
STO	LAKE PA SUWE	2013-06-12		Specific conductance	0.898	mS/cm	0
STO	LAKE PA SUWE	2013-07-09		Specific conductance	0.833	mS/cm	0
STO	LAKE PA SUWE	2013-07-09		Specific conductance	0.826	mS/cm	0
STO	LAKE PA SUWE	2013-08-14		Specific conductance	0.926	mS/cm	0
STO	LAKE PA SUWE	2013-08-14		Specific conductance	0.931	mS/cm	0
STO	LAKE PA SUWE	2013-09-11		Specific conductance	0.935	mS/cm	0
STO	LAKE PA SUWE	2013-09-11		Specific conductance	0.945	mS/cm	0
STO	LAKE PA SUWE	2008-05-26	14:23	Temperature, sample	0.9	deg C	1 ft
STO	LAKE PA SUWE	2008-06-16	15:35	Temperature, sample	3	deg C	1 ft
STO	LAKE PA SUWE	2008-07-27	18:30	Temperature, sample	2.3	deg C	1 ft
STO	LAKE PA SUWE	2012-05-14	16:00	Temperature, sample	3	deg C	
STO	LAKE PA SUWE	2012-06-19	15:40	Temperature, sample	12	deg C	
STO	LAKE PA SUWE	2002-04-30		Temperature, water	11.03	с	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	11.02	с	1 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	10.99	с	2 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	10.98	с	3 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	10.96	с	4 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	11.36	с	0.25 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	11.06	с	1 ft
STO	LAKE PA SUWE	2002-04-30		Temperature, water	10.93	с	2 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.52	С	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.54	С	1 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.55	с	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.54	С	3 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.5	С	4 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.37	С	0.25 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.39	С	1 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.39	с	2 ft
STO	LAKE PA SUWE	2002-06-05		Temperature, water	17.38	с	3 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.7	с	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.68	с	1 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.63	с	2 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.6	с	3 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.84	с	0.25 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.85	с	1 ft
STO	LAKE PA SUWE	2002-07-09		Temperature, water	27.84	с	2 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.83	с	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.82	с	1 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.82	с	2 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.97	с	0.25 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.97	с	1 ft
STO	LAKE PA SUWE	2002-08-06		Temperature, water	23.97	с	2 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	25.14	с	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	23.99	с	1 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	23.64	с	2 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	23.1	с	3 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	23.17	с	0.25 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	21.86	с	1 ft
STO	LAKE PA SUWE	2002-09-04		Temperature, water	21.59	с	2 ft
STO	LAKE PA SUWE	2002-04-30		Total solids	667	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Total solids	652	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Total solids	653	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Total solids	595	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Total solids	655	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Total solids	661	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Total solids	692	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Total solids	763	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Total solids	596	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Total solids	587	mg/L	0
STO	LAKE PA SUWE	2009-05-12		Total solids	460	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Total solids	403	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Total solids	440	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Total solids	364	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Total solids	392	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Total solids	460	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Total solids	373	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Total solids	393	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Total solids	393	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Total solids	372	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2013-05-15		Total solids	571	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Total solids	599	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Total solids	610	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Total solids	654	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Total solids	620	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Total solids	590	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Total solids	680	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Total solids	673	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Total solids	680	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Total solids	699	mg/L	0
STO	LAKE PA SUWE	2002-04-30		Total volatile solids	205	mg/L	3
STO	LAKE PA SUWE	2002-04-30		Total volatile solids	216	mg/L	0
STO	LAKE PA SUWE	2002-06-05		Total volatile solids	187	mg/L	3
STO	LAKE PA SUWE	2002-06-05		Total volatile solids	157	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Total volatile solids	193	mg/L	0
STO	LAKE PA SUWE	2002-07-09		Total volatile solids	193	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Total volatile solids	222	mg/L	0
STO	LAKE PA SUWE	2002-08-06		Total volatile solids	250	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Total volatile solids	198	mg/L	0
STO	LAKE PA SUWE	2002-09-04		Total volatile solids	176	mg/L	0
STO	LAKE PA SUWE	2009-05-12		Total volatile solids	99	mg/L	3
STO	LAKE PA SUWE	2009-05-12		Total volatile solids	99	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Total volatile solids	108	mg/L	0
STO	LAKE PA SUWE	2009-06-09		Total volatile solids	83	mg/L	0
STO	LAKE PA SUWE	2009-07-14		Total volatile solids	101	mg/L	3
STO	LAKE PA SUWE	2009-07-14		Total volatile solids	138	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Total volatile solids	91	mg/L	0
STO	LAKE PA SUWE	2009-08-11		Total volatile solids	110	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Total volatile solids	92	mg/L	0
STO	LAKE PA SUWE	2009-09-15		Total volatile solids	96	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Total volatile solids	152	mg/L	0
STO	LAKE PA SUWE	2013-05-15		Total volatile solids	175	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Total volatile solids	131	mg/L	0
STO	LAKE PA SUWE	2013-06-12		Total volatile solids	164	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Total volatile solids	162	mg/L	0
STO	LAKE PA SUWE	2013-07-09		Total volatile solids	162	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Total volatile solids	213	mg/L	0
STO	LAKE PA SUWE	2013-08-14		Total volatile solids	194	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Total volatile solids	213	mg/L	0
STO	LAKE PA SUWE	2013-09-11		Total volatile solids	215	mg/L	0
STO	LAKE PA SUWE	2002-04-30		TRP	0		3
STO	LAKE PA SUWE	2002-04-30		TRP	0		0
STO	LAKE PA SUWE	2002-06-05		TRP	0		3
STO	LAKE PA SUWE	2002-06-05		TRP	0		0
STO	LAKE PA SUWE	2002-07-09		TRP	0		0
STO	LAKE PA SUWE	2002-07-09		TRP	0		0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STO	LAKE PA SUWE	2002-08-06		TRP	0		0
STO	LAKE PA SUWE	2002-08-06		TRP	0		0
STO	LAKE PA SUWE	2002-09-04		TRP	0		0
STO	LAKE PA SUWE	2002-09-04		TRP	0		0
STO	LAKE PA SUWE	2009-05-12		TRP	0		3
STO	LAKE PA SUWE	2009-05-12		TRP	0		0
STO	LAKE PA SUWE	2009-06-09		TRP	0		0
STO	LAKE PA SUWE	2009-06-09		TRP	0		0
STO	LAKE PA SUWE	2009-07-14		TRP	0		3
STO	LAKE PA SUWE	2009-07-14		TRP	0		0
STO	LAKE PA SUWE	2009-08-11		TRP	0		0
STO	LAKE PA SUWE	2009-08-11		TRP	0		0
STO	LAKE PA SUWE	2009-09-15		TRP	0		0
STO	LAKE PA SUWE	2009-09-15		TRP	0		0
STV	WOODLAND	2004-05-04		Alkalinity	104	mg/l CaCO3	3
STV	WOODLAND	2004-06-01		Alkalinity	109	mg/l CaCO3	3
STV	WOODLAND	2004-07-06		Alkalinity	110	mg/l CaCO3	3
STV	WOODLAND	2004-08-03		Alkalinity	114	mg/l CaCO3	3
STV	WOODLAND	2004-09-07		Alkalinity	114	mg/l CaCO3	3
STV	WOODLAND	2013-05-22		Alkalinity	113	mg/l CaCO3	3
STV	WOODLAND	2013-06-19		Alkalinity	85.7	mg/l CaCO3	3
STV	WOODLAND	2013-07-17		Alkalinity	102	mg/l CaCO3	3
STV	WOODLAND	2013-08-21		Alkalinity	103	mg/l CaCO3	3
STV	WOODLAND	2013-09-18		Alkalinity	105	mg/l CaCO3	3
STV	WOODLAND	2004-06-01		Ammonia as N	0.167	mg/L	3
STV	WOODLAND	2013-05-22		Ammonia as N	0.254	mg/L	3
STV	WOODLAND	2013-05-22		Chloride	96	mg/L	3
STV	WOODLAND	2013-06-19		Chloride	96.6	mg/L	3
STV	WOODLAND	2013-07-17		Chloride	90.8	mg/L	3
STV	WOODLAND	2013-08-21		Chloride	97.5	mg/L	3
STV	WOODLAND	2013-09-18		Chloride	98.3	mg/L	3
STV	WOODLAND	2004-05-04		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2004-06-01		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2004-07-06		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2004-08-03		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2004-09-07		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2013-08-21		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2013-09-18		Chlorophyll a	0	ug/L	3
STV	WOODLAND	2004-05-04		Depth, Secchi Disk Depth	1.8	ft	3
STV	WOODLAND	2004-06-01		Depth, Secchi Disk Depth	2.1	ft	3
STV	WOODLAND	2004-07-06		Depth, Secchi Disk Depth	1.64	ft	3
STV	WOODLAND	2004-08-03		Depth, Secchi Disk Depth	1.44	ft	3
STV	WOODLAND	2004-09-07		Depth, Secchi Disk Depth	1.61	ft	3
STV	WOODLAND	2013-05-22		Depth, Secchi Disk Depth	3	ft	3
STV	WOODLAND	2013-06-19		Depth, Secchi Disk Depth	2.61	ft	3
STV	WOODLAND	2013-07-17		Depth, Secchi Disk Depth	2.25	ft	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2013-08-21		Depth, Secchi Disk Depth	2.59	ft	3
STV	WOODLAND	2013-09-18		Depth, Secchi Disk Depth	1.9	ft	3
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	13.05	mg/L	0.5 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	13.06	mg/L	1 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	13.04	mg/L	2 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	13.07	mg/L	3 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	12.96	mg/L	4 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	12.45	mg/L	5 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen (DO)	11.27	mg/L	6 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	8	mg/L	0.25 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	7.83	mg/L	1 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	7.72	mg/L	2 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	7.73	mg/L	3 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	7.44	mg/L	4 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	6.98	mg/L	5 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	6.61	mg/L	6 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen (DO)	6.07	mg/L	7 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	9.71	mg/L	0.5 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	9.73	mg/L	1 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	9.74	mg/L	2 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	9.16	mg/L	3 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	8.97	mg/L	4 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	8.74	mg/L	5 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen (DO)	7.68	mg/L	6 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	8.66	mg/L	0.25 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	8.83	mg/L	1 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	8.7	mg/L	2 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	7.9	mg/L	3 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	7.16	mg/L	4 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	3.75	mg/L	5 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen (DO)	1.09	mg/L	6 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	9.27	mg/L	0.5 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	9.27	mg/L	1 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	9.41	mg/L	2 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	9.37	mg/L	3 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	8.88	mg/L	4 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	8.55	mg/L	5 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen (DO)	8.23	mg/L	6 ft
STV	WOODLAND	2013-05-22		Dissolved oxygen (DO)	7.43	mg/L	3
STV	WOODLAND	2013-06-19		Dissolved oxygen (DO)	17.5	mg/L	3
STV	WOODLAND	2013-07-17		Dissolved oxygen (DO)	8.29	mg/L	3
STV	WOODLAND	2013-08-21		Dissolved oxygen (DO)	7.41	mg/L	3
STV	WOODLAND	2013-09-18		Dissolved oxygen (DO)	10.29	mg/L	3
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	131	%	0.5 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	131	%	1 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	130.8	%	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	130.6	%	3 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	128.8	%	4 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	120.8	%	5 ft
STV	WOODLAND	2004-05-04		Dissolved oxygen saturation	108.9	%	6 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	92.3	%	0.25 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	90.3	%	1 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	88.8	%	2 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	87.1	%	3 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	82.9	%	4 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	77.4	%	5 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	73.2	%	6 ft
STV	WOODLAND	2004-06-01		Dissolved oxygen saturation	67.2	%	7 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	119.9	%	0.5 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	120	%	1 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	119.7	%	2 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	111.1	%	3 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	108.1	%	4 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	105	%	5 ft
STV	WOODLAND	2004-07-06		Dissolved oxygen saturation	91.9	%	6 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	113.9	%	0.25 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	115.6	%	1 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	112.9	%	2 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	101.5	%	3 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	90.9	%	4 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	47.5	%	5 ft
STV	WOODLAND	2004-08-03		Dissolved oxygen saturation	13.5	%	6 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	112.5	%	0.5 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	112	%	1 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	112	%	2 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	110.2	%	3 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	104.1	%	4 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	100	%	5 ft
STV	WOODLAND	2004-09-07		Dissolved oxygen saturation	96.1	%	6 ft
STV	WOODLAND	2004-05-04		Light Extinction	0.773639504	Coef	0.819 ft
STV	WOODLAND	2004-05-04		Light Extinction	0.97216869	Coef	1.853 ft
STV	WOODLAND	2004-05-04		Light Extinction	1.35663593	Coef	2.827 ft
STV	WOODLAND	2004-05-04		Light Extinction	-0.316259316	Coef	3.823 ft
STV	WOODLAND	2004-05-04		Light Extinction	0.688524001	Coef	4.81 ft
STV	WOODLAND	2004-05-04		Light Extinction	0.667958185	Coef	5.809 ft
STV	WOODLAND	2004-06-01		Light Extinction	2.613456357	Coef	0.23 ft
STV	WOODLAND	2004-06-01		Light Extinction	0.673431317	Coef	1.23 ft
STV	WOODLAND	2004-06-01		Light Extinction	-0.332302207	Coef	2.25 ft
STV	WOODLAND	2004-06-01		Light Extinction	0.71937603	Coef	3.22 ft
STV	WOODLAND	2004-06-01		Light Extinction	1.716891826	Coef	4.26 ft
STV	WOODLAND	2004-06-01		Light Extinction	1.720815259	Coef	5.24 ft
STV	WOODLAND	2004-07-06		Light Extinction	1.13113719	Coef	0.853 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-07-06		Light Extinction	1.030229368	Coef	1.835 ft
STV	WOODLAND	2004-07-06		Light Extinction	0.741949633	Coef	2.828 ft
STV	WOODLAND	2004-07-06		Light Extinction	1.054263221	Coef	3.823 ft
STV	WOODLAND	2004-07-06		Light Extinction	0.664548964	Coef	4.827 ft
STV	WOODLAND	2004-07-06		Light Extinction	0.724278612	Coef	5.841 ft
STV	WOODLAND	2004-08-03		Light Extinction	3.506853892	Coef	0.24 ft
STV	WOODLAND	2004-08-03		Light Extinction	0.545939889	Coef	1.29 ft
STV	WOODLAND	2004-08-03		Light Extinction	1.165054594	Coef	2.26 ft
STV	WOODLAND	2004-08-03		Light Extinction	0.589969082	Coef	3.27 ft
STV	WOODLAND	2004-08-03		Light Extinction	2.158849609	Coef	4.26 ft
STV	WOODLAND	2004-09-07		Light Extinction	0.762538748	Coef	0.838 ft
STV	WOODLAND	2004-09-07		Light Extinction	0.970786623	Coef	1.845 ft
STV	WOODLAND	2004-09-07		Light Extinction	0.674521265	Coef	2.829 ft
STV	WOODLAND	2004-09-07		Light Extinction	1.032821501	Coef	3.828 ft
STV	WOODLAND	2004-09-07		Light Extinction	0.504328947	Coef	4.836 ft
STV	WOODLAND	2004-09-07		Light Extinction	0.890949625	Coef	5.804 ft
STV	WOODLAND	2004-06-01		Nitrogen, ammonia as N	0.167	mg/L	3 ft
STV	WOODLAND	2004-05-04		Nitrogen, Kjeldahl	1.65	mg/L	3 ft
STV	WOODLAND	2004-05-04		Nitrogen, Kjeldahl	1.65	mg/L	3
STV	WOODLAND	2004-06-01		Nitrogen, Kjeldahl	1.51	mg/L	3 ft
STV	WOODLAND	2004-06-01		Nitrogen, Kjeldahl	1.51	mg/L	3
STV	WOODLAND	2004-07-06		Nitrogen, Kjeldahl	1.21	mg/L	3 ft
STV	WOODLAND	2004-07-06		Nitrogen, Kjeldahl	1.21	mg/L	3
STV	WOODLAND	2004-08-03		Nitrogen, Kjeldahl	1.19	mg/L	3 ft
STV	WOODLAND	2004-08-03		Nitrogen, Kjeldahl	1.19	mg/L	3
STV	WOODLAND	2004-09-07		Nitrogen, Kjeldahl	1.12	mg/L	3 ft
STV	WOODLAND	2004-09-07		Nitrogen, Kjeldahl	1.12	mg/L	3
STV	WOODLAND	2013-05-22		Nitrogen, Kjeldahl	1.54	mg/L	3
STV	WOODLAND	2013-06-19		Nitrogen, Kjeldahl	1.34	mg/L	3
STV	WOODLAND	2013-07-17		Nitrogen, Kjeldahl	1.46	mg/L	3
STV	WOODLAND	2013-08-21		Nitrogen, Kjeldahl	1.67	mg/L	3
STV	WOODLAND	2013-09-18		Nitrogen, Kjeldahl	1.68	mg/L	3
STV	WOODLAND	2004-05-04		рН	8.76	SU	0.5 ft
STV	WOODLAND	2004-05-04		рН	8.8	SU	1 ft
STV	WOODLAND	2004-05-04		рН	8.83	SU	2 ft
STV	WOODLAND	2004-05-04		рН	8.84	SU	3
STV	WOODLAND	2004-05-04		рН	8.84	SU	4 ft
STV	WOODLAND	2004-05-04		рН	8.8	SU	5 ft
STV	WOODLAND	2004-05-04		рН	8.71	SU	6 ft
STV	WOODLAND	2004-06-01		рН	7.93	SU	0.25 ft
STV	WOODLAND	2004-06-01		рН	7.91	SU	1 ft
STV	WOODLAND	2004-06-01		рН	7.89	SU	2 ft
STV	WOODLAND	2004-06-01		рН	7.89	SU	3
STV	WOODLAND	2004-06-01		рН	7.83	SU	4 ft
STV	WOODLAND	2004-06-01		рН	7.76	SU	5 ft
STV	WOODLAND	2004-06-01		рН	7.7	SU	6 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-06-01		рН	7.61	SU	7 ft
STV	WOODLAND	2004-07-06		рН	8.67	SU	0.5 ft
STV	WOODLAND	2004-07-06		рН	8.75	SU	1 ft
STV	WOODLAND	2004-07-06		рН	8.76	SU	2 ft
STV	WOODLAND	2004-07-06		рН	8.72	SU	3
STV	WOODLAND	2004-07-06		рН	8.71	SU	4 ft
STV	WOODLAND	2004-07-06		рН	8.68	SU	5 ft
STV	WOODLAND	2004-07-06		рН	8.57	SU	6 ft
STV	WOODLAND	2004-08-03		рН	8.63	SU	0.25 ft
STV	WOODLAND	2004-08-03		рН	8.64	SU	1 ft
STV	WOODLAND	2004-08-03		рН	8.6	SU	2 ft
STV	WOODLAND	2004-08-03		рН	8.43	SU	3
STV	WOODLAND	2004-08-03		рН	8.28	SU	4 ft
STV	WOODLAND	2004-08-03		рН	7.53	SU	5 ft
STV	WOODLAND	2004-08-03		рН	7.22	SU	6 ft
STV	WOODLAND	2004-09-07		рН	8.41	SU	0.5 ft
STV	WOODLAND	2004-09-07		рН	8.39	SU	1 ft
STV	WOODLAND	2004-09-07		рН	8.41	SU	2 ft
STV	WOODLAND	2004-09-07		рН	8.39	SU	3
STV	WOODLAND	2004-09-07		рН	8.35	SU	4 ft
STV	WOODLAND	2004-09-07		рН	8.3	SU	5 ft
STV	WOODLAND	2004-09-07		рН	8.28	SU	6 ft
STV	WOODLAND	2013-05-22		рН	8.17	SU	3
STV	WOODLAND	2013-06-19		рН	9.46	SU	3
STV	WOODLAND	2013-07-17		рН	8.76	SU	3
STV	WOODLAND	2013-08-21		рН	8.55	SU	3
STV	WOODLAND	2013-09-18		рН	8.71	SU	3
STV	WOODLAND	2004-05-04		Phosphorus	0.087	mg/L	3
STV	WOODLAND	2004-06-01		Phosphorus	0.127	mg/L	3
STV	WOODLAND	2004-07-06		Phosphorus	0.102	mg/L	3
STV	WOODLAND	2004-08-03		Phosphorus	0.096	mg/L	3
STV	WOODLAND	2004-09-07		Phosphorus	0.081	mg/L	3
STV	WOODLAND	2013-05-22		Phosphorus	0.067	mg/L	3
STV	WOODLAND	2013-06-19		Phosphorus	0.057	mg/L	3
STV	WOODLAND	2013-07-17		Phosphorus	0.095	mg/L	3
STV	WOODLAND	2013-08-21		Phosphorus	0.109	mg/L	3
STV	WOODLAND	2013-09-18		Phosphorus	0.09	mg/L	3
STV	WOODLAND	2004-05-04		Secchi	1.8	ft	ft
STV	WOODLAND	2004-06-01		Secchi	2.1	ft	ft
STV	WOODLAND	2004-07-06		Secchi	1.64	ft	ft
STV	WOODLAND	2004-08-03		Secchi	1.44	ft	ft
STV	WOODLAND	2004-09-07		Secchi	1.61	ft	ft
STV	WOODLAND	2004-05-04		Solids, Total Dissolved (TDS)	256	mg/L	3
STV	WOODLAND	2004-06-01		Solids, Total Dissolved (TDS)	253	mg/L	3
STV	WOODLAND	2004-07-06		Solids, Total Dissolved (TDS)	254	mg/L	3
STV	WOODLAND	2004-08-03		Solids, Total Dissolved (TDS)	236	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-09-07		Solids, Total Dissolved (TDS)	268	mg/L	3
STV	WOODLAND	2004-05-04		Solids, Total Suspended (TSS)	17	mg/L	3
STV	WOODLAND	2004-06-01		Solids, Total Suspended (TSS)	17	mg/L	3
STV	WOODLAND	2004-07-06		Solids, Total Suspended (TSS)	25	mg/L	3
STV	WOODLAND	2004-08-03		Solids, Total Suspended (TSS)	25	mg/L	3
STV	WOODLAND	2004-09-07		Solids, Total Suspended (TSS)	22	mg/L	3
STV	WOODLAND	2013-05-22		Solids, Total Suspended (TSS)	7.2	mg/L	3
STV	WOODLAND	2013-06-19		Solids, Total Suspended (TSS)	11	mg/L	3
STV	WOODLAND	2013-07-17		Solids, Total Suspended (TSS)	14	mg/L	3
STV	WOODLAND	2013-08-21		Solids, Total Suspended (TSS)	20	mg/L	3
STV	WOODLAND	2013-09-18		Solids, Total Suspended (TSS)	13	mg/L	3
STV	WOODLAND	2004-05-04		Specific conductance	455	uS/cm	0.5 ft
STV	WOODLAND	2004-05-04		Specific conductance	454	uS/cm	1 ft
STV	WOODLAND	2004-05-04		Specific conductance	454	uS/cm	2 ft
STV	WOODLAND	2004-05-04		Specific conductance	0.454	mS/cm	3
STV	WOODLAND	2004-05-04		Specific conductance	454	uS/cm	3 ft
STV	WOODLAND	2004-05-04		Specific conductance	455	uS/cm	4 ft
STV	WOODLAND	2004-05-04		Specific conductance	457	uS/cm	5 ft
STV	WOODLAND	2004-05-04		Specific conductance	458	uS/cm	6 ft
STV	WOODLAND	2004-06-01		Specific conductance	431.7	uS/cm	0.25 ft
STV	WOODLAND	2004-06-01		Specific conductance	430.8	uS/cm	1 ft
STV	WOODLAND	2004-06-01		Specific conductance	429.7	uS/cm	2 ft
STV	WOODLAND	2004-06-01		Specific conductance	0.4311	mS/cm	3
STV	WOODLAND	2004-06-01		Specific conductance	431.1	uS/cm	3 ft
STV	WOODLAND	2004-06-01		Specific conductance	429.1	uS/cm	4 ft
STV	WOODLAND	2004-06-01		Specific conductance	428.4	uS/cm	5 ft
STV	WOODLAND	2004-06-01		Specific conductance	428.2	uS/cm	6 ft
STV	WOODLAND	2004-06-01		Specific conductance	430.1	uS/cm	7 ft
STV	WOODLAND	2004-07-06		Specific conductance	451	uS/cm	0.5 ft
STV	WOODLAND	2004-07-06		Specific conductance	451	uS/cm	1 ft
STV	WOODLAND	2004-07-06		Specific conductance	452	uS/cm	2 ft
STV	WOODLAND	2004-07-06		Specific conductance	0.451	mS/cm	3
STV	WOODLAND	2004-07-06		Specific conductance	451	uS/cm	3 ft
STV	WOODLAND	2004-07-06		Specific conductance	451	uS/cm	4 ft
STV	WOODLAND	2004-07-06		Specific conductance	451	uS/cm	5 ft
STV	WOODLAND	2004-07-06		Specific conductance	453	uS/cm	6 ft
STV	WOODLAND	2004-08-03		Specific conductance	450.9	uS/cm	0.25 ft
STV	WOODLAND	2004-08-03		Specific conductance	451	uS/cm	1 ft
STV	WOODLAND	2004-08-03		Specific conductance	451	uS/cm	2 ft
STV	WOODLAND	2004-08-03		Specific conductance	0.4537	mS/cm	3
STV	WOODLAND	2004-08-03		Specific conductance	453.7	uS/cm	3 ft
STV	WOODLAND	2004-08-03		Specific conductance	455.2	uS/cm	4 ft
STV	WOODLAND	2004-08-03		Specific conductance	462.4	uS/cm	5 ft
STV	WOODLAND	2004-08-03		Specific conductance	467	uS/cm	6 ft
STV	WOODLAND	2004-09-07		Specific conductance	476	uS/cm	0.5 ft
STV	WOODLAND	2004-09-07		Specific conductance	476	uS/cm	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-09-07		Specific conductance	475	uS/cm	2 ft
STV	WOODLAND	2004-09-07		Specific conductance	0.475	mS/cm	3
STV	WOODLAND	2004-09-07		Specific conductance	475	uS/cm	3 ft
STV	WOODLAND	2004-09-07		Specific conductance	474	uS/cm	4 ft
STV	WOODLAND	2004-09-07		Specific conductance	474	uS/cm	5 ft
STV	WOODLAND	2004-09-07		Specific conductance	475	uS/cm	6 ft
STV	WOODLAND	2013-05-22		Specific conductance	0.524	mS/cm	3
STV	WOODLAND	2013-06-19		Specific conductance	0.474	mS/cm	3
STV	WOODLAND	2013-07-17		Specific conductance	0.497	mS/cm	3
STV	WOODLAND	2013-08-21		Specific conductance	0.513	mS/cm	3
STV	WOODLAND	2013-09-18		Specific conductance	0.528	mS/cm	3
STV	WOODLAND	2004-05-04		Temperature, water	15.5	с	0.5 ft
STV	WOODLAND	2004-05-04		Temperature, water	15.5	с	1 ft
STV	WOODLAND	2004-05-04		Temperature, water	15.48	с	2 ft
STV	WOODLAND	2004-05-04		Temperature, water	15.32	с	3 ft
STV	WOODLAND	2004-05-04		Temperature, water	15.06	с	4 ft
STV	WOODLAND	2004-05-04		Temperature, water	13.93	с	5 ft
STV	WOODLAND	2004-05-04		Temperature, water	13.76	с	6 ft
STV	WOODLAND	2004-06-01		Temperature, water	20.21	с	0.25 ft
STV	WOODLAND	2004-06-01		Temperature, water	20.21	с	1 ft
STV	WOODLAND	2004-06-01		Temperature, water	20.05	с	2 ft
STV	WOODLAND	2004-06-01		Temperature, water	19.05	с	3 ft
STV	WOODLAND	2004-06-01		Temperature, water	18.51	с	4 ft
STV	WOODLAND	2004-06-01		Temperature, water	18.26	с	5 ft
STV	WOODLAND	2004-06-01		Temperature, water	18.21	с	6 ft
STV	WOODLAND	2004-06-01		Temperature, water	18.14	с	7 ft
STV	WOODLAND	2004-07-06		Temperature, water	26.02	с	0.5 ft
STV	WOODLAND	2004-07-06		Temperature, water	26	с	1 ft
STV	WOODLAND	2004-07-06		Temperature, water	25.78	с	2 ft
STV	WOODLAND	2004-07-06		Temperature, water	25.08	с	3 ft
STV	WOODLAND	2004-07-06		Temperature, water	24.73	с	4 ft
STV	WOODLAND	2004-07-06		Temperature, water	24.53	с	5 ft
STV	WOODLAND	2004-07-06		Temperature, water	24.34	с	6 ft
STV	WOODLAND	2004-08-03		Temperature, water	27.9	с	0.25 ft
STV	WOODLAND	2004-08-03		Temperature, water	27.65	с	1 ft
STV	WOODLAND	2004-08-03		Temperature, water	27.15	с	2 ft
STV	WOODLAND	2004-08-03		Temperature, water	26.52	с	3 ft
STV	WOODLAND	2004-08-03		Temperature, water	25.9	с	4 ft
STV	WOODLAND	2004-08-03		Temperature, water	24.94	с	5 ft
STV	WOODLAND	2004-08-03		Temperature, water	24.46	с	6 ft
STV	WOODLAND	2004-09-07		Temperature, water	25.05	с	0.5 ft
STV	WOODLAND	2004-09-07		Temperature, water	24.86	с	1 ft
STV	WOODLAND	2004-09-07		Temperature, water	24.04	с	2 ft
STV	WOODLAND	2004-09-07		Temperature, water	23.42	с	3 ft
STV	WOODLAND	2004-09-07		Temperature, water	23.24	с	4 ft
STV	WOODLAND	2004-09-07		Temperature, water	23.09	С	5 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
STV	WOODLAND	2004-09-07		Temperature, water	23.04	С	6 ft
STV	WOODLAND	2004-05-04		Total solids	292	mg/L	3
STV	WOODLAND	2004-06-01		Total solids	277	mg/L	3
STV	WOODLAND	2004-07-06		Total solids	280	mg/L	3
STV	WOODLAND	2004-08-03		Total solids	287	mg/L	3
STV	WOODLAND	2004-09-07		Total solids	287	mg/L	3
STV	WOODLAND	2013-05-22		Total solids	325	mg/L	3
STV	WOODLAND	2013-06-19		Total solids	300	mg/L	3
STV	WOODLAND	2013-07-17		Total solids	306	mg/L	3
STV	WOODLAND	2013-08-21		Total solids	322	mg/L	3
STV	WOODLAND	2013-09-18		Total solids	329	mg/L	3
STV	WOODLAND	2004-05-04		Total volatile solids	68	mg/L	3
STV	WOODLAND	2004-06-01		Total volatile solids	53	mg/L	3
STV	WOODLAND	2004-07-06		Total volatile solids	69	mg/L	3
STV	WOODLAND	2004-08-03		Total volatile solids	66	mg/L	3
STV	WOODLAND	2004-09-07		Total volatile solids	60	mg/L	3
STV	WOODLAND	2013-05-22		Total volatile solids	60	mg/L	3
STV	WOODLAND	2013-06-19		Total volatile solids	59	mg/L	3
STV	WOODLAND	2013-07-17		Total volatile solids	67	mg/L	3
STV	WOODLAND	2013-08-21		Total volatile solids	66	mg/L	3
STV	WOODLAND	2013-09-18		Total volatile solids	72	mg/L	3
STV	WOODLAND	2004-05-04		TRP	0		3
STV	WOODLAND	2004-06-01		TRP	0		3
STV	WOODLAND	2004-07-06		TRP	0		3
STV	WOODLAND	2004-08-03		TRP	0		3
STV	WOODLAND	2004-09-07		TRP	0		3
UTI	DRUMMOND LAKE	2002-04-30		Alkalinity	193	mg/l CaCO3	3
UTI	DRUMMOND LAKE	2002-06-05		Alkalinity	186	mg/l CaCO3	3
UTI	DRUMMOND LAKE	2002-07-09		Alkalinity	160	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2002-08-06		Alkalinity	174	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2002-09-04		Alkalinity	121	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2009-05-12		Alkalinity	172	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2009-06-09		Alkalinity	170	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2009-07-14		Alkalinity	140	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2009-08-11		Alkalinity	145	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2009-09-15		Alkalinity	118	mg/l CaCO3	0
UTI	DRUMMOND LAKE	2002-06-05		Ammonia as N	0.374	mg/L	3
UTI	DRUMMOND LAKE	2009-05-12		Ammonia as N	0.183	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Ammonia as N	0.452	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Ammonia as N	0.214	mg/L	0
UTI	DRUMMOND LAKE	2009-05-12		Chloride	50.2	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Chloride	53.6	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Chloride	57.8	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Chloride	62.4	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Chloride	65.6	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Chlorophyll a	0	ug/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
UTI	DRUMMOND LAKE	2002-06-05		Chlorophyll a	0	ug/L	3
UTI	DRUMMOND LAKE	2002-07-09		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2002-08-06		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2002-09-04		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2009-05-12		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2009-06-09		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2009-07-14		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2009-08-11		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2009-09-15		Chlorophyll a	0	ug/L	0
UTI	DRUMMOND LAKE	2002-04-30		Depth, Secchi Disk Depth	1.25	ft	3
UTI	DRUMMOND LAKE	2002-06-05		Depth, Secchi Disk Depth	1.02	ft	3
UTI	DRUMMOND LAKE	2002-07-09		Depth, Secchi Disk Depth	0.62	ft	0
UTI	DRUMMOND LAKE	2002-08-06		Depth, Secchi Disk Depth	0.53	ft	0
UTI	DRUMMOND LAKE	2002-09-04		Depth, Secchi Disk Depth	0.64	ft	0
UTI	DRUMMOND LAKE	2009-05-12		Depth, Secchi Disk Depth	1.08	ft	0
UTI	DRUMMOND LAKE	2009-06-09		Depth, Secchi Disk Depth	0.26	ft	0
UTI	DRUMMOND LAKE	2009-07-14		Depth, Secchi Disk Depth	0.66	ft	0
UTI	DRUMMOND LAKE	2009-08-11		Depth, Secchi Disk Depth	0.3	ft	0
UTI	DRUMMOND LAKE	2009-09-15		Depth, Secchi Disk Depth	0.25	ft	0
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen (DO)	10.99	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen (DO)	10.99	mg/L	1 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen (DO)	10.77	mg/L	2 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen (DO)	10.6	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen (DO)	10.52	mg/L	4 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen (DO)	6.52	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen (DO)	6.34	mg/L	1 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen (DO)	6.22	mg/L	2 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen (DO)	6.11	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen (DO)	6.04	mg/L	4 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen (DO)	5.44	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen (DO)	5.45	mg/L	1 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen (DO)	5.38	mg/L	2 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen (DO)	5.04	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen (DO)	4.82	mg/L	4 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen (DO)	6.04	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen (DO)	5.93	mg/L	1 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen (DO)	5.91	mg/L	2 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen (DO)	5.98	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen (DO)	5.98	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen (DO)	4.93	mg/L	1 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen (DO)	4.8	mg/L	2 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen (DO)	5.35	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen saturation	102.3	%	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen saturation	102.4	%	1 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen saturation	100.1	%	2 ft
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen saturation	98.7	%	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
UTI	DRUMMOND LAKE	2002-04-30		Dissolved oxygen saturation	97.6	%	4 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen saturation	70.5	%	0.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen saturation	68.5	%	1 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen saturation	67.2	%	2 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen saturation	66	%	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Dissolved oxygen saturation	64.9	%	4 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen saturation	70.5	%	0.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen saturation	71.1	%	1 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen saturation	70.1	%	2 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen saturation	65.7	%	3 ft
UTI	DRUMMOND LAKE	2002-07-09		Dissolved oxygen saturation	62.8	%	4 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen saturation	73.3	%	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen saturation	72.1	%	1 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen saturation	71.9	%	2 ft
UTI	DRUMMOND LAKE	2002-08-06		Dissolved oxygen saturation	72.1	%	3 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen saturation	72.8	%	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen saturation	58.8	%	1 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen saturation	56.9	%	2 ft
UTI	DRUMMOND LAKE	2002-09-04		Dissolved oxygen saturation	63.7	%	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Light Extinction	6.897135984	Coef	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		Light Extinction	1.038267988	Coef	1 ft
UTI	DRUMMOND LAKE	2002-04-30		Light Extinction	1.610338028	Coef	2 ft
UTI	DRUMMOND LAKE	2002-06-05		Light Extinction	4.935299014	Coef	0.2 ft
UTI	DRUMMOND LAKE	2002-06-05		Light Extinction	1.720141149	Coef	1.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Light Extinction	2.036881927	Coef	2.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Light Extinction	6.667230029	Coef	0.2 ft
UTI	DRUMMOND LAKE	2002-07-09		Light Extinction	3.478158423	Coef	1.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Light Extinction	0.889602652	Coef	2.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Light Extinction	6.022973837	Coef	0.2 ft
UTI	DRUMMOND LAKE	2002-08-06		Light Extinction	5.187225749	Coef	1.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Light Extinction	5.232980468	Coef	0.23 ft
UTI	DRUMMOND LAKE	2002-09-04		Light Extinction	2.558322675	Coef	1.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Nitrite (NO2) + Nitrate (NO3) as N	0.63	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Nitrogen, ammonia as N	0.374	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Nitrogen, Kjeldahl	1.97	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Nitrogen, Kjeldahl	1.97	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Nitrogen, Kjeldahl	1.79	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Nitrogen, Kjeldahl	1.79	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Nitrogen, Kjeldahl	2.42	mg/L	0
UTI	DRUMMOND LAKE	2002-07-09		Nitrogen, Kjeldahl	2.42	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Nitrogen, Kjeldahl	3	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Nitrogen, Kjeldahl	3	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Nitrogen, Kjeldahl	1.89	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Nitrogen, Kjeldahl	1.89	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2009-05-12		Nitrogen, Kjeldahl	1.42	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Nitrogen, Kjeldahl	2.66	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
UTI	DRUMMOND LAKE	2009-07-14		Nitrogen, Kjeldahl	3.01	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Nitrogen, Kjeldahl	3.26	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Nitrogen, Kjeldahl	3.38	mg/L	0
UTI	DRUMMOND LAKE	2002-06-05		Nitrogen, Nitrate (NO3) as N	0.63	mg/L	3
UTI	DRUMMOND LAKE	2009-05-12		Nitrogen, Nitrate (NO3) as N	0.537	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Nitrogen, Nitrate (NO3) as N	0.095	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Orthophosphate as P, Dissolved	0.005	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Orthophosphate as P, Dissolved	0.01	mg/L	3 ft
UTI	DRUMMOND LAKE	2002-07-09		Orthophosphate as P, Dissolved	0.06	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Orthophosphate as P, Dissolved	0.011	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Orthophosphate as P, Dissolved	0.005	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		рН	8.53	SU	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		рН	8.55	SU	1 ft
UTI	DRUMMOND LAKE	2002-04-30		рН	8.55	SU	2 ft
UTI	DRUMMOND LAKE	2002-04-30		рН	8.55	SU	3
UTI	DRUMMOND LAKE	2002-04-30		рН	8.54	SU	4 ft
UTI	DRUMMOND LAKE	2002-06-05		рН	7.89	SU	0.25 ft
UTI	DRUMMOND LAKE	2002-06-05		рН	7.92	SU	1 ft
UTI	DRUMMOND LAKE	2002-06-05		рН	7.93	SU	2 ft
UTI	DRUMMOND LAKE	2002-06-05		рН	7.93	SU	3
UTI	DRUMMOND LAKE	2002-06-05		рН	7.91	SU	4 ft
UTI	DRUMMOND LAKE	2002-07-09		рН	8.3	SU	0
UTI	DRUMMOND LAKE	2002-07-09		рН	8.3	SU	0.25 ft
UTI	DRUMMOND LAKE	2002-07-09		рН	8.31	SU	1 ft
UTI	DRUMMOND LAKE	2002-07-09		рН	8.32	SU	2 ft
UTI	DRUMMOND LAKE	2002-07-09		рН	8.3	SU	3 ft
UTI	DRUMMOND LAKE	2002-07-09		рН	8.27	SU	4 ft
UTI	DRUMMOND LAKE	2002-08-06		рН	8.33	SU	0
UTI	DRUMMOND LAKE	2002-08-06		рН	8.33	SU	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		рН	8.33	SU	1 ft
UTI	DRUMMOND LAKE	2002-08-06		рН	8.33	SU	2 ft
UTI	DRUMMOND LAKE	2002-08-06		рН	8.34	SU	3 ft
UTI	DRUMMOND LAKE	2002-09-04		рН	8.25	SU	0
UTI	DRUMMOND LAKE	2002-09-04		рН	8.25	SU	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		рН	8.06	SU	1 ft
UTI	DRUMMOND LAKE	2002-09-04		рН	8.07	SU	2 ft
UTI	DRUMMOND LAKE	2002-09-04		рН	8.19	SU	3 ft
UTI	DRUMMOND LAKE	2009-05-12		рН	9.03	SU	0
UTI	DRUMMOND LAKE	2009-06-09		рН	8.75	SU	0
UTI	DRUMMOND LAKE	2009-07-14		рН	8.85	SU	0
UTI	DRUMMOND LAKE	2009-08-11		рН	8.43	SU	0
UTI	DRUMMOND LAKE	2009-09-15		рН	9.07	SU	0
UTI	DRUMMOND LAKE	2002-04-30		Phosphorus	0.12	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Phosphorus	0.112	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Phosphorus	0.168	mg/L	0
UTI	DRUMMOND LAKE	2002-07-09		Phosphorus	0.168	mg/L	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
UTI	DRUMMOND LAKE	2002-08-06		Phosphorus	0.203	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Phosphorus	0.203	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Phosphorus	0.152	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Phosphorus	0.152	mg/L	0.25 ft
UTI	DRUMMOND LAKE	2009-05-12		Phosphorus	0.108	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Phosphorus	0.202	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Phosphorus	0.283	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Phosphorus	0.286	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Phosphorus	0.223	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Phosphorus, Soluble Reactive	0.005	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Phosphorus, Soluble Reactive	0.01	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Phosphorus, Soluble Reactive	0.06	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Phosphorus, Soluble Reactive	0.011	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Phosphorus, Soluble Reactive	0.005	mg/L	0
UTI	DRUMMOND LAKE	2009-05-12		Phosphorus, Soluble Reactive	0.013	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Phosphorus, Soluble Reactive	0.035	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Phosphorus, Soluble Reactive	0.032	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Phosphorus, Soluble Reactive	0.014	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Secchi	1.25	ft	ft
UTI	DRUMMOND LAKE	2002-06-05		Secchi	1.02	ft	ft
UTI	DRUMMOND LAKE	2002-07-09		Secchi	0.62	ft	ft
UTI	DRUMMOND LAKE	2002-08-06		Secchi	0.53	ft	ft
UTI	DRUMMOND LAKE	2002-09-04		Secchi	0.64	ft	ft
UTI	DRUMMOND LAKE	2002-04-30		Solids, Total Dissolved (TDS)	338	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Solids, Total Dissolved (TDS)	334	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Solids, Total Dissolved (TDS)	382	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Solids, Total Dissolved (TDS)	391	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Solids, Total Dissolved (TDS)	290	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Solids, Total Suspended (TSS)	27	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Solids, Total Suspended (TSS)	34.4	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Solids, Total Suspended (TSS)	63	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Solids, Total Suspended (TSS)	93.1	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Solids, Total Suspended (TSS)	43	mg/L	0
UTI	DRUMMOND LAKE	2009-05-12		Solids, Total Suspended (TSS)	47.6	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Solids, Total Suspended (TSS)	87	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Solids, Total Suspended (TSS)	110	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Solids, Total Suspended (TSS)	90	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Solids, Total Suspended (TSS)	66	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	595.9	uS/cm	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	596.4	uS/cm	1 ft
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	595.8	uS/cm	2 ft
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	0.5962	mS/cm	3
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	596.2	uS/cm	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Specific conductance	596	uS/cm	4 ft
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	592.4	uS/cm	0.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	591.9	uS/cm	1 ft
Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
---------	---------------	------------	------	----------------------	--------	-------	---------
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	590.9	uS/cm	2 ft
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	0.5905	mS/cm	3
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	590.5	uS/cm	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Specific conductance	588.7	uS/cm	4 ft
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	0.5862	mS/cm	0
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	586.2	uS/cm	0.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	585.5	uS/cm	1 ft
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	585.4	uS/cm	2 ft
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	585.9	uS/cm	3 ft
UTI	DRUMMOND LAKE	2002-07-09		Specific conductance	586.6	uS/cm	4 ft
UTI	DRUMMOND LAKE	2002-08-06		Specific conductance	0.628	mS/cm	0
UTI	DRUMMOND LAKE	2002-08-06		Specific conductance	628	uS/cm	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Specific conductance	627.7	uS/cm	1 ft
UTI	DRUMMOND LAKE	2002-08-06		Specific conductance	627.7	uS/cm	2 ft
UTI	DRUMMOND LAKE	2002-08-06		Specific conductance	627.4	uS/cm	3 ft
UTI	DRUMMOND LAKE	2002-09-04		Specific conductance	0.4998	mS/cm	0
UTI	DRUMMOND LAKE	2002-09-04		Specific conductance	499.8	uS/cm	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Specific conductance	501.8	uS/cm	1 ft
UTI	DRUMMOND LAKE	2002-09-04		Specific conductance	501.4	uS/cm	2 ft
UTI	DRUMMOND LAKE	2002-09-04		Specific conductance	500.3	uS/cm	3 ft
UTI	DRUMMOND LAKE	2009-05-12		Specific conductance	0.509	mS/cm	0
UTI	DRUMMOND LAKE	2009-06-09		Specific conductance	0.506	mS/cm	0
UTI	DRUMMOND LAKE	2009-07-14		Specific conductance	0.479	mS/cm	0
UTI	DRUMMOND LAKE	2009-08-11		Specific conductance	0.512	mS/cm	0
UTI	DRUMMOND LAKE	2009-09-15		Specific conductance	0.472	mS/cm	0
UTI	DRUMMOND LAKE	2002-04-30		Temperature, water	10.73	с	0.25 ft
UTI	DRUMMOND LAKE	2002-04-30		Temperature, water	10.78	с	1 ft
UTI	DRUMMOND LAKE	2002-04-30		Temperature, water	10.68	с	2 ft
UTI	DRUMMOND LAKE	2002-04-30		Temperature, water	10.65	с	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Temperature, water	10.62	с	4 ft
UTI	DRUMMOND LAKE	2002-06-05		Temperature, water	17.61	с	0.25 ft
UTI	DRUMMOND LAKE	2002-06-05		Temperature, water	17.62	с	1 ft
UTI	DRUMMOND LAKE	2002-06-05		Temperature, water	17.6	с	2 ft
UTI	DRUMMOND LAKE	2002-06-05		Temperature, water	17.6	с	3 ft
UTI	DRUMMOND LAKE	2002-06-05		Temperature, water	17.57	с	4 ft
UTI	DRUMMOND LAKE	2002-07-09		Temperature, water	27.51	с	0.25 ft
UTI	DRUMMOND LAKE	2002-07-09		Temperature, water	27.51	с	1 ft
UTI	DRUMMOND LAKE	2002-07-09		Temperature, water	27.5	с	2 ft
UTI	DRUMMOND LAKE	2002-07-09		Temperature, water	27.42	с	3 ft
UTI	DRUMMOND LAKE	2002-07-09		Temperature, water	27.41	с	4 ft
UTI	DRUMMOND LAKE	2002-08-06		Temperature, water	24.14	с	0.25 ft
UTI	DRUMMOND LAKE	2002-08-06		Temperature, water	24.16	с	1 ft
UTI	DRUMMOND LAKE	2002-08-06		Temperature, water	24.13	с	2 ft
UTI	DRUMMOND LAKE	2002-08-06		Temperature, water	23.8	с	3 ft
UTI	DRUMMOND LAKE	2002-09-04		Temperature, water	24.1	с	0.25 ft
UTI	DRUMMOND LAKE	2002-09-04		Temperature, water	23.12	с	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
UTI	DRUMMOND LAKE	2002-09-04		Temperature, water	23.03	С	2 ft
UTI	DRUMMOND LAKE	2002-09-04		Temperature, water	22.93	С	3 ft
UTI	DRUMMOND LAKE	2002-04-30		Total solids	407	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Total solids	396	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Total solids	439	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Total solids	497	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Total solids	392	mg/L	0
UTI	DRUMMOND LAKE	2009-05-12		Total solids	340	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Total solids	397	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Total solids	413	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Total solids	406	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Total solids	370	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		Total volatile solids	169	mg/L	3
UTI	DRUMMOND LAKE	2002-06-05		Total volatile solids	132	mg/L	3
UTI	DRUMMOND LAKE	2002-07-09		Total volatile solids	165	mg/L	0
UTI	DRUMMOND LAKE	2002-08-06		Total volatile solids	180	mg/L	0
UTI	DRUMMOND LAKE	2002-09-04		Total volatile solids	169	mg/L	0
UTI	DRUMMOND LAKE	2009-05-12		Total volatile solids	90	mg/L	0
UTI	DRUMMOND LAKE	2009-06-09		Total volatile solids	126	mg/L	0
UTI	DRUMMOND LAKE	2009-07-14		Total volatile solids	138	mg/L	0
UTI	DRUMMOND LAKE	2009-08-11		Total volatile solids	134	mg/L	0
UTI	DRUMMOND LAKE	2009-09-15		Total volatile solids	132	mg/L	0
UTI	DRUMMOND LAKE	2002-04-30		TRP	0		3
UTI	DRUMMOND LAKE	2002-06-05		TRP	0		3
UTI	DRUMMOND LAKE	2002-07-09		TRP	0		0
UTI	DRUMMOND LAKE	2002-08-06		TRP	0		0
UTI	DRUMMOND LAKE	2002-09-04		TRP	0		0
UTI	DRUMMOND LAKE	2009-05-12		TRP	0		0
UTI	DRUMMOND LAKE	2009-06-09		TRP	0		0
UTI	DRUMMOND LAKE	2009-07-14		TRP	0		0
UTI	DRUMMOND LAKE	2009-08-11		TRP	0		0
UTI	DRUMMOND LAKE	2009-09-15		TRP	0		0
VTI	GRASSY LAKE	2010-08-18	10:52	Acetochlor	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Alachlor	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Aldrin	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2000-05-03		Alkalinity	197	mg/l CaCO3	1.5
VTI	GRASSY LAKE	2000-05-03		Alkalinity	201	mg/l CaCO3	5.5
VTI	GRASSY LAKE	2000-06-07		Alkalinity	217	mg/l CaCO3	2
VTI	GRASSY LAKE	2000-06-07		Alkalinity	215	mg/l CaCO3	5
VTI	GRASSY LAKE	2000-07-05		Alkalinity	189	mg/l CaCO3	2
VTI	GRASSY LAKE	2000-07-05		Alkalinity	188	mg/l CaCO3	5
VTI	GRASSY LAKE	2000-08-09		Alkalinity	202	mg/l CaCO3	2
VTI	GRASSY LAKE	2000-08-09		Alkalinity	200	mg/l CaCO3	5
VTI	GRASSY LAKE	2000-09-06		Alkalinity	221	mg/l CaCO3	3
VTI	GRASSY LAKE	2008-05-13		Alkalinity	222	mg/l CaCO3	3
VTI	GRASSY LAKE	2008-06-10		Alkalinity	200	mg/l CaCO3	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2008-07-08		Alkalinity	220	mg/l CaCO3	3
VTI	GRASSY LAKE	2008-08-12		Alkalinity	210	mg/l CaCO3	3
VTI	GRASSY LAKE	2008-09-09		Alkalinity	168	mg/l CaCO3	3
VTI	GRASSY LAKE	2015-08-13		Alkalinity	194	mg/l CaCO3	0
VTI	GRASSY LAKE	2010-05-19	10:17	Alkalinity, total	180	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Alkalinity, total	220	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Alkalinity, total	175	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Alkalinity, total	200	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Alkalinity, total	195	mg/L	1 ft
VTI	GRASSY LAKE	1988-05-03		Ammonia as N	0.027	mg/L	2
VTI	GRASSY LAKE	1988-05-03		Ammonia as N	0.027	mg/L	4
VTI	GRASSY LAKE	1988-05-03		Ammonia as N	0.09	mg/L	6
VTI	GRASSY LAKE	1988-09-06		Ammonia as N	0.39	mg/L	6
VTI	GRASSY LAKE	2000-07-05		Ammonia as N	0.103	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Ammonia as N	0.133	mg/L	5
VTI	GRASSY LAKE	2008-06-10		Ammonia as N	0.207	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Ammonia as N	0.122	mg/L	3
VTI	GRASSY LAKE	2010-08-18	10:52	Arsenic	20.6	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Atrazine	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Barium	160	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	BHC-alpha	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	BHC-gamma (Lindane)	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Cadmium	4.24	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Captan	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Carbon, organic	9.69	%	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Chlordane, cis	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Chlordane, trans	0.68	ug/kg	7 ft
VTI	GRASSY LAKE	2008-05-13		Chloride	221	mg/L	3 ft
VTI	GRASSY LAKE	2008-05-13		Chloride	221	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Chloride	198	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Chloride	198	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Chloride	212	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Chloride	212	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Chloride	214	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Chloride	214	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Chloride	182	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09		Chloride	182	mg/L	3
VTI	GRASSY LAKE	2010-05-19	10:17	Chloride	162	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Chloride	170	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Chloride	118	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Chloride	131	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Chloride	147	mg/L	1 ft
VTI	GRASSY LAKE	2015-08-13		Chloride	175	mg/L	0
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a	47.35	ug/L	2
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a	43.98	ug/L	4
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a	36.67	ug/L	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a	335	ug/L	0
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a	285	ug/L	3
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a	227	ug/L	6
VTI	GRASSY LAKE	2000-05-03		Chlorophyll a	0	ug/L	1.5
VTI	GRASSY LAKE	2000-05-03		Chlorophyll a	0	ug/L	5.5
VTI	GRASSY LAKE	2000-06-07		Chlorophyll a	0	ug/L	2
VTI	GRASSY LAKE	2000-06-07		Chlorophyll a	0	ug/L	5
VTI	GRASSY LAKE	2000-07-05		Chlorophyll a	0	ug/L	2
VTI	GRASSY LAKE	2000-07-05		Chlorophyll a	0	ug/L	5
VTI	GRASSY LAKE	2000-08-09		Chlorophyll a	0	ug/L	2
VTI	GRASSY LAKE	2000-08-09		Chlorophyll a	0	ug/L	5
VTI	GRASSY LAKE	2000-09-06		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2008-05-13		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2008-06-10		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2008-07-08		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2008-08-12		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2008-09-09		Chlorophyll a	0	ug/L	3
VTI	GRASSY LAKE	2015-08-13		Chlorophyll a	0	ug/L	0
VTI	GRASSY LAKE	2010-05-19		Chlorophyll a, corrected for pheophytin	17.6	ug/L	4 ft
VTI	GRASSY LAKE	2010-06-16		Chlorophyll a, corrected for pheophytin	27.6	ug/L	5 ft
VTI	GRASSY LAKE	2010-07-26		Chlorophyll a, corrected for pheophytin	28.8	ug/L	4 ft
VTI	GRASSY LAKE	2010-08-18		Chlorophyll a, corrected for pheophytin	33.8	ug/L	3 ft
VTI	GRASSY LAKE	2010-10-12		Chlorophyll a, corrected for pheophytin	20	ug/L	5 ft
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a, uncorrected for pheophytin	47.35	ug/L	2 ft
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a, uncorrected for pheophytin	43.98	ug/L	4 ft
VTI	GRASSY LAKE	1988-05-03		Chlorophyll a, uncorrected for pheophytin	36.67	ug/L	6 ft
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a, uncorrected for pheophytin	335	ug/L	0 ft
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a, uncorrected for pheophytin	285	ug/L	3 ft
VTI	GRASSY LAKE	1988-09-06		Chlorophyll a, uncorrected for pheophytin	227	ug/L	6 ft
VTI	GRASSY LAKE	2010-05-19	10:17	Chlorophyll a, uncorrected for pheophytin	18.2	ug/L	4 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Chlorophyll a, uncorrected for pheophytin	29.3	ug/L	5 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Chlorophyll a, uncorrected for pheophytin	30	ug/L	4 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Chlorophyll a, uncorrected for pheophytin	34.9	ug/L	3 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Chlorophyll a, uncorrected for pheophytin	21	ug/L	5 ft
VTI	GRASSY LAKE	2010-05-19	10:17	Chlorophyll-b	NA	ug/L	4 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Chlorophyll-b	NA	ug/L	5 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Chlorophyll-b	1.21	ug/L	4 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Chlorophyll-b	0.68	ug/L	3 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Chlorophyll-b	NA	ug/L	5 ft
VTI	GRASSY LAKE	2010-05-19	10:17	Chlorophyll-c	2.66	ug/L	4 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Chlorophyll-c	4.57	ug/L	5 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Chlorophyll-c	5.05	ug/L	4 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Chlorophyll-c	2.75	ug/L	3 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Chlorophyll-c	2.54	ug/L	5 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Chromium	31.2	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Copper	38.4	mg/kg	7 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2010-08-18	10:52	Cyazine	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	DDD, p,p'-	2.1	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	DDE, p,p'-	6	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	DDT, p,p'-	2	ug/kg	7 ft
VTI	GRASSY LAKE	1988-05-03		Depth, Secchi Disk Depth	1.42	ft	2
VTI	GRASSY LAKE	1988-09-06		Depth, Secchi Disk Depth	0.58	ft	0
VTI	GRASSY LAKE	2000-05-03		Depth, Secchi Disk Depth	1.21	ft	1.5
VTI	GRASSY LAKE	2000-06-07		Depth, Secchi Disk Depth	1.44	ft	2
VTI	GRASSY LAKE	2000-07-05		Depth, Secchi Disk Depth	2.03	ft	2
VTI	GRASSY LAKE	2000-08-09		Depth, Secchi Disk Depth	1.54	ft	2
VTI	GRASSY LAKE	2000-09-06		Depth, Secchi Disk Depth	0.98	ft	3
VTI	GRASSY LAKE	2008-05-13		Depth, Secchi Disk Depth	1.48	ft	3
VTI	GRASSY LAKE	2008-06-10		Depth, Secchi Disk Depth	1.67	ft	3
VTI	GRASSY LAKE	2008-07-08		Depth, Secchi Disk Depth	2.133	ft	3
VTI	GRASSY LAKE	2008-08-12		Depth, Secchi Disk Depth	1.48	ft	3
VTI	GRASSY LAKE	2008-09-09		Depth, Secchi Disk Depth	1.8	ft	3
VTI	GRASSY LAKE	2015-08-13		Depth, Secchi Disk Depth	0.8	ft	0
VTI	GRASSY LAKE	2010-08-18	10:52	Dieldrin	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	13.52	mg/L	0.25 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	13.4	mg/L	1 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	13.27	mg/L	2 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	13.26	mg/L	3 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	12.98	mg/L	4 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	8.75	mg/L	5 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	5.46	mg/L	6 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen (DO)	3.74	mg/L	7 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	10.76	mg/L	0.25 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	10.94	mg/L	1 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	11.05	mg/L	2 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	11.15	mg/L	3 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	9.61	mg/L	4 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	8.9	mg/L	5 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen (DO)	8.52	mg/L	6 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	6.26	mg/L	0.25 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	6.12	mg/L	1 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	5.97	mg/L	2 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	5.85	mg/L	3 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	5.21	mg/L	4 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	4.11	mg/L	5 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	3.88	mg/L	6 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen (DO)	3.46	mg/L	7 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.61	mg/L	0.25 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.53	mg/L	1 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.48	mg/L	2 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.43	mg/L	3 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.39	mg/L	4 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	6.21	mg/L	5 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen (DO)	5.87	mg/L	6 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	8.23	mg/L	0.25 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	8.07	mg/L	1 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	6.97	mg/L	2 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	6.82	mg/L	3 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	6.65	mg/L	4 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	6.38	mg/L	5 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen (DO)	6.13	mg/L	6 ft
VTI	GRASSY LAKE	2008-05-13		Dissolved oxygen (DO)	10.68	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Dissolved oxygen (DO)	8.15	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Dissolved oxygen (DO)	4.98	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Dissolved oxygen (DO)	5.04	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09		Dissolved oxygen (DO)	11.3	mg/L	3 ft
VTI	GRASSY LAKE	2015-08-13		Dissolved oxygen (DO)	10.44	mg/L	0
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	140.1733505	%	0.25 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	138.9292083	%	1 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	136.7195549	%	2 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	136.6165259	%	3 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	133.4498535	%	4 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	87.51400224	%	5 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	53.90782355	%	6 ft
VTI	GRASSY LAKE	2000-05-03		Dissolved oxygen saturation	36.8451126	%	7 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	117.3954787	%	0.25 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	119.1202091	%	1 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	119.3613896	%	2 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	119.7096906	%	3 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	102.3363789	%	4 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	93.42458851	%	5 ft
VTI	GRASSY LAKE	2000-06-07		Dissolved oxygen saturation	89.25017284	%	6 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	72.55867864	%	0.25 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	70.93596059	%	1 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	69.06524757	%	2 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	67.67700139	%	3 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	60.04379394	%	4 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	47.18714122	%	5 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	44.4622701	%	6 ft
VTI	GRASSY LAKE	2000-07-05		Dissolved oxygen saturation	39.57451676	%	7 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	81.76645225	%	0.25 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	80.77684315	%	1 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	80.15833746	%	2 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	79.53983177	%	3 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	78.90350065	%	4 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	76.54381856	%	5 ft
VTI	GRASSY LAKE	2000-08-09		Dissolved oxygen saturation	72.35301368	%	6 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	91.40889654	%	0.25 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	89.63180985	%	1 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	76.81033248	%	2 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	75.01099868	%	3 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	72.99350193	%	4 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	69.74811964	%	5 ft
VTI	GRASSY LAKE	2000-09-06		Dissolved oxygen saturation	67.01504285	%	6 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Endrin	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Heptachlor	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Heptachlor epoxide	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Hexachlorobenzene	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Iron	27200	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Lead	26.7	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Manganese	1050	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Mercury	0.2	mg/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Methoxychlor	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Metolachlor	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Metribuzin	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Nickel	28.8	mg/kg	7 ft
VTI	GRASSY LAKE	1988-05-03		Nitrite (NO2) + Nitrate (NO3) as N	0.052	mg/L	4 ft
VTI	GRASSY LAKE	1988-05-03		Nitrite (NO2) + Nitrate (NO3) as N	0.108	mg/L	6 ft
VTI	GRASSY LAKE	1988-09-06		Nitrite (NO2) + Nitrate (NO3) as N	0.469	mg/L	0 ft
VTI	GRASSY LAKE	1988-09-06		Nitrite (NO2) + Nitrate (NO3) as N	0.495	mg/L	3 ft
VTI	GRASSY LAKE	1988-09-06		Nitrite (NO2) + Nitrate (NO3) as N	0.564	mg/L	6 ft
VTI	GRASSY LAKE	2000-05-03		Nitrite (NO2) + Nitrate (NO3) as N	0.078	mg/L	1.5 ft
VTI	GRASSY LAKE	2000-05-03		Nitrite (NO2) + Nitrate (NO3) as N	0.067	mg/L	5.5 ft
VTI	GRASSY LAKE	2000-06-07		Nitrite (NO2) + Nitrate (NO3) as N	0.095	mg/L	2 ft
VTI	GRASSY LAKE	2000-06-07		Nitrite (NO2) + Nitrate (NO3) as N	0.146	mg/L	5 ft
VTI	GRASSY LAKE	2000-07-05		Nitrite (NO2) + Nitrate (NO3) as N	0.507	mg/L	2 ft
VTI	GRASSY LAKE	2000-07-05		Nitrite (NO2) + Nitrate (NO3) as N	0.479	mg/L	5 ft
VTI	GRASSY LAKE	2000-08-09		Nitrite (NO2) + Nitrate (NO3) as N	0.115	mg/L	2 ft
VTI	GRASSY LAKE	2000-08-09		Nitrite (NO2) + Nitrate (NO3) as N	0.115	mg/L	5 ft
VTI	GRASSY LAKE	2008-05-13		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Nitrite (NO2) + Nitrate (NO3) as N	0.236	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09		Nitrite (NO2) + Nitrate (NO3) as N	0.144	mg/L	3 ft
VTI	GRASSY LAKE	1988-05-03		Nitrogen, ammonia as N	0.027	mg/L	2 ft
VTI	GRASSY LAKE	1988-05-03		Nitrogen, ammonia as N	0.027	mg/L	4 ft
VTI	GRASSY LAKE	1988-05-03		Nitrogen, ammonia as N	0.09	mg/L	6 ft
VTI	GRASSY LAKE	1988-09-06		Nitrogen, ammonia as N	0.39	mg/L	6 ft
VTI	GRASSY LAKE	2000-07-05		Nitrogen, ammonia as N	0.103	mg/L	2 ft
VTI	GRASSY LAKE	2000-07-05		Nitrogen, ammonia as N	0.133	mg/L	5 ft
VTI	GRASSY LAKE	2008-05-13		Nitrogen, ammonia as N	0.1	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Nitrogen, ammonia as N	0.207	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Nitrogen, ammonia as N	0.122	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Nitrogen, ammonia as N	0.1	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2008-09-09		Nitrogen, ammonia as N	0.1	mg/L	3 ft
VTI	GRASSY LAKE	2010-05-19	10:17	Nitrogen, ammonia as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16		Nitrogen, ammonia as N	0.0115	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Nitrogen, ammonia as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Nitrogen, ammonia as N	0.141	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Nitrogen, ammonia as N	0.0115	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Nitrogen, ammonia as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12		Nitrogen, ammonia as N	0.0115	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Nitrogen, ammonia as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Kjeldahl	1.97	mg/L	1.5 ft
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Kjeldahl	1.97	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Kjeldahl	1.73	mg/L	5.5 ft
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Kjeldahl	1.73	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Kjeldahl	1.14	mg/L	2 ft
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Kjeldahl	1.14	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Kjeldahl	1.32	mg/L	5 ft
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Kjeldahl	1.32	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Kjeldahl	1.05	mg/L	2 ft
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Kjeldahl	1.05	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Kjeldahl	1.36	mg/L	5 ft
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Kjeldahl	1.36	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Kjeldahl	1.6	mg/L	2 ft
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Kjeldahl	1.6	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Kjeldahl	1.8	mg/L	5 ft
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Kjeldahl	1.8	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Nitrogen, Kjeldahl	1.98	mg/L	3 ft
VTI	GRASSY LAKE	2000-09-06		Nitrogen, Kjeldahl	1.98	mg/L	3
VTI	GRASSY LAKE	2008-05-13		Nitrogen, Kjeldahl	1.15	mg/L	3 ft
VTI	GRASSY LAKE	2008-05-13		Nitrogen, Kjeldahl	1.15	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Nitrogen, Kjeldahl	1.45	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Nitrogen, Kjeldahl	1.45	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Nitrogen, Kjeldahl	1.89	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Nitrogen, Kjeldahl	1.89	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Nitrogen, Kjeldahl	1.88	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Nitrogen, Kjeldahl	1.88	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Nitrogen, Kjeldahl	2.21	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09		Nitrogen, Kjeldahl	2.21	mg/L	3
VTI	GRASSY LAKE	2010-05-19	10:17	Nitrogen, Kjeldahl	0.733	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16		Nitrogen, Kjeldahl	0.63	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Nitrogen, Kjeldahl	1.21	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Nitrogen, Kjeldahl	1.37	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Nitrogen, Kjeldahl	6480	mg/kg	7 ft
VTI	GRASSY LAKE	2010-10-12		Nitrogen, Kjeldahl	0.884	mg/L	1 ft
VTI	GRASSY LAKE	2015-08-13		Nitrogen, Kjeldahl	2.24	mg/L	0
VTI	GRASSY LAKE	1988-05-03		Nitrogen, Nitrate (NO3) as N	0.052	mg/L	4
VTI	GRASSY LAKE	1988-05-03		Nitrogen, Nitrate (NO3) as N	0.108	mg/L	6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	1988-09-06		Nitrogen, Nitrate (NO3) as N	0.469	mg/L	0
VTI	GRASSY LAKE	1988-09-06		Nitrogen, Nitrate (NO3) as N	0.495	mg/L	3
VTI	GRASSY LAKE	1988-09-06		Nitrogen, Nitrate (NO3) as N	0.564	mg/L	6
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Nitrate (NO3) as N	0.078	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Nitrogen, Nitrate (NO3) as N	0.067	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Nitrate (NO3) as N	0.095	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Nitrogen, Nitrate (NO3) as N	0.146	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Nitrate (NO3) as N	0.507	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Nitrogen, Nitrate (NO3) as N	0.479	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Nitrate (NO3) as N	0.115	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Nitrogen, Nitrate (NO3) as N	0.115	mg/L	5
VTI	GRASSY LAKE	2008-06-10		Nitrogen, Nitrate (NO3) as N	0.236	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Nitrogen, Nitrate (NO3) as N	0.144	mg/L	3
VTI	GRASSY LAKE	2010-05-19		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.406	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.059	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.4	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12		Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	0.009	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Nitrogen, Nitrite (NO2) + Nitrate (NO3) as N	NA	mg/L	1 ft
VTI	GRASSY LAKE	2000-05-03		Orthophosphate as P, Dissolved	0.005	mg/L	1.5 ft
VTI	GRASSY LAKE	2000-05-03		Orthophosphate as P, Dissolved	0.005	mg/L	5.5 ft
VTI	GRASSY LAKE	2000-06-07		Orthophosphate as P, Dissolved	0.026	mg/L	2 ft
VTI	GRASSY LAKE	2000-06-07		Orthophosphate as P, Dissolved	0.021	mg/L	5 ft
VTI	GRASSY LAKE	2000-07-05		Orthophosphate as P, Dissolved	0.069	mg/L	2 ft
VTI	GRASSY LAKE	2000-07-05		Orthophosphate as P, Dissolved	0.083	mg/L	5 ft
VTI	GRASSY LAKE	2000-08-09		Orthophosphate as P, Dissolved	0.054	mg/L	2 ft
VTI	GRASSY LAKE	2000-08-09		Orthophosphate as P, Dissolved	0.061	mg/L	5 ft
VTI	GRASSY LAKE	2000-09-06		Orthophosphate as P, Dissolved	0.096	mg/L	3 ft
VTI	GRASSY LAKE	1988-05-03		Orthophosphate as P, Total	0.036	mg/L	2 ft
VTI	GRASSY LAKE	1988-05-03		Orthophosphate as P, Total	0.036	mg/L	4 ft
VTI	GRASSY LAKE	1988-05-03		Orthophosphate as P, Total	0.056	mg/L	6 ft
VTI	GRASSY LAKE	1988-09-06		Orthophosphate as P, Total	0.014	mg/L	0 ft
VTI	GRASSY LAKE	1988-09-06		Orthophosphate as P, Total	0.026	mg/L	3 ft
VTI	GRASSY LAKE	1988-09-06		Orthophosphate as P, Total	0.03	mg/L	6 ft
VTI	GRASSY LAKE	2010-08-18	10:52	PCBS, Polychlorited Biphenyls, (Unspecified Mix)	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Pendimethalin	1.6	ug/kg	7 ft
VTI	GRASSY LAKE	1988-05-03		рН	8.9	SU	2
VTI	GRASSY LAKE	1988-05-03		рН	8.9	SU	4
VTI	GRASSY LAKE	1988-05-03		рН	8.7	SU	6
VTI	GRASSY LAKE	2000-05-03		рН	8.74	SU	1.5
VTI	GRASSY LAKE	2000-05-03		рН	8.04	SU	5.5
VTI	GRASSY LAKE	2000-06-07		рН	8.21	SU	2
VTI	GRASSY LAKE	2000-06-07		рН	7.92	SU	5
VTI	GRASSY LAKE	2000-07-05		рН	7.8	SU	2
VTI	GRASSY LAKE	2000-07-05		рН	7.62	SU	5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-08-09		рН	8.15	SU	2
VTI	GRASSY LAKE	2000-08-09		рН	8.12	SU	5
VTI	GRASSY LAKE	2000-09-06		рН	8.33	SU	3
VTI	GRASSY LAKE	2008-05-13		рН	8.33	SU	3
VTI	GRASSY LAKE	2008-06-10		рН	7.9	SU	3
VTI	GRASSY LAKE	2008-07-08		рН	7.73	SU	3
VTI	GRASSY LAKE	2008-08-12		рН	8	SU	3
VTI	GRASSY LAKE	2008-09-09		рН	8.34	SU	3
VTI	GRASSY LAKE	2015-08-13		рН	8.72	SU	0
VTI	GRASSY LAKE	2010-05-19	10:17	Pheophytin-a	NA	ug/L	4 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Pheophytin-a	1.07	ug/L	5 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Pheophytin-a	NA	ug/L	4 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Pheophytin-a	NA	ug/L	3 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Pheophytin-a	0.53	ug/L	5 ft
VTI	GRASSY LAKE	1988-05-03		Phosphorus	0.066	mg/L	2
VTI	GRASSY LAKE	1988-05-03		Phosphorus	0.066	mg/L	4
VTI	GRASSY LAKE	1988-05-03		Phosphorus	0.077	mg/L	6
VTI	GRASSY LAKE	1988-09-06		Phosphorus	0.324	mg/L	0
VTI	GRASSY LAKE	1988-09-06		Phosphorus	0.345	mg/L	3
VTI	GRASSY LAKE	1988-09-06		Phosphorus	0.366	mg/L	6
VTI	GRASSY LAKE	2000-05-03		Phosphorus	0.146	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Phosphorus	0.168	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Phosphorus	0.112	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Phosphorus	0.126	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Phosphorus	0.173	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Phosphorus	0.179	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Phosphorus	0.303	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Phosphorus	0.337	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Phosphorus	0.242	mg/L	3
VTI	GRASSY LAKE	2008-05-13		Phosphorus	0.095	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Phosphorus	0.115	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Phosphorus	0.178	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Phosphorus	0.196	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Phosphorus	0.221	mg/L	3
VTI	GRASSY LAKE	2010-05-19		Phosphorus	0.046	mg/L	1 ft
VTI	GRASSY LAKE	2010-05-19		Phosphorus	0.085	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16		Phosphorus	0.023	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16		Phosphorus	0.106	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Phosphorus	0.067	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Phosphorus	0.128	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Phosphorus	0.045	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Phosphorus	0.102	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Phosphorus	1270	mg/kg	7 ft
VTI	GRASSY LAKE	2010-10-12		Phosphorus	0.018	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12		Phosphorus	0.081	mg/L	1 ft
VTI	GRASSY LAKE	2015-08-13		Phosphorus	0.149	mg/L	0

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-05-03		Phosphorus, Soluble Reactive	0.005	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Phosphorus, Soluble Reactive	0.005	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Phosphorus, Soluble Reactive	0.026	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Phosphorus, Soluble Reactive	0.021	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Phosphorus, Soluble Reactive	0.069	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Phosphorus, Soluble Reactive	0.083	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Phosphorus, Soluble Reactive	0.054	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Phosphorus, Soluble Reactive	0.061	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Phosphorus, Soluble Reactive	0.096	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Phosphorus, Soluble Reactive	0.032	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Phosphorus, Soluble Reactive	0.025	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Phosphorus, Soluble Reactive	0.025	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Phosphorus, Soluble Reactive	0.015	mg/L	3
VTI	GRASSY LAKE	2015-08-13		Phosphorus, Soluble Reactive	0.016	mg/L	0
VTI	GRASSY LAKE	2010-08-18	10:52	Potassium	3830	mg/kg	7 ft
VTI	GRASSY LAKE	1988-05-03		Secchi	1.42	ft	ft
VTI	GRASSY LAKE	1988-09-06		Secchi	0.58	ft	ft
VTI	GRASSY LAKE	2000-05-03		Secchi	1.21	ft	ft
VTI	GRASSY LAKE	2000-06-07		Secchi	1.44	ft	ft
VTI	GRASSY LAKE	2000-07-05		Secchi	2.03	ft	ft
VTI	GRASSY LAKE	2000-08-09		Secchi	1.54	ft	ft
VTI	GRASSY LAKE	2000-09-06		Secchi	0.98	ft	ft
VTI	GRASSY LAKE	2008-05-13		Secchi	1.48	ft	3 ft
VTI	GRASSY LAKE	2008-06-10		Secchi	1.67	ft	3 ft
VTI	GRASSY LAKE	2008-07-08		Secchi	2.13	ft	3 ft
VTI	GRASSY LAKE	2008-08-12		Secchi	1.48	ft	3 ft
VTI	GRASSY LAKE	2008-09-09		Secchi	1.8	ft	3 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Silver	NA	mg/kg	7 ft
VTI	GRASSY LAKE	2010-05-19	10:17	Solids, suspended, volatile	6	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Solids, suspended, volatile	4	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Solids, suspended, volatile	8	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Solids, suspended, volatile	7	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Solids, suspended, volatile	14.7	%	7 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Solids, suspended, volatile	8	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Solids, Total	29	%	7 ft
VTI	GRASSY LAKE	2000-05-03		Solids, Total Dissolved (TDS)	716	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Solids, Total Dissolved (TDS)	666	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Solids, Total Dissolved (TDS)	608	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Solids, Total Dissolved (TDS)	600	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Solids, Total Dissolved (TDS)	522	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Solids, Total Dissolved (TDS)	512	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Solids, Total Dissolved (TDS)	534	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Solids, Total Dissolved (TDS)	514	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Solids, Total Dissolved (TDS)	558	mg/L	3
VTI	GRASSY LAKE	2015-08-13		Solids, Total Dissolved (TDS)	576	mg/L	0
VTI	GRASSY LAKE	2010-08-18	10:52	Solids, Total Fixed	85.3	%	7 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-05-03		Solids, Total Suspended (TSS)	25	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Solids, Total Suspended (TSS)	52.8	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Solids, Total Suspended (TSS)	26.9	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Solids, Total Suspended (TSS)	31.2	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Solids, Total Suspended (TSS)	16	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Solids, Total Suspended (TSS)	23.3	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Solids, Total Suspended (TSS)	24.6	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Solids, Total Suspended (TSS)	25.8	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Solids, Total Suspended (TSS)	43.2	mg/L	3
VTI	GRASSY LAKE	2008-05-13		Solids, Total Suspended (TSS)	20	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Solids, Total Suspended (TSS)	14	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Solids, Total Suspended (TSS)	20.6	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Solids, Total Suspended (TSS)	26.4	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Solids, Total Suspended (TSS)	22.6	mg/L	3
VTI	GRASSY LAKE	2010-05-19	10:17	Solids, Total Suspended (TSS)	12	mg/L	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Solids, Total Suspended (TSS)	NA	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Solids, Total Suspended (TSS)	16	mg/L	1 ft
VTI	GRASSY LAKE	2010-07-26		Solids, Total Suspended (TSS)	16	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Solids, Total Suspended (TSS)	12	mg/L	1 ft
VTI	GRASSY LAKE	2010-08-18		Solids, Total Suspended (TSS)	12	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Solids, Total Suspended (TSS)	15	mg/L	1 ft
VTI	GRASSY LAKE	2010-10-12		Solids, Total Suspended (TSS)	15	mg/L	1 ft
VTI	GRASSY LAKE	2015-08-13		Solids, Total Suspended (TSS)	22.6	mg/L	0
VTI	GRASSY LAKE	2000-05-03		Specific conductance	1.014	mS/cm	1.5
VTI	GRASSY LAKE	2000-05-03		Specific conductance	1014	uS/cm	1.5 ft
VTI	GRASSY LAKE	2000-05-03		Specific conductance	1.029	mS/cm	5.5
VTI	GRASSY LAKE	2000-05-03		Specific conductance	1029	uS/cm	5.5 ft
VTI	GRASSY LAKE	2000-06-07		Specific conductance	1.023	mS/cm	2
VTI	GRASSY LAKE	2000-06-07		Specific conductance	1023	uS/cm	2 ft
VTI	GRASSY LAKE	2000-06-07		Specific conductance	1.037	mS/cm	5
VTI	GRASSY LAKE	2000-06-07		Specific conductance	1037	uS/cm	5 ft
VTI	GRASSY LAKE	2000-07-05		Specific conductance	0.7961	mS/cm	2
VTI	GRASSY LAKE	2000-07-05		Specific conductance	796.1	uS/cm	2 ft
VTI	GRASSY LAKE	2000-07-05		Specific conductance	0.7939	mS/cm	5
VTI	GRASSY LAKE	2000-07-05		Specific conductance	793.9	uS/cm	5 ft
VTI	GRASSY LAKE	2000-08-09		Specific conductance	0.8696	mS/cm	2
VTI	GRASSY LAKE	2000-08-09		Specific conductance	869.6	uS/cm	2 ft
VTI	GRASSY LAKE	2000-08-09		Specific conductance	0.8687	mS/cm	5
VTI	GRASSY LAKE	2000-08-09		Specific conductance	868.7	uS/cm	5 ft
VTI	GRASSY LAKE	2000-09-06		Specific conductance	0.9476	mS/cm	3
VTI	GRASSY LAKE	2000-09-06		Specific conductance	947.6	uS/cm	3 ft
VTI	GRASSY LAKE	2008-05-13		Specific conductance	1.209	mS/cm	3
VTI	GRASSY LAKE	2008-05-13		Specific conductance	1209	uS/cm	3 ft
VTI	GRASSY LAKE	2008-06-10		Specific conductance	1.361	mS/cm	3
VTI	GRASSY LAKE	2008-06-10		Specific conductance	1361	uS/cm	3 ft
VTI	GRASSY LAKE	2008-07-08		Specific conductance	1.103	mS/cm	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2008-07-08		Specific conductance	1103	uS/cm	3 ft
VTI	GRASSY LAKE	2008-08-12		Specific conductance	1.128	mS/cm	3
VTI	GRASSY LAKE	2008-08-12		Specific conductance	1128	uS/cm	3 ft
VTI	GRASSY LAKE	2008-09-09		Specific conductance	1.003	mS/cm	3
VTI	GRASSY LAKE	2008-09-09		Specific conductance	1003	uS/cm	3 ft
VTI	GRASSY LAKE	2015-08-13		Specific conductance	0.964	mS/cm	0
VTI	GRASSY LAKE	2010-05-19	10:17	Temperature, sample	4	deg C	1 ft
VTI	GRASSY LAKE	2010-06-16	10:58	Temperature, sample	2	deg C	1 ft
VTI	GRASSY LAKE	2010-07-26	10:26	Temperature, sample	7	deg C	1 ft
VTI	GRASSY LAKE	2010-08-18	10:46	Temperature, sample	6	deg C	1 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Temperature, sample	0	deg C	7 ft
VTI	GRASSY LAKE	2010-10-12	10:35	Temperature, sample	4	deg C	1 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	17.15	с	0.25 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	17.1	с	1 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	16.86	с	2 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	16.83	с	3 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	16.76	с	4 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	15.42	с	5 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	14.87	с	6 ft
VTI	GRASSY LAKE	2000-05-03		Temperature, water	14.76	с	7 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	19.64	с	0.25 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	19.59	с	1 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	19.17	с	2 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	18.88	с	3 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	18.4	с	4 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	17.77	с	5 ft
VTI	GRASSY LAKE	2000-06-07		Temperature, water	17.68	с	6 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.74	с	0.25 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.71	с	1 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.64	с	2 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.62	с	3 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.48	с	4 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.23	с	5 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.16	с	6 ft
VTI	GRASSY LAKE	2000-07-05		Temperature, water	22.04	с	7 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.24	с	0.25 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.26	с	1 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.21	с	2 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.2	с	3 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.1	с	4 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.05	с	5 ft
VTI	GRASSY LAKE	2000-08-09		Temperature, water	26.03	с	6 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	20.55	С	0.25 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	20.52	с	1 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	20.11	С	2 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	20.05	С	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-09-06		Temperature, water	19.94	С	4 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	19.72	С	5 ft
VTI	GRASSY LAKE	2000-09-06		Temperature, water	19.71	С	6 ft
VTI	GRASSY LAKE	2000-05-03		Total solids	790	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Total solids	739	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Total solids	695	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Total solids	702	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Total solids	537	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Total solids	549	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Total solids	553	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Total solids	557	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Total solids	651	mg/L	3
VTI	GRASSY LAKE	2008-05-13		Total solids	705	mg/L	3 ft
VTI	GRASSY LAKE	2008-05-13		Total solids	705	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Total solids	656	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10		Total solids	656	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Total solids	693	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08		Total solids	693	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Total solids	658	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12		Total solids	658	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Total solids	606	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09		Total solids	606	mg/L	3
VTI	GRASSY LAKE	2015-08-13		Total solids	558	mg/L	0
VTI	GRASSY LAKE	2000-05-03		Total volatile solids	234	mg/L	1.5
VTI	GRASSY LAKE	2000-05-03		Total volatile solids	199	mg/L	5.5
VTI	GRASSY LAKE	2000-06-07		Total volatile solids	236	mg/L	2
VTI	GRASSY LAKE	2000-06-07		Total volatile solids	196	mg/L	5
VTI	GRASSY LAKE	2000-07-05		Total volatile solids	167	mg/L	2
VTI	GRASSY LAKE	2000-07-05		Total volatile solids	182	mg/L	5
VTI	GRASSY LAKE	2000-08-09		Total volatile solids	147	mg/L	2
VTI	GRASSY LAKE	2000-08-09		Total volatile solids	201	mg/L	5
VTI	GRASSY LAKE	2000-09-06		Total volatile solids	173	mg/L	3
VTI	GRASSY LAKE	2008-05-13		Total volatile solids	122	mg/L	3
VTI	GRASSY LAKE	2008-06-10		Total volatile solids	140	mg/L	3
VTI	GRASSY LAKE	2008-07-08		Total volatile solids	134	mg/L	3
VTI	GRASSY LAKE	2008-08-12		Total volatile solids	122	mg/L	3
VTI	GRASSY LAKE	2008-09-09		Total volatile solids	118	mg/L	3
VTI	GRASSY LAKE	2015-08-13		Total volatile solids	124	mg/L	0
VTI	GRASSY LAKE	2010-08-18	10:52	Toxaphene	NA	ug/kg	7 ft
VTI	GRASSY LAKE	2010-08-18	10:52	Trifluralin	NA	ug/kg	7 ft
VTI	GRASSY LAKE	1988-05-03		TRP	0.036		2
VTI	GRASSY LAKE	1988-05-03		TRP	0.036		4
VTI	GRASSY LAKE	1988-05-03		TRP	0.056		6
VTI	GRASSY LAKE	1988-09-06		TRP	0.014		0
VTI	GRASSY LAKE	1988-09-06		TRP	0.026		3
VTI	GRASSY LAKE	1988-09-06		TRP	0.03		6

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2000-05-03		TRP	0		1.5
VTI	GRASSY LAKE	2000-05-03		TRP	0		5.5
VTI	GRASSY LAKE	2000-06-07		TRP	0		2
VTI	GRASSY LAKE	2000-06-07		TRP	0		5
VTI	GRASSY LAKE	2000-07-05		TRP	0		2
VTI	GRASSY LAKE	2000-07-05		TRP	0		5
VTI	GRASSY LAKE	2000-08-09		TRP	0		2
VTI	GRASSY LAKE	2000-08-09		TRP	0		5
VTI	GRASSY LAKE	2000-09-06		TRP	0		3
VTI	GRASSY LAKE	2008-05-13		TRP	0		3
VTI	GRASSY LAKE	2008-06-10		TRP	0		3
VTI	GRASSY LAKE	2008-07-08		TRP	0		3
VTI	GRASSY LAKE	2008-08-12		TRP	0		3
VTI	GRASSY LAKE	2008-09-09		TRP	0		3
VTI	GRASSY LAKE	2015-08-13		TRP	0		0
VTI	GRASSY LAKE	2010-08-18	10:52	Zinc	135	mg/kg	7 ft
VTI	GRASSY LAKE	2000-05-03			6.355555556		2 ft
VTI	GRASSY LAKE	2000-05-03			2.072839506		4 ft
VTI	GRASSY LAKE	2000-05-03			26.09506173		5 ft
VTI	GRASSY LAKE	2000-05-03			11.2962963		6 ft
VTI	GRASSY LAKE	2000-05-03			1.786419753		7 ft
VTI	GRASSY LAKE	2000-06-07			2.479012346		1 ft
VTI	GRASSY LAKE	2000-06-07			9.916049383		2 ft
VTI	GRASSY LAKE	2000-06-07			7.172839506		3 ft
VTI	GRASSY LAKE	2000-06-07			9.387654321		4 ft
VTI	GRASSY LAKE	2000-06-07			16.01728395		5 ft
VTI	GRASSY LAKE	2000-06-07			2.209876543		6 ft
VTI	GRASSY LAKE	2000-07-05			2.862962963		2 ft
VTI	GRASSY LAKE	2000-07-05			5.725925926		4 ft
VTI	GRASSY LAKE	2000-07-05			5.725925926		5 ft
VTI	GRASSY LAKE	2000-07-05			2.862962963		6 ft
VTI	GRASSY LAKE	2000-07-05			2.862962963		7 ft
VTI	GRASSY LAKE	2000-08-09			3.341975309		4 ft
VTI	GRASSY LAKE	2000-08-09			3.341975309		5 ft
VTI	GRASSY LAKE	2000-09-06			10.4345679		2 ft
VTI	GRASSY LAKE	2000-09-06			2.608641975		3 ft
VTI	GRASSY LAKE	2000-09-06			2.479012346		4 ft
VTI	GRASSY LAKE	2000-09-06			4.958024691		5 ft
VTI	GRASSY LAKE	2008-05-13			0.005	mg/L	3 ft
VTI	GRASSY LAKE	2008-05-13			122	mg/L	3 ft
VTI	GRASSY LAKE	2008-05-13			222	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10			0.032	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10			140	mg/L	3 ft
VTI	GRASSY LAKE	2008-06-10			200	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08			0.025	mg/L	3 ft
VTI	GRASSY LAKE	2008-07-08			134	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTI	GRASSY LAKE	2008-07-08			220	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12			0.025	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12			122	mg/L	3 ft
VTI	GRASSY LAKE	2008-08-12			210	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09			0.015	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09			118	mg/L	3 ft
VTI	GRASSY LAKE	2008-09-09			168	mg/L	3 ft
VTI	GRASSY LAKE	2010-08-18			14.7	%	Sediment ft
VTI	GRASSY LAKE	2010-08-18			1270	mg/kg	Sediment ft
VTI	GRASSY LAKE	2010-08-18			6480	mg/kg	Sediment ft
VTZJ	LOUISE	1998-05-19		Alkalinity	203	mg/l CaCO3	0
VTZJ	LOUISE	1998-05-19		Alkalinity	205	mg/l CaCO3	5
VTZJ	LOUISE	1998-06-16		Alkalinity	202	mg/l CaCO3	2
VTZJ	LOUISE	1998-06-16		Alkalinity	203	mg/l CaCO3	5
VTZJ	LOUISE	1998-07-21		Alkalinity	178	mg/l CaCO3	0
VTZJ	LOUISE	1998-07-21		Alkalinity	180	mg/l CaCO3	5
VTZJ	LOUISE	1998-08-18		Alkalinity	170	mg/l CaCO3	0
VTZJ	LOUISE	1998-08-18		Alkalinity	171	mg/l CaCO3	5
VTZJ	LOUISE	1998-09-22		Alkalinity	168	mg/l CaCO3	0
VTZJ	LOUISE	1998-09-22		Alkalinity	168	mg/l CaCO3	5
VTZJ	LOUISE	2003-05-20		Alkalinity	173	mg/l CaCO3	3
VTZJ	LOUISE	2003-06-18		Alkalinity	204	mg/l CaCO3	3
VTZJ	LOUISE	2003-07-23		Alkalinity	169	mg/l CaCO3	3
VTZJ	LOUISE	2003-08-20		Alkalinity	182	mg/l CaCO3	3
VTZJ	LOUISE	2003-09-24		Alkalinity	175	mg/l CaCO3	3
VTZJ	LOUISE	2008-05-21		Alkalinity	204	mg/l CaCO3	3
VTZJ	LOUISE	2008-06-18		Alkalinity	200	mg/l CaCO3	3
VTZJ	LOUISE	2008-07-16		Alkalinity	180	mg/l CaCO3	3
VTZJ	LOUISE	2008-08-20		Alkalinity	188	mg/l CaCO3	3
VTZJ	LOUISE	2008-09-17		Alkalinity	142	mg/l CaCO3	3
VTZJ	LOUISE	2015-05-13		Alkalinity	194	mg/l CaCO3	3
VTZJ	LOUISE	2015-06-17		Alkalinity	178	mg/l CaCO3	3
VTZJ	LOUISE	2015-07-15		Alkalinity	167	mg/l CaCO3	3
VTZJ	LOUISE	2015-08-12		Alkalinity	140	mg/l CaCO3	3
VTZJ	LOUISE	2015-09-17		Alkalinity	137	mg/l CaCO3	3
VTZJ	LOUISE	1998-09-22		Ammonia as N	0.724	mg/L	0
VTZJ	LOUISE	1998-09-22		Ammonia as N	0.747	mg/L	5
VTZJ	LOUISE	2003-05-20		Ammonia as N	0.298	mg/L	3
VTZJ	LOUISE	2008-05-21		Ammonia as N	0.351	mg/L	3
VTZJ	LOUISE	2008-07-16		Ammonia as N	0.439	mg/L	3
VTZJ	LOUISE	2008-08-20		Ammonia as N	0.26	mg/L	3
VTZJ	LOUISE	2008-09-17		Ammonia as N	0.269	mg/L	3
VTZJ	LOUISE	2015-05-13		Ammonia as N	0.38	mg/L	3
VTZJ	LOUISE	2008-05-21		Chloride	215	mg/L	3
VTZJ	LOUISE	2008-05-21		Chloride	212	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Chloride	215	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2008-06-18		Chloride	192	mg/L	3
VTZJ	LOUISE	2008-06-18		Chloride	191	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Chloride	192	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Chloride	172	mg/L	3
VTZJ	LOUISE	2008-07-16		Chloride	172	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Chloride	172	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Chloride	174	mg/L	3
VTZJ	LOUISE	2008-08-20		Chloride	174	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Chloride	174	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Chloride	99.6	mg/L	3
VTZJ	LOUISE	2008-09-17		Chloride	91.8	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Chloride	99.6	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Chloride	180	mg/L	3
VTZJ	LOUISE	2015-06-17		Chloride	156	mg/L	3
VTZJ	LOUISE	2015-07-15		Chloride	150	mg/L	3
VTZJ	LOUISE	2015-08-12		Chloride	150	mg/L	3
VTZJ	LOUISE	2015-09-17		Chloride	166	mg/L	3
VTZJ	LOUISE	1988-07-07		Chlorophyll a	17.89	ug/L	2
VTZJ	LOUISE	1988-07-07		Chlorophyll a	26.97	ug/L	4
VTZJ	LOUISE	1988-07-07		Chlorophyll a	39.25	ug/L	6
VTZJ	LOUISE	1988-10-11		Chlorophyll a	45.1	ug/L	3
VTZJ	LOUISE	1988-10-11		Chlorophyll a	39.1	ug/L	5
VTZJ	LOUISE	1988-10-11		Chlorophyll a	39.5	ug/L	7
VTZJ	LOUISE	1998-05-19		Chlorophyll a	0	ug/L	0
VTZJ	LOUISE	1998-05-19		Chlorophyll a	0	ug/L	5
VTZJ	LOUISE	1998-06-16		Chlorophyll a	0	ug/L	2
VTZJ	LOUISE	1998-06-16		Chlorophyll a	0	ug/L	5
VTZJ	LOUISE	1998-07-21		Chlorophyll a	0	ug/L	0
VTZJ	LOUISE	1998-07-21		Chlorophyll a	0	ug/L	5
VTZJ	LOUISE	1998-08-18		Chlorophyll a	0	ug/L	0
VTZJ	LOUISE	1998-08-18		Chlorophyll a	0	ug/L	5
VTZJ	LOUISE	1998-09-22		Chlorophyll a	0	ug/L	0
VTZJ	LOUISE	1998-09-22		Chlorophyll a	0	ug/L	5
VTZJ	LOUISE	2003-05-20		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2003-06-18		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2003-07-23		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2003-08-20		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2003-09-24		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2008-05-21		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2008-06-18		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2008-07-16		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2008-08-20		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2008-09-17		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2015-05-13		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2015-06-17		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	2015-07-15		Chlorophyll a	0	ug/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2015-08-12		Chlorophyll a	0	ug/L	3
VTZJ	LOUISE	1988-07-07		Chlorophyll a, uncorrected for pheophytin	17.89	ug/L	2 ft
VTZJ	LOUISE	1988-07-07		Chlorophyll a, uncorrected for pheophytin	26.97	ug/L	4 ft
VTZJ	LOUISE	1988-07-07		Chlorophyll a, uncorrected for pheophytin	39.25	ug/L	6 ft
VTZJ	LOUISE	1988-10-11		Chlorophyll a, uncorrected for pheophytin	45.1	ug/L	3 ft
VTZJ	LOUISE	1988-10-11		Chlorophyll a, uncorrected for pheophytin	39.1	ug/L	5 ft
VTZJ	LOUISE	1988-10-11		Chlorophyll a, uncorrected for pheophytin	39.5	ug/L	7 ft
VTZJ	LOUISE	1988-07-07		Depth, Secchi Disk Depth	1.6	ft	2
VTZJ	LOUISE	1988-10-11		Depth, Secchi Disk Depth	1.3	ft	3
VTZJ	LOUISE	1998-05-19		Depth, Secchi Disk Depth	3.6	ft	0
VTZJ	LOUISE	1998-06-16		Depth, Secchi Disk Depth	4	ft	2
VTZJ	LOUISE	1998-07-21		Depth, Secchi Disk Depth	1.8	ft	0
VTZJ	LOUISE	1998-08-18		Depth, Secchi Disk Depth	1.4	ft	0
VTZJ	LOUISE	1998-09-22		Depth, Secchi Disk Depth	0.5	ft	0
VTZJ	LOUISE	2003-05-20		Depth, Secchi Disk Depth	1.8	ft	3
VTZJ	LOUISE	2003-06-18		Depth, Secchi Disk Depth	2.92	ft	3
VTZJ	LOUISE	2003-07-23		Depth, Secchi Disk Depth	1.05	ft	3
VTZJ	LOUISE	2003-08-20		Depth, Secchi Disk Depth	2.03	ft	3
VTZJ	LOUISE	2003-09-24		Depth, Secchi Disk Depth	1.51	ft	3
VTZJ	LOUISE	2008-05-21		Depth, Secchi Disk Depth	1.81	ft	3
VTZJ	LOUISE	2008-06-18		Depth, Secchi Disk Depth	2.69	ft	3
VTZJ	LOUISE	2008-07-16		Depth, Secchi Disk Depth	1.71	ft	3
VTZJ	LOUISE	2008-08-20		Depth, Secchi Disk Depth	1.51	ft	3
VTZJ	LOUISE	2008-09-17		Depth, Secchi Disk Depth	0.69	ft	3
VTZJ	LOUISE	2015-05-13		Depth, Secchi Disk Depth	2	ft	3
VTZJ	LOUISE	2015-06-17		Depth, Secchi Disk Depth	1.35	ft	3
VTZJ	LOUISE	2015-07-15		Depth, Secchi Disk Depth	0.9	ft	3
VTZJ	LOUISE	2015-08-12		Depth, Secchi Disk Depth	0.44	ft	3
VTZJ	LOUISE	2015-09-17		Depth, Secchi Disk Depth	0.51	ft	3
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.62	mg/L	0 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.56	mg/L	1 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.46	mg/L	2 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.44	mg/L	3 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.43	mg/L	4 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.39	mg/L	5 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen (DO)	7.36	mg/L	6 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	9.8	mg/L	0 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	9.6	mg/L	1 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	10.03	mg/L	2 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	9.57	mg/L	3 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	8.46	mg/L	4 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen (DO)	5.71	mg/L	5 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen (DO)	10.15	mg/L	0 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen (DO)	10.08	mg/L	1 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen (DO)	9.9	mg/L	2 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen (DO)	9.42	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	6.74	mg/L	0 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	6.62	mg/L	1 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	6.36	mg/L	2 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	5.81	mg/L	3 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	4.84	mg/L	4 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen (DO)	0.4	mg/L	5 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen (DO)	6.36	mg/L	0 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen (DO)	6.49	mg/L	1 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen (DO)	6.41	mg/L	2 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen (DO)	6.48	mg/L	3 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen (DO)	6.34	mg/L	4 ft
VTZJ	LOUISE	2008-05-21		Dissolved oxygen (DO)	9.2	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Dissolved oxygen (DO)	9.45	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Dissolved oxygen (DO)	14.51	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Dissolved oxygen (DO)	12.23	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Dissolved oxygen (DO)	8.94	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Dissolved oxygen (DO)	6.38	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Dissolved oxygen (DO)	12.43	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Dissolved oxygen (DO)	6.23	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Dissolved oxygen (DO)	7.65	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Dissolved oxygen (DO)	6.75	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Dissolved oxygen (DO)	7.47	mg/L	3
VTZJ	LOUISE	2015-06-17		Dissolved oxygen (DO)	11.47	mg/L	3
VTZJ	LOUISE	2015-07-15		Dissolved oxygen (DO)	9.44	mg/L	3
VTZJ	LOUISE	2015-08-12		Dissolved oxygen (DO)	7.85	mg/L	3
VTZJ	LOUISE	2015-09-17		Dissolved oxygen (DO)	10.83	mg/L	3
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	82.2	%	0 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	81.7	%	1 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	80.6	%	2 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	80.4	%	3 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	80.3	%	4 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	79.8	%	5 ft
VTZJ	LOUISE	2003-05-20		Dissolved oxygen saturation	79.5	%	6 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	118.3	%	0 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	115.9	%	1 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	120.9	%	2 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	114.9	%	3 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	101	%	4 ft
VTZJ	LOUISE	2003-06-18		Dissolved oxygen saturation	67.8	%	5 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen saturation	121.2	%	0 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen saturation	120.5	%	1 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen saturation	118.1	%	2 ft
VTZJ	LOUISE	2003-07-23		Dissolved oxygen saturation	112.2	%	3 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	84.1	%	0 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	82.6	%	1 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	79.2	%	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	72.1	%	3 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	60	%	4 ft
VTZJ	LOUISE	2003-08-20		Dissolved oxygen saturation	4.9	%	5 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen saturation	67.1	%	0 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen saturation	68.4	%	1 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen saturation	67.5	%	2 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen saturation	68.3	%	3 ft
VTZJ	LOUISE	2003-09-25		Dissolved oxygen saturation	66.8	%	4 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	0.783214957	Coef	0.833 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	0.646183381	Coef	1.833 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	0.810575813	Coef	2.833 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	1.207776537	Coef	3.833 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	-0.175693952	Coef	4.833 ft
VTZJ	LOUISE	2003-05-20		Light Extinction	0.781321754	Coef	5.833 ft
VTZJ	LOUISE	2003-06-18		Light Extinction	1.098050393	Coef	0.74 ft
VTZJ	LOUISE	2003-06-18		Light Extinction	2.067041304	Coef	1.837 ft
VTZJ	LOUISE	2003-06-18		Light Extinction	-0.152715874	Coef	2.811 ft
VTZJ	LOUISE	2003-06-18		Light Extinction	-0.287866597	Coef	3.859 ft
VTZJ	LOUISE	2003-06-18		Light Extinction	0.753013759	Coef	4.834 ft
VTZJ	LOUISE	2003-07-23		Light Extinction	1.790268448	Coef	0.837 ft
VTZJ	LOUISE	2003-07-23		Light Extinction	1.218254663	Coef	1.826 ft
VTZJ	LOUISE	2003-07-23		Light Extinction	1.304247627	Coef	2.851 ft
VTZJ	LOUISE	2003-08-20		Light Extinction	1.823475085	Coef	0.875 ft
VTZJ	LOUISE	2003-08-20		Light Extinction	1.066163713	Coef	1.805 ft
VTZJ	LOUISE	2003-08-20		Light Extinction	1.014924473	Coef	2.834 ft
VTZJ	LOUISE	2003-08-20		Light Extinction	0.904676499	Coef	3.811 ft
VTZJ	LOUISE	2003-08-20		Light Extinction	1.231485556	Coef	4.787 ft
VTZJ	LOUISE	2003-09-25		Light Extinction	5.441563124	Coef	0.23 ft
VTZJ	LOUISE	2003-09-25		Light Extinction	1.102182539	Coef	1.2 ft
VTZJ	LOUISE	2003-09-25		Light Extinction	1.05255921	Coef	2.27 ft
VTZJ	LOUISE	1988-07-07		Nitrite (NO2) + Nitrate (NO3) as N	0.055	mg/L	6 ft
VTZJ	LOUISE	1988-10-11		Nitrite (NO2) + Nitrate (NO3) as N	0.062	mg/L	3 ft
VTZJ	LOUISE	1988-10-11		Nitrite (NO2) + Nitrate (NO3) as N	0.068	mg/L	5 ft
VTZJ	LOUISE	1988-10-11		Nitrite (NO2) + Nitrate (NO3) as N	0.065	mg/L	7 ft
VTZJ	LOUISE	1998-05-19		Nitrite (NO2) + Nitrate (NO3) as N	0.143	mg/L	0 ft
VTZJ	LOUISE	1998-05-19		Nitrite (NO2) + Nitrate (NO3) as N	0.145	mg/L	5 ft
VTZJ	LOUISE	1998-06-16		Nitrite (NO2) + Nitrate (NO3) as N	0.065	mg/L	2 ft
VTZJ	LOUISE	1998-06-16		Nitrite (NO2) + Nitrate (NO3) as N	0.07	mg/L	5 ft
VTZJ	LOUISE	1998-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.083	mg/L	0 ft
VTZJ	LOUISE	1998-07-21		Nitrite (NO2) + Nitrate (NO3) as N	0.081	mg/L	5 ft
VTZJ	LOUISE	1998-08-18		Nitrite (NO2) + Nitrate (NO3) as N	0.069	mg/L	0 ft
VTZJ	LOUISE	1998-08-18		Nitrite (NO2) + Nitrate (NO3) as N	0.079	mg/L	5 ft
VTZJ	LOUISE	1998-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.09	mg/L	0 ft
VTZJ	LOUISE	1998-09-22		Nitrite (NO2) + Nitrate (NO3) as N	0.089	mg/L	5 ft
VTZJ	LOUISE	2003-05-20		Nitrite (NO2) + Nitrate (NO3) as N	0.699	mg/L	3 ft
VTZJ	LOUISE	2003-05-20		Nitrite (NO2) + Nitrate (NO3) as N	0.651	mg/L	0 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-08-20		Nitrite (NO2) + Nitrate (NO3) as N	0.057	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrite (NO2) + Nitrate (NO3) as N	0.219	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrite (NO2) + Nitrate (NO3) as N	0.224	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Nitrite (NO2) + Nitrate (NO3) as N	0.09	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Nitrite (NO2) + Nitrate (NO3) as N	0.091	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Nitrite (NO2) + Nitrate (NO3) as N	0.05	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Nitrite (NO2) + Nitrate (NO3) as N	0.371	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Nitrite (NO2) + Nitrate (NO3) as N	0.369	mg/L	3 ft
VTZJ	LOUISE	1998-09-22		Nitrogen, ammonia as N	0.724	mg/L	0 ft
VTZJ	LOUISE	1998-09-22		Nitrogen, ammonia as N	0.747	mg/L	5 ft
VTZJ	LOUISE	2003-05-20		Nitrogen, ammonia as N	0.298	mg/L	3 ft
VTZJ	LOUISE	2003-05-20		Nitrogen, ammonia as N	0.331	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrogen, ammonia as N	0.355	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrogen, ammonia as N	0.351	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Nitrogen, ammonia as N	0	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Nitrogen, ammonia as N	0.1	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Nitrogen, ammonia as N	0.332	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Nitrogen, ammonia as N	0.439	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Nitrogen, ammonia as N	0.1	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Nitrogen, ammonia as N	0.26	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Nitrogen, ammonia as N	0.3	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Nitrogen, ammonia as N	0.269	mg/L	3 ft
VTZJ	LOUISE	1998-05-19		Nitrogen, Kjeldahl	1.15	mg/L	0 ft
VTZJ	LOUISE	1998-05-19		Nitrogen, Kjeldahl	1.15	mg/L	0
VTZJ	LOUISE	1998-05-19		Nitrogen, Kjeldahl	0.9	mg/L	5 ft
VTZJ	LOUISE	1998-05-19		Nitrogen, Kjeldahl	0.9	mg/L	5
VTZJ	LOUISE	1998-06-16		Nitrogen, Kjeldahl	1.13	mg/L	2 ft
VTZJ	LOUISE	1998-06-16		Nitrogen, Kjeldahl	1.13	mg/L	2
VTZJ	LOUISE	1998-06-16		Nitrogen, Kjeldahl	1.32	mg/L	5 ft
VTZJ	LOUISE	1998-06-16		Nitrogen, Kjeldahl	1.32	mg/L	5
VTZJ	LOUISE	1998-07-21		Nitrogen, Kjeldahl	1.73	mg/L	0 ft
VTZJ	LOUISE	1998-07-21		Nitrogen, Kjeldahl	1.73	mg/L	0
VTZJ	LOUISE	1998-07-21		Nitrogen, Kjeldahl	1.8	mg/L	5 ft
VTZJ	LOUISE	1998-07-21		Nitrogen, Kjeldahl	1.8	mg/L	5
VTZJ	LOUISE	1998-08-18		Nitrogen, Kjeldahl	1.52	mg/L	0 ft
VTZJ	LOUISE	1998-08-18		Nitrogen, Kjeldahl	1.52	mg/L	0
VTZJ	LOUISE	1998-08-18		Nitrogen, Kjeldahl	1.46	mg/L	5 ft
VTZJ	LOUISE	1998-08-18		Nitrogen, Kjeldahl	1.46	mg/L	5
VTZJ	LOUISE	1998-09-22		Nitrogen, Kjeldahl	2.2	mg/L	0 ft
VTZJ	LOUISE	1998-09-22		Nitrogen, Kjeldahl	2.2	mg/L	0
VTZJ	LOUISE	1998-09-22		Nitrogen, Kjeldahl	2.32	mg/L	5 ft
VTZJ	LOUISE	1998-09-22		Nitrogen, Kjeldahl	2.32	mg/L	5
VTZJ	LOUISE	2003-05-20		Nitrogen, Kjeldahl	1.59	mg/L	3 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-05-20		Nitrogen, Kjeldahl	1.59	mg/L	3
VTZJ	LOUISE	2003-05-20		Nitrogen, Kjeldahl	1.64	mg/L	0 ft
VTZJ	LOUISE	2003-06-18		Nitrogen, Kjeldahl	1.66	mg/L	3 ft
VTZJ	LOUISE	2003-06-18		Nitrogen, Kjeldahl	1.66	mg/L	3
VTZJ	LOUISE	2003-06-18		Nitrogen, Kjeldahl	1.66	mg/L	0 ft
VTZJ	LOUISE	2003-07-23		Nitrogen, Kjeldahl	1.99	mg/L	3 ft
VTZJ	LOUISE	2003-07-23		Nitrogen, Kjeldahl	1.99	mg/L	3
VTZJ	LOUISE	2003-07-23		Nitrogen, Kjeldahl	2.13	mg/L	0 ft
VTZJ	LOUISE	2003-08-20		Nitrogen, Kjeldahl	1.89	mg/L	3 ft
VTZJ	LOUISE	2003-08-20		Nitrogen, Kjeldahl	1.89	mg/L	3
VTZJ	LOUISE	2003-08-20		Nitrogen, Kjeldahl	1.85	mg/L	0 ft
VTZJ	LOUISE	2003-09-24		Nitrogen, Kjeldahl	2.23	mg/L	3 ft
VTZJ	LOUISE	2003-09-24		Nitrogen, Kjeldahl	2.23	mg/L	3
VTZJ	LOUISE	2003-09-24		Nitrogen, Kjeldahl	2.06	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrogen, Kjeldahl	1.37	mg/L	3
VTZJ	LOUISE	2008-05-21		Nitrogen, Kjeldahl	1.32	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Nitrogen, Kjeldahl	1.37	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Nitrogen, Kjeldahl	1.34	mg/L	3
VTZJ	LOUISE	2008-06-18		Nitrogen, Kjeldahl	1.39	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Nitrogen, Kjeldahl	1.34	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Nitrogen, Kjeldahl	1.75	mg/L	3
VTZJ	LOUISE	2008-07-16		Nitrogen, Kjeldahl	1.62	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Nitrogen, Kjeldahl	1.75	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Nitrogen, Kjeldahl	1.75	mg/L	3
VTZJ	LOUISE	2008-08-20		Nitrogen, Kjeldahl	4.55	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Nitrogen, Kjeldahl	1.75	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Nitrogen, Kjeldahl	1.62	mg/L	3
VTZJ	LOUISE	2008-09-17		Nitrogen, Kjeldahl	1.69	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Nitrogen, Kjeldahl	1.62	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Nitrogen, Kjeldahl	1.66	mg/L	3
VTZJ	LOUISE	2015-06-17		Nitrogen, Kjeldahl	1.93	mg/L	3
VTZJ	LOUISE	2015-07-15		Nitrogen, Kjeldahl	2.81	mg/L	3
VTZJ	LOUISE	2015-08-12		Nitrogen, Kjeldahl	3.11	mg/L	3
VTZJ	LOUISE	2015-09-17		Nitrogen, Kjeldahl	2.97	mg/L	3
VTZJ	LOUISE	1988-07-07		Nitrogen, Nitrate (NO3) as N	0.055	mg/L	6
VTZJ	LOUISE	1988-10-11		Nitrogen, Nitrate (NO3) as N	0.062	mg/L	3
VTZJ	LOUISE	1988-10-11		Nitrogen, Nitrate (NO3) as N	0.068	mg/L	5
VTZJ	LOUISE	1988-10-11		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	7
VTZJ	LOUISE	1998-05-19		Nitrogen, Nitrate (NO3) as N	0.143	mg/L	0
VTZJ	LOUISE	1998-05-19		Nitrogen, Nitrate (NO3) as N	0.145	mg/L	5
VTZJ	LOUISE	1998-06-16		Nitrogen, Nitrate (NO3) as N	0.065	mg/L	2
VTZJ	LOUISE	1998-06-16		Nitrogen, Nitrate (NO3) as N	0.07	mg/L	5
VTZJ	LOUISE	1998-07-21		Nitrogen, Nitrate (NO3) as N	0.083	mg/L	0
VTZJ	LOUISE	1998-07-21		Nitrogen, Nitrate (NO3) as N	0.081	mg/L	5
VTZJ	LOUISE	1998-08-18		Nitrogen, Nitrate (NO3) as N	0.069	mg/L	0
VTZJ	LOUISE	1998-08-18		Nitrogen, Nitrate (NO3) as N	0.079	mg/L	5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	1998-09-22		Nitrogen, Nitrate (NO3) as N	0.09	mg/L	0
VTZJ	LOUISE	1998-09-22		Nitrogen, Nitrate (NO3) as N	0.089	mg/L	5
VTZJ	LOUISE	2003-05-20		Nitrogen, Nitrate (NO3) as N	0.699	mg/L	3
VTZJ	LOUISE	2008-05-21		Nitrogen, Nitrate (NO3) as N	0.224	mg/L	3
VTZJ	LOUISE	2008-07-16		Nitrogen, Nitrate (NO3) as N	0.091	mg/L	3
VTZJ	LOUISE	2008-09-17		Nitrogen, Nitrate (NO3) as N	0.369	mg/L	3
VTZJ	LOUISE	2015-05-13		Nitrogen, Nitrate (NO3) as N	0.332	mg/L	3
VTZJ	LOUISE	1998-05-19		Orthophosphate as P, Dissolved	0.006	mg/L	0 ft
VTZJ	LOUISE	1998-05-19		Orthophosphate as P, Dissolved	0.007	mg/L	5 ft
VTZJ	LOUISE	1998-06-16		Orthophosphate as P, Dissolved	0.007	mg/L	2 ft
VTZJ	LOUISE	1998-06-16		Orthophosphate as P, Dissolved	0.016	mg/L	5 ft
VTZJ	LOUISE	1998-07-21		Orthophosphate as P, Dissolved	0.049	mg/L	0 ft
VTZJ	LOUISE	1998-07-21		Orthophosphate as P, Dissolved	0.052	mg/L	5 ft
VTZJ	LOUISE	1998-08-18		Orthophosphate as P, Dissolved	0.01	mg/L	0 ft
VTZJ	LOUISE	1998-08-18		Orthophosphate as P, Dissolved	0.011	mg/L	5 ft
VTZJ	LOUISE	1998-09-22		Orthophosphate as P, Dissolved	0.046	mg/L	0 ft
VTZJ	LOUISE	1998-09-22		Orthophosphate as P, Dissolved	0.048	mg/L	5 ft
VTZJ	LOUISE	2003-05-20		Orthophosphate as P, Dissolved	0.013	mg/L	3 ft
VTZJ	LOUISE	2003-05-20		Orthophosphate as P, Dissolved	0.081	mg/L	0 ft
VTZJ	LOUISE	2003-07-23		Orthophosphate as P, Dissolved	0.02	mg/L	3 ft
VTZJ	LOUISE	2003-07-23		Orthophosphate as P, Dissolved	0.017	mg/L	0 ft
VTZJ	LOUISE	2003-08-20		Orthophosphate as P, Dissolved	0.12	mg/L	3 ft
VTZJ	LOUISE	2003-08-20		Orthophosphate as P, Dissolved	0.116	mg/L	0 ft
VTZJ	LOUISE	2003-09-24		Orthophosphate as P, Dissolved	0.078	mg/L	3 ft
VTZJ	LOUISE	2003-09-24		Orthophosphate as P, Dissolved	0.08	mg/L	0 ft
VTZJ	LOUISE	1998-05-19		рН	8.14	SU	0
VTZJ	LOUISE	1998-05-19		рН	8.22	SU	5
VTZJ	LOUISE	1998-06-16		рН	8.36	SU	2
VTZJ	LOUISE	1998-06-16		рН	8.13	SU	5
VTZJ	LOUISE	1998-07-21		рН	8.6	SU	0
VTZJ	LOUISE	1998-07-21		рН	8.65	SU	5
VTZJ	LOUISE	1998-08-18		рН	8.45	SU	0
VTZJ	LOUISE	1998-08-18		рН	8.52	SU	5
VTZJ	LOUISE	1998-09-22		рН	7.96	SU	0
VTZJ	LOUISE	1998-09-22		рН	7.96	SU	5
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	3
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	0 ft
VTZJ	LOUISE	2003-05-20		рН	7.89	SU	1 ft
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	2 ft
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	3 ft
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	4 ft
VTZJ	LOUISE	2003-05-20		рН	7.9	SU	5 ft
VTZJ	LOUISE	2003-05-20		рН	7.89	SU	6 ft
VTZJ	LOUISE	2003-06-18		рН	7.9	SU	3
VTZJ	LOUISE	2003-06-18		рН	8.46	SU	0 ft
VTZJ	LOUISE	2003-06-18		рН	8.5	SU	1 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-06-18		рН	8.51	SU	2 ft
VTZJ	LOUISE	2003-06-18		рН	8.5	SU	3 ft
VTZJ	LOUISE	2003-06-18		рН	8.39	SU	4 ft
VTZJ	LOUISE	2003-06-18		рН	8.14	SU	5 ft
VTZJ	LOUISE	2003-07-23		рН	8.54	SU	3
VTZJ	LOUISE	2003-07-23		рН	8.55	SU	0 ft
VTZJ	LOUISE	2003-07-23		рН	8.57	SU	1 ft
VTZJ	LOUISE	2003-07-23		рН	8.57	SU	2 ft
VTZJ	LOUISE	2003-07-23		рН	8.54	SU	3 ft
VTZJ	LOUISE	2003-08-20		рН	8.42	SU	3
VTZJ	LOUISE	2003-08-20		рН	8.38	SU	0 ft
VTZJ	LOUISE	2003-08-20		рН	8.46	SU	1 ft
VTZJ	LOUISE	2003-08-20		рН	8.45	SU	2 ft
VTZJ	LOUISE	2003-08-20		рН	8.42	SU	3 ft
VTZJ	LOUISE	2003-08-20		рН	8.33	SU	4 ft
VTZJ	LOUISE	2003-08-20		рН	7.86	SU	5 ft
VTZJ	LOUISE	2003-09-24		рН	8.88	SU	3
VTZJ	LOUISE	2003-09-25		рН	8.88	SU	0 ft
VTZJ	LOUISE	2003-09-25		рН	8.88	SU	1 ft
VTZJ	LOUISE	2003-09-25		рН	8.88	SU	2 ft
VTZJ	LOUISE	2003-09-25		рН	8.88	SU	3 ft
VTZJ	LOUISE	2003-09-25		рН	8.88	SU	4 ft
VTZJ	LOUISE	2008-05-21		рН	7.97	SU	3
VTZJ	LOUISE	2008-05-21		рН	8.03	SU	0 ft
VTZJ	LOUISE	2008-05-21		рН	7.97	SU	3 ft
VTZJ	LOUISE	2008-06-18		рН	8.65	SU	3
VTZJ	LOUISE	2008-06-18		рН	8.68	SU	0 ft
VTZJ	LOUISE	2008-06-18		рН	8.65	SU	3 ft
VTZJ	LOUISE	2008-07-16		рН	8.29	SU	3
VTZJ	LOUISE	2008-07-16		рН	8.46	SU	0 ft
VTZJ	LOUISE	2008-07-16		рН	8.29	SU	3 ft
VTZJ	LOUISE	2008-08-20		рН	8.02	SU	3
VTZJ	LOUISE	2008-08-20		рН	8.03	SU	0 ft
VTZJ	LOUISE	2008-08-20		рН	8.02	SU	3 ft
VTZJ	LOUISE	2008-09-17		рН	7.51	SU	3
VTZJ	LOUISE	2008-09-17		рН	7.95	SU	0 ft
VTZJ	LOUISE	2008-09-17		рН	7.51	SU	3 ft
VTZJ	LOUISE	2015-05-13		рН	8.01	SU	3
VTZJ	LOUISE	2015-06-17		рН	8.7	SU	3
VTZJ	LOUISE	2015-07-15		рН	8.86	SU	3
VTZJ	LOUISE	2015-08-12		рН	8.74	SU	3
VTZJ	LOUISE	2015-09-17		рН	8.91	SU	3
VTZJ	LOUISE	1988-07-07		Phosphorus	0.094	mg/L	2
VTZJ	LOUISE	1988-07-07		Phosphorus	0.098	mg/L	4
VTZJ	LOUISE	1988-07-07		Phosphorus	0.127	mg/L	6
VTZJ	LOUISE	1988-10-11		Phosphorus	0.036	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	1988-10-11		Phosphorus	0.036	mg/L	5
VTZJ	LOUISE	1988-10-11		Phosphorus	0.039	mg/L	7
VTZJ	LOUISE	1998-05-19		Phosphorus	0.054	mg/L	0
VTZJ	LOUISE	1998-05-19		Phosphorus	0.062	mg/L	5
VTZJ	LOUISE	1998-06-16		Phosphorus	0.101	mg/L	2
VTZJ	LOUISE	1998-06-16		Phosphorus	0.17	mg/L	5
VTZJ	LOUISE	1998-07-21		Phosphorus	0.204	mg/L	0
VTZJ	LOUISE	1998-07-21		Phosphorus	0.21	mg/L	5
VTZJ	LOUISE	1998-08-18		Phosphorus	0.181	mg/L	0
VTZJ	LOUISE	1998-08-18		Phosphorus	0.17	mg/L	5
VTZJ	LOUISE	1998-09-22		Phosphorus	0.17	mg/L	0
VTZJ	LOUISE	1998-09-22		Phosphorus	0.17	mg/L	5
VTZJ	LOUISE	2003-05-20		Phosphorus	0.081	mg/L	3
VTZJ	LOUISE	2003-05-20		Phosphorus	0.081	mg/L	0 ft
VTZJ	LOUISE	2003-06-18		Phosphorus	0.071	mg/L	3
VTZJ	LOUISE	2003-06-18		Phosphorus	0.07	mg/L	0 ft
VTZJ	LOUISE	2003-07-23		Phosphorus	0.217	mg/L	3
VTZJ	LOUISE	2003-07-23		Phosphorus	0.229	mg/L	0 ft
VTZJ	LOUISE	2003-08-20		Phosphorus	0.28	mg/L	3
VTZJ	LOUISE	2003-08-20		Phosphorus	0.28	mg/L	0 ft
VTZJ	LOUISE	2003-09-24		Phosphorus	0.32	mg/L	3
VTZJ	LOUISE	2003-09-24		Phosphorus	0.301	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Phosphorus	0.092	mg/L	3
VTZJ	LOUISE	2008-05-21		Phosphorus	0.036	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Phosphorus	0.092	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Phosphorus	0.08	mg/L	3
VTZJ	LOUISE	2008-06-18		Phosphorus	0.077	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Phosphorus	0.08	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Phosphorus	0.268	mg/L	3
VTZJ	LOUISE	2008-07-16		Phosphorus	0.242	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Phosphorus	0.268	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Phosphorus	0.175	mg/L	3
VTZJ	LOUISE	2008-08-20		Phosphorus	0.399	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Phosphorus	0.175	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Phosphorus	0.164	mg/L	3
VTZJ	LOUISE	2008-09-17		Phosphorus	0.171	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Phosphorus	0.164	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Phosphorus	0.108	mg/L	3
VTZJ	LOUISE	2015-06-17		Phosphorus	0.137	mg/L	3
VTZJ	LOUISE	2015-07-15		Phosphorus	0.224	mg/L	3
VTZJ	LOUISE	2015-08-12		Phosphorus	0.238	mg/L	3
VTZJ	LOUISE	2015-09-17		Phosphorus	0.196	mg/L	3
VTZJ	LOUISE	1998-05-19		Phosphorus, Soluble Reactive	0.006	mg/L	0
VTZJ	LOUISE	1998-05-19		Phosphorus, Soluble Reactive	0.007	mg/L	5
VTZJ	LOUISE	1998-06-16		Phosphorus, Soluble Reactive	0.007	mg/L	2
VTZJ	LOUISE	1998-06-16		Phosphorus, Soluble Reactive	0.016	mg/L	5

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	1998-07-21		Phosphorus, Soluble Reactive	0.049	mg/L	0
VTZJ	LOUISE	1998-07-21		Phosphorus, Soluble Reactive	0.052	mg/L	5
VTZJ	LOUISE	1998-08-18		Phosphorus, Soluble Reactive	0.01	mg/L	0
VTZJ	LOUISE	1998-08-18		Phosphorus, Soluble Reactive	0.011	mg/L	5
VTZJ	LOUISE	1998-09-22		Phosphorus, Soluble Reactive	0.046	mg/L	0
VTZJ	LOUISE	1998-09-22		Phosphorus, Soluble Reactive	0.048	mg/L	5
VTZJ	LOUISE	2003-05-20		Phosphorus, Soluble Reactive	0.013	mg/L	3
VTZJ	LOUISE	2003-07-23		Phosphorus, Soluble Reactive	0.02	mg/L	3
VTZJ	LOUISE	2003-08-20		Phosphorus, Soluble Reactive	0.12	mg/L	3
VTZJ	LOUISE	2003-09-24		Phosphorus, Soluble Reactive	0.078	mg/L	3
VTZJ	LOUISE	2008-05-21		Phosphorus, Soluble Reactive	0.011	mg/L	3
VTZJ	LOUISE	2008-07-16		Phosphorus, Soluble Reactive	0.14	mg/L	3
VTZJ	LOUISE	2008-08-20		Phosphorus, Soluble Reactive	0.044	mg/L	3
VTZJ	LOUISE	2008-09-17		Phosphorus, Soluble Reactive	0.034	mg/L	3
VTZJ	LOUISE	2015-05-13		Phosphorus, Soluble Reactive	0.029	mg/L	3
VTZJ	LOUISE	2015-06-17		Phosphorus, Soluble Reactive	0.041	mg/L	3
VTZJ	LOUISE	2015-07-15		Phosphorus, Soluble Reactive	0.045	mg/L	3
VTZJ	LOUISE	2015-08-12		Phosphorus, Soluble Reactive	0.043	mg/L	3
VTZJ	LOUISE	1988-07-07		Secchi	1.6	ft	ft
VTZJ	LOUISE	1988-10-11		Secchi	1.3	ft	ft
VTZJ	LOUISE	1998-05-19		Secchi	3.6	ft	ft
VTZJ	LOUISE	1998-06-16		Secchi	4	ft	ft
VTZJ	LOUISE	1998-07-21		Secchi	1.8	ft	ft
VTZJ	LOUISE	1998-08-18		Secchi	1.4	ft	ft
VTZJ	LOUISE	1998-09-22		Secchi	0.5	ft	ft
VTZJ	LOUISE	2003-05-20		Secchi	1.8	ft	ft
VTZJ	LOUISE	2003-06-18		Secchi	2.92	ft	ft
VTZJ	LOUISE	2003-07-23		Secchi	1.05	ft	ft
VTZJ	LOUISE	2003-08-20		Secchi	2.03	ft	ft
VTZJ	LOUISE	2003-09-24		Secchi	1.51	ft	ft
VTZJ	LOUISE	2008-05-21		Secchi	1.81	ft	3 ft
VTZJ	LOUISE	2008-06-18		Secchi	2.69	ft	3 ft
VTZJ	LOUISE	2008-07-16		Secchi	1.71	ft	3 ft
VTZJ	LOUISE	2008-08-20		Secchi	1.51	ft	3 ft
VTZJ	LOUISE	2008-09-17		Secchi	0.69	ft	3 ft
VTZJ	LOUISE	1998-05-19		Solids, Total Dissolved (TDS)	436	mg/L	0
VTZJ	LOUISE	1998-05-19		Solids, Total Dissolved (TDS)	449	mg/L	5
VTZJ	LOUISE	1998-06-16		Solids, Total Dissolved (TDS)	440	mg/L	2
VTZJ	LOUISE	1998-06-16		Solids, Total Dissolved (TDS)	446	mg/L	5
VTZJ	LOUISE	1998-07-21		Solids, Total Dissolved (TDS)	435	mg/L	0
VTZJ	LOUISE	1998-07-21		Solids, Total Dissolved (TDS)	412	mg/L	5
VTZJ	LOUISE	1998-08-18		Solids, Total Dissolved (TDS)	428	mg/L	0
VTZJ	LOUISE	1998-08-18		Solids, Total Dissolved (TDS)	428	mg/L	5
VTZJ	LOUISE	1998-09-22		Solids, Total Dissolved (TDS)	436	mg/L	0
VTZJ	LOUISE	1998-09-22		Solids, Total Dissolved (TDS)	444	mg/L	5
VTZJ	LOUISE	2003-05-20		Solids, Total Dissolved (TDS)	508	mg/L	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-06-18		Solids, Total Dissolved (TDS)	564	mg/L	3
VTZJ	LOUISE	2003-07-23		Solids, Total Dissolved (TDS)	550	mg/L	3
VTZJ	LOUISE	2003-08-20		Solids, Total Dissolved (TDS)	516	mg/L	3
VTZJ	LOUISE	2003-09-24		Solids, Total Dissolved (TDS)	501	mg/L	3
VTZJ	LOUISE	2015-08-12		Solids, Total Dissolved (TDS)	478	mg/L	3
VTZJ	LOUISE	1998-05-19		Solids, Total Suspended (TSS)	6.4	mg/L	0
VTZJ	LOUISE	1998-05-19		Solids, Total Suspended (TSS)	7.3	mg/L	5
VTZJ	LOUISE	1998-06-16		Solids, Total Suspended (TSS)	7.3	mg/L	2
VTZJ	LOUISE	1998-06-16		Solids, Total Suspended (TSS)	9.8	mg/L	5
VTZJ	LOUISE	1998-07-21		Solids, Total Suspended (TSS)	22	mg/L	0
VTZJ	LOUISE	1998-07-21		Solids, Total Suspended (TSS)	22	mg/L	5
VTZJ	LOUISE	1998-08-18		Solids, Total Suspended (TSS)	16	mg/L	0
VTZJ	LOUISE	1998-08-18		Solids, Total Suspended (TSS)	16	mg/L	5
VTZJ	LOUISE	1998-09-22		Solids, Total Suspended (TSS)	23	mg/L	0
VTZJ	LOUISE	1998-09-22		Solids, Total Suspended (TSS)	23	mg/L	5
VTZJ	LOUISE	2003-05-20		Solids, Total Suspended (TSS)	12	mg/L	3
VTZJ	LOUISE	2003-06-18		Solids, Total Suspended (TSS)	9.7	mg/L	3
VTZJ	LOUISE	2003-07-23		Solids, Total Suspended (TSS)	36.7	mg/L	3
VTZJ	LOUISE	2003-08-20		Solids, Total Suspended (TSS)	16.1	mg/L	3
VTZJ	LOUISE	2003-09-24		Solids, Total Suspended (TSS)	29.1	mg/L	3
VTZJ	LOUISE	2008-05-21		Solids, Total Suspended (TSS)	20.8	mg/L	3
VTZJ	LOUISE	2008-05-21		Solids, Total Suspended (TSS)	17	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Solids, Total Suspended (TSS)	20.8	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Solids, Total Suspended (TSS)	11	mg/L	3
VTZJ	LOUISE	2008-06-18		Solids, Total Suspended (TSS)	11	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Solids, Total Suspended (TSS)	11	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Solids, Total Suspended (TSS)	11.6	mg/L	3
VTZJ	LOUISE	2008-07-16		Solids, Total Suspended (TSS)	14.4	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Solids, Total Suspended (TSS)	11.6	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Solids, Total Suspended (TSS)	33	mg/L	3
VTZJ	LOUISE	2008-08-20		Solids, Total Suspended (TSS)	62.8	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Solids, Total Suspended (TSS)	33	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Solids, Total Suspended (TSS)	40.3	mg/L	3
VTZJ	LOUISE	2008-09-17		Solids, Total Suspended (TSS)	44.6	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Solids, Total Suspended (TSS)	40.3	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Solids, Total Suspended (TSS)	9.3	mg/L	3
VTZJ	LOUISE	2015-06-17		Solids, Total Suspended (TSS)	20	mg/L	3
VTZJ	LOUISE	2015-07-15		Solids, Total Suspended (TSS)	45	mg/L	3
VTZJ	LOUISE	2015-08-12		Solids, Total Suspended (TSS)	55	mg/L	3
VTZJ	LOUISE	2015-09-17		Solids, Total Suspended (TSS)	55	mg/L	3
VTZJ	LOUISE	1998-05-19		Specific conductance	0.795	mS/cm	0
VTZJ	LOUISE	1998-05-19		Specific conductance	795	uS/cm	0 ft
VTZJ	LOUISE	1998-05-19		Specific conductance	0.795	mS/cm	5
VTZJ	LOUISE	1998-05-19		Specific conductance	795	uS/cm	5 ft
VTZJ	LOUISE	1998-06-16		Specific conductance	0.816	mS/cm	2
VTZJ	LOUISE	1998-06-16		Specific conductance	816	uS/cm	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	1998-06-16		Specific conductance	0.82	mS/cm	5
VTZJ	LOUISE	1998-06-16		Specific conductance	820	uS/cm	5 ft
VTZJ	LOUISE	1998-07-21		Specific conductance	0.76	mS/cm	0
VTZJ	LOUISE	1998-07-21		Specific conductance	760	uS/cm	0 ft
VTZJ	LOUISE	1998-07-21		Specific conductance	0.762	mS/cm	5
VTZJ	LOUISE	1998-07-21		Specific conductance	762	uS/cm	5 ft
VTZJ	LOUISE	1998-08-18		Specific conductance	0.765	mS/cm	0
VTZJ	LOUISE	1998-08-18		Specific conductance	765	uS/cm	0 ft
VTZJ	LOUISE	1998-08-18		Specific conductance	0.769	mS/cm	5
VTZJ	LOUISE	1998-08-18		Specific conductance	769	uS/cm	5 ft
VTZJ	LOUISE	1998-09-22		Specific conductance	0.748	mS/cm	0
VTZJ	LOUISE	1998-09-22		Specific conductance	748	uS/cm	0 ft
VTZJ	LOUISE	1998-09-22		Specific conductance	0.751	mS/cm	5
VTZJ	LOUISE	1998-09-22		Specific conductance	751	uS/cm	5 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	0.929	mS/cm	3
VTZJ	LOUISE	2003-05-20		Specific conductance	929	uS/cm	3 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	927	uS/cm	0 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	929	uS/cm	1 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	929	uS/cm	2 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	929	uS/cm	3 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	929	uS/cm	4 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	928	uS/cm	5 ft
VTZJ	LOUISE	2003-05-20		Specific conductance	927	uS/cm	6 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	0.929	mS/cm	3
VTZJ	LOUISE	2003-06-18		Specific conductance	929	uS/cm	3 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	988	uS/cm	0 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	988	uS/cm	1 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	987	uS/cm	2 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	989	uS/cm	3 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	991	uS/cm	4 ft
VTZJ	LOUISE	2003-06-18		Specific conductance	995	uS/cm	5 ft
VTZJ	LOUISE	2003-07-23		Specific conductance	0.942	mS/cm	3
VTZJ	LOUISE	2003-07-23		Specific conductance	942	uS/cm	3 ft
VTZJ	LOUISE	2003-07-23		Specific conductance	941	uS/cm	0 ft
VTZJ	LOUISE	2003-07-23		Specific conductance	941	uS/cm	1 ft
VTZJ	LOUISE	2003-07-23		Specific conductance	941	uS/cm	2 ft
VTZJ	LOUISE	2003-07-23		Specific conductance	942	uS/cm	3 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	0.954	mS/cm	3
VTZJ	LOUISE	2003-08-20		Specific conductance	954	uS/cm	3 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	951	uS/cm	0 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	952	uS/cm	1 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	953	uS/cm	2 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	954	uS/cm	3 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	955	uS/cm	4 ft
VTZJ	LOUISE	2003-08-20		Specific conductance	961	uS/cm	5 ft
VTZJ	LOUISE	2003-09-24		Specific conductance	0.9229	mS/cm	3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-09-24		Specific conductance	922.9	uS/cm	3 ft
VTZJ	LOUISE	2003-09-25		Specific conductance	922.8	uS/cm	0 ft
VTZJ	LOUISE	2003-09-25		Specific conductance	922.5	uS/cm	1 ft
VTZJ	LOUISE	2003-09-25		Specific conductance	922.7	uS/cm	2 ft
VTZJ	LOUISE	2003-09-25		Specific conductance	922.9	uS/cm	3 ft
VTZJ	LOUISE	2003-09-25		Specific conductance	922	uS/cm	4 ft
VTZJ	LOUISE	2008-05-21		Specific conductance	1.173	mS/cm	3
VTZJ	LOUISE	2008-05-21		Specific conductance	1166	uS/cm	0 ft
VTZJ	LOUISE	2008-05-21		Specific conductance	1173	uS/cm	3 ft
VTZJ	LOUISE	2008-06-18		Specific conductance	1.062	mS/cm	3
VTZJ	LOUISE	2008-06-18		Specific conductance	1052	uS/cm	0 ft
VTZJ	LOUISE	2008-06-18		Specific conductance	1062	uS/cm	3 ft
VTZJ	LOUISE	2008-07-16		Specific conductance	0.957	mS/cm	3
VTZJ	LOUISE	2008-07-16		Specific conductance	962	uS/cm	0 ft
VTZJ	LOUISE	2008-07-16		Specific conductance	957	uS/cm	3 ft
VTZJ	LOUISE	2008-08-20		Specific conductance	0.97	mS/cm	3
VTZJ	LOUISE	2008-08-20		Specific conductance	946	uS/cm	0 ft
VTZJ	LOUISE	2008-08-20		Specific conductance	970	uS/cm	3 ft
VTZJ	LOUISE	2008-09-17		Specific conductance	0.668	mS/cm	3
VTZJ	LOUISE	2008-09-17		Specific conductance	656	uS/cm	0 ft
VTZJ	LOUISE	2008-09-17		Specific conductance	668	uS/cm	3 ft
VTZJ	LOUISE	2015-05-13		Specific conductance	0.9298	mS/cm	3
VTZJ	LOUISE	2015-06-17		Specific conductance	0.8621	mS/cm	3
VTZJ	LOUISE	2015-07-15		Specific conductance	0.8074	mS/cm	3
VTZJ	LOUISE	2015-08-12		Specific conductance	0.788	mS/cm	3
VTZJ	LOUISE	2015-09-17		Specific conductance	0.795	mS/cm	3
VTZJ	LOUISE	2003-05-20		Temperature, water	18.9	с	0 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	18.99	с	1 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	18.97	С	2 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	19	с	3 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	19	с	4 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	18.96	С	5 ft
VTZJ	LOUISE	2003-05-20		Temperature, water	18.92	С	6 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	24.74	с	0 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	24.74	С	1 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	24.67	с	2 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	24.41	с	3 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	24.13	С	4 ft
VTZJ	LOUISE	2003-06-18		Temperature, water	23.84	С	5 ft
VTZJ	LOUISE	2003-07-23		Temperature, water	24.19	С	0 ft
VTZJ	LOUISE	2003-07-23		Temperature, water	24.17	с	1 ft
VTZJ	LOUISE	2003-07-23		Temperature, water	24.1	с	2 ft
VTZJ	LOUISE	2003-07-23		Temperature, water	24.01	С	3 ft
VTZJ	LOUISE	2003-08-20		Temperature, water	26.55	С	0 ft
VTZJ	LOUISE	2003-08-20		Temperature, water	26.53	с	1 ft
VTZJ	LOUISE	2003-08-20		Temperature, water	26.41	с	2 ft

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2003-08-20		Temperature, water	26.18	С	3 ft
VTZJ	LOUISE	2003-08-20		Temperature, water	26.12	С	4 ft
VTZJ	LOUISE	2003-08-20		Temperature, water	25.94	С	5 ft
VTZJ	LOUISE	2003-09-25		Temperature, water	16.46	С	0 ft
VTZJ	LOUISE	2003-09-25		Temperature, water	16.48	с	1 ft
VTZJ	LOUISE	2003-09-25		Temperature, water	16.47	с	2 ft
VTZJ	LOUISE	2003-09-25		Temperature, water	16.47	с	3 ft
VTZJ	LOUISE	2003-09-25		Temperature, water	16.47	с	4 ft
VTZJ	LOUISE	1998-05-19		Total solids	481	mg/L	0
VTZJ	LOUISE	1998-05-19		Total solids	466	mg/L	5
VTZJ	LOUISE	1998-06-16		Total solids	482	mg/L	2
VTZJ	LOUISE	1998-06-16		Total solids	478	mg/L	5
VTZJ	LOUISE	1998-07-21		Total solids	459	mg/L	0
VTZJ	LOUISE	1998-07-21		Total solids	467	mg/L	5
VTZJ	LOUISE	1998-08-18		Total solids	460	mg/L	0
VTZJ	LOUISE	1998-08-18		Total solids	446	mg/L	5
VTZJ	LOUISE	1998-09-22		Total solids	470	mg/L	0
VTZJ	LOUISE	1998-09-22		Total solids	475	mg/L	5
VTZJ	LOUISE	2003-05-20		Total solids	549	mg/L	3
VTZJ	LOUISE	2003-06-18		Total solids	604	mg/L	3
VTZJ	LOUISE	2003-07-23		Total solids	588	mg/L	3
VTZJ	LOUISE	2003-08-20		Total solids	563	mg/L	3
VTZJ	LOUISE	2003-09-24		Total solids	576	mg/L	3
VTZJ	LOUISE	2008-05-21		Total solids	666	mg/L	3
VTZJ	LOUISE	2008-05-21		Total solids	661	mg/L	0 ft
VTZJ	LOUISE	2008-05-21		Total solids	666	mg/L	3 ft
VTZJ	LOUISE	2008-06-18		Total solids	643	mg/L	3
VTZJ	LOUISE	2008-06-18		Total solids	631	mg/L	0 ft
VTZJ	LOUISE	2008-06-18		Total solids	643	mg/L	3 ft
VTZJ	LOUISE	2008-07-16		Total solids	570	mg/L	3
VTZJ	LOUISE	2008-07-16		Total solids	558	mg/L	0 ft
VTZJ	LOUISE	2008-07-16		Total solids	570	mg/L	3 ft
VTZJ	LOUISE	2008-08-20		Total solids	585	mg/L	3
VTZJ	LOUISE	2008-08-20		Total solids	621	mg/L	0 ft
VTZJ	LOUISE	2008-08-20		Total solids	585	mg/L	3 ft
VTZJ	LOUISE	2008-09-17		Total solids	433	mg/L	3
VTZJ	LOUISE	2008-09-17		Total solids	427	mg/L	0 ft
VTZJ	LOUISE	2008-09-17		Total solids	433	mg/L	3 ft
VTZJ	LOUISE	2015-05-13		Total solids	610	mg/L	3
VTZJ	LOUISE	2015-06-17		Total solids	559	mg/L	3
VTZJ	LOUISE	2015-07-15		Total solids	557	mg/L	3
VTZJ	LOUISE	2015-08-12		Total solids	543	mg/L	3
VTZJ	LOUISE	2015-09-17		Total solids	559	mg/L	3
VTZJ	LOUISE	1998-05-19		Total volatile solids	140	mg/L	0
VTZJ	LOUISE	1998-05-19		Total volatile solids	119	mg/L	5
VTZJ	LOUISE	1998-06-16		Total volatile solids	97	mg/L	2

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	1998-06-16		Total volatile solids	108	mg/L	5
VTZJ	LOUISE	1998-07-21		Total volatile solids	104	mg/L	0
VTZJ	LOUISE	1998-07-21		Total volatile solids	115	mg/L	5
VTZJ	LOUISE	1998-08-18		Total volatile solids	108	mg/L	0
VTZJ	LOUISE	1998-08-18		Total volatile solids	110	mg/L	5
VTZJ	LOUISE	1998-09-22		Total volatile solids	118	mg/L	0
VTZJ	LOUISE	1998-09-22		Total volatile solids	119	mg/L	5
VTZJ	LOUISE	2003-05-20		Total volatile solids	114	mg/L	3
VTZJ	LOUISE	2003-06-18		Total volatile solids	145	mg/L	3
VTZJ	LOUISE	2003-07-23		Total volatile solids	137	mg/L	3
VTZJ	LOUISE	2003-08-20		Total volatile solids	139	mg/L	3
VTZJ	LOUISE	2003-09-24		Total volatile solids	129	mg/L	3
VTZJ	LOUISE	2008-05-21		Total volatile solids	98	mg/L	3
VTZJ	LOUISE	2008-06-18		Total volatile solids	136	mg/L	3
VTZJ	LOUISE	2008-07-16		Total volatile solids	116	mg/L	3
VTZJ	LOUISE	2008-08-20		Total volatile solids	107	mg/L	3
VTZJ	LOUISE	2008-09-17		Total volatile solids	90	mg/L	3
VTZJ	LOUISE	2015-05-13		Total volatile solids	99	mg/L	3
VTZJ	LOUISE	2015-06-17		Total volatile solids	136	mg/L	3
VTZJ	LOUISE	2015-07-15		Total volatile solids	135	mg/L	3
VTZJ	LOUISE	2015-08-12		Total volatile solids	139	mg/L	3
VTZJ	LOUISE	2015-09-17		Total volatile solids	147	mg/L	3
VTZJ	LOUISE	1988-07-07		TRP	0		2
VTZJ	LOUISE	1988-07-07		TRP	0		4
VTZJ	LOUISE	1988-07-07		TRP	0		6
VTZJ	LOUISE	1988-10-11		TRP	0		3
VTZJ	LOUISE	1988-10-11		TRP	0		5
VTZJ	LOUISE	1988-10-11		TRP	0		7
VTZJ	LOUISE	1998-05-19		TRP	0		0
VTZJ	LOUISE	1998-05-19		TRP	0		5
VTZJ	LOUISE	1998-06-16		TRP	0		2
VTZJ	LOUISE	1998-06-16		TRP	0		5
VTZJ	LOUISE	1998-07-21		TRP	0		0
VTZJ	LOUISE	1998-07-21		TRP	0		5
VTZJ	LOUISE	1998-08-18		TRP	0		0
VTZJ	LOUISE	1998-08-18		TRP	0		5
VTZJ	LOUISE	1998-09-22		TRP	0		0
VTZJ	LOUISE	1998-09-22		TRP	0		5
VTZJ	LOUISE	2003-05-20		TRP	0		3
VTZJ	LOUISE	2003-06-18		TRP	0		3
VTZJ	LOUISE	2003-07-23		TRP	0		3
VTZJ	LOUISE	2003-08-20		TRP	0		3
VTZJ	LOUISE	2003-09-24		TRP	0		3
VTZJ	LOUISE	2008-05-21		TRP	0		3
VTZJ	LOUISE	2008-06-18		TRP	0		3
VTZJ	LOUISE	2008-07-16		TRP	0		3

Segment	Waterbody	Date	Time	Parameter	Result	Units	Depth
VTZJ	LOUISE	2008-08-20		TRP	0		3
VTZJ	LOUISE	2008-09-17		TRP	0		3
VTZJ	LOUISE	2015-05-13		TRP	0		3
VTZJ	LOUISE	2015-06-17		TRP	0		3
VTZJ	LOUISE	2015-07-15		TRP	0		3
VTZJ	LOUISE	2015-08-12		TRP	0		3
VTZJ	LOUISE	2008-05-21			202	mg/L	0 ft
VTZJ	LOUISE	2008-05-21			0.013	mg/L	0 ft
VTZJ	LOUISE	2008-05-21			100	mg/L	0 ft
VTZJ	LOUISE	2008-05-21			204	mg/L	3 ft
VTZJ	LOUISE	2008-05-21			0.011	mg/L	3 ft
VTZJ	LOUISE	2008-05-21			98	mg/L	3 ft
VTZJ	LOUISE	2008-06-18			199	mg/L	0 ft
VTZJ	LOUISE	2008-06-18			0.005	mg/L	0 ft
VTZJ	LOUISE	2008-06-18			120	mg/L	0 ft
VTZJ	LOUISE	2008-06-18			200	mg/L	3 ft
VTZJ	LOUISE	2008-06-18			0.005	mg/L	3 ft
VTZJ	LOUISE	2008-06-18			136	mg/L	3 ft
VTZJ	LOUISE	2008-07-16			180	mg/L	0 ft
VTZJ	LOUISE	2008-07-16			0.121	mg/L	0 ft
VTZJ	LOUISE	2008-07-16			98	mg/L	0 ft
VTZJ	LOUISE	2008-07-16			180	mg/L	3 ft
VTZJ	LOUISE	2008-07-16			0.14	mg/L	3 ft
VTZJ	LOUISE	2008-07-16			116	mg/L	3 ft
VTZJ	LOUISE	2008-08-20			181	mg/L	0 ft
VTZJ	LOUISE	2008-08-20			0.008	mg/L	0 ft
VTZJ	LOUISE	2008-08-20			149	mg/L	0 ft
VTZJ	LOUISE	2008-08-20			188	mg/L	3 ft
VTZJ	LOUISE	2008-08-20			0.044	mg/L	3 ft
VTZJ	LOUISE	2008-08-20			107	mg/L	3 ft
VTZJ	LOUISE	2008-09-17			142	mg/L	0 ft
VTZJ	LOUISE	2008-09-17			0.034	mg/L	0 ft
VTZJ	LOUISE	2008-09-17			88	mg/L	0 ft
VTZJ	LOUISE	2008-09-17			142	mg/L	3 ft
VTZJ	LOUISE	2008-09-17			0.034	mg/L	3 ft
VTZJ	LOUISE	2008-09-17			90	mg/L	3 ft
	FOX RIVER	2007-01-24		Chloride	70.2	mg/L	
	FOX RIVER	2007-02-28		Chloride	97.4	mg/L	
	FOX RIVER	2007-04-16		Chloride	63.5	mg/L	
	FOX RIVER	2007-05-22		Chloride	110	mg/L	

Appendix E

Load Duration Curve Calculations

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (mg/L)	Actual Load (Ibs/day)	Allowable Load (Ibs/day)
5550001	4/30/2013	5750	5746.50	0.90	5175.8733	29	0.4666%	Chloride	84.50	mg/L	500	2357627.21	13950456.8
5550001	5/6/2009	5430	5426.50	0.90	4887.6493	49	0.7884%	Chloride	73.70	mg/L	500	1941790.26	13173611
5550001	7/2/2013	4240	4236.50	0.90	3815.8166	131	2.1078%	Chloride	62.60	mg/L	500	1287646.39	10284715.6
5550001	12/29/2008	3990	3986.50	0.90	3590.6416	169	2.7192%	Chloride	101.00	mg/L	500	1954916.57	9677804.8
5550001	8/5/2010	3850	3846.50	0.90	3464.5437	200	3.2180%	Chloride	63.10	mg/L	500	1178447.37	9337934.75
5550001	7/1/2008	3450	3446.50	0.90	3104.2637	295	4.7466%	Chloride	71.60	mg/L	500	1198136.85	8366877.47
5550001	3/20/2013	3160	3156.50	0.90	2843.0608	373	6.0016%	Chloride	114.00	mg/L	500	1747132.3	7662860.94
5550001	4/20/2011	2740	2736.50	0.90	2464.7669	571	9.1874%	Chloride	78.20	mg/L	500	1039004.43	6643250.8
5550001	3/25/2009	2720	2716.50	0.90	2446.7529	582	9.3644%	Chloride	89.60	mg/L	500	1181769.87	6594697.94
5550001	11/4/2009	2640	2636.50	0.90	2374.6969	627	10.0885%	Chloride	74.80	mg/L	500	957512.777	6400486.48
5550001	3/2/2011	2550	2546.50	0.90	2293.6339	685	11.0217%	Chloride	103.00	mg/L	500	1273491.71	6181998.59
5550001	6/10/2010	2150	2146.50	0.90	1933.3540	998	16.0579%	Chloride	98.70	mg/L	500	1028639.81	5210941.31
5550001	5/27/2009	1780	1776.50	0.90	1600.0951	1351	21.7377%	Chloride	76.50	mg/L	500	659845.139	4312713.33
5550001	5/17/2011	1670	1666.50	0.90	1501.0181	1483	23.8616%	Chloride	89.50	mg/L	500	724175.391	4045672.57
5550001	3/10/2010	1500	1496.50	0.90	1347.8992	1683	27.0796%	Chloride	114.00	mg/L	500	828317.896	3632973.23
5550001	5/22/2013	1470	1466.50	0.90	1320.8782	1727	27.7876%	Chloride	105.00	mg/L	500	747630.226	3560143.93
5550001	12/1/2011	1410	1406.50	0.90	1266.8362	1818	29.2518%	Chloride	108.00	mg/L	500	737528.834	3414485.34
5550001	6/17/2009	1380	1376.50	0.90	1239.8152	1882	30.2816%	Chloride	89.10	mg/L	500	595483.107	3341656.04
5550001	9/23/2008	1320	1316.50	0.90	1185.7732	1995	32.0998%	Chloride	86.70	mg/L	500	554185.958	3195997.45
5550001	2/3/2010	1280	1276.50	0.90	1149.7452	2057	33.0973%	Chloride	160.00	mg/L	500	991645.352	3098891.72
5550001	4/27/2010	1270	1266.50	0.90	1140.7382	2072	33.3387%	Chloride	94.00	mg/L	500	578027.675	3074615.29
5550001	6/28/2011	1260	1256.50	0.90	1131.7312	2099	33.7731%	Chloride	105.00	mg/L	500	640571.161	3050338.86
5550001	5/21/2008	1240	1236.50	0.90	1113.7172	2139	34.4167%	Chloride	106.00	mg/L	500	636378.631	3001786
5550001	12/16/2009	1220	1216.50	0.90	1095.7032	2177	35.0282%	Chloride	103.00	mg/L	500	608366.025	2953233.13
5550001	4/23/2012	1160	1156.50	0.90	1041.6612	2328	37.4578%	Chloride	103.00	mg/L	500	578360.355	2807574.54
5550001	5/15/2012	1120	1116.50	0.90	1005.6332	2428	39.0668%	Chloride	107.00	mg/L	500	580040.326	2710468.81
5550001	10/30/2008	1010	1006.50	0.90	906.5563	2731	43.9421%	Chloride	942.00	mg/L	500	4603418.46	2443428.06
5550001	2/9/2009	979	975.50	0.90	878.6346	2831	45.5511%	Chloride	120.00	mg/L	500	568361.069	2368171.12
5550001	12/4/2013	971	967.50	0.90	871.4290	2844	45.7603%	Chloride	116.00	mg/L	500	544909.994	2348749.97
5550001	1/24/2012	846	842.50	0.90	758.8415	3187	51.2792%	Chloride	136.00	mg/L	500	556320.124	2045294.57
5550001	2/22/2012	839	835.50	0.90	752.5366	3215	51.7297%	Chloride	115.00	mg/L	500	466509.247	2028301.07

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (mg/L)	Actual Load (lbs/day)	Allowable Load (Ibs/day)
5550001	11/9/2010	821	817.50	0.90	736.3240	3282	52.8077%	Chloride	111.00	mg/L	500	440581.976	1984603.49
5550001	8/5/2008	799	795.50	0.90	716.5086	3362	54.0949%	Chloride	80.40	mg/L	500	310536.211	1931195.34
5550001	1/29/2013	781	777.50	0.90	700.2960	3421	55.0442%	Chloride	166.00	mg/L	500	626649.258	1887497.77
5550001	8/19/2009	710	706.50	0.90	636.3463	3727	59.9678%	Chloride	104.00	mg/L	500	356748.101	1715135.1
5550001	9/28/2010	682	678.50	0.90	611.1267	3882	62.4618%	Chloride	101.00	mg/L	500	332726.54	1647161.09
5550001	8/8/2013	672	668.50	0.90	602.1197	3927	63.1858%	Chloride	96.50	mg/L	500	313216.739	1622884.66
5550001	10/27/2011	671	667.50	0.90	601.2190	3933	63.2824%	Chloride	107.00	mg/L	500	346777.801	1620457.01
5550001	10/28/2013	556	552.50	0.90	497.6386	4583	73.7409%	Chloride	120.00	mg/L	500	321906.731	1341278.05
5550001	9/16/2009	554	550.50	0.90	495.8372	4591	73.8697%	Chloride	106.00	mg/L	500	283321.625	1336422.76
5550001	12/15/2010	527	523.50	0.90	471.5183	4707	75.7361%	Chloride	128.00	mg/L	500	325344.357	1270876.39
5550001	11/8/2012	482	478.50	0.90	430.9868	4934	79.3886%	Chloride	155.00	mg/L	500	360106.059	1161632.45
5550001	9/6/2011	456	452.50	0.90	407.5686	5079	81.7216%	Chloride	110.00	mg/L	500	241673.02	1098513.73
5550001	9/25/2013	432	428.50	0.90	385.9518	5201	83.6846%	Chloride	117.00	mg/L	500	243418.568	1040250.29
5550001	7/19/2011	392	388.50	0.90	349.9238	5402	86.9187%	Chloride	107.00	mg/L	500	201832.936	943144.561
5550001	12/13/2012	387	383.50	0.90	345.4203	5433	87.4175%	Chloride	151.00	mg/L	500	281163.916	931006.345
5550001	6/11/2012	361	357.50	0.90	322.0021	5541	89.1553%	Chloride	121.00	mg/L	500	210028.804	867887.621
5550001	9/11/2012	215	211.50	0.90	190.4999	5884	94.6742%	Chloride	157.00	mg/L	500	161223.838	513451.714
5550001	7/31/2012	204	200.50	0.90	180.5922	5921	95.2695%	Chloride	137.00	mg/L	500	133368.853	486747.639
5550001	10/3/2012	202	198.50	0.90	178.7908	5930	95.4143%	Chloride	154.00	mg/L	500	148422.845	481892.352
5550001	7/26/2012	192	188.50	0.90	169.7838	5963	95.9453%	Chloride	136.00	mg/L	500	124471.53	457615.92
5550001	6/28/2012	190	186.50	0.90	167.9824	5970	96.0579%	Chloride	124.00	mg/L	500	112284.637	452760.634

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (µg/L)	Actual Load (lbs/day)	Allowable Load (Ibs/day)
5550001	4/30/2013	5750	5746.50	0.90	5175.8733	29	0.4666%	Copper	1.25	ug/L	18.579	34.8761136	518.371084
5550001	5/6/2009	5430	5426.50	0.90	4887.6493	49	0.7884%	Copper	1.09	ug/L	18.579	28.7184486	489.505047
5550001	7/2/2013	4240	4236.50	0.90	3815.8166	131	2.1078%	Copper	0.00	ug/L	18.579	0	382.159469
5550001	12/29/2008	3990	3986.50	0.90	3590.6416	169	2.7192%	Copper	3.35	ug/L	18.579	64.8412393	359.607877
5550001	8/5/2010	3850	3846.50	0.90	3464.5437	200	3.2180%	Copper	0.00	ug/L	18.579	0	346.978986
5550001	7/1/2008	3450	3446.50	0.90	3104.2637	295	4.7466%	Copper	1.44	ug/L	18.579	24.0965875	310.896439
5550001	3/20/2013	3160	3156.50	0.90	2843.0608	373	6.0016%	Copper	1.04	ug/L	18.579	15.9387378	284.736592
5550001	4/20/2011	2740	2736.50	0.90	2464.7669	571	9.1874%	Copper	0.00	ug/L	18.579	0	246.849918
5550001	3/25/2009	2720	2716.50	0.90	2446.7529	582	9.3644%	Copper	2.58	ug/L	18.579	34.0286136	245.04579
5550001	11/4/2009	2640	2636.50	0.90	2374.6969	627	10.0885%	Copper	2.85	ug/L	18.579	36.4827432	237.829281
5550001	3/2/2011	2550	2546.50	0.90	2293.6339	685	11.0217%	Copper	0.00	ug/L	18.579	0	229.710708
5550001	6/10/2010	2150	2146.50	0.90	1933.3540	998	16.0579%	Copper	1.83	ug/L	18.579	19.0720296	193.628161
5550001	5/27/2009	1780	1776.50	0.90	1600.0951	1351	21.7377%	Copper	1.13	ug/L	18.579	9.74672416	160.251805
5550001	5/17/2011	1670	1666.50	0.90	1501.0181	1483	23.8616%	Copper	3.93	ug/L	18.579	31.7989605	150.329104
5550001	3/10/2010	1500	1496.50	0.90	1347.8992	1683	27.0796%	Copper	2.37	ug/L	18.579	17.2202791	134.994022
5550001	5/22/2013	1470	1466.50	0.90	1320.8782	1727	27.7876%	Copper	1.01	ug/L	18.579	7.19148488	132.287831
5550001	12/1/2011	1410	1406.50	0.90	1266.8362	1818	29.2518%	Copper	2.91	ug/L	18.579	19.8722885	126.875449
5550001	6/17/2009	1380	1376.50	0.90	1239.8152	1882	30.2816%	Copper	4.49	ug/L	18.579	30.0080468	124.169257
5550001	9/23/2008	1320	1316.50	0.90	1185.7732	1995	32.0998%	Copper	3.88	ug/L	18.579	24.80092	118.756875
5550001	2/3/2010	1280	1276.50	0.90	1149.7452	2057	33.0973%	Copper	0.00	ug/L	18.579	0	115.148621
5550001	4/27/2010	1270	1266.50	0.90	1140.7382	2072	33.3387%	Copper	0.00	ug/L	18.579	0	114.246557
5550001	6/28/2011	1260	1256.50	0.90	1131.7312	2099	33.7731%	Copper	0.00	ug/L	18.579	0	113.344493
5550001	12/16/2009	1220	1216.50	0.90	1095.7032	2177	35.0282%	Copper	0.90	ug/L	18.579	5.3158153	109.736239
5550001	4/23/2012	1160	1156.50	0.90	1041.6612	2328	37.4578%	Copper	5.65	ug/L	18.579	31.7255664	104.323857
5550001	5/15/2012	1120	1116.50	0.90	1005.6332	2428	39.0668%	Copper	0.00	ug/L	18.579	0	100.715602
5550001	10/30/2008	1010	1006.50	0.90	906.5563	2731	43.9421%	Copper	1.34	ug/L	18.579	6.54838186	90.7929014
5550001	2/9/2009	979	975.50	0.90	878.6346	2831	45.5511%	Copper	3.43	ug/L	18.579	16.2456406	87.996504
5550001	12/4/2013	971	967.50	0.90	871.4290	2844	45.7603%	Copper	0.33	ug/L	18.579	1.55017372	87.2748531
5550001	1/24/2012	846	842.50	0.90	758.8415	3187	51.2792%	Copper	0.00	ug/L	18.579	0	75.9990571
5550001	2/22/2012	839	835.50	0.90	752.5366	3215	51.7297%	Copper	1.04	ug/L	18.579	4.21886279	75.3676126
5550001	11/9/2010	821	817.50	0.90	736.3240	3282	52.8077%	Copper	0.00	ug/L	18.579	0	73.7438979
5550001	8/5/2008	799	795.50	0.90	716.5086	3362	54.0949%	Copper	3.38	ug/L	18.579	13.0548699	71.7593578
5550001	1/29/2013	781	777.50	0.90	700.2960	3421	55.0442%	Copper	0.00	ug/L	18.579	0	70.1356432
5550001	8/19/2009	710	706.50	0.90	636.3463	3727	59.9678%	Copper	4.18	ug/L	18.579	14.3385177	63.7309911
5550001	9/28/2010	682	678.50	0.90	611.1267	3882	62.4618%	Copper	4.49	ug/L	18.579	14.7914945	61.2052128
5550001	8/8/2013	672	668.50	0.90	602.1197	3927	63.1858%	Copper	0.00	ug/L	18.579	0	60.3031492
5550001	10/27/2011	671	667.50	0.90	601.2190	3933	63.2824%	Copper	0.00	ug/L	18.579	0	60.2129428
Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (µg/L)	Actual Load (lbs/day)	Allowable Load (Ibs/day)
---------	------------	--------------------	---------------------------------------	-------------------------	--------------------------	------	-------------------------	-----------	---------	-------	------------------------------	--------------------------	--------------------------------
5550001	10/28/2013	556	552.50	0.90	497.6386	4583	73.7409%	Copper	0.00	ug/L	18.579	0	49.8392105
5550001	9/16/2009	554	550.50	0.90	495.8372	4591	73.8697%	Copper	3.30	ug/L	18.579	8.82038302	49.6587978
5550001	12/15/2010	527	523.50	0.90	471.5183	4707	75.7361%	Copper	0.00	ug/L	18.579	0	47.2232258
5550001	11/8/2012	482	478.50	0.90	430.9868	4934	79.3886%	Copper	6.86	ug/L	18.579	15.9375842	43.1639393
5550001	9/6/2011	456	452.50	0.90	407.5686	5079	81.7216%	Copper	0.00	ug/L	18.579	0	40.8185737
5550001	9/25/2013	432	428.50	0.90	385.9518	5201	83.6846%	Copper	0.47	ug/L	18.579	0.97783447	38.6536209
5550001	7/19/2011	392	388.50	0.90	349.9238	5402	86.9187%	Copper	4.29	ug/L	18.579	8.09217373	35.0453662
5550001	12/13/2012	387	383.50	0.90	345.4203	5433	87.4175%	Copper	0.00	ug/L	18.579	0	34.5943344
5550001	6/11/2012	361	357.50	0.90	322.0021	5541	89.1553%	Copper	3.96	ug/L	18.579	6.87366436	32.2489688
5550001	9/11/2012	215	211.50	0.90	190.4999	5884	94.6742%	Copper	0.00	ug/L	18.579	0	19.0788391
5550001	7/31/2012	204	200.50	0.90	180.5922	5921	95.2695%	Copper	0.00	ug/L	18.579	0	18.0865691
5550001	10/3/2012	202	198.50	0.90	178.7908	5930	95.4143%	Copper	6.08	ug/L	18.579	5.85980622	17.9061563
5550001	7/26/2012	192	188.50	0.90	169.7838	5963	95.9453%	Copper	4.98	ug/L	18.579	4.55785085	17.0040927
5550001	6/28/2012	190	186.50	0.90	167.9824	5970	96.0579%	Copper	6.23	ug/L	18.579	5.6413929	16.8236799

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/Standard (mil col/day)	Actual Load (lbs/day)	Allowable Load (mil col/day)
5550001	7/2/2013	4240	4236.50	0.90	3815.8166	89	2.8444%	FECAL	1300.00	mil col/day	200	121377401	18673446.34
5550001	5/17/2011	1670	1666.50	0.90	1501.0181	669	21.3806%	FECAL	20.00	mil col/day	200	734552.637	7345526.374
5550001	5/22/2013	1470	1466.50	0.90	1320.8782	790	25.2477%	FECAL	35.00	mil col/day	200	1131195.83	6463976.182
5550001	6/28/2011	1260	1256.50	0.90	1131.7312	934	29.8498%	FECAL	820.00	mil col/day	200	22707228.8	5538348.48
5550001	5/15/2012	1120	1116.50	0.90	1005.6332	1067	34.1004%	FECAL	33.00	mil col/day	200	812008.452	4921263.346
5550001	8/8/2013	672	668.50	0.90	602.1197	1703	54.4263%	FECAL	8400.00	mil col/day	200	123756818	2946590.916
5550001	10/27/2011	671	667.50	0.90	601.2190	1708	54.5861%	FECAL	13.00	mil col/day	200	191241.906	2942183.165
5550001	10/28/2013	556	552.50	0.90	497.6386	2016	64.4295%	FECAL	40.00	mil col/day	200	487058.361	2435291.804
5550001	9/6/2011	456	452.50	0.90	407.5686	2258	72.1636%	FECAL	33.00	mil col/day	200	329095.257	1994516.708
5550001	9/25/2013	432	428.50	0.90	385.9518	2347	75.0080%	FECAL	67.00	mil col/day	200	632724.78	1888730.685
5550001	7/19/2011	392	388.50	0.90	349.9238	2469	78.9070%	FECAL	47.00	mil col/day	200	402418.852	1712420.647
5550001	9/11/2012	215	211.50	0.90	190.4999	2804	89.6133%	FECAL	27.00	mil col/day	200	125853.578	932248.7271
5550001	7/26/2012	192	188.50	0.90	169.7838	2881	92.0741%	FECAL	200.00	mil col/day	200	830870.455	830870.455
5550001	6/28/2012	190	186.50	0.90	167.9824	2887	92.2659%	FECAL	33.00	mil col/day	200	135639.067	822054.9531

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (mg/L)	Actual Load (lbs/day)	Allowable Load (Ibs/day)
5550001	4/30/2013	5750	5746.50	0.90	5175.8733	29	0.4666%	TSS	15	mg/L	7	418513.705	195306.3957
5550001	5/6/2009	5430	5426.50	0.90	4887.6493	49	0.7884%	TSS	13	mg/L	7	342513.886	184430.5542
5550001	7/2/2013	4240	4236.50	0.90	3815.8166	131	2.1078%	TSS	26	mg/L	7	534805.211	143986.0184
5550001	12/29/2008	3990	3986.50	0.90	3590.6416	169	2.7192%	TSS	11	mg/L	7	212911.706	135489.2672
5550001	8/5/2010	3850	3846.50	0.90	3464.5437	200	3.2180%	TSS	13	mg/L	7	242786.304	130731.0866
5550001	7/1/2008	3450	3446.50	0.90	3104.2637	295	4.7466%	TSS	23	mg/L	7	384876.364	117136.2846
5550001	3/20/2013	3160	3156.50	0.90	2843.0608	373	6.0016%	TSS	8	mg/L	7	122605.775	107280.0532
5550001	4/20/2011	2740	2736.50	0.90	2464.7669	571	9.1874%	TSS	8	mg/L	7	106292.013	93005.51119
5550001	3/25/2009	2720	2716.50	0.90	2446.7529	582	9.3644%	TSS	10	mg/L	7	131893.959	92325.77109
5550001	11/4/2009	2640	2636.50	0.90	2374.6969	627	10.0885%	TSS	4	mg/L	7	51203.8918	89606.81071
5550001	3/2/2011	2550	2546.50	0.90	2293.6339	685	11.0217%	TSS	1	mg/L	7	12363.9972	86547.98027
5550001	6/10/2010	2150	2146.50	0.90	1933.3540	998	16.0579%	TSS	15	mg/L	7	156328.239	72953.17834
5550001	5/27/2009	1780	1776.50	0.90	1600.0951	1351	21.7377%	TSS	12	mg/L	7	103505.12	60377.98655
5550001	5/17/2011	1670	1666.50	0.90	1501.0181	1483	23.8616%	TSS	14	mg/L	7	113278.832	56639.41602
5550001	3/10/2010	1500	1496.50	0.90	1347.8992	1683	27.0796%	TSS	1	mg/L	7	7265.94646	50861.6252
5550001	5/22/2013	1470	1466.50	0.90	1320.8782	1727	27.7876%	TSS	25	mg/L	7	178007.197	49842.01506
5550001	12/1/2011	1410	1406.50	0.90	1266.8362	1818	29.2518%	TSS	8	mg/L	7	54631.7654	47802.79477
5550001	6/17/2009	1380	1376.50	0.90	1239.8152	1882	30.2816%	TSS	7	mg/L	7	46783.1846	46783.18462
5550001	9/23/2008	1320	1316.50	0.90	1185.7732	1995	32.0998%	TSS	11	mg/L	7	70311.944	44743.96433
5550001	2/3/2010	1280	1276.50	0.90	1149.7452	2057	33.0973%	TSS	3	mg/L	7	18593.3503	43384.48414
5550001	4/27/2010	1270	1266.50	0.90	1140.7382	2072	33.3387%	TSS	5	mg/L	7	30746.1529	43044.61409
5550001	6/28/2011	1260	1256.50	0.90	1131.7312	2099	33.7731%	TSS	15	mg/L	7	91510.1658	42704.74404
5550001	5/21/2008	1240	1236.50	0.90	1113.7172	2139	34.4167%	TSS	13	mg/L	7	78046.4359	42025.00395
5550001	12/16/2009	1220	1216.50	0.90	1095.7032	2177	35.0282%	TSS	0	mg/L	7	0	41345.26385
5550001	4/23/2012	1160	1156.50	0.90	1041.6612	2328	37.4578%	TSS	16	mg/L	7	89842.3853	39306.04356
5550001	5/15/2012	1120	1116.50	0.90	1005.6332	2428	39.0668%	TSS	13	mg/L	7	70472.1891	37946.56337
5550001	10/30/2008	1010	1006.50	0.90	906.5563	2731	43.9421%	TSS	3	mg/L	7	14660.5684	34207.99283
5550001	2/9/2009	979	975.50	0.90	878.6346	2831	45.5511%	TSS	3	mg/L	7	14209.0267	33154.39569
5550001	12/4/2013	971	967.50	0.90	871.4290	2844	45.7603%	TSS	2	mg/L	7	9394.9999	32882.49965
5550001	1/24/2012	846	842.50	0.90	758.8415	3187	51.2792%	TSS	6	mg/L	7	24543.5349	28634.12404
5550001	2/22/2012	839	835.50	0.90	752.5366	3215	51.7297%	TSS	6	mg/L	7	24339.6129	28396.21501
5550001	11/9/2010	821	817.50	0.90	736.3240	3282	52.8077%	TSS	2	mg/L	7	7938.41398	27784.44892
5550001	8/5/2008	799	795.50	0.90	716.5086	3362	54.0949%	TSS	25	mg/L	7	96559.7672	27036.73482
5550001	1/29/2013	781	777.50	0.90	700.2960	3421	55.0442%	TSS	6	mg/L	7	22649.9732	26424.96873
5550001	8/19/2009	710	706.50	0.90	636.3463	3727	59.9678%	TSS	17	mg/L	7	58314.5934	24011.89139
5550001	9/28/2010	682	678.50	0.90	611.1267	3882	62.4618%	TSS	8	mg/L	7	26354.5774	23060.25525
5550001	8/8/2013	672	668.50	0.90	602.1197	3927	63.1858%	TSS	15	mg/L	7	48686.5397	22720.3852
5550001	10/27/2011	671	667.50	0.90	601.2190	3933	63.2824%	TSS	8	mg/L	7	25927.3122	22686.3982

Gage ID	Date	Discharge (CFS)	Gage Discharge - NPDES (CFS)	Watershed Area Ratio	Calculated flow (CFS)	Rank	Flow Exceedance %	Parameter	Results	Units	Limit/ Standard (mg/L)	Actual Load (lbs/day)	Allowable Load (lbs/day)
5550001	10/28/2013	556	552.50	0.90	497.6386	4583	73.7409%	TSS	8	mg/L	7	21460.4487	18777.89264
5550001	9/16/2009	554	550.50	0.90	495.8372	4591	73.8697%	TSS	11	mg/L	7	29401.3007	18709.91863
5550001	12/15/2010	527	523.50	0.90	471.5183	4707	75.7361%	TSS	0	mg/L	7	0	17792.2695
5550001	11/8/2012	482	478.50	0.90	430.9868	4934	79.3886%	TSS	8	mg/L	7	18586.1192	16262.85428
5550001	9/6/2011	456	452.50	0.90	407.5686	5079	81.7216%	TSS	17	mg/L	7	37349.4667	15379.19216
5550001	9/25/2013	432	428.50	0.90	385.9518	5201	83.6846%	TSS	15	mg/L	7	31207.5087	14563.50404
5550001	7/19/2011	392	388.50	0.90	349.9238	5402	86.9187%	TSS	21	mg/L	7	39612.0716	13204.02385
5550001	12/13/2012	387	383.50	0.90	345.4203	5433	87.4175%	TSS	2	mg/L	7	3724.02538	13034.08883
5550001	6/11/2012	361	357.50	0.90	322.0021	5541	89.1553%	TSS	21	mg/L	7	36451.2801	12150.4267
5550001	9/11/2012	215	211.50	0.90	190.4999	5884	94.6742%	TSS	20	mg/L	7	20538.0686	7188.323995
5550001	7/31/2012	204	200.50	0.90	180.5922	5921	95.2695%	TSS	16	mg/L	7	15575.9244	6814.466942
5550001	10/3/2012	202	198.50	0.90	178.7908	5930	95.4143%	TSS	19	mg/L	7	18311.9094	6746.492932
5550001	7/26/2012	192	188.50	0.90	169.7838	5963	95.9453%	TSS	35	mg/L	7	32033.1144	6406.622884
5550001	6/28/2012	190	186.50	0.90	167.9824	5970	96.0579%	TSS	20	mg/L	7	18110.4254	6338.648875

Appendix F Phosphorus Export Coefficients by Land Use

	Total Phosphorus Export Coefficients				
Land Use	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)		
Barren Land	0.16	0.16	0.16		
Cultivated Crops	0.66	0.92	0.94		
Deciduous Forest	0.08	0.105	0.13		
Developed, High Intensity	0.7	1.96	4.77		
Developed, Low Intensity	0.04	0.465	1.43		
Developed, Medium Intensity	0.46	1.38	4.77		
Developed, Open Space	0.03	0.04	0.16		
Emergent Herbaceuous Wetlands	0.22	0.22	0.22		
Evergreen Forest	0.08	0.105	0.13		
Herbaceuous	0.5	0.5	0.5		
Mixed Forest	0.08	0.105	0.13		
Open Water	0	0	0		
Hay/Pasture	0.5	0.5	0.5		
Shrub/Scrub	0.08	0.105	0.13		
Woody Wetlands	0.22	0.22	0.22		

Appendix G

SLAM Model Files

Land Use	Area (Acres)	Percentage (%)
Open Water	94.30	33.52
Developed, Open Space	31.36	11.15
Developed, Low Intensity	91.18	32.41
Developed, Medium Intensity	9.79	3.48
Deciduous Forest	21.35	7.59
Mixed Forest	6.67	2.37
Herbaceuous	12.45	4.43
Woody Wetlands	14.23	5.06

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)	Area (Sq. meter)
Barrington	1	100%	NA	NA	91.07	368,548

Calculating Daily Load						
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)						
69.46	0.19					
Number of Days in POR						
6057						

fp P						
Lake fp P	Inflow fp P					
0.701	0.729					

Lake Zone Loading Factors							
Zone	% P Load	% N Load					
1	100	0					

Initial P Concentration	
0.0736	

Catchment Area Calcs					
Name	Catchment_area (mi^2)	Ratio			
5527950	61	1			
Barrington	0.439577	0.007			

Conversion				
Acres Mi Square				
1	0.0015625			

Watershed Information	Total Phosphorus Export Coefficients			Phosphorus Loads				
			Median					
Land Use	Area (acres)	Low (lb/ac/yr)	(lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (lbs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	21	0.08	0.105	0.13	1.7	2.2	2.8	0.039959016
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	91	0.04	0.47	1.43	3.6	42.4	130.4	1.877241291
Developed, Medium Intensity	10	0.46	1.38	4.77	4.5	13.5	46.7	0.672003074
Developed, Open Space	31	0.03	0.04	0.16	0.9	1.3	5.0	0.072233607
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	12	0.5	0.5	0.5	6.2	6.2	6.2	0.089651639
Mixed Forest	7	0.08	0.105	0.13	0.5	0.7	0.9	0.012487193
Open Water	94	0	0	0	0.0	0.0	0.0	0
Hay/Pasture		0.5	0.5	0.5				
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands	14	0.22	0.22	0.22	3.1	3.1	3.1	0.045081967
	281				Total:	69.5		

NO permits have any limits or allocations for Barrington

09.

MS4 Areas from GIS

	Subbasin Area	Municipal MS4 Area	Percent Subbasin as
Segment	(acres)	(acres)	MS4 Area
RTZT	281.3	279.3	99.3%
Lake Total	281.3	279.3	99.3%

Lake Sedimentation Parameters Calibration Run

Zone 1	RHJA-1		
Month	P (mg/m2,	N (mg/m2,	/d)
Jan	0	0	
Feb	0	0	
Mar	0	0	
Apr	0	0	
May	0	0	
Jun	2.5	0	
Jul	7.5	0	
Aug	7.8	0	
Sep	4.2	0	
Oct	0	0	
Nov	0	0	
Dec	0	0	

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
2.03	30	60.9
6.09	31	188.9
6.34	31	196.5
3.41	30	102.4
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	548.7

	Actua	l Load (lbs/y	r)
			Point
Zone	Internal	Watershed	Sources
RTZT	548.7	69.5	0
Total	548.7	69.5	0

Allowable Load (lbs/yr)				
	Point			
Internal	Watershed	Sources		
170.1	69.5	0.0		
170.1	69.5	0.0		

Percent Reduction					
	Point				
Internal	Watershed	Sources			
69%	0%	0%			
69%	0%	0%			

Segment	Loading Source	LC (Ibs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.466	-	0.419	0.047	1.503	69%
RTZT	External	0.190	\$0.170	0.001	0.019	0.190	0%
	Total	0.656	\$0.170	0.421	0.066	1.694	61%

Land Use	Area (Acres)	Percentage (%)
Open Water	15.35	14.84
Developed, Open Space	16.23	15.70
Developed, Low Intensity	6.67	6.45
Deciduous Forest	2.89	2.80
Herbaceuous	0.89	0.86
Hay/Pasture	10.90	10.54
Cultivated Crops	48.70	47.10
Woody Wetlands	1.78	1.72

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area(%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Drummond	1	100%	NA	NA	20.7

Calculating Daily Load				
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)				
55.15 0.15				
Number of Days in POR				
8324				

fp P			
Lake fp P	Inflow fp P		
0.701	0.729		

Lake Zone Loading Factors					
Zone % P Load % N Load					
1	100	0			

Initial P Concentration	
0.151	

Catchment Area Calcs				
Name Catchment_area (mi^2) Ratio				
5527950	61	1		
Drummond	0.161584	0.003		

Conversion			
Acres Mi Square			
1	0.0015625		

Watershed Information		Total Phosphorus Export Coefficients			Phosphorus Loads			
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (lbs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	49	0.66	0.92	0.94	32.1	44.8	45.8	0.830164331
Deciduous Forest	3	0.08	0.105	0.13	0.2	0.3	0.4	0.006815203
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	7	0.04	0.47	1.43	0.3	3.1	9.5	0.173001311
Developed, Medium Intensity		0.46	1.38	4.77				
Developed, Open Space	16	0.03	0.04	0.16	0.5	0.6	2.6	0.047101522
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	1	0.5	0.5	0.5	0.4	0.4	0.4	0.008065329
Mixed Forest		0.08	0.105	0.13				
Open Water	15	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	11	0.5	0.5	0.5	5.4	5.4	5.4	0.098800282
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands	2	0.22	0.22	0.22	0.4	0.4	0.4	0.00709749
	103				Total:	55.1		

w/geese

55.1 62.7542151375

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
UTI	103.41	0.00	0%
Lake Total	103.41	0.00	0%

There are no NPDES permits within the Drummond Lake watershed.

Lake Sedimentation Parameters Calibration Run

<u>Zone 1</u>	UTI		
Month	P (mg/m2,	N (mg/m2,	/d)
Jan	0	0	
Feb	0	0	
Mar	0	0	
Apr	0	0	
May	2	0	
Jun	3.25	0	
Jul	3.25	0	
Aug	3.25	0	
Sep	0	0	
Oct	0	0	
Nov	0	0	
Dec	0	0	

P load (lbs/day) Days	I	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.37	31	11.5
0.60	30	18.0
0.60	31	18.6
0.60	31	18.6
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load (lbs)	<u>66.7</u>

	Actual Load (lbs/yr)			
Zone	Internal	Watershed	Point Sources	
UTI	66.7	55.1	0	
Total	66.7	55.1	0	

Allowable Load (lbs/yr)			
Internal	Watershed	Point	
		Sources	
9.3	35.8	0.0	
9.3	35.8	0.0	

Percent Reduction			
Internal	Watershed	Point	
interna	watersneu	Sources	
86%	35%	0%	
86%	35%	0%	

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.026		0.023	0.003	0.183	86%
UTI	External	0.098		0.088	0.010	0.151	35%
	Total	0.124		0.111	0.012	0.334	63%

Land Has	Area	Percentage
	(Acres)	(%)
Open Water	267.76	21.86
Developed, Open Space	120.09	9.80
Developed, Low Intensity	473.92	38.68
Developed, Medium Intensity	180.58	14.74
Developed, High Intensity	61.38	5.01
Deciduous Forest	44.92	3.67
Mixed Forest	4.67	0.38
Shrub/Scrub	0.89	0.07
Herbaceuous	2.67	0.22
Hay/Pasture	13.34	1.09
Cultivated Crops	2.89	0.24
Woody Wetlands	24.69	2.01
Emergent Herbaceuous Wetlands	27.35	2.23

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Echo	1	100%	NA	NA	24.87

Calculating Daily Load		
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)		
622.11 1.70		
Number of Days in POR		
7883		

fp P	
Lake fp P	Inflow fp P
0.701	0.729

Lake Zone Loading Factors			
Zone	% P Load	% N Load	
1	100	0	

Initial P Concentration
0.0965

Catchment Area Calcs					
Name	Catchment_area (mi^2)	Ratio			
5527950	61	1			
Echo	1.914330	0.031			

Conversion				
Acres Mi Square				
1	0.0015625			

Watershed Informa	ation	Total Phos	phorus Export	Coefficients	Phosphorus Loads			
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (lbs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	3	0.66	0.92	0.94	1.9	2.7	2.7	0.004368483
Deciduous Forest	45	0.08	0.105	0.13	3.6	4.7	5.8	0.00938759
Developed, High Inter	61	0.7	1.96	4.77	43.0	120.3	292.8	0.470637863
Developed, Low Inten	474	0.04	0.47	1.43	19.0	220.4	677.7	1.089378725
Developed, Medium I	181	0.46	1.38	4.77	83.1	249.2	861.4	1.384630234
Developed, Open Spa	120	0.03	0.04	0.16	3.6	4.8	19.2	0.030886816
Emergent Herbaceuo	27	0.22	0.22	0.22	6.0	6.0	6.0	0.009673579
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	3	0.5	0.5	0.5	1.3	1.3	1.3	0.002144918
Mixed Forest	5	0.08	0.105	0.13	0.4	0.5	0.6	0.000975938
Open Water	268	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	13	0.5	0.5	0.5	6.7	6.7	6.7	0.010724589
Shrub/Scrub	1	0.08	0.105	0.13	0.1	0.1	0.1	0.000185893
Woody Wetlands	25	0.22	0.22	0.22	5.4	5.4	5.4	0.008729815
	1,225				Total:	622.1		

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Echo	1254.23	1128.19	90%
Lake Total	1254.23	1128.19	90%

No NPDES permits have limits or allocations for Echo Lake.

Lake Sedimentation Parameters

Calibration Run

Zone 1	RTZR	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	0	0
Jun	3.25	0
Jul	4	0
Aug	3.5	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
0.72	30	21.6
0.89	31	27.5
0.78	31	24.1
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	73.2

	Actual Load (lbs/yr)			
Zone	Internal	Watershed	Point Sources	
RTZR	73.2	622.1	0	
Total	73.2	622.1	0	

Allowable Load (lbs/yr)					
Internal	Watershed	Point Sources			
25.6	186.6	0.0			
25.6	186.6	0.0			

Percent Reduction					
Internal		Point			
Internal	watershed	Sources			
65%	70%	0%			
65%	70%	0%			

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.070		0.063	0.007	0.201	65%
RTZR	External	0.511		0.460	0.051	1.704	70%
	Total	0.582		0.523	0.058	1.905	69%

Land Use	Area (Acres)	Percentage (%)
Open Water	21.79	43.56
Developed, Open Space	4.67	9.33
Developed, Low Intensity	14.68	29.33
Developed, Medium Intensity	0.44	0.89
Deciduous Forest	3.11	6.22
Mixed Forest	4.23	8.44
Woody Wetlands	1.11	2.22

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Fairview	1	100%	NA	NA	20.465

Calculating Daily Load				
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)			
8.64 0.0				
Number of Days in POR				
8324				

fp P				
Lake fp P	Inflow fp P			
0.701	0.729			

Lake Zone Loading Factors				
Zone	% P Load	% N Load		
1	100	0		

Initial P Concentration	
0.074	

Catchment Area Calcs				
Name	Catchment_area (mi^2)	Ratio		
5527950	61	1		
Fairview	0.078186	0.001		

Conversion				
Acres	Mi Square			
1	0.0015625			

Watershed Information		Total Phos	phorus Export (Coefficients	P	hosphorus l	∟oads	
	Area	Low	Median	High	Low	Median		
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	(lbs/yr)	(lbs/yr)	High (lbs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	3	0.08	0.105	0.13	0.2	0.3	0.4	0.046840818
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	15	0.04	0.47	1.43	0.6	6.8	21.0	2.429031013
Developed, Medium Intensity	0	0.46	1.38	4.77	0.2	0.6	2.1	0.245528246
Developed, Open Space	5	0.03	0.04	0.16	0.1	0.2	0.7	0.086475357
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous		0.5	0.5	0.5				
Mixed Forest	4	0.08	0.105	0.13	0.3	0.4	0.5	0.063569682
Open Water	22	0	0	0	0.0	0.0	0.0	0
Hay/Pasture		0.5	0.5	0.5				
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands	1	0.22	0.22	0.22	0.2	0.2	0.2	0.028310385
	50				Total:	8.6		

No MS4 Areas

No NPDES permits have any limits or allocations for Lake Fairview.

Lake Sedimentation Parameters

Calibration Run

<u>Zone 1</u>	RTZR	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	3.6	0
Jun	3.75	0
Jul	3.75	0
Aug	3.75	0
Sep	1.5	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.66	31	20.4
0.68	30	20.5
0.68	31	21.2
0.68	31	21.2
0.27	30	8.2
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	91.6	

	Actual Load (lbs/yr)				
Zone	Internal	Internal Watershed	Point		
20110	internal	nternal watersneu			
STK	91.6	8.6	0		
Total	91.6	8.6	0		

Allowable Load (lbs/yr)			
Internal	Watarshad	Point	
Internal	watersneu	Sources	
38.5	7.8	0.0	
38.5	7.8	0.0	

Percent Reduction			
Internal	Watershed	Point	
Internal	watershed	Sources	
58%	10%	0%	
58%	10%	0%	

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% of LC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.105		0.095	0.011	0.251	58%
STK	External	0.021		0.019	0.002	0.024	10%
	Total	0.127		0.114	0.013	0.275	54%

Segment	Land Use	Area (Acres)	Percentage (%)
Grassy (no Honey or Echo)	Open Water	109.86	2.56
Grassy (no Honey or Echo)	Developed, Open Space	1325.92	30.93
Grassy (no Honey or Echo)	Developed, Low Intensity	1382.40	32.24
Grassy (no Honey or Echo)	Developed, Medium Intensity	180.36	4.21
Grassy (no Honey or Echo)	Developed, High Intensity	18.90	0.44
Grassy (no Honey or Echo)	Barren Land	10.23	0.24
Grassy (no Honey or Echo)	Deciduous Forest	477.48	11.14
Grassy (no Honey or Echo)	Evergreen Forest	1.11	0.03
Grassy (no Honey or Echo)	Mixed Forest	114.98	2.68
Grassy (no Honey or Echo)	Shrub/Scrub	5.34	0.12
Grassy (no Honey or Echo)	Herbaceuous	25.35	0.59
Grassy (no Honey or Echo)	Hay/Pasture	203.49	4.75
Grassy (no Honey or Echo)	Cultivated Crops	227.95	5.32
Grassy (no Honey or Echo)	Woody Wetlands	153.67	3.58
Grassy (no Honey or Echo)	Emergent Herbaceuous Wetlands	50.26	1.17

Segment	Land Use	Area (Acres)	Percentage (%)
Grassy	Open Water	448.35	6.70
Grassy	Developed, Open Space	1803.84	26.96
Grassy	Developed, Low Intensity	2193.70	32.79
Grassy	Developed, Medium Intensity	416.77	6.23
Grassy	Developed, High Intensity	114.09	1.71
Grassy	Barren Land	10.23	0.15
Grassy	Deciduous Forest	659.18	9.85
Grassy	Evergreen Forest	1.11	0.02
Grassy	Mixed Forest	154.79	2.31
Grassy	Shrub/Scrub	10.01	0.15
Grassy	Herbaceuous	74.06	1.11
Grassy	Hay/Pasture	216.83	3.24
Grassy	Cultivated Crops	230.85	3.45
Grassy	Woody Wetlands	238.18	3.56
Grassy	Emergent Herbaceuous Wetlands	118.54	1.77

Segment	Land Use	Area (Acres)	Percentage (%)
Honey	Open Water	70.72	6.00
Honey	Developed, Open Space	357.83	30.38
Honey	Developed, Low Intensity	337.37	28.64
Honey	Developed, Medium Intensity	55.82	4.74
Honey	Developed, High Intensity	33.80	2.87
Honey	Deciduous Forest	136.77	11.61
Honey	Mixed Forest	35.14	2.98
Honey	Shrub/Scrub	3.78	0.32
Honey	Herbaceuous	46.04	3.91
Honey	Woody Wetlands	59.82	5.08
Honey	Emergent Herbaceuous Wetlands	40.92	3.47

Segment	Land Use	Area (Acres)	Percentage (%)
Echo	Open Water	267.76	21.86
Echo	Developed, Open Space	120.09	9.80
Echo	Developed, Low Intensity	473.92	38.68
Echo	Developed, Medium Intensity	180.58	14.74
Echo	Developed, High Intensity	61.38	5.01
Echo	Deciduous Forest	44.92	3.67
Echo	Mixed Forest	4.67	0.38
Echo	Shrub/Scrub	0.89	0.07
Echo	Herbaceuous	2.67	0.22
Echo	Hay/Pasture	13.34	1.09
Echo	Cultivated Crops	2.89	0.24
Echo	Woody Wetlands	24.69	2.01
Echo	Emergent Herbaceuous Wetlands	27.35	2.23

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Grassy	1	100%	NA	NA	40.806

Calculating Daily Load			
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)		
1415.33	3.88		
Number of Days in POR			
6575			

fp P				
Lake fp P	Inflow fp P			
0.611	0.729			

Lake Zone Loading Factors					
Zone	% P Load	% N Load			
1	100	0			

Initial P Concentration	
0.1667	

Catchment Area Calcs				
Name	Catchment_area (mi^2)	Ratio		
5527950	61	1		
Grassy	6.698939	0.110		

Conversion				
Acres Mi Square				
1	0.0015625			

Watershed Information	Total Phosph	orus Export	Coefficients	Pho				
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (Ib/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (Ibs/yr)	Proportion of whole
Barren Land	10	0.16	0.16	0.16	1.6	1.6	1.6	0.001
Cultivated Crops	228	0.66	0.92	0.94	150.4	209.7	214.3	0.157
Deciduous Forest		0.08	0.105	0.13				
Developed, High Intensity	19	0.7	1.96	4.77	13.2	37.1	90.2	0.066
Developed, Low Intensity	1,382	0.04	0.47	1.43	55.3	642.8	1976.8	1.448
Developed, Medium Intensity	180	0.46	1.38	4.77	83.0	248.9	860.3	0.630
Developed, Open Space	1,326	0.03	0.04	0.16	39.8	53.0	212.1	0.155
Emergent Herbaceuous Wetlands	50	0.22	0.22	0.22	11.1	11.1	11.1	0.008
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	25	0.5	0.5	0.5	12.7	12.7	12.7	0.009
Mixed Forest	115	0.08	0.105	0.13	9.2	12.1	14.9	0.011
Open Water	110	0	0	0	0.0	0.0	0.0	0.000
Hay/Pasture	203	0.5	0.5	0.5	101.7	101.7	101.7	0.075
Shrub/Scrub	5	0.08	0.105	0.13	0.4	0.6	0.7	0.001
Woody Wetlands	154	0.22	0.22	0.22	33.8	33.8	33.8	0.025
P	3.809	•	•	•	Total:	1365.1		•

						Receving					Estimated	
NPDES_Num	Permit_Nam	Lat	Long	Туре	Outfall	water	DAF_MGD	DMF_MGD	DAF_CFS	DMF_CFS	TP limit	Units
IL0024716	NORTH BARRINGTON ELEM SCHOOL	42.21306	-88.135556	STP	1	Unnamed Tri	0.005	0.0125	0.008	0.019	7	mg/L
IL0027286	Mount Saint Joseph Home-STP			STP		Unnamed Tri	0.0125	0.025	0.019	0.039	5	mg/L

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Grassy	7049.3	5816.7	82.5%
Lake Total	7049.3	5816.7	82.5%

Lake Sedimentation Parameters

Calibration Run

<u>Zone 1</u>	RHJA-1	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	2	0
Jun	7	0
Jul	7	0
Aug	7	0
Sep	4	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)		
0.00	31	0.0		
0.00	28	0.0		
0.00	31	0.0		
0.00	30	0.0		
0.73	31	22.6		
2.55	30	76.5		
2.55	31	79.0		
2.55	31	79.0		
1.46	30	43.7		
0.00	31	0.0		
0.00	30	0.0		
0.00	31	0.0		
Annual TP load	300.7			
	Actual Load (lbs/yr)			
-------	----------------------	------------------	---	--
Zone	Internal	Point Sources		
VTI	300.7	2155.1	0	
Total	300.7	2155.1	0	

Allowable Load (lbs/yr)				
Intornal	\A/atouch ad	Point		
internal	watersneu	Sources		
72.2	474.1	0.0		
72.2	474.1	0.0		

Percent Reduction					
Internal	Watershed	Point			
Internal	watersneu	Sources			
76%	78%	0%			
76%	78%	0%			

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.198		0.178	0.020	0.824	76%
VTI	External	1.299	0.813	0.356	0.130	5.904	78%
	Total	1.497	0.813	0.534	0.150	6.728	78%

	Area	Percentage
Land Ose	(Acres)	(%)
Open Water	70.72	6.00
Developed, Open Space	357.83	30.38
Developed, Low Intensity	337.37	28.64
Developed, Medium Intensity	55.82	4.74
Developed, High Intensity	33.80	2.87
Deciduous Forest	136.77	11.61
Mixed Forest	35.14	2.98
Shrub/Scrub	3.78	0.32
Herbaceuous	46.04	3.91
Woody Wetlands	59.82	5.08
Emergent Herbaceuous Wetlands	40.92	3.47

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Honey	1	100%	NA	NA	65.48

Calculating Daily Load				
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)				
378.11 1.04				
Number of Days in POR				
7883				

fp P			
Lake fp P	Inflow fp P		
0.701	0.729		

Lake Zone Loading Factors				
Zone	% P Load	% N Load		
1	100	0		

Initial P Concentration	
0.46	

Catchment Area Calcs					
Name Catchment_area (mi^2) Ratio					
5527950	61	1			
Honey	1.840662	0.030			

Conversion				
Acres Mi Square				
1	0.0015625			

Watershed Information		Total Phosphorus Export			Phosphorus Loads			
	Area	Low	Median	High	Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16	-			
Cultivated Crops		0.66	0.92	0.94	-			
Deciduous Forest	137	0.08	0.105	0.13	10.9	14.4	17.8	0.047024571
Developed, High Intensity	34	0.7	1.96	4.77	23.7	66.3	161.2	0.426450218
Developed, Low Intensity	337	0.04	0.47	1.43	13.5	156.9	482.4	1.27593336
Developed, Medium Intensity	56	0.46	1.38	4.77	25.7	77.0	266.3	0.704203979
Developed, Open Space	358	0.03	0.04	0.16	10.7	14.3	57.3	0.151419707
Emergent Herbaceuous Wetlands	41	0.22	0.22	0.22	9.0	9.0	9.0	0.023809314
Evergreen Forest		0.08	0.105	0.13	1			
Herbaceuous	46	0.5	0.5	0.5	23.0	23.0	23.0	0.060876086
Mixed Forest	35	0.08	0.105	0.13	2.8	3.7	4.6	0.012081109
Open Water	71	0	0	0	0.0	0.0	0.0	0
Hay/Pasture		0.5	0.5	0.5	-			
Shrub/Scrub	4	0.08	0.105	0.13	0.3	0.4	0.5	0.001299866
Woody Wetlands	60	0.22	0.22	0.22	13.2	13.2	13.2	0.034808182

1,178

Total: 378.1

NO permits have any NPDES limits or allocations for Honey Lake.

Segment	Subbasi n Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Honey	1177.37	965.52	82%
Lake Total	1177.37	965.52	82%

<u>Zone 1</u>	RTZU	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	2	0
Jun	15	0
Jul	20	0
Aug	20	0
Sep	9	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
1.17	31	36.2
8.76	30	262.9
11.68	31	362.2
11.68	31	362.2
5.26	30	157.7
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	1181.3

	Actual Load (lbs/yr)				
Zone	Internal	Watershed	Point Sources		
RTZU	1181.3	378.1	0		
Total	1181.3	378.1	0		

Allowable Load (lbs/yr)					
Internal	Watershed	Point			
internal	Watershea	Sources			
106.3	132.3	0.0			
106.3	132.3	0.0			

Percent Reduction						
Internal	Watershed	Point				
		Sources				
91%	65%	0%				
91%	65%	0%				

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/d ay)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.291	0.000	0.262	0.029	3.236	91%
RTZU	External	0.363	0.268	0.059	0.036	1.036	65%
	Total	0.654	0.268	0.321	0.065	4.272	85%

Segment	Land Use	Area (Acres)	Percentage (%)
Island_lake (Subbasin)	Open Water	225.95	4.69
Island_lake (Subbasin)	Developed, Open Space	291.78	6.06
Island_lake (Subbasin)	Developed, Low Intensity	833.31	17.31
Island_lake (Subbasin)	Developed, Medium Intensity	254.86	5.29
Island_lake (Subbasin)	Developed, High Intensity	111.20	2.31
Island_lake (Subbasin)	Barren Land	1.56	0.03
Island_lake (Subbasin)	Deciduous Forest	334.48	6.95
Island_lake (Subbasin)	Evergreen Forest	2.45	0.05
Island_lake (Subbasin)	Mixed Forest	46.48	0.97
Island_lake (Subbasin)	Shrub/Scrub	9.34	0.19
Island_lake (Subbasin)	Herbaceuous	130.77	2.72
Island_lake (Subbasin)	Hay/Pasture	811.96	16.87
Island_lake (Subbasin)	Cultivated Crops	967.42	20.09
Island_lake (Subbasin)	Woody Wetlands	76.97	1.60
Island_lake (Subbasin)	Emergent Herbaceuous Wetlands	715.83	14.87

Segment	Land Use	Area (Acres)	Percentage (%)
Island_lake	Open Water	361.17	6.02
Island_lake	Developed, Open Space	530.41	8.83
Island_lake	Developed, Low Intensity	1142.66	19.03
Island_lake	Developed, Medium Intensity	278.44	4.64
Island_lake	Developed, High Intensity	111.20	1.85
Island_lake	Barren Land	1.56	0.03
Island_lake	Deciduous Forest	441.45	7.35
Island_lake	Evergreen Forest	2.45	0.04
Island_lake	Mixed Forest	70.50	1.17
Island_lake	Shrub/Scrub	11.56	0.19
Island_lake	Herbaceuous	170.13	2.83
Island_lake	Hay/Pasture	923.16	15.38
Island_lake	Cultivated Crops	1117.09	18.61
Island_lake	Woody Wetlands	121.23	2.02
Island_lake	Emergent Herbaceuous Wetlands	721.17	12.01

Segment	Land Use	Area (Acres)	Percentage (%)
Napa_Suwe	Open Water	135.22	11.97
Napa_Suwe	Developed, Open Space	221.28	19.59
Napa_Suwe	Developed, Low Intensity	268.21	23.74
Napa_Suwe	Developed, Medium Intensity	23.35	2.07
Napa_Suwe	Deciduous Forest	105.86	9.37
Napa_Suwe	Mixed Forest	23.80	2.11
Napa_Suwe	Shrub/Scrub	2.22	0.20
Napa_Suwe	Herbaceuous	39.36	3.48
Napa_Suwe	Hay/Pasture	111.20	9.84
Napa_Suwe	Cultivated Crops	149.67	13.25
Napa_Suwe	Woody Wetlands	44.26	3.92
Napa_Suwe	Emergent Herbaceuous Wetlands	5.34	0.47

Segment	Land Use	Area (Acres)	Percentage (%)
Woodland	Developed, Open Space	17.35	28.89
Woodland	Developed, Low Intensity	41.14	68.52
Woodland	Developed, Medium Intensity	0.22	0.37
Woodland	Deciduous Forest	1.11	1.85
Woodland	Mixed Forest	0.22	0.37

	Prescribed	Calculated
Hydraulics	Х	

Length	NA	
Width	NA	

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Island	1	100%	NA	NA	84.797

Calculating Daily Load (Subbasin only)			
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)		
2546.11	6.98		
Number of Days in POR			
6057			

fp P			
Lake fp P	Inflow fp P		
0.714	0.729		

Initial P Concentration	
0.1222	

Catchment Area Calcs			
Name	Catchment_area (mi^2)	Ratio	
5527950	61	1	
Island Subbasin	7.52	0.123	

Lake Zone Loading Factors			
Zone	% P Load	% N Load	
RTZI-3	0%	0%	
RTZI-2	0%	0%	
RTZI-1	0%	0%	

Conversion			
Acres Mi Square			
1	0.0015625		

	Flows move from:	Zone	Flow
Island	RTZI-3	1	
Island	RTZI-2	2	
Island	RTZI-1	3	•

Watershed Information		Total Phos	Total Phosphorus Export Coefficients		Phosphorus Loads			
	Area	Low	Median		Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	High (lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land	2	0.16	0.16	0.16	0.2	0.2	0.2	
Cultivated Crops	967	0.66	0.92	0.94	638.5	890.0	909.4	
Deciduous Forest	334	0.08	0.105	0.13	26.8	35.1	43.5	
Developed, High Intensity	111	0.7	1.96	4.77	77.8	217.9	530.4	
Developed, Low Intensity	833	0.04	0.47	1.43	33.3	387.5	1191.6	
Developed, Medium Intensity	255	0.46	1.38	4.77	117.2	351.7	1215.7	
Developed, Open Space	292	0.03	0.04	0.16	8.8	11.7	46.7	
Emergent Herbaceuous Wetlands	716	0.22	0.22	0.22	157.5	157.5	157.5	
Evergreen Forest	2	0.08	0.105	0.13	0.2	0.3	0.3	
Herbaceuous	131	0.5	0.5	0.5	65.4	65.4	65.4	
Mixed Forest	46	0.08	0.105	0.13	3.7	4.9	6.0	
Open Water	226	0	0	0	0.0	0.0	0.0	
Hay/Pasture	812	0.5	0.5	0.5	406.0	406.0	406.0	
Shrub/Scrub	9	0.08	0.105	0.13	0.7	1.0	1.2	
Woody Wetlands	77	0.22	0.22	0.22	16.9	16.9	16.9	
-	4,814				Total:	2546.1		

Whole watershed

Watershed Information		Total Phos	phorus Exp	ort Coefficients		Phosphorus Loa	nds	
	Area	Low	Median		Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	High (lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	150	0.66	0.92	0.94	98.8	137.7	140.7	
Deciduous Forest	106	0.08	0.105	0.13	8.5	11.1	13.8	
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	268	0.04	0.47	1.43	10.7	124.7	383.5	
Developed, Medium Intensity	23	0.46	1.38	4.77	10.7	32.2	111.4	
Developed, Open Space	221	0.03	0.04	0.16	6.6	8.9	35.4	
Emergent Herbaceuous Wetlands	5	0.22	0.22	0.22	1.2	1.2	1.2	
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	39	0.5	0.5	0.5	19.7	19.7	19.7	
Mixed Forest	24	0.08	0.105	0.13	1.9	2.5	3.1	
Open Water	135	0	0	0	0.0	0.0	0.0	
Hay/Pasture	111	0.5	0.5	0.5	55.6	55.6	55.6	
Shrub/Scrub	2	0.08	0.105	0.13	0.2	0.2	0.3	
Woody Wetlands	44	0.22	0.22	0.22	9.7	9.7	9.7	
	1,130				Total:	403.5		

Napa Suwe

Watershed Information		Total Phos	Total Phosphorus Export Coefficients		Phosphorus Loads			
	Area	Low	Median		Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	High (lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	1	0.08	0.105	0.13	0.1	0.1	0.1	0.008536595
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	41	0.04	0.47	1.43	1.6	19.1	58.8	3.474394303
Developed, Medium Intensity	0	0.46	1.38	4.77	0.1	0.3	1.1	0.062645477
Developed, Open Space	17	0.03	0.04	0.16	0.5	0.7	2.8	0.163902631
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous		0.5	0.5	0.5				
Mixed Forest	0	0.08	0.105	0.13	0.0	0.0	0.0	0.001707319
Open Water		0	0	0				
Hay/Pasture		0.5	0.5	0.5				
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands		0.22	0.22	0.22				
	60				Total:	20.3		

Woodland

There are no NPDES permit limits or allocations for Island Lake.

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Island	6027.16	2304.30	38%
Lake Total	6027.16	2304.30	38%

<u>Zone 1</u>	RTZI	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	0	0
Jun	0	0
Jul	7.5	0
Aug	7.5	0
Sep	3	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day) Days		P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
5.67	31	175.9
5.67	31	175.9
2.27	30	68.1
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load (lbs)		419.9

Percent Reduction				
Internal	Watershed	Point		
700/	750/	Sources		
70%	/5%	0%		
70%	75%	0%		

Allowable Load (lbs/yr)					
Internal	Watershed	Point Sources			
126.0	712.3	0.0			
126.0	712.3	0.0			

	Actual Load (lbs/yr)				
Zone	Internal	Watershed	Point Sources		
RTZI	419.9	2849.1	0		
Total	419.9	2849.1	0		

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.345		0.311	0.035	1.150	70%
	External	1.951	0.671	1.085	0.195	7.806	75%
RTZI	Total	2.297	0.671	1.395	0.230	8.956	74%

Land Use	Area (Acres)	Percentage (%)
Open Water	200.38	12.38
Developed, Open Space	435.45	26.91
Developed, Low Intensity	759.70	46.94
Developed, Medium Intensity	59.16	3.66
Developed, High Intensity	5.78	0.36
Barren Land	1.56	0.10
Deciduous Forest	89.85	5.55
Evergreen Forest	2.89	0.18
Mixed Forest	21.57	1.33
Shrub/Scrub	2.67	0.16
Herbaceuous	2.22	0.14
Woody Wetlands	37.14	2.29

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Louise	1	100%	NA	NA	39.19

Calculating Daily Load			
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)		
485.46 1.33			
Number of Days in POR			
7883			

fp P		
Lake fp P	Inflow fp P	
0.701	0.729	

Lake Zone Loading Factors				
Zone	% P Load	% N Load		
1	100	0		

Initial P Concentration	
0.1664	

Catchment Area Calcs				
Name	Catchment_area (mi^2)	Ratio		
5527950	61	1		
Louise	2.528695	0.041		

Conversion			
Acres	Mi Square		
1	0.0015625		

Watershed Information		Total Phosphorus Export Coefficients			Phosphorus Loads			
Land Use	Area (acres)	Low (lb/ac/yr)	Median (Ib/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (Ibs/yr)	High (Ibs/yr)	Proportion of whole
Barren Land	2	0.16	0.16	0.16	0.2	0.2	0.2	0.000513081
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	90	0.08	0.105	0.13	7.2	9.4	11.7	0.024059847
Developed, High Intensity	6	0.7	1.96	4.77	4.0	11.3	27.6	0.05681459
Developed, Low Intensity	760	0.04	0.47	1.43	30.4	353.3	1086.4	2.237804012
Developed, Medium Intensity	59	0.46	1.38	4.77	27.2	81.6	282.2	0.581256958
Developed, Open Space	435	0.03	0.04	0.16	13.1	17.4	69.7	0.143516164
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest	3	0.08	0.105	0.13	0.2	0.3	0.4	0.000774203
Herbaceuous	2	0.5	0.5	0.5	1.1	1.1	1.1	0.002290541
Mixed Forest	22	0.08	0.105	0.13	1.7	2.3	2.8	0.005776746
Open Water	200	0	0	0	0.0	0.0	0.0	0
Hay/Pasture		0.5	0.5	0.5				
Shrub/Scrub	3	0.08	0.105	0.13	0.2	0.3	0.3	0.000714649
Woody Wetlands	37	0.22	0.22	0.22	8.2	8.2	8.2	0.016830898
	1,618				Total:	485.5		

w/geese 499.9

NO NPDES permits have any limits or allocations for Lake Louise.

Segment	Subbasin Area (acres)	Subbasin Area (acres) Municipal MS4 Area (acres)	
Louise	1620.19	1274.45	79%
Lake Total	1620.19	1274.45	79%

Zone 1	VTZI	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	0	0
Jun	7.6	0
Jul	7.6	0
Aug	7.6	0
Sep	1	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
2.66	30	79.7
2.66	31	82.4
2.66	31	82.4
0.35	30	10.5
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	255.0

	Actual Load (lbs/yr)				
			Point		
Zone	Internal	Watershed	Sources		
VTZI	255.0	485.5	0		
Total	255.0	485.5	0		

Allowable Load (lbs/yr)				
			Point	
Internal		Watershed	Sources	
	45.9	97.1	0.0	
	45.9	97.1	0.0	

Percent Reduction					
	Point				
Internal	Watershed	Sources			
82%	80%	0%			
82%	80%	0%			

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.126		0.113	0.013	0.699	82%
VTZI	External	0.266	0.188	0.051	0.027	1.330	80%
	Total	0.392	0.188	0.164	0.039	2.029	81%

Segment	egment Land Use		Percentage (%)
Napa_Suwe minus drummond	Open Water	119.87	11.68
Napa_Suwe minus drummond	Developed, Open Space	205.05	19.98
Napa_Suwe minus drummond	Developed, Low Intensity	261.54	25.48
Napa_Suwe minus drummond	Developed, Medium Intensity	23.35	2.28
Napa_Suwe minus drummond	Deciduous Forest	102.97	10.03
Napa_Suwe minus drummond	Mixed Forest	23.80	2.32
Napa_Suwe minus drummond	Shrub/Scrub	2.22	0.22
Napa_Suwe minus drummond	Herbaceuous	38.47	3.75
Napa_Suwe minus drummond	Hay/Pasture	100.30	9.77
Napa_Suwe minus drummond	Cultivated Crops	100.97	9.84
Napa_Suwe minus drummond	Woody Wetlands	42.48	4.14
Napa_Suwe minus drummond	Emergent Herbaceuous Wetlands	5.34	0.52

	Segment	Land Use	Area (Acres)	Percentage (%)
Whole Watershed	Napa_Suwe	Open Water	135.22	11.97
Whole Watershed	Napa_Suwe	Developed, Open Space	221.28	19.59
Whole Watershed	Napa_Suwe	Developed, Low Intensity	268.21	23.74
Whole Watershed	Napa_Suwe	Developed, Medium Intensity	23.35	2.07
Whole Watershed	Napa_Suwe	Deciduous Forest	105.86	9.37
Whole Watershed	Napa_Suwe	Mixed Forest	23.80	2.11
Whole Watershed	Napa_Suwe	Shrub/Scrub	2.22	0.20
Whole Watershed	Napa_Suwe	Herbaceuous	39.36	3.48
Whole Watershed	Napa_Suwe	Hay/Pasture	111.20	9.84
Whole Watershed	Napa_Suwe	Cultivated Crops	149.67	13.25
Whole Watershed	Napa_Suwe	Woody Wetlands	44.26	3.92
Whole Watershed	Napa Suwe	Emergent Herbaceuous Wetlands	5.34	0.47

	Segment	Land Use	Area (Acres)	Percentage (%)
Napa_Suwe	Inflow less Drummond	Open Water	80.73	10.55
Napa_Suwe	Inflow less Drummond	Developed, Open Space	166.35	21.74
Napa_Suwe	Inflow less Drummond	Developed, Low Intensity	204.38	26.72
Napa_Suwe	Inflow less Drummond	Developed, Medium Intensity	20.24	2.65
Napa_Suwe	Inflow less Drummond	Deciduous Forest	70.94	9.27
Napa_Suwe	Inflow less Drummond	Mixed Forest	21.79	2.85
Napa_Suwe	Inflow less Drummond	Shrub/Scrub	2.22	0.29
Napa_Suwe	Inflow less Drummond	Herbaceuous	25.58	3.34
Napa_Suwe	Inflow less Drummond	Hay/Pasture	38.92	5.09
Napa_Suwe	Inflow less Drummond	Cultivated Crops	100.97	13.20
Napa_Suwe	Inflow less Drummond	Woody Wetlands	27.58	3.60
Napa_Suwe	Inflow less Drummond	Emergent Herbaceuous Wetlands	5.34	0.70

	Segment	Land Use	Area (Acres)	Percentage (%)
Napa_Suwe	Outflow	Open Water	39.36	14.75
Napa_Suwe	Outflow	Developed, Open Space	38.25	14.33
Napa_Suwe	Outflow	Developed, Low Intensity	58.04	21.75
Napa_Suwe	Outflow	Developed, Medium Intensity	4.67	1.75
Napa_Suwe	Outflow	Deciduous Forest	35.58	13.33
Napa_Suwe	Outflow	Mixed Forest	2.00	0.75
Napa_Suwe	Outflow	Herbaceuous	13.57	5.08
Napa_Suwe	Outflow	Hay/Pasture	60.49	22.67
Napa_Suwe	Outflow	Woody Wetlands	14.90	5.58

	Segment	Land Use	Area (Acres)	Percentage (%)
Drummond	Drummond	Open Water	15.35	14.84
Drummond	Drummond	Developed, Open Space	16.23	15.70
Drummond	Drummond	Developed, Low Intensity	6.67	6.45
Drummond	Drummond	Deciduous Forest	2.89	2.80
Drummond	Drummond	Herbaceuous	0.89	0.86
Drummond	Drummond	Hay/Pasture	10.90	10.54
Drummond	Drummond	Cultivated Crops	48.70	47.10
Drummond	Drummond	Woody Wetlands	1.78	1.72

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station	Acres	Depth	Volume
Inflow	33.6	1.4	47.04
Outflow	43.1	1.4	60.34
Total	76.7	1.4	107.38

Station_ID	Zone	Downstream Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Inflow	1	2	44%	1740	581	33.6
Outflow	2	NA	56%	NA	NA	43.1

Mixing length estimated from centroid to centroid of lake

Calculating Daily Load					
Annual P load	Daily avg P load				
(lbs/year)	(lbs/day)				
403.53	1.11				
Number of Days in POR					
6057					

	Flows move from:	Zone	Flow
Napa_Suwe	Inlet	1	
Napa_Suwe	Outlet	2	
			•

fp P						
Lake fp P	Inflow fp P					
0.701	0.729					

Lake Zone Loading Factors							
Zone	% P Load	% N Load					
1	80%						
2	20%						

tial P Concentration

0.1652

Catchment Area Calcs							
Name	itchment_area (mi^	Ratio					
5527950	61	1					
apa Suwe (Subbasi	1.6	0.026					

Conversion					
Acres	Mi Square				
1	0.0015625				

Watershed Information		Total Phosp	Total Phosphorus Export Coefficients			Phosphorus Loads		
Land Use	Area (acres)	Low (Ib/ac/yr)	Median (Ib/ac/yr)	High (Ib/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (Ibs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	101	0.66	0.92	0.94	66.6	92.9	94.9	0.348970897
Deciduous Forest	103	0.08	0.105	0.13	8.2	10.8	13.4	0.049218667
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	262	0.04	0.47	1.43	10.5	121.6	374.0	1.375146168
Developed, Medium Intensity	23	0.46	1.38	4.77	10.7	32.2	111.4	0.409555895
Developed, Open Space	205	0.03	0.04	0.16	6.2	8.2	32.8	0.1206303
Emergent Herbaceuous Wetlands	5	0.22	0.22	0.22	1.2	1.2	1.2	0.00431757
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	38	0.5	0.5	0.5	19.2	19.2	19.2	0.070732924
Mixed Forest	24	0.08	0.105	0.13	1.9	2.5	3.1	0.011374508
Open Water	120	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	100	0.5	0.5	0.5	50.1	50.1	50.1	0.184396235
Shrub/Scrub	2	0.08	0.105	0.13	0.2	0.2	0.3	0.001063038
Woody Wetlands	42	0.22	0.22	0.22	9.3	9.3	9.3	0.034360664
	1,026			-	Overland	348.4		
				Drumm	ond output	28.8		

Napa Suwe minus Drummond

Whole watershed

Total 377.1

Watershed Information		Total Phosphorus Export Coefficients			Phosphorus Loads			
Land Llas	Area	Low	Median	High	Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	150	0.66	0.92	0.94	98.8	137.7	140.7	0.517307079
Deciduous Forest	106	0.08	0.105	0.13	8.5	11.1	13.8	0.050600617
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	268	0.04	0.47	1.43	10.7	124.7	383.5	1.410226427
Developed, Medium Intensity	23	0.46	1.38	4.77	10.7	32.2	111.4	0.409555895
Developed, Open Space	221	0.03	0.04	0.16	6.6	8.9	35.4	0.130181289
Emergent Herbaceuous Wetlands	5	0.22	0.22	0.22	1.2	1.2	1.2	0.00431757
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	39	0.5	0.5	0.5	19.7	19.7	19.7	0.072368367
Mixed Forest	24	0.08	0.105	0.13	1.9	2.5	3.1	0.011374508
Open Water	135	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	111	0.5	0.5	0.5	55.6	55.6	55.6	0.204430416
Shrub/Scrub	2	0.08	0.105	0.13	0.2	0.2	0.3	0.001063038
Woody Wetlands	44	0.22	0.22	0.22	9.7	9.7	9.7	0.035799854
1,130					Total:	403.5		

Watershed Information		otal Phosphorus Export Coefficien			Phosphorus Loads			
		Low	Median	High				Proportion of
Land Use	rea (acres	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	ow (lbs/y	/ledian (lbs/y	High (Ibs/yr	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	101	0.66	0.92	0.94	66.6	92.9	94.9	0.348970897
Deciduous Forest	71	0.08	0.105	0.13	5.7	7.4	9.2	0.033910917

Inflow less Drummond

Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	204	0.04	0.47	1.43	8.2	95.0	292.3	1.074625279
Developed, Medium Intensity	20	0.46	1.38	4.77	9.3	27.9	96.5	0.354948443
Developed, Open Space	166	0.03	0.04	0.16	5.0	6.7	26.6	0.097864929
Emergent Herbaceuous Wetlands	5	0.22	0.22	0.22	1.2	1.2	1.2	0.00431757
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	26	0.5	0.5	0.5	12.8	12.8	12.8	0.047018996
Mixed Forest	22	0.08	0.105	0.13	1.7	2.3	2.8	0.010417774
Open Water	81	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	39	0.5	0.5	0.5	19.5	19.5	19.5	0.071550646
Shrub/Scrub	2	0.08	0.105	0.13	0.2	0.2	0.3	0.001063038
Woody Wetlands	28	0.22	0.22	0.22	6.1	6.1	6.1	0.022307447
	765				Overland	272.0		

Drummond output 28.8

Total 300.7

Land Upa	Area	Low	Median	High	Low	Median	High	Proportion of
Land Use	(acres)	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	36	0.08	0.105	0.13	2.8	3.7	4.6	0.017008611
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	58	0.04	0.47	1.43	2.3	27.0	83.0	0.305198257
Developed, Medium Intensity	5	0.46	1.38	4.77	2.1	6.4	22.3	0.081911179
Developed, Open Space	38	0.03	0.04	0.16	1.1	1.5	6.1	0.0225037
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	14	0.5	0.5	0.5	6.8	6.8	6.8	0.024940511
Mixed Forest	2	0.08	0.105	0.13	0.2	0.2	0.3	0.000956734
Open Water	39	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	60	0.5	0.5	0.5	30.2	30.2	30.2	0.111210146
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands	15	0.22	0.22	0.22	3.3	3.3	3.3	0.012053217
	267				Total:	79.2		

Land Lico	Area	Low	Median	High	Low	Median	High	Proportion of
Land Ose	(acres)	(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)	(lbs/yr)	(lbs/yr)	(lbs/yr)	whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	49	0.66	0.92	0.94	32.1	44.8	45.8	0.168336182
Deciduous Forest	3	0.08	0.105	0.13	0.2	0.3	0.4	0.00138195
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	7	0.04	0.47	1.43	0.3	3.1	9.5	0.035080259
Developed, Medium Intensity		0.46	1.38	4.77				
Developed, Open Space	16	0.03	0.04	0.16	0.5	0.6	2.6	0.009550989
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous	1	0.5	0.5	0.5	0.4	0.4	0.4	0.001635443
Mixed Forest		0.08	0.105	0.13				
Open Water	15	0	0	0	0.0	0.0	0.0	0

Outflow

Hay/Pasture	11	0.5	0.5	0.5	5.4	5.4	5.4	0.020034181
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands	2	0.22	0.22	0.22	0.4	0.4	0.4	0.00143919
-	103				Total:	55.1		

There are no NPDES permits that discharge into Napa Suwe Lake

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Napa Suwe_Inflow	868.95	332.88	38%
Napa Suwe_ouflow	267.07	118.95	45%
Lake Total	1136.02	457.20	40%

<u>Zone 1</u>	Inflow	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	3.2	0
Jun	3.2	0
Jul	3.2	0
Aug	2.5	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.96	31	29.7
0.96	30	28.8
0.96	31	29.7
0.75	31	23.2
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP loa	ad (lbs)	111.5

Zone 2	Outflow	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	1	0
May	3.5	0
Jun	3.5	0
Jul	3.65	0
Aug	2.5	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day) Days		P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.38	30	11.5
1.35	31	41.7
1.35	30	40.4
1.40	31	43.5
0.96	31	29.8
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load (lbs)		166.9

		Act	Actual Load (lbs/yr)				
			1				
Zone	Station	Internal	Watershed	Sources			
Zone 1	Inflow	111.5	300.7	(0		
Zone 2	Outflow	166.9	79.2	(0		
	Total	278.4	379.9	(0		

Allowable Load (lbs/yr)					
	Point				
Internal	Watershed	Sources			
22.3	75.2	0.0			
30.0	23.8	0.0			
52.3	98.9	0.0			

Percent Reduction						
	Point					
Internal	Watershed	Sources				
80%	75%	0%				
82%	70%	0%				
81%	74%	0%				

Zone	Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (Ibs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
		Internal	0.061	0.000	0.055	0.006	0.305	80%
Zone 1	Inflow	External	0.206	0.071	0.114	0.021	0.824	75%
		Total	0.267	0.071	0.169	0.027	1.129	76%
		Internal	0.082	0.000	0.074	0.008	0.457	82%
Zone 2	Outflow	External	0.065	0.026	0.033	0.007	0.217	70%
		Total	0.147	0.026	0.107	0.015	0.674	78%
		Internal	0.143	0.000	0.129	0.014	0.763	81%
Lake Total		External	0.271	0.098	0.146	0.027	1.041	74%
		Total	0.415	0.098	0.275	0.041	1.804	77%

Land Use	Area (Acres)	Percentage (%)
Open Water	552.87	10.03
Developed, Open Space	661.40	11.99
Developed, Low Intensity	1541.42	27.95
Developed, Medium Intensity	462.58	8.39
Developed, High Intensity	129.88	2.36
Deciduous Forest	763.48	13.84
Evergreen Forest	14.68	0.27
Mixed Forest	148.56	2.69
Shrub/Scrub	52.49	0.95
Herbaceuous	127.65	2.31
Hay/Pasture	241.74	4.38
Cultivated Crops	441.01	8.00
Woody Wetlands	235.07	4.26
Emergent Herbaceuous Wetlands	142.11	2.58

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Slocum	1	100%	NA	NA	216.92

Calculating Daily Load				
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)				
2412.36 6.61				
Number of Days in POR				
7883				

fp P				
Lake fp P	Inflow fp P			
0.701	0.729			

Lake Zone Loading Factors				
Zone	% P Load	% N Load		
1	100	0		

Initial P Concentration	
0.1686	

Catchment Area Calcs				
Name	Catchment_area (mi^2)	Ratio		
5527950	61	1		
Slocum	8.617092	0.141		

Conversion				
Acres	Mi Square			
1	0.0015625			

Watershed Information		Total Phosph	norus Export	Coefficients	Pho	osphorus Loa	ds	
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (Ibs/yr)	High (Ibs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	441	0.66	0.92	0.94	291.1	405.7	414.5	0.171843267
Deciduous Forest	763	0.08	0.105	0.13	61.1	80.2	99.3	0.041143299
Developed, High Intensity	130	0.7	1.96	4.77	90.9	254.6	619.5	0.256810738
Developed, Low Intensity	1,541	0.04	0.47	1.43	61.7	716.8	2204.2	0.913721593
Developed, Medium Intensity	463	0.46	1.38	4.77	212.8	638.4	2206.5	0.91466838
Developed, Open Space	661	0.03	0.04	0.16	19.8	26.5	105.8	0.043867501
Emergent Herbaceuous Wetlands	142	0.22	0.22	0.22	31.3	31.3	31.3	0.012960015
Evergreen Forest	15	0.08	0.105	0.13	1.2	1.5	1.9	0.000790987
Herbaceuous	128	0.5	0.5	0.5	63.8	63.8	63.8	0.026458416
Mixed Forest	149	0.08	0.105	0.13	11.9	15.6	19.3	0.008005745
Open Water	553	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	242	0.5	0.5	0.5	120.9	120.9	120.9	0.05010505
Shrub/Scrub	52	0.08	0.105	0.13	4.2	5.5	6.8	0.002828377
Woody Wetlands	235	0.22	0.22	0.22	51.7	51.7	51.7	0.021437771
	5,515				Total:	2412.4		

5,515

Total:

NO permits have any limits or allocations for Slocum Lake.

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Slocum	5520.95	2284.04	41%
Lake Total	5520.95	2284.04	41%

<u>Zone 1</u>	VTZI	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	4	0
Jun	4	0
Jul	4.5	0
Aug	4	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
7.74	31	240.0
7.74	30	232.2
8.71	31	270.0
7.74	31	240.0
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	982.2

	Act	Actual Load (lbs/yr)				
			Point			
Zone	Internal	Watershed	Sources			
RTP	982.2	2412.4	0			
Total	982.2	2412.4	0			

Allowable Load (lbs/yr)			
	Point		
Internal	Watershed	Sources	
245.5	723.7	0.0	
245.5	723.7	0.0	

Percent Reduction			
	Point		
Internal	Watershed	Sources	
75%	70%	0%	
75%	70%	0%	

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.673		0.605	0.067	2.691	75%
RTP	External	1.983	0.738	1.046	0.198	6.609	70%
	Total	2.655	0.738	1.652	0.266	9.300	71%

Land Use	Area (Acres)	Percentage (%)
Open Water	31.80	2.57
Developed, Open Space	357.39	28.89
Developed, Low Intensity	418.77	33.85
Developed, Medium Intensity	31.58	2.55
Developed, High Intensity	1.56	0.13
Deciduous Forest	77.17	6.24
Mixed Forest	6.00	0.49
Shrub/Scrub	2.67	0.22
Hay/Pasture	116.76	9.44
Cultivated Crops	149.23	12.06
Woody Wetlands	19.57	1.58
Emergent Herbaceuous Wetlands	24.46	1.98

	Prescribed	Calculated
Hydraulics	Х	

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Timber	1	100%	NA	NA	32.4
Calculating Daily Load					
---	--	--	--	--	
Annual_P_load (lbs/year) Daily_avg_P_load (lbs/day)					
470.02 1.29					
Number of Days in POR					
7883					

fp P	
Lake fp P	Inflow fp P
0.802	0.729

Lake Zone Loading Factors					
Zone	% P Load	% N Load			
1	100	0			

Initial P Concentration	
0.0871	

Catchment Area Calcs					
Name	Catchment_area (mi^2)	Ratio			
5527950	61	1			
Timber	1.932747	0.032			

Conversion				
Acres	Mi Square			
1	0.0015625			

Watershed Information		Total Phosph	orus Export Coe	efficients	Ph	osphorus Loa	ds	
Land Use	Area (acres)	Low (lb/ac/yr)	Median (Ib/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (Ibs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops	149	0.66	0.92	0.94	98.5	137.3	140.3	0.29843882
Deciduous Forest	77	0.08	0.105	0.13	6.2	8.1	10.0	0.021344096
Developed, High Intensity	2	0.7	1.96	4.77	1.1	3.1	7.4	0.0157987
Developed, Low Intensity	419	0.04	0.47	1.43	16.8	194.7	598.8	1.274064155
Developed, Medium Intensity	32	0.46	1.38	4.77	14.5	43.6	150.6	0.320487919
Developed, Open Space	357	0.03	0.04	0.16	10.7	14.3	57.2	0.121658036
Emergent Herbaceuous Wetlands	24	0.22	0.22	0.22	5.4	5.4	5.4	0.011450391
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous		0.5	0.5	0.5				
Mixed Forest	6	0.08	0.105	0.13	0.5	0.6	0.8	0.00166078
Open Water	32	0	0	0	0.0	0.0	0.0	0
Hay/Pasture	117	0.5	0.5	0.5	58.4	58.4	58.4	0.124203618
Shrub/Scrub	3	0.08	0.105	0.13	0.2	0.3	0.3	0.000738124
Woody Wetlands	20	0.22	0.22	0.22	4.3	4.3	4.3	0.009160313
	1,237				Total:	470.0		

w/geese 481.9

NO permits have any limits or allocations for Timber Lake (South).

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
ILR400517	1261.08	505.25	40%
Lake Total	1261.08	505.25	40%

Lake Sedimentation Parameters

Calibration Run

<u>Zone 1</u>	RTZQ	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	1	0
Jun	3	0
Jul	9	0
Aug	9.5	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.29	31	9.0
0.87	30	26.0
2.60	31	80.6
2.75	31	85.1
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	200.8

	Actual Load (lbs/yr)			
Zone	Internal	Watershed	Point Sources	
RTZQ	200.8	470.0	0	
Total	200.8	470.0	0	

Allowable Load (lbs/yr)					
Internel	\A/atorshad	Point			
Internal	watersned	Sources			
54.2	145.7	0.0			
54.2	145.7	0.0			

Percent Reduction			
Internal	Watershed	Point	
Internal	watersneu	Sources	
73%	69%	0%	
73%	69%	0%	

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/day)	MOS (10% ofLC)	Current Load (lbs/day)	Reduction Needed (Percent)
	Internal	0.149		0.134	0.015	0.550	73%
RTZQ	External	0.399	0.144	0.215	0.040	1.288	69%
	Total	0.548	0.144	0.349	0.055	1.838	70%

Segment	Land Use	Area (Acres)	Percentage (%)
Tower Subbasin	Open Water	87.62	5.33
Tower Subbasin	Developed, Open Space	519.51	31.59
Tower Subbasin	Developed, Low Intensity	503.72	30.63
Tower Subbasin	Developed, Medium Intensity	21.57	1.31
Tower Subbasin	Developed, High Intensity	1.11	0.07
Tower Subbasin	Deciduous Forest	222.62	13.54
Tower Subbasin	Mixed Forest	24.91	1.51
Tower Subbasin	Shrub/Scrub	1.11	0.07
Tower Subbasin	Herbaceuous	65.83	4.00
Tower Subbasin	Hay/Pasture	13.57	0.82
Tower Subbasin	Cultivated Crops	27.13	1.65
Tower Subbasin	Woody Wetlands	94.52	5.75
Tower Subbasin	Emergent Herbaceuous Wetlands	61.38	3.73

Segment	Land Use	Area (Acres)	Percentage (%)
Tower Full	Open Water	235.52	7.33
Tower Full	Developed, Open Space	912.93	28.41
Tower Full	Developed, Low Intensity	1028.35	32.01
Tower Full	Developed, Medium Intensity	63.38	1.97
Tower Full	Developed, High Intensity	2.67	0.08
Tower Full	Deciduous Forest	324.25	10.09
Tower Full	Mixed Forest	41.81	1.30
Tower Full	Shrub/Scrub	3.78	0.12
Tower Full	Herbaceuous	78.28	2.44
Tower Full	Hay/Pasture	130.32	4.06
Tower Full	Cultivated Crops	176.36	5.49
Tower Full	Woody Wetlands	129.43	4.03
Tower Full	Emergent Herbaceuous Wetlands	85.84	2.67

Segment	Land Use	Area (Acres)	Percentage (%)
Barrington	Open Water	94.30	33.51778656
Barrington	Developed, Open Space	31.36	11.14624506
Barrington	Developed, Low Intensity	91.18	32.41106719
Barrington	Developed, Medium Intensity	9.79	3.47826087
Barrington	Deciduous Forest	21.35	7.588932806
Barrington	Mixed Forest	6.67	2.371541502
Barrington	Herbaceuous	12.45	4.42687747
Barrington	Woody Wetlands	14.23	5.059288538

Segment	Land Use	Area (Acres)	Percentage (%)
Timber	Open Water	31.80	2.57
Timber	Developed, Open Space	357.39	28.89
Timber	Developed, Low Intensity	418.77	33.85
Timber	Developed, Medium Intensity	31.58	2.55
Timber	Developed, High Intensity	1.56	0.13
Timber	Deciduous Forest	77.17	6.24
Timber	Mixed Forest	6.00	0.49
Timber	Shrub/Scrub	2.67	0.22
Timber	Hay/Pasture	116.76	9.44
Timber	Cultivated Crops	149.23	12.06
Timber	Woody Wetlands	19.57	1.58
Timber	Emergent Herbaceuous Wetlands	24.46	1.98

Segment	Land Use	Area (Acres)	Percentage (%)
Fairview	Open Water	21.79	43.56
Fairview	Developed, Open Space	4.67	9.33
Fairview	Developed, Low Intensity	14.68	29.33
Fairview	Developed, Medium Intensity	0.44	0.89
Fairview	Deciduous Forest	3.11	6.22
Fairview	Mixed Forest	4.23	8.44
Fairview	Woody Wetlands	1.11	2.22

	Prescribed	Calculated
Hydraulics	Х	

Based on typical data availability, prescribed hydraulics will likely be used Interface length and width calculate from google earth.

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Tower	1	100%	NA	NA	69.211

Calculating Daily Load (subbasin only)			
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)		
412.02	1.13		
Number of Days in POR			
6057			

fp P			
Lake fp P	Inflow fp P		
0.701	0.729		

Lake Zone Loading Factors							
Zone	% P Load	% N Load					
1	100	0					

Initial P Concentration	
0.0786	

Catchment Area Calcs							
Name	Catchment_area (mi^2)	Ratio					
5527950	61	1					
Tower Subbasin	2.569699	0.042					

Conversion							
Acres Mi Square							
1	0.0015625						

Watershed Information Total Phospho		Total Phosphorus Export			Phosphorus Loads					
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (Ibs/yr)	High (lbs/yr)	Proportion of whole	To Sul	
Barren Land		0.16	0.16	0.16						
Cultivated Crops	27	0.66	0.92	0.94	17.9	25.0	25.5	0.061899686		
Deciduous Forest	223	0.08	0.105	0.13	17.8	23.4	28.9	0.070238979		
Developed, High Intensity	1	0.7	1.96	4.77	0.8	2.2	5.3	0.012873278		
Developed, Low Intensity	504	0.04	0.47	1.43	20.1	234.2	720.3	1.7482559		
Developed, Medium Intensity	22	0.46	1.38	4.77	9.9	29.8	102.9	0.24974159		
Developed, Open Space	520	0.03	0.04	0.16	15.6	20.8	83.1	0.201740726		
Emergent Herbaceuous Wetlands	61	0.22	0.22	0.22	13.5	13.5	13.5	0.032774232		
Evergreen Forest		0.08	0.105	0.13						
Herbaceuous	66	0.5	0.5	0.5	32.9	32.9	32.9	0.079884491		
Mixed Forest	25	0.08	0.105	0.13	2.0	2.6	3.2	0.007858907		
Open Water	88	0	0	0	0.0	0.0	0.0	0		
Hay/Pasture	14	0.5	0.5	0.5	6.8	6.8	6.8	0.016462682		
Shrub/Scrub	1	0.08	0.105	0.13	0.1	0.1	0.1	0.000350844		
Woody Wetlands	95	0.22	0.22	0.22	20.8	20.8	20.8	0.050467567		
	1,645		-	•	Total:	412.0	-		-	

1,645

Total:

Watershed Information	Watershed Information			Total Phosphorus Export			Phosphorus Loads		
Land Use	Area (acres)	Low (lb/ac/yr)	Median (Ib/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (lbs/yr)	Proportion of whole	Tower Full
Barren Land		0.16	0.16	0.16					7
Cultivated Crops	176	0.66	0.92	0.94	116.4	162.3	165.8	0.402347956	7
Deciduous Forest	324	0.08	0.105	0.13	25.9	34.0	42.2	0.102306125	7
Developed, High Intensity	3	0.7	1.96	4.77	1.9	5.2	12.7	0.030895867	
Developed, Low Intensity	1,028	0.04	0.47	1.43	41.1	478.2	1470.5	3.56906635	7
Developed, Medium Intensity	63	0.46	1.38	4.77	29.2	87.5	302.3	0.733776836	
Developed, Open Space	913	0.03	0.04	0.16	27.4	36.5	146.1	0.354514418	7
Emergent Herbaceuous Wetlands	86	0.22	0.22	0.22	18.9	18.9	18.9	0.045836426	7
Evergreen Forest		0.08	0.105	0.13					7
Herbaceuous	78	0.5	0.5	0.5	39.1	39.1	39.1	0.094997773	7
Mixed Forest	42	0.08	0.105	0.13	3.3	4.4	5.4	0.013191736	
Open Water	236	0	0	0	0.0	0.0	0.0	0	7
Hay/Pasture	130	0.5	0.5	0.5	65.2	65.2	65.2	0.158149702	7
Shrub/Scrub	4	0.08	0.105	0.13	0.3	0.4	0.5	0.00119287	7
Woody Wetlands	129	0.22	0.22	0.22	28.5	28.5	28.5	0.06911088	7
	3,213								

Watershed Information Total Phosphorus Export Phosphorus Loads				
	Watershed Information	Total Phosphorus Export	Phosphorus Loads	

Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (Ibs/yr)	High (lbs/yr)	Proportion of whole	Barrington
Barren Land		0.16	0.16	0.16					
Cultivated Crops		0.66	0.92	0.94					
Deciduous Forest	21	0.08	0.105	0.13	1.7	2.2	2.8	0.006736206	
Developed, High Intensity		0.7	1.96	4.77					
Developed, Low Intensity	91	0.04	0.47	1.43	3.6	42.4	130.4	0.316461333	
Developed, Medium Intensity	10	0.46	1.38	4.77	4.5	13.5	46.7	0.113284845	
Developed, Open Space	31	0.03	0.04	0.16	0.9	1.3	5.0	0.012176987	
Emergent Herbaceuous Wetlands		0.22	0.22	0.22					
Evergreen Forest		0.08	0.105	0.13					
Herbaceuous	12	0.5	0.5	0.5	6.2	6.2	6.2	0.015113282	
Mixed Forest	7	0.08	0.105	0.13	0.5	0.7	0.9	0.002105064	
Open Water	94	0	0	0	0.0	0.0	0.0	0	
Hay/Pasture		0.5	0.5	0.5					
Shrub/Scrub		0.08	0.105	0.13					
Woody Wetlands	14	0.22	0.22	0.22	3.1	3.1	3.1	0.007599822	
	281		-	-	Total:	69.5	-		
	P	•			Total:	138.9			

Watershed Information		Total Phosphorus Export			Phosphorus Loads				
Land Use	Area	Low	Median	High	Low	Median	High	Proportion of whole	Timbe
	(acres)	(ID/ac/yr)	(Ib/ac/yr)	(ID/ac/yr)	(ibs/yr)	(ibs/yr)	(IDS/yr)		
Barren Land		0.16	0.16	0.16					
Cultivated Crops	149	0.66	0.92	0.94	98.5	137.3	140.3	0.340448271	
Deciduous Forest	77	0.08	0.105	0.13	6.2	8.1	10.0	0.024348577	
Developed, High Intensity	2	0.7	1.96	4.77	1.1	3.1	7.4	0.018022589	
Developed, Low Intensity	419	0.04	0.47	1.43	16.8	194.7	598.8	1.453406561	
Developed, Medium Intensity	32	0.46	1.38	4.77	14.5	43.6	150.6	0.36560109	
Developed, Open Space	357	0.03	0.04	0.16	10.7	14.3	57.2	0.138783111	
Emergent Herbaceuous Wetlands	24	0.22	0.22	0.22	5.4	5.4	5.4	0.013062194	
Evergreen Forest		0.08	0.105	0.13					
Herbaceuous		0.5	0.5	0.5					
Mixed Forest	6	0.08	0.105	0.13	0.5	0.6	0.8	0.001894558	
Open Water	32	0	0	0	0.0	0.0	0.0	0	
Hay/Pasture	117	0.5	0.5	0.5	58.4	58.4	58.4	0.14168702	
Shrub/Scrub	3	0.08	0.105	0.13	0.2	0.3	0.3	0.000842026	
Woody Wetlands	20	0.22	0.22	0.22	4.3	4.3	4.3	0.010449755	
	1,237	-	-	-	Total:	470.0			-

Watershed Information	Watershed Information			Total Phosphorus Export			s		
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (Ib/ac/yr)	Low (lbs/yr)	Median (Ibs/yr)	High (lbs/yr)	Proportion of whole	
Barren Land		0.16	0.16	0.16					
Cultivated Crops		0.66	0.92	0.94					
Deciduous Forest	3	0.08	0.105	0.13	0.2	0.3	0.4	0.000982363	
Developed, High Intensity		0.7	1.96	4.77					
Developed, Low Intensity	15	0.04	0.47	1.43	0.6	6.8	21.0	0.050942556	
Developed, Medium Intensity	0	0.46	1.38	4.77	0.2	0.6	2.1	0.005149311	
Developed, Open Space	5	0.03	0.04	0.16	0.1	0.2	0.7	0.001813594	
Emergent Herbaceuous Wetlands		0.22	0.22	0.22					
Evergreen Forest		0.08	0.105	0.13					
Herbaceuous		0.5	0.5	0.5					
Mixed Forest	4	0.08	0.105	0.13	0.3	0.4	0.5	0.001333207	
Open Water	22	0	0	0	0.0	0.0	0.0	0	
Hay/Pasture		0.5	0.5	0.5					
Shrub/Scrub		0.08	0.105	0.13					
Woody Wetlands	1	0.22	0.22	0.22	0.2	0.2	0.2	0.000593736	
	50				Total:	8.6			-

No NPDES permit limits for Tower Lake

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Tower	3217.21	1564.96	49%
Lake Total	3217.21	1564.96	49%

Lake Sedimentation Parameters

Calibration Run

Zone 1	RTZF	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	0	0
Jun	1	0
Jul	2.9	0
Aug	3.9	0
Sep	1.4	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
0.62	30	18.5
1.79	31	55.5
2.41	31	74.7
0.86	30	25.9
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	174.6

7					Allu	wable Load (lbs/	yr)
Zone	Internal	Watershed	Point Sources		Internal	Watershed	Point Sources
RTZF	174.6	746.3	0	_	73.3	335.8	0.0
				-			
Total	174.6	746.3	0		73.3	335.8	0.0

Percent Reduction			
Internal	Watershed	Point	
internal		Sources	
58%	55%	0%	
58%	55%	0%	

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/d ay)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.201		0.181	0.020	0.478	58%
RTZF	External	0.920	0.403	0.425	0.092	2.045	55%
	Total	1.121	0.403	0.606	0.112	2.523	56%

Land Use	Area (Acres)	Percentage (%)
Developed, Open Space	17.35	28.89
Developed, Low Intensity	41.14	68.52
Developed, Medium Intensity	0.22	0.37
Deciduous Forest	1.11	1.85
Mixed Forest	0.22	0.37

Appendix G

	Prescribed	Calculated
Hydraulics	Х	

Based on typical data availability, prescribed hydraulics will likely be used Interface length and width calculate from google earth.

Length	NA
Width	NA

Station_ID	Zone	Surface Area (%)	Mixing Length (ft)	Interface Width (ft)	Surface Area (Acres)
Woodland	1	100%	NA	NA	7.717

Calculating Daily Load		
Annual_P_load (lbs/year)	Daily_avg_P_load (lbs/day)	
20.27	0.06	
Number of Da	iys in POR	
7883		

fp P	
Lake fp P	Inflow fp P
0.701	0.729

Lake Zone Loading Factors				
Zone	% P Load	% N Load		
1	100	0		

Initial P Concentration
0.0911

	Catchment Area Calcs	
Name	Catchment_area (mi^2)	Ratio
5527950	61	1
Woodland	0.093823	0.002

Conversi	on
Acres	Mi Square
1	0.0015625

Watershed Information		Total Phosp	ohorus Expoi	rt Coefficients	F	Phosphorus Loa	ds	
Land Use	Area (acres)	Low (lb/ac/yr)	Median (lb/ac/yr)	High (lb/ac/yr)	Low (lbs/yr)	Median (lbs/yr)	High (lbs/yr)	Proportion of whole
Barren Land		0.16	0.16	0.16				
Cultivated Crops		0.66	0.92	0.94				
Deciduous Forest	1	0.08	0.105	0.13	0.1	0.1	0.1	0.007130711
Developed, High Intensity		0.7	1.96	4.77				
Developed, Low Intensity	41	0.04	0.47	1.43	1.6	19.1	58.8	2.90219955
Developed, Medium Intensity	0	0.46	1.38	4.77	0.1	0.3	1.1	0.052328452
Developed, Open Space	17	0.03	0.04	0.16	0.5	0.7	2.8	0.136909659
Emergent Herbaceuous Wetlands		0.22	0.22	0.22				
Evergreen Forest		0.08	0.105	0.13				
Herbaceuous		0.5	0.5	0.5				
Mixed Forest	0	0.08	0.105	0.13	0.0	0.0	0.0	0.001426142
Open Water		0	0	0				
Hay/Pasture		0.5	0.5	0.5				
Shrub/Scrub		0.08	0.105	0.13				
Woody Wetlands		0.22	0.22	0.22				
	60				Total:	20.3	·	

No NPDES permits have any limits or allocations for Woodland Lake.

MS4 Areas from GIS

Segment	Subbasin Area (acres)	Municipal MS4 Area (acres)	Percent Subbasin as MS4 Area
Woodland	59.81	10.86	18%
Lake Total	59.81	10.86	18%

Lake Sedimentation Parameters

Calibration Run

<u>Zone 1</u>	STV	
Month	P (mg/m2/d)	N (mg/m2/d)
Jan	0	0
Feb	0	0
Mar	0	0
Apr	0	0
May	1.7	0
Jun	1.8	0
Jul	2.0	0
Aug	1.0	0
Sep	0	0
Oct	0	0
Nov	0	0
Dec	0	0

P load (lbs/day)	Days	P load (lbs/month)
0.00	31	0.0
0.00	28	0.0
0.00	31	0.0
0.00	30	0.0
0.12	31	3.6
0.12	30	3.7
0.14	31	4.3
0.07	31	2.1
0.00	30	0.0
0.00	31	0.0
0.00	30	0.0
0.00	31	0.0
Annual TP load	(lbs)	13.7

	Actua	al Load (lbs/y	/r)	Allowable Load (lbs/yr)									
			Point				Point						
Zone	Internal	Watershed	Sources	Internal		Watershed	Sources						
STV	13.7	20.3	0		6.9	7.	1	0.0					
Total	13.7	20.3	0		6.9	7.	1	0.0					
			1										

Pe	rcent Reduct	tion
		Point
Internal	Watershed	Sources
50%	65%	0%
50%	65%	0%

Segment	Loading Source	LC (lbs/day)	WLA (lbs/day)	LA (lbs/d ay)	MOS (10% ofLC)	Current Load (Ibs/day)	Reduction Needed (Percent)
	Internal	0.019	0.000	0.017	0.002	0.038	50%
STV	External	0.019	0.003	0.014	0.002	0.056	65%
	Total	0.038	0.003	0.031	0.004	0.093	59%

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mind	or Permit Type	Permit	Federal	Primary Pr	imary State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1 Q	uantity 2 Qua	antity Co	oncentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
			-		Indicator		Status	Grant Flag	SIC NA Code Co	AICS Body ode	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		Uni	ts 1	:	2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code	Limit Status	Code
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	01/31/2020	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.7	4	lb/d		.1	.2	mg/L	N	N	2/10/2020		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	07120006-	R 42.482222	-88.099167	12/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross		4.2	5.8	lb/d		.2	.4	mg/L	N	N	1/9/2020		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Permit	Continued		1050	CREEK-FOX RIVER-IL RIVE	۲	00.000107	11/00/0010	001.0	00005.4.0	total [as P]	5/10			- 10.0								10/0/00 10		510	
IL0020354	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.7	10.9	ID/d		.3	.5	mg/L	N	N	12/6/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		12.7	19.6	lb/d		.5	.7	mg/L	N	N	11/8/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVEI 07120006- SEQUOIT	R 42.482222	-88.099167	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8	16	lb/d		.4	.8	mg/L	N	N	10/4/2019		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEI 07120006-	R 42.482222	-88.099167	08/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross		16	24	lb/d		1	1.4	mg/L	N	N	9/10/2019		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEI	र					total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.8	12.7	lb/d		.3	1	mg/L	N	N	8/13/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.3	14.8	lb/d		.3	.5	mg/L	N	N	7/15/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVEI 07120006- SEQUOIT	R 42.482222	-88.099167	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.7	7.4	lb/d		.3	.4	mg/L	N	N	6/11/2019		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEI 07120006-	R 42.482222	-88.099167	04/30/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross		9.2	11.8	lb/d		.6	.7	mg/L	N	N	5/7/2019		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEI	२					total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8.3	14.5	lb/d		.5	.7	mg/L	N	N	4/8/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-EOX	42.482222	-88.099167	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		9	17	lb/d		.3	.5	mg/L	N	N	3/8/2019		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVEI 07120006- SEQUOIT	R 42.482222	-88.099167	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.7	6	lb/d		.3	.4	mg/L	N	N	2/11/2019		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEI 07120006-	R 42.482222	-88.099167	12/31/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross		4.3	11.4	lb/d		.2	.3	mg/L	N	N	1/8/2019		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF		-	Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEI	र					total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	4	lb/d		.2	.3	mg/L	N	N	12/12/2018	8	BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.3	7.8	lb/d		.1	.2	mg/L	N	N	11/7/2018		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH. IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVEI 07120006- SEQUOIT	R 42.482222	-88.099167	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		9.4	27	lb/d		.4	.7	mg/L	N	N	10/3/2018		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEI 07120006-	42.482222	-88.099167	08/31/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross		3	4	lb/d		.3	.4	mg/L	N	N	9/17/2018		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEI	र					total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	8	lb/d		.2	.3	mg/L	N	N	8/14/2018		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		11	19	lb/d		.6	1.4	mg/L	N	N	7/10/2018		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVEI 07120006- SEQUOIT	42.482222	-88.099167	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		16	19	lb/d		.8	1	mg/L	N	N	6/13/2018		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEI 07120006-	42.482222	-88.099167	04/30/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross		4.8	7.5	lb/d		.3	.5	mg/L	N	N	5/7/2018		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVE	٩					total [as P]															
IL0020354	AN HOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	AN HOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX RIVER-IL RIVE	42.482222	-88.099167	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.9	4.7	ID/d		.3	.3	mg/L	N	N	4/9/2018		BAS	ENF
	1	1					1		1		1	1	1	1	1		1	1						1	1					1	1

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mind	Permit Type	Permit	Federal	Primary Pri	mary State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	uantity 2 Q	uantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
			-		Indicator		Status	Grant Flag	SIC NA Code Co	ICS Body de	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		² U	nits	1 :	2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code	Limit Status	Code
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8.3	11.6	lb/d		.5	.9	mg/L	N	N	3/14/2018		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	07120006-	42.482222	-88.099167	01/31/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross		7.4	12.1	lb/d		.6	.9	mg/L	N	N	2/13/2018		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Permit	Continued		1050	CREEK-FOX RIVER-IL RIVEF		00.000107	10/01/0017	001.0	00005.4.0	total [as P]	5/10			10.5								1/5/00.10			515
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8	13.5	lb/d		.7	1.1	mg/L	N	N	1/5/2018		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		12.7	13.3	lb/d		.9	1.1	mg/L	N	N	12/14/2017		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH. IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		12.6	19.5	lb/d		.8	1.1	mg/L	N	N	11/9/2017		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEF 07120006-	42.482222	-88.099167	09/30/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross		10	13	lb/d		.9	1.1	mg/L	N	N	10/10/2017		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEF	1					total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		11.8	24.1	lb/d		1	1.5	mg/L	N	N	9/12/2017		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		17.5	63	lb/d		.8	1	mg/L	N	N	8/16/2017		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH. IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		11	16	lb/d		1	1.3	mg/L	N	N	7/17/2017		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEF 07120006-	42.482222	-88.099167	05/31/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross		13.6	19.4	lb/d		.7	1.1	mg/L	N	N	6/12/2017		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF		,	Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEF	1					total [as P]									5						
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		13.7	21.1	lb/d		.6	.7	mg/L	N	N	5/9/2017		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Pormit	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		15.5	24.8	lb/d		.9	1.1	mg/L	N	N	4/11/2017		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST ANTIOCH II 60002	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross		10	14	lb/d		.7	1	mg/L	N	N	3/8/2017		BAS	ENF
IL0020354	ANTIOCH	847 MAIN ST	ANTIOCH STP.	Lake	Maior	Permit	Admin	Y	4952	CREEK-FOX RIVER-IL RIVEF	42 482222	-88.099167	01/31/2017	001-0	00665-1-0	Phosphorus.	Effluent Gross		8	12.9	lb/d		.5	.7	ma/L	N	N	2/14/2017		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF			Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEF						total [as P]															
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		10.8	19.8	lb/d		.6	.7	mg/L	N	N	1/10/2017		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8.8	11	lb/d		.7	.8	mg/L	N	N	12/14/2016	i	BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	07120006-	42.482222	-88.099167	10/31/2016	001-0	00665-1-0	Phosphorus,	Effluent Gross		10.4	17.2	lb/d		.7	1	mg/L	N	N	11/16/2016	3	BAS	ENF
11.0020354		847 MAIN ST		Lake	Major	Permit	Admin	v	4952	CREEK-FOX RIVER-IL RIVER	42 482222	-88 000167	09/30/2016	001-0	00665.1.0	Phosphorus	Effluent Gross		11.2	11.5	lb/d		9	1	ma/l	N	N	10/14/2016		BAS	ENE
120020304	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Lake	Wajor	Individual Permit	Continued		4352	SEQUOIT CREEK-FOX RIVER-IL RIVER	42.402222	-00.033107	03/30/2010	001-0	00003-1-0	total [as P]	Lindent Gloss		11.2	11.0	10/0		.9		ing/L		N	10/14/2010		DAG	LINI
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		10.5	12.5	lb/d		1	1.2	mg/L	N	N	9/13/2016		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		12.3	21.9	lb/d		1	1.3	mg/L	N	N	8/10/2016		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	06/30/2016	001-0	00665-1-0	Phosphorus,	Effluent Gross		12.1	13.7	lb/d		1	1.1	mg/L	N	N	7/11/2016		BAS	ENF
11 0020354		847 MAIN ST		l ake	Major	Permit	Admin	v	4952	CREEK-FOX RIVER-IL RIVER	42 482222	-88 000167	05/31/2016	001-0	00665-1-0	Phosphorue	Effluent Gross		16.3	17.9	lb/d		1	11	ma/l	N	N	6/7/2016		BAS	ENF
.20020004	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Lanc		Individual Permit	Continued			SEQUOIT CREEK-FOX RIVER-IL RIVEF			00,0112010			total [as P]							·		gre			5,172010		5.00	
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		10	11.2	lb/d		.6	.8	mg/L	N	N	5/11/2016		BAS	ENF
						1				RIVER-IL RIVER	.	1																			

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary Prin SIC NA Code Cod	mary State Water ICS Body de	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Q	Quantity 2 Q U	Quantity Inits	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.2	8.8	lb/d		.8	1.1	mg/L	N	N	4/11/2016		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		7.1	7.9	lb/d		.9	1	mg/L	N	N	3/8/2016		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST ANTIOCH II 60002	ANTIOCH STP,	Lake	Major	NPDES	Admin	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	01/31/2016	001-0	00665-1-0	Phosphorus,	Effluent Gross		7.9	10	lb/d		.9	1.1	mg/L	N	N	2/12/2016		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit	Admin	Y	4952	CREEK-FOX RIVER-IL RIVER 07120006-	42.482222	-88.099167	12/31/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross		5.5	7.1	lb/d		.5	.7	mg/L	N	N	1/12/2016		BAS	ENF
11.0000054	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Laba	Malan	Individual Permit	Continued		1050	SEQUOIT CREEK-FOX RIVER-IL RIVER	40,400000	00 000407	44/00/0045	001.0	00005.4.0	total [as P]	Effluent One			40.0	11- (-1			10		N		40/44/0040	-	540	
IL0020354	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Lake	мајог	Individual Permit	Continued	Y	4952	SEQUOIT CREEK-FOX RIVER-IL RIVER	42.482222	-88.099167	11/30/2015	001-0	00665-1-0	total [as P]	Effluent Gross		0.0	10.3	D/d		.8	1.6	mg/L	N	N	12/14/2018		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX BWEP-II BWEP	42.482222	-88.099167	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	4.4	lb/d		.7	.7	mg/L	N	N	11/13/2015	5	BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.6	6.3	lb/d		.7	1	mg/L	N	N	10/14/2015	5	BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT CREEK-EOX	42.482222	-88.099167	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.7	6.7	lb/d		.7	1.1	mg/L	N	N	9/22/2015		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.5	11.1	lb/d		.7	1.2	mg/L	N	N	8/11/2015		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVER 07120006-	42.482222	-88.099167	06/30/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross		9.4	11.3	lb/d		.9	1.1	mg/L	N	N	7/9/2015		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit	Admin	Y	4952	CREEK-FOX RIVER-IL RIVER 07120006-	42.482222	-88.099167	05/31/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross		7.3	10.8	lb/d		.9	1.4	mg/L	N	N	6/17/2015		BAS	ENF
	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF		-	Individual Permit	Continued		1050	SEQUOIT CREEK-FOX RIVER-IL RIVER	40.400000	00.000/07	0.4/00/00.45	001.0	00005.4.0	total [as P]	577 10			- 10.0								5110/0015		540	
IL0020354	ANTIOCH, VILLAGE OF	ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX RIVER-IL RIVER	42.482222	-88.099167	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.3	10.2	lb/d		.7	1.5	mg/L	N	N	5/18/2015		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.2	5.7	lb/d		.6	.8	mg/L	N	N	4/9/2015		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX	42.482222	-88.099167	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5	7.8	lb/d		.7	1.1	mg/L	N	N	3/4/2015		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	RIVER-IL RIVER 07120006- SEQUOIT CREEK-EOX	42.482222	-88.099167	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.1	7.2	lb/d		.7	1.2	mg/L	N	N	2/18/2015		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES	Admin Continued	Y	4952	07120006- SEQUOIT	42.482222	-88.099167	10/31/2019	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment,		6.27	250.8	lb/d					N	N	11/8/2019		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit NPDES	Admin	Y	4952	CREEK-FOX RIVER-IL RIVER 07120006- SEQUOIT	42.482222	-88.099167	10/31/2018	001-0	00665-8-0	Phosphorus,	Process Complete Other Treatment		8	420	lb/d					N	N	11/7/2018		BAS	ENF
IL0020354	ANTIOCH,	847 MAIN ST	ANTIOCH STP,	Lake	Major	Permit	Admin	Y	4952	CREEK-FOX RIVER-IL RIVER 07120006-	42.482222	-88.099167	10/31/2017	001-0	00665-8-0	Phosphorus,	Process Complete Other		12.28	896.15	lb/d					N	N	11/9/2017		BAS	ENF
11.0020254	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Laka	Meior	Individual Permit	Continued	V	4052	SEQUOIT CREEK-FOX RIVER-IL RIVER	40,400000	89.000167	10/21/2016	001.0	00665.9.0	total [as P]	Treatment, Process Complete		0.63	625.4	lb/d					N	N	11/16/0010		DAC	
IL0020354	VILLAGE OF	ANTIOCH, IL 60002	VILLAGE OF	Lake	Major	Individual Permit	Continued	Y	4952	SEQUOIT CREEK-FOX RIVER-IL RIVER	42.482222	-88.099167	10/31/2016	001-0	00665-8-0	total [as P]	Treatment, Process Complete		9.63	635.4	D/d					N	N	11/16/2016		BAS	ENF
IL0020354	ANTIOCH, VILLAGE OF	847 MAIN ST ANTIOCH, IL 60002	ANTIOCH STP, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006- SEQUOIT CREEK-FOX BIVEB-II BIVEB	42.482222	-88.099167	10/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process Complete		6.03	440.4	lb/d					N	N	11/13/2015	5	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WR VILLAGE OF	F,	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		51		lb/d		.69		mg/L	N	N	1/23/2020		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WR VILLAGE OF	F,	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		57		lb/d		.72		mg/L	N	N	12/25/2019)	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WR	F,	Major	NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		63		lb/d		.64		mg/L	N	N	11/24/2019)	BAS	ENF
		PUA LARE, IL 60020	VILLAGE UF			Permit																									

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino	r Permit Type	Permit Status	Federal Grant	Primary P SIC N	rimary State Water AICS Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantity 2	Quantity Units	Concentration	Concentration	Concentration	Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Code	Change of Limit	Limit Type Code
							otatuo	Flag	Code C	ode	Degrees	Degrees	Date		Season ID		20001	unoui					-		Exists	Vio. Exists	Date		Status Code	
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	58	lb/d		.59		mg/L	N	N	10/24/2019)	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	43	lb/d		.69		mg/L	N	N	9/23/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	50	lb/d		.69		mg/L	N	N	8/13/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	06/30/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	54	lb/d		.71		mg/L	N	N	7/23/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	05/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	60	lb/d		.58		mg/L	N	N	6/20/2019		BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952	07120006-FOX	42.397333	-88.200194	04/30/2019	0 001-0	00665-1-0	Phosphorus,	Effluent Gross	s	58	lb/d		.7		mg/L	N	N	5/23/2019		BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit	Effective	Y	4952	07120006-FOX	42.397333	-88.200194	03/31/2019	0 001-0	00665-1-0	Phosphorus,	Effluent Gross	s	57	lb/d		.68		mg/L	N	N	4/11/2019		BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit	54		1050	RIVER	10.007000	00.000.00.0			00005.4.0	total [as P]	5/7 1.0					10					0/01/00/0			- FNF
IL0020958	FOX LAKE, VILLAGE OF	DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	RIVER	42.397333	-88.200194	02/28/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	48	D/d		.49		mg/L	N	N	3/21/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	50	lb/d		.68		mg/L	N	N	2/14/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	12/31/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	50	lb/d		.62		mg/L	N	N	1/25/2019		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	47	lb/d		.61		mg/L	N	N	12/23/2018	3	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	53	lb/d		.61		mg/L	N	N	11/25/2018	3	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE II 60020	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	50	lb/d		.6		mg/L	N	N	10/26/2018	3	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	08/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	45	lb/d		.71		mg/L	N	N	9/24/2018		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	07/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	44	lb/d		.73		mg/L	N	N	8/25/2018		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	FOX LAKE, IL 60020 200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF.	Lake	Major	Permit NPDES Individual	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	06/30/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	58	lb/d		.67		mg/L	N	N	7/24/2018		BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952	07120006-FOX	42.397333	-88.200194	05/31/2018	6 001-0	00665-1-0	Phosphorus,	Effluent Gross	s	55	lb/d		.65		mg/L	N	N	6/29/2018		BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952	07120006-FOX	42.397333	-88.200194	04/30/2018	6 001-0	00665-1-0	Phosphorus,	Effluent Gross	s	46	lb/d		.61		mg/L	N	N	5/25/2018		BAS	ENF
11 0020958		DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Effective	Y	4952	07120006-FOX	42 397333	-88 200194	03/31/2018	001-0	00665-1-0	total [as P]	Effluent Gross	\$	43	lb/d		67		ma/l	N	N	4/24/2018		BAS	FNF
120020000	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit	Encourte		1052	RIVER	10.007000	00.200101	00/00/2010		00005 1 0	total [as P]				10/0							0//0/2010		2,10	515
IL0020958	FOX LAKE, VILLAGE OF	DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lаке	Major	NPDES Individual Permit	Effective	Y	4952	RIVER	42.397333	-88.200194	02/28/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	39	D/d		.55		mg/L	N	N	3/18/2018		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	35	lb/d		.57		mg/L	N	N	2/19/2018		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	39	lb/d		.73		mg/L	N	N	1/25/2018		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	46	lb/d		.68		mg/L	N	N	12/25/2017	7	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary Prin SIC NAI Code Cod	ary State Water CS Body e	Latitude ir Decimal Degrees	Longitude in Decimal Degrees	n Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % C exced.	Quantity 1 Qu	uantity 2 Quantity Units	Concentration Concentration 1 2	Concentration	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Stay Type Received Code Date	Change of Limit Status	Limit Type Code
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI **E**	lb/d	NODI **E**		mg/L	N	Y	11/21/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	39	lb/d	.74		mg/L	N	N	10/19/2017	BAS	ENF
IL0020958	FOX LAKE,	200 INDUSTRIAL	FOX LAKE NW	Lake	Major	NPDES	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 08/31/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross	3	47	lb/d	.74		mg/L	N	N	9/25/2017	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	FOX LAKE NW	Lake	Major	Permit	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 07/31/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross	6	58	lb/d	.51		mg/L	N	N	8/23/2017	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit				RIVER						total [as P]												
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	46	lb/d	.73		mg/L	N	N	7/18/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	-88.200194	4 05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	55	lb/d	.69		mg/L	N	N	6/8/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	47	lb/d	.47		mg/L	N	N	5/18/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	29	lb/d	.34		mg/L	N	N	4/21/2017	BAS	ENF
IL0020958	FOX LAKE,	200 INDUSTRIAL	FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross	3	29	lb/d	.45		mg/L	N	N	3/29/2017	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	FOX LAKE NW	Lake	Major	Permit	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 01/31/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross	6	36	lb/d	.48		mg/L	N	N	2/9/2017	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF		Malar	Individual Permit	Effe alling		4050	RIVER	X 40.00700	00.00040	10/04/0010	001.0	00005.4.0	total [as P]	Effluent Orace		00					N		4/00/2017		ENIE
120020958	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Ellective	T	4952	RIVER	× 42.39733	-86.200194	4 12/31/2010	001-0	00005-1-0	total [as P]	Endent Gross	5	33	ID/d	.51		ing/L	N	IN	1/23/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	-88.200194	4 11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	29	lb/d	.46		mg/L	N	N	12/13/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	39	lb/d	.67		mg/L	N	N	11/23/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	26	lb/d	.48		mg/L	N	N	10/25/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	31	lb/d	.59		mg/L	N	N	9/14/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	39	lb/d	.72		mg/L	N	N	8/10/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	46	lb/d	.79		mg/L	N	N	7/19/2016	BAS	ENF
IL0020958	FOX LAKE,	200 INDUSTRIAL	FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 05/31/2016	001-0	00665-1-0	Phosphorus,	Effluent Gross	3	44	lb/d	.59		mg/L	N	N	6/27/2016	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	FOX LAKE NW	Lake	Major	Permit	Effective	Y	4952	07120006-FC	X 42.39733	3 -88.200194	4 04/30/2016	001-0	00665-1-0	Phosphorus,	Effluent Gross	3	49	lb/d	.64		mg/L	N	N	5/28/2016	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit				RIVER	V 40.00700					total [as P]	5/1 + 0									1/10/2010	210	ENE
IL0020958	FOX LAKE, VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	RIVER	X 42.39733	-88.200194	4 03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		52	ID/d	.63		mg/L	N	N	4/19/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	-88.200194	4 02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	44	lb/d	.55		mg/L	N	N	3/16/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	-88.200194	4 01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	8	39	lb/d	.56		mg/L	N	N	2/3/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952	07120006-FC RIVER	X 42.39733	3 -88.200194	4 12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	8	28	lb/d	.3		mg/L	N	N	1/25/2016	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino	Permit Type	Permit	Federal	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst % Qua	ntity 1 Quantity	y 2 Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Stay Type	Change of	Limit Type
					Indicator		Status	Grant Flag	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		Units	1 2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Code Date	Limit Status Code	Code
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	42	lb/d	.57		mg/L	N	N	12/23/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	38	lb/d	.72		mg/L	N	N	11/17/2015	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	09/30/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	41	lb/d	.65		mg/L	N	N	10/14/2015	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit					RIVER						total [as P]												
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	43	lb/d	.78		mg/L	N	N	9/17/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	45	lb/d	.67		mg/L	N	N	8/24/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	46	lb/d	.64		mg/L	N	N	7/13/2015	BAS	ENF
IL0020958	FOX LAKE,	200 INDUSTRIAL	FOX LAKE NW	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	05/31/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	56	lb/d	.8		mg/L	N	N	6/16/2015	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit	Admin	Y	4952		07120006-FOX	42.397333	-88.200194	04/30/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	51	lb/d	.68		mg/L	N	N	5/13/2015	PML	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF		,	Individual Permit	Continued				RIVER						total [as P]							5					
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	39	lb/d	.54		mg/L	N	N	4/13/2015	PML	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	32	lb/d	.57		mg/L	N	N	3/12/2015	PML	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Admin Continued	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	33	lb/d	.57		mg/L	N	N	2/17/2015	PML	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	12/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DDIC	lb/d	NODI C		mg/L	N	N	1/23/2020	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	11/30/2019	002-0	00665-1-0	Phosphorus,	Effluent Gross	s NC	DDIC	lb/d	NODI C		mg/L	N	N	12/25/2019	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit					RIVER						total [as P]												
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	10/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s NC	DDIC	lb/d	NODI C		mg/L	N	N	11/24/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	09/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	1	lb/d	.39		mg/L	N	N	10/24/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	08/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DDI C	lb/d	NODI C		mg/L	N	N	9/23/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	07/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DDI C	lb/d	NODI C		mg/L	N	N	8/13/2019	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	06/30/2019	002-0	00665-1-0	Phosphorus,	Effluent Gross	s NC		lb/d	NODI C		mg/L	N	N	7/23/2019	BAS	ENF
11.0020958		DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF		Major	Permit	Effective	v	4952		RIVER	12 307333	-88 200104	05/31/2010	002-0	00665-1-0	total [as P]	Effluent Gross	•	7	lb/d	66		mall	N	N	6/20/2019	BAS	
120020300	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF		inajoi	Individual Permit	Lifective		4352		RIVER	42.007 000	-00.200134	00/01/2018	002-0	00005-1-0	total [as P]	Linden Glos	•		15/4			iiig/L	N	N.	0/20/2019	DAG	
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	04/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DIC	lb/d	NODI C		mg/L	N	N	5/23/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC		lb/d	NODI C		mg/L	N	N	4/11/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	02/28/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC		lb/d	NODI C		mg/L	N	N	3/21/2019	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	01/31/2019	002-0	00665-1-0	Phosphorus,	Effluent Gross	s NC		lb/d	NODI C		mg/L	N	N	2/14/2019	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit					RIVER						total [as P]												

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % Qua exced.	ntity 1 G	Quantity 2 Quantity Units	Concentration Concentratio 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Stay Type Received Code Date	Change of Limit Status Code	Limit Type Code
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	12/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	1/25/2019	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	11/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	i NC	DI C	lb/d	NODI C		mg/L	N	N	12/23/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	10/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	11/25/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	09/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	5	lb/d	.41		mg/L	N	N	10/26/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	08/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	9/24/2018	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	07/31/2018	002-0	00665-1-0	Phosphorus,	Effluent Gross	5 NC		lb/d	NODI C		mg/L	N	N	8/25/2018	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	06/30/2018	002-0	00665-1-0	Phosphorus,	Effluent Gross	6	10	lb/d	.62		mg/L	N	N	7/24/2018	BAS	ENF
11.0020958		DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Effective	Y	4952		RIVER	42 397333	-88 200194	05/31/2018	002-0	00665-1-0	total [as P]	Effluent Gross		7	lb/d	71		ma/l	N	N	6/29/2018	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Luito		Individual Permit			4002		RIVER	42.007000	-00.200104	00/01/2010	002-0		total [as P]			,				ing/2			5/25/2010	5/10	
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	04/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC		lb/d	NODIC		mg/L	N	N	5/25/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	i NC	DI C	lb/d	NODI C		mg/L	N	N	4/24/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	02/28/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	i NC	O I D	lb/d	NODI C		mg/L	N	N	3/18/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	01/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	2/19/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	12/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	1/25/2018	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	11/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	DI C	lb/d	NODI C		mg/L	N	N	12/25/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	10/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		DI **E**	lb/d	NODI **E**		mg/L	N	Y	11/15/2017	BAS	ENF
IL0020958		FOX LAKE, IL 60020	VILLAGE OF FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	09/30/2017	002-0	00665-1-0	Phosphorus,	Effluent Gross	5 NC		lb/d	NODI C		mg/L	N	N	10/19/2017	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	08/31/2017	002-0	00665-1-0	Phosphorus,	Effluent Gross	5 NC	DI C	lb/d	NODI C		mg/L	N	N	9/25/2017	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF FOX LAKE NW	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	07/31/2017	002-0	00665-1-0	Phosphorus,	Effluent Gross		16	lb/d	.37		mg/L	N	N	8/23/2017	BAS	ENF
11.0020058	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Laka	Major	Individual Permit	Effective	X	4052		RIVER	40.007020	88 200404	06/20/2017	002.0	00005 1.0	total [as P]	Effluent Cross				NODIC			N	N	7/40/2017	BAC	
120020958	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Effective	Y	4952		RIVER	42.397333	-88.200194	06/30/2017	002-0	00665-1-0	total [as P]	Effluent Gross			D/d	NODIC		mg/L	N	N	//18/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	05/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s NC	ODI C	lb/d	NODIC		mg/L	N	N	6/8/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	04/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S NO	ODI C	lb/d	NODI C		mg/L	N	N	5/18/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	B NO	DI C	lb/d	NODI C		mg/L	N	N	4/21/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	02/28/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	NC	DI C	lb/d	NODI C		mg/L	N	N	3/29/2017	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2 Qua Unit	tity Concentration 5 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Stay Type Received Code Date	e Change of Limit Status Code	Limit Type Code
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	01/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	2/9/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	12/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		p/d	NODI C		mg/L	N	N	1/23/2017	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	11/30/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	NODI C		p/d	NODI C		mg/L	N	N	12/13/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	10/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	\$	NODI C		p/d	NODI C		mg/L	N	N	11/23/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	09/30/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	NODI C		p/d	NODI C		mg/L	N	N	10/25/2016	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF FOX LAKE NW	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	08/31/2016	002-0	00665-1-0	Phosphorus,	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	9/25/2016	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	07/31/2016	002-0	00665-1-0	Phosphorus,	Effluent Gross	5	NODI C		p/d	NODI C		mg/L	N	N	8/10/2016	BAS	ENF
11.0020958		DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Effective	Y	4952		RIVER	42 397333	-88 200194	06/30/2016	002-0	00665-1-0	total [as P]	Effluent Gross		NODLC		o/d	NODLC		ma/l	N	N	7/19/2016	BAS	ENF
	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Luito		Individual Permit			4002		RIVER	42.007000	-00.200104	00/00/2010	002-0		total [as P]								ing/L			1/10/2010	5/10	
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	05/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODIC		5/d	NODIC		mg/L	N	N	6/27/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	04/30/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	5/28/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	NODI C		b/d	NODI C		mg/L	N	N	4/19/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	02/29/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	3/16/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	01/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	2/3/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES Individual	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	12/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	1/25/2016	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE	FOX LAKE NW REGIONAL WRF,	Lake	Major	NPDES	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	11/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	12/23/2015	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020 200 INDUSTRIAL DRIVE	VILLAGE OF FOX LAKE NW REGIONAL WRE	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	10/31/2015	002-0	00665-1-0	Phosphorus,	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	11/17/2015	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	VILLAGE OF	Lake	Major	Permit NPDES	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	09/30/2015	002-0	00665-1-0	Phosphorus,	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	10/14/2015	BAS	ENF
IL0020958	FOX LAKE,	FOX LAKE, IL 60020	FOX LAKE NW	Lake	Major	Permit	Effective	Y	4952		07120006-FOX	42.397333	-88.200194	08/31/2015	002-0	00665-1-0	Phosphorus,	Effluent Gross	6	NODI C		b/d	NODI C		mg/L	N	N	9/17/2015	BAS	ENF
11.0020958	VILLAGE OF	DRIVE FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF	Lake	Major	Individual Permit	Effective	Y	4952		RIVER	42 397333	-88 200194	07/31/2015	002-0	00665-1-0	total [as P]	Effluent Gross		NODI **E**		b/d	NODI **E**		ma/l	N	Y	8/24/2015	BAS	ENF
	VILLAGE OF	FOX LAKE, IL 60020	REGIONAL WRF, VILLAGE OF			Individual Permit			1002		RIVER	10.007000	00.200101	00/00/2015	002.0		total [as P]								gr			7/10/00/15	5/10	ENT
IL0020958	FOX LAKE, VILLAGE OF	DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		RIVER	42.397333	-88.200194	06/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODIC		p/d	NODIC		mg/L	N	N	7/13/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Effective	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	05/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	6/16/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	04/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.11		b/d	.8		mg/L	N	N	5/13/2015	BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952		07120006-FOX RIVER	42.397333	-88.200194	03/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	NODI C		b/d	NODI C		mg/L	N	N	4/13/2015	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino	Permit Type	Permit	Federal	Primary	Primary State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1 Quantity 2	Quantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
					Indicator		Status	Flag	Code	Code	Decimal Degrees	Degrees	Period End Date		MLC - Season ID		Desc.	exced.		Units	1 2	2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code	Limit Status Code	Code
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	02/28/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	NODI C	lb/d		NODI C		mg/L	N	N	3/12/2015		BAS	ENF
IL0020958	FOX LAKE, VILLAGE OF	200 INDUSTRIAL DRIVE FOX LAKE, IL 60020	FOX LAKE NW REGIONAL WRF, VILLAGE OF	Lake	Major	NPDES Individual Permit	Admin Continued	Y	4952	07120006-FOX RIVER	42.397333	-88.200194	01/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	NODI C	lb/d		NODI C		mg/L	N	N	2/17/2015		BAS	ENF
IL0024716	NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	NORTH	Cook	Minor	NPDES	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					11	mg/L	N	N	1/22/2020		BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH	60010 616 W MAIN ST	ELEMENTARY SCHOOL STP NORTH	Cook	Minor	Permit NPDES	Effective	N	8211	TO FLINT CREE	42.211667	-88.136667	11/30/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	s					4.2	mg/L	N	N	12/25/2019		BAS	ENF
11.0024716	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP	Cook	Minor	Permit	Effective	N	8211	UNNAMED TRIB TO FLINT CREEP	42 211667	.88 136667	10/31/2010	001-0	00665.1.0	total [as P]	Effluent Gros	6					3.0	ma/l	N	N	11/25/2010		BAS	ENE
120024710	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP	COOK	WIND	Individual Permit	Encouve		0211	UNNAMED TRIB	(10/01/2010	001-0		total [as P]		5					0.0	iiig/2			11/20/2010		BNO	Litt
IL0024716	NORTH BARRINGTON ELEMENTARY SCHOOL	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY SCHOOL STP	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREEF	42.211667	-88.136667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s					2	mg/L	N	N	10/23/2019		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREE	42.211667	-88.136667	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					6	mg/L	N	N	9/25/2019		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREE	42.211667	-88.136667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					1	mg/L	N	N	8/20/2019		BAS	ENF
IL0024716	SCHOOL NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	SCHOOL STP NORTH BARRINGTON	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					1	mg/L	N	N	7/17/2019		BAS	ENF
IL0024716	SCHOOL NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	SCHOOL STP NORTH BARRINGTON	Cook	Minor	NPDES Individual	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.73	mg/L	N	N	6/3/2019		BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH BARRINGTON	60010 616 W MAIN ST BARRINGTON II	ELEMENTARY SCHOOL STP NORTH BARRINGTON	Cook	Minor	Permit NPDES	Effective	N	8211	07120006-	42.211667	-88.136667	04/30/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	s					1.3	mg/L	N	N	5/2/2019		BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH	60010 616 W MAIN ST	ELEMENTARY SCHOOL STP NORTH	Cook	Minor	Permit NPDES	Effective	N	8211	TO FLINT CREE	42.211667	-88.136667	03/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	s					.58	mg/L	N	N	4/4/2019		BAS	ENF
IL0024716	BARRINGTON ELEMENTARY SCHOOL NORTH	616 W MAIN ST	BARRINGTON ELEMENTARY SCHOOL STP NORTH	Cook	Minor	NPDES	Effective	N	8211	UNNAMED TRIB TO FLINT CREEP 07120006-	42.211667	-88.136667	02/28/2019	001-0	00665-1-0	Phosphorus.	Effluent Gross	s					1.3	ma/L	N	N	3/6/2019		BAS	ENF
	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP			Individual Permit				UNNAMED TRIB	(total [as P]														
ILU024716	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP	COOK	MINOF	Individual Permit	Effective	N	8211	UNNAMED TRIB	42.211667	-88.130007	01/31/2019	001-0	00665-1-0	total [as P]	Effluent Gross	s					.75	mg/∟	N	N	2/8/2019		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY SCHOOL	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY SCHOOL STP	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREEF	42.211667	-88.136667	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.53	mg/L	N	N	1/2/2019		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREE	42.211667	-88.136667	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.52	mg/L	N	N	12/6/2018		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREE	42.211667	-88.136667	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.4	mg/L	N	N	11/9/2018		BAS	ENF
IL0024716	NORTH BARRINGTON ELEMENTARY	616 W MAIN ST BARRINGTON, IL 60010	NORTH BARRINGTON ELEMENTARY	Cook	Minor	NPDES Individual Permit	Effective	N	8211	07120006- UNNAMED TRIB TO FLINT CREE	42.211667	-88.136667	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.68	mg/L	N	N	10/15/2018		BAS	ENF
IL0024716	SCHOOL NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	SCHOOL STP NORTH BARRINGTON	Cook	Minor	NPDES Individual	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					1.5	mg/L	N	N	9/13/2018		BAS	ENF
IL0024716	SCHOOL NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	SCHOOL STP NORTH BARRINGTON	Cook	Minor	NPDES	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.93	mg/L	N	N	8/8/2018		BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH BARRINGTON	60010 616 W MAIN ST BARRINGTON, IL	ELEMENTARY SCHOOL STP NORTH BARRINGTON	Cook	Minor	Permit NPDES Individual	Effective	N	8211	07120006- UNNAMED TRIB	42.211667	-88.136667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s					.15	mg/L	N	N	7/16/2018		BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH	60010 616 W MAIN ST	ELEMENTARY SCHOOL STP NORTH	Cook	Minor	Permit NPDES	Effective	N	8211	TO FLINT CREE	42.211667	-88.136667	05/31/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross	s					.29	mg/L	N	N	6/4/2018		BAS	ENF
IL0024716	BARKINGTON ELEMENTARY SCHOOL NORTH	616 W MAIN ST	BARKINGTON ELEMENTARY SCHOOL STP NORTH	Cook	Minor	Permit NPDES	Effective	N	8211	07120006-	42.211667	-88.136667	04/30/2018	001-0	00665-1-0	Phosphorus.	Effluent Gross	s					.39	mg/L	N	N	5/9/2018		BAS	ENF
	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP			Individual Permit				UNNAMED TRIB TO FLINT CREEP	<					total [as P]														

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Maior Mino	or Permit Type	Permit	Federal	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc. Wor	orst % Quar	tity 1 Quantity 2 Qua	ntity Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR Stav Tvp	e Change of	Limit Type
			,,	,	Indicator		Status	Grant Flag	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc. exce	ed.	Unit	s 1	2	3	Units	Vio. Exists	Receipt Vio.	Received Code Date	Limit Status	Code
IL0024716	NORTH BARRINGTON	616 W MAIN ST BARRINGTON, IL	NORTH BARRINGTON	Cook	Minor	NPDES Individual	Effective	N	8211		07120006- UNNAMED TRIB	42.211667	-88.136667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.039	mg/L	N	Exists N	4/13/2018	Code BAS	ENF
IL0024716	ELEMENTARY SCHOOL NORTH	60010 616 W MAIN ST	ELEMENTARY SCHOOL STP NORTH	Cook	Minor	Permit NPDES	Effective	N	8211	-	TO FLINT CREEK 07120006-	42.211667	-88.136667	02/28/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross					.039	mg/L	N	N	3/15/2018	BAS	ENF
	BARRINGTON ELEMENTARY SCHOOL	BARRINGTON, IL 60010	BARRINGTON ELEMENTARY SCHOOL STP			Individual Permit				-	UNNAMED TRIB TO FLINT CREEK						total [as P]												
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	14	lb/d	.58		mg/L	N	N	1/29/2020	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2	41	lb/d	.4		mg/L	N	N	1/2/2020	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	4	25	lb/d	.61		mg/L	N	N	11/25/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	73	lb/d	.56		mg/L	N	N	11/1/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	:	.7	lb/d	.99		mg/L	N	N	9/23/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	43	lb/d	.74		mg/L	N	N	9/3/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	57	lb/d	.65		mg/L	N	N	7/30/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	21	lb/d	.71		mg/L	N	N	7/3/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	39	lb/d	.74		mg/L	N	N	5/21/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	:	.1	lb/d	.6		mg/L	N	N	4/29/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	19	lb/d	.8		mg/L	N	N	3/25/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2	95	lb/d	.95		mg/L	N	N	3/5/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2	74	lb/d	.96		mg/L	N	N	1/24/2019	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF 1	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2	43	lb/d	.8		mg/L	N	N	12/19/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1	26	lb/d	.39		mg/L	N	N	11/29/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		42	lb/d	.17		mg/L	N	N	10/8/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP VILLAGE OF	, McHenr	y Minor	NPDES Individual Permit	Effective	Y	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		7	lb/d	.33		mg/L	N	N	9/6/2018	BAS	ENF

NPDES ID	Permit Name	Permittee Address Facility Name	County	Major Min	or Permit Type	Permit	Federal	Primary Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst % Quantity	1 Quantity 2 Qu	antity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Sta	ay Type 🛛	hange of	Limit Type
				Indicator		Status	Grant Flag	SIC NAICS Code Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.	Un	iits	1 2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Co Date	ode L S	imit status	Code
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.64		lb/d	.3		mg/L	N	N	8/2/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.56		lb/d	.56		mg/L	N	N	7/5/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.36		lb/d	.62		mg/L	N	N	6/5/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5 1.5		lb/d	.66		mg/L	N	N	5/1/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.53		lb/d	.7		mg/L	N	N	4/6/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.65		lb/d	.27		mg/L	N	N	3/7/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.43		lb/d	.25		mg/L	N	N	2/21/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.78		lb/d	.46		mg/L	N	N	1/17/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5 1.05		lb/d	.39		mg/L	N	N	12/18/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.12		lb/d	.89		mg/L	N	N	11/21/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5 1.17		lb/d	.54		mg/L	N	N	10/6/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.57		lb/d	.7		mg/L	N	N	9/19/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.04		lb/d	.42		mg/L	N	N	8/2/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	. 1.7		lb/d	.5		mg/L	N	N	7/17/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.91		lb/d	.21		mg/L	N	N	6/22/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.03		lb/d	.46		mg/L	N	N	5/9/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.8		lb/d	.72		mg/L	N	N	4/25/2017		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER RICHMOND STP, DRIVE VILLAGE OF RICHMOND, IL 60071	McHen	ry Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.99		lb/d	.56		mg/L	N	N	3/6/2017		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Federal Grant	Primary Primary SIC NAICS	y State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % Quantity 1 exced.	Quantity 2 Quantity Units	Concentration Concentration	Concentration	Concentration Units	Effluent Vio.	Non- Receipt	DMR Stay Type Received Code	e Change of Limit	Limit Type Code
								Flag	Code Code		Degrees	Degrees	Date		Season ID								Exists	Vio. Exists	Date	Status Code	
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.33	lb/d	.69		mg/L	N	N	2/24/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF 1	McHenry	/ Minor	NPDES Individual Permit	Effective	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.15	lb/d	.63		mg/L	N	N	1/4/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.73	lb/d	.83		mg/L	N	N	12/20/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.12	lb/d	.67		mg/L	N	N	11/9/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.82	lb/d	.5		mg/L	N	N	10/10/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.26	lb/d	.73		mg/L	N	N	9/13/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.1	lb/d	.56		mg/L	N	N	8/22/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.55	lb/d	.59		mg/L	N	N	7/12/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.08	lb/d	.62		mg/L	N	N	6/21/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.58	lb/d	.39		mg/L	N	N	5/6/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.12	lb/d	.62		mg/L	N	N	4/18/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.45	lb/d	.82		mg/L	N	N	3/14/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.36	lb/d	.75		mg/L	N	N	2/8/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2.11	lb/d	.58		mg/L	N	N	1/6/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.79	lb/d	.75		mg/L	N	N	12/8/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.36	lb/d	.79		mg/L	N	N	11/25/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.64	lb/d	.74		mg/L	N	N	10/1/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	/ Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.67	lb/d	.97		mg/L	N	N	9/16/2015	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Min	or Permit Type	Permit Status	Federal	Primary Primary	State Water Body	Latitude in Decimal	Longitude in	Mon. Period End	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst % Quantity 1	Quantity 2 Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non- Receint	DMR Stay Type	Change of	Limit Type
					indicator		outus	Flag	Code Code	Dody	Degrees	Degrees	Date		Season ID		5050.		onto	-	0	onits	Exists	Vio. Exists	Date	Status Code	ooue
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.97	lb/d	.83		mg/L	N	N	8/20/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF 1	McHenr	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.3	lb/d	.54		mg/L	N	N	7/7/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF 1	McHenr	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.31	lb/d	.68		mg/L	N	N	6/9/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1.49	lb/d	.67		mg/L	N	N	5/11/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.96	lb/d	.49		mg/L	N	N	4/17/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.96	lb/d	.7		mg/L	N	N	3/24/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	5600 HUNTER DRIVE RICHMOND, IL 6007	RICHMOND STP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Admin Continued	Y	4952	07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.75	lb/d	.54		mg/L	N	N	2/24/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2020	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.4	lb/d			mg/L	N	N	2/6/2020	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.7	lb/d	.6		mg/L	N	N	1/2/2020	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.5	lb/d	.4		mg/L	N	N	12/2/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.7	lb/d	.3		mg/L	N	N	11/4/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.3	lb/d	.3		mg/L	N	N	10/2/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.1	lb/d	.2		mg/L	N	N	9/3/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.3	lb/d	.2		mg/L	N	N	8/6/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.2	lb/d	.2		mg/L	N	N	7/2/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.1	lb/d	.1		mg/L	N	N	6/4/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.2	lb/d	2		mg/L	N	N	5/2/2019	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenry	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	.1	lb/d	2		mg/L	N	N	4/3/2019	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Min	or Permit Type	Permit	Federal	Primary Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity 2	Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
					Indicator		Status	Grant Flag	SIC NAICS Code Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		1	Units	1 2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code	Limit Status Code	Code
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.3		lb/d	.5		mg/L	N	N	3/5/2019		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.2		lb/d	.2		mg/L	N	N	2/5/2019		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.1		mg/L	N	N	1/7/2019		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.1		lb/d	.1		mg/L	N	N	12/3/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.1		lb/d	.1		mg/L	N	N	11/2/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.1		lb/d	.1		mg/L	N	N	10/9/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.3		lb/d	.4		mg/L	N	N	9/4/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.3		lb/d	.3		mg/L	N	N	8/14/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.4		lb/d	.5		mg/L	N	N	7/3/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.4		lb/d	.5		mg/L	N	N	6/7/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.3		mg/L	N	N	5/4/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.3		mg/L	N	N	4/4/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.4		mg/L	N	N	3/6/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.3		mg/L	N	N	2/21/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.3		mg/L	N	N	1/23/2018		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.1		lb/d	.12		mg/L	N	N	12/20/2017		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.2		lb/d	.4		mg/L	N	N	11/17/2017		BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.5		lb/d	.8		mg/L	N	N	10/13/2017		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Min	or Permit Type	Permit	Federal	Primary Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity 2	Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Stay Typ	be Change of	Limit Type
					Indicator		Status	Grant Flag	SIC NAICS Code Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		L	Jnits	1 2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Code Date	Limit Status Code	Code
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.5		lb/d	.6		mg/L	N	N	9/19/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.6		lb/d	.6		mg/L	N	N	8/15/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.5		lb/d	.7		mg/L	N	N	7/19/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.5		lb/d	.6		mg/L	N	N	6/2/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.5		lb/d	.6		mg/L	N	N	5/15/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.6		lb/d	.7		mg/L	N	N	4/20/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.3		lb/d	.5		mg/L	N	N	3/16/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.4		lb/d	.6		mg/L	N	N	2/16/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.5		lb/d	.8		mg/L	N	N	1/19/2017	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.4		lb/d	.5		mg/L	N	N	12/22/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.3		lb/d	.5		mg/L	N	N	11/16/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.4		lb/d	.6		mg/L	N	N	10/14/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.6		lb/d	.8		mg/L	N	N	9/8/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.4		lb/d	.7		mg/L	N	N	8/17/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.5		lb/d	.8		mg/L	N	N	7/19/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.5		lb/d	.7		mg/L	N	N	6/22/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	.5		lb/d	.8		mg/L	N	N	5/25/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.7		lb/d	.7		mg/L	N	N	4/19/2016	BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mind	Permit Type	Permit	Federal	Primary Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst % Quan	ity 1 Quantit	y 2 Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Stay Ty	pe Change of	Limit Type
			-		Indicator		Status	Grant Flag	SIC NAICS Code Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		Units	1 2	3	Units	Vio. Exists	Receipt Vio.	Received Code Date	Limit Status	Code
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5	lb/d	.7		mg/L	N	N	3/15/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.7		mg/L	N	N	2/11/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.7		mg/L	N	N	1/20/2016	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5	lb/d	.8		mg/L	N	N	12/8/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	lb/d	.6		mg/L	N	N	11/23/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.7		mg/L	N	N	10/22/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.7		mg/L	N	N	9/4/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.6		mg/L	N	N	8/14/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.6		mg/L	N	N	7/22/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5	lb/d	.7		mg/L	N	N	6/19/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.6		mg/L	N	N	5/22/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.7		mg/L	N	N	4/22/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4	lb/d	.6		mg/L	N	N	3/19/2015	BAS	ENF
IL0026433	HEBRON, VILLAGE OF	PO BOX 372 HEBRON, IL 60034	HEBRON WWTP, VILLAGE OF	McHenr	/ Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNMD TRIB-N BRNCH OF NIPPERSINK CK	42.471667	-88.433333	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		9	lb/d	.6		mg/L	N	N	2/18/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - NORTH STP, CITY OF	, McHenr	/ Major	NPDES Individual Permit	Admin Continued	N	4952	07120006- SILVER CREEK	42.3375	-88.448889	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	9.	78 29.46	6 lb/d	.52	.86	mg/L	N	N	1/13/2020	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098 121 WEST	WOODSTOCK - NORTH STP, CITY OF WOODSTOCK -	McHenr	/ Major	NPDES Individual Permit NPDES	Admin Continued	N	4952	07120006- SILVER CREEK	42.3375	-88.448889	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	7.	07 15.3 31 29.54	7 Ib/d	.33	.48	mg/L	N	N	12/18/2019	BAS	ENF
IL0031861	WOODSTOCK,	CALHOUN ST WOODSTOCK, IL 60098 121 WEST	NORTH STP, CITY OF WOODSTOCK -	McHenr	/ Major	Individual Permit NPDES	Continued	N	4952	07120006-	42.3375	-88.448889	09/30/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	9.	53 43.20	6 lb/d	.36	.58	mg/L	N	N	10/15/2019	BAS	ENF
IL0031861	CITY OF	CALHOUN ST WOODSTOCK, IL 60098 121 WEST	NORTH STP, CITY OF WOODSTOCK -	McHenr	/ Major	Individual Permit NPDES	Admin	N	4952	07120006-	42.3375	-88.448889	08/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	5.	91 15.78	3 Ib/d	.42	.6	mg/L	N	N	9/17/2019	BAS	ENF
		WOODSTOCK, IL 60098	OF			Permit	Conunuea			SILVER UREEK																		

NPDES ID	Permit Name	Permittee Address	Facility Name Co	unty Major Mino	Permit Type	Permit	Federal	Primary P	rimary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1 Quantity 2 Qu		Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Stay Type	tay Type Change of L		
				Indicator		Status	Grant Flag	SIC N. Code C	AICS	Body	Decimal Degrees	Decimal Degrees	Period End Date	MLC - Season I			Desc.	exced.		Units		1 2	3	Units	Vio. Exists	Receipt Vio.	Received Code Date	Limit Status	Code	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	6.94	19.72	lb/d	.42	.6	mg/L	N	N	8/14/2019	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - Mc NORTH STP, CITY	Henry Major	NPDES	Admin Continued	N	4952	0	07120006- SILVER CREEK	42.3375	-88.448889	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	7.33	15.24	lb/d	.35	.5	mg/L	N	N	7/15/2019	BAS	ENF	
IL0031861	WOODSTOCK,	WOODSTOCK, IL 60098 121 WEST	OF WOODSTOCK - Mc	Henry Major	Permit NPDES	Admin	N	4952		07120006-	42.3375	-88.448889	05/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	5	9.88	26.61	lb/d	.32	.53	mg/L	N	N	6/11/2019	BAS	ENF	
	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF		Individual Permit	Continued			:	SILVER CREEK						total [as P]														
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	:	07120006- SILVER CREEK	42.3375	-88.448889	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	5	13.16	36.1	lb/d	.59	.8	mg/L	N	N	5/22/2019	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	13.62	57.25	lb/d	.59	1.1	mg/L	N	N	4/19/2019	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - MC NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	3	17.07	64.14	lb/d	.69	1.41	mg/L	N	N	3/18/2019	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK II	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	1	07120006- SILVER CREEK	42.3375	-88.448889	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	11.86	33.31	lb/d	.63	1.04	mg/L	N	N	2/19/2019	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - Mc NORTH STP, CITY	Henry Major	NPDES Individual	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	12/31/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	11.72	54.5	lb/d	.54	1.06	mg/L	N	N	1/2/2019	BAS	ENF	
IL0031861	WOODSTOCK,	60098 121 WEST	WOODSTOCK - Mc	Henry Major	NPDES	Admin	N	4952		07120006-	42.3375	-88.448889	11/30/2018	6 001-0	00665-1-0	Phosphorus,	Effluent Gross	5	14.02	40.49	lb/d	.77	1.51	mg/L	N	N	12/7/2018	BAS	ENF	
II 0031861	WOODSTOCK	WOODSTOCK, IL 60098	OF	Henry Major	Permit	Admin	N	4952		07120006-	42 3375	-88 448889	10/31/2018	001-0	00665-1-0	Phosphorus	Effluent Gross	2	12 17	54.88	lb/d	45	69	ma/l	N	N	11/19/2018	BAS	ENE	
	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF		Individual Permit	Continued		4002		SILVER CREEK	42.0010		10/01/2010			total [as P]			12.17	04.00	ib/d			ing/2			11/10/2010	5/10		
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	:	07120006- SILVER CREEK	42.3375	-88.448889	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	5	8.78	60.2	lb/d	.33	.5	mg/L	N	N	10/22/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	5.04	11.97	lb/d	.37	.45	mg/L	N	N	9/12/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	9.47	22.46	lb/d	.58	.82	mg/L	N	N	8/22/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	25.97	120.55	lb/d	.81	1.57	mg/L	N	N	7/20/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	10.92	49.32	lb/d	.48	1.04	mg/L	N	N	6/15/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	7.35	22.15	lb/d	.36	.51	mg/L	N	N	5/21/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	5.91	16.94	lb/d	.31	.49	mg/L	N	N	4/19/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	02/28/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	6.91	72.25	lb/d	.35	1.16	mg/L	N	N	3/13/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	01/31/2018	6 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	6.03	24.43	lb/d	.42	.96	mg/L	N	N	2/14/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	6.51	14.81	lb/d	.49	.96	mg/L	N	N	1/22/2018	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK II	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952		07120006- SILVER CREEK	42.3375	-88.448889	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	7.44	15.36	lb/d	.36	.55	mg/L	N	N	12/18/2017	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK	WOODSTOCK - Mc NORTH STP, CITY OF	Henry Major	NPDES Individual Permit	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	13.31	30	lb/d	.54	.68	mg/L	N	N	11/16/2017	BAS	ENF	
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - Mc NORTH STP, CITY	Henry Major	NPDES Individual	Admin Continued	N	4952	(07120006- SILVER CREEK	42.3375	-88.448889	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	17.8	33.3	lb/d	.85	1.36	mg/L	N	N	10/16/2017	BAS	ENF	
		60098			Permit																									
	Dermit Name	Dermittee Address	Facility Name	Country	Malar Mina		Downit	Federal	Duimenu	Duine and Chote M	Veter	L otitudo in	L on giérrel o in	Man	Linelt Cat	Denem Cd	Devenueter	Man Las	March 9/	Ouromálita d	Ouromática 2	Quantitu	Concentration Concentration	Concentration	Concentration	Effluent	Nen	DMD Stav Turne	Channe of	Lineit Tures
-----------	-----------------------	--	--------------------------------------	----------	-------------------------	-------------------------------	--------------------	--------------------------	------------------------	--------------------	----------------	-----------------------------------	--------------------	----------------------------	------------	--------------------	-----------------------------	--------------------	-------------------	--------------	--------------	-------------------	-------------------------------	---------------	---------------	----------------------------	-------------------------	--	------------------------------	--------------
NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	or Permit Type	Status	Federal Grant Flag	Primary SIC Code	NAICS Body Code	vater	Latitude in Decimal Degrees	Decimal Degrees	Mon. Period End Date	Limit Set	MLC - Season ID	Parameter	Mon. Loc. Desc.	worst % exced.	Quantity 1	Quantity 2	Quantity Units	1 Concentration Concentration	3	Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Stay Type Received Code Date	Change of Limit Status	Code
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	13.07	28.52	lb/d	.52	.98	mg/L	N	N	9/15/2017	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP. CITY	McHenry	/ Major	NPDES	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	21.95	83.21	lb/d	.49	.77	mg/L	N	N	8/16/2017	BAS	ENF
IL0031861	WOODSTOCK,	WOODSTOCK, IL 60098 121 WEST	OF WOODSTOCK -	McHenry	/ Major	Permit NPDES	Admin	N	4952	071200	06-	42.3375	-88.448889	06/30/2017	001-0	00665-1-0	Phosphorus,	Effluent Gros	s	17.97	48.4	lb/d	.63	.8	mg/L	N	N	7/21/2017	BAS	ENF
	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF			Individual Permit	Continued			SILVEF	RCREEK						total [as P]													
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	15.21	39.27	lb/d	.44	.53	mg/L	N	N	6/15/2017	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	15.02	45.13	lb/d	.38	.57	mg/L	N	N	5/10/2017	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	7.05	64.05	lb/d	.32	.7	mg/L	N	N	4/19/2017	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	NPDES Individual	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.19	41.02	lb/d	.4	1.17	mg/L	N	N	3/20/2017	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	NPDES	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.14	63.88	lb/d	.31	.68	mg/L	N	N	2/16/2017	BAS	ENF
IL0031861	WOODSTOCK,	WOODSTOCK, IL 60098 121 WEST	WOODSTOCK -	McHenry	/ Major	NPDES	Admin	N	4952	071200	06-	42.3375	-88.448889	12/31/2016	001-0	00665-1-0	Phosphorus,	Effluent Gros	s	8.23	22.93	lb/d	.55	.92	mg/L	N	N	1/9/2017	BAS	ENF
		CALHOUN ST WOODSTOCK, IL 60098	OF	Mallana	. Malan	Permit	Continued	N	4050	SILVER	R CREEK	40.0075	00.440000	44/20/2042	001.0	00005.4.0	total [as P]	Effluent Orea		40.00	00.00	II. (d	74			N		40/00/0040		ENIE
ILUU31861	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF	wichenry	/ iviajor	Individual Permit	Continued	N	4952	SILVEF	CREEK	42.3375	-88.448889	11/30/2016	001-0	00665-1-0	total [as P]	Emuent Gros	s	10.02	22.33	D/d	./1	.99	mg/L	N	N	12/20/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.7	15.49	lb/d	.55	.76	mg/L	N	N	11/18/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	8.19	21.31	lb/d	.67	1.36	mg/L	N	N	10/19/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	7.46	18.76	lb/d	.58	1.24	mg/L	N	N	9/14/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.59	13.18	lb/d	.48	.53	mg/L	N	N	8/22/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	NPDES Individual	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.54	16.87	lb/d	.45	.8	mg/L	N	N	7/18/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	NPDES	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	8.81	19.76	lb/d	.49	.7	mg/L	N	N	6/20/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	WOODSTOCK, IL 60098 121 WEST CALHOUN ST	OF WOODSTOCK - NORTH STP, CITY	McHenry	/ Major	Permit NPDES Individual	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	7.56	28.96	lb/d	.35	.61	mg/L	N	N	5/17/2016	BAS	ENF
IL0031861	WOODSTOCK,	WOODSTOCK, IL 60098 121 WEST	OF WOODSTOCK -	McHenry	/ Major	Permit NPDES	Admin	N	4952	071200	06-	42.3375	-88.448889	03/31/2016	001-0	00665-1-0	Phosphorus,	Effluent Gros	s	8.69	21.06	lb/d	.41	.58	mg/L	N	N	4/15/2016	BAS	ENF
	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF			Individual Permit	Continued			SILVEF	R CREEK						total [as P]													
IL0031861	CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	11.8	44.73	lb/d	.65	1.33	mg/L	N	N	3/14/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL 60098	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	8.2	17.36	lb/d	.43	.69	mg/L	N	N	2/15/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	11.25	25.91	lb/d	.43	.55	mg/L	N	N	1/11/2016	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	7.39	37.81	lb/d	.37	.54	mg/L	N	N	12/16/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry	/ Major	NPDES Individual Permit	Admin Continued	N	4952	071200 SILVEF	06- R CREEK	42.3375	-88.448889	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gros	s	6.49	10.4	lb/d	.51	.67	mg/L	N	N	11/17/2015	BAS	ENF
		60098																												

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Maior Mino	r Permit Type	Permit	Federal	Primary	Primary State	Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity 2	Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR Stav Type	Change of	Limit Type
					Indicator		Status	Grant Flag	SIC Code	NAICS Body Code		Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.			Units	1 2	3	Units	Vio. Exists	Receipt Vio.	Received Code Date	Limit Status	Code
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry Y	y Major	NPDES Individual Permit	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	5.65	17.49	lb/d	.38	.58	mg/L	N	N	10/15/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry Y	y Major	NPDES Individual	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	7.56	13.2	lb/d	.56	.73	mg/L	N	N	9/25/2015	BAS	ENF
IL0031861	WOODSTOCK,	121 WEST	UF WOODSTOCK -	McHenry	y Major	Permit NPDES	Admin	N	4952	07120	006- B.CREEK	42.3375	-88.448889	07/31/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	19.26	73.37	lb/d	.92	1.29	mg/L	N	N	8/24/2015	BAS	ENF
IL0031861	WOODSTOCK	WOODSTOCK, IL 60098	OF WOODSTOCK -	McHenry	v Maior	Permit	Admin	N	4952	07120	006-	42,3375	-88.448889	06/30/2015	001-0	00665-1-0	Phosphorus.	Effluent Gross	s	13.75	40.02	lb/d		1.17	mg/L	N	N	7/20/2015	BAS	ENF
120001001	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY OF	Y	y major	Individual Permit	Continued		1002	SILVE	R CREEK	12.0070		00,00,2010			total [as P]				10.02	10/4							5,10	2.11
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry Y	y Major	NPDES Individual Permit	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	7.36	24.28	lb/d	.43	.64	mg/L	N	N	6/17/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	121 WEST CALHOUN ST WOODSTOCK, IL	WOODSTOCK - NORTH STP, CITY OF	McHenry Y	y Major	NPDES Individual Permit	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	7.4	33.82	lb/d	.33	.46	mg/L	N	N	5/14/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST WOODSTOCK II	WOODSTOCK - NORTH STP, CITY	McHenry Y	y Major	NPDES Individual Permit	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	3.35	6.77	lb/d	.21	.32	mg/L	N	N	4/15/2015	BAS	ENF
IL0031861	WOODSTOCK, CITY OF	60098 121 WEST CALHOUN ST	WOODSTOCK - NORTH STP, CITY	McHenry Y	y Major	NPDES	Admin Continued	N	4952	07120 SILVE	006- R CREEK	42.3375	-88.448889	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	3.01	7.67	lb/d	.24	.5	mg/L	N	N	3/10/2015	BAS	ENF
IL0031861	WOODSTOCK,	WOODSTOCK, IL 60098 121 WEST	OF WOODSTOCK -	McHenry	y Major	Permit NPDES	Admin	N	4952	07120	006-	42.3375	-88.448889	01/31/2015	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	8.03	34	lb/d	.41	.79	mg/L	N	N	2/9/2015	BAS	ENF
	CITY OF	CALHOUN ST WOODSTOCK, IL 60098	NORTH STP, CITY	Y		Individual Permit	Continued		1050	SILVE	R CREEK	10,100,000	00.405	0.1/0.1/0.000		00005.4.0	total [as P]	5/10										0/0/0000	540	
IL0045144	VILLAGE OF	FOX LAKE, IL 60020	OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	UNNA TO DL	MED TRIB JNNS LAKE	42.423333	-88.195	01/31/2020	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.44	.58	D/d	.4	.49	mg/L	N	N	2/6/2020	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120 UNNA TO DL	006- MED TRIB JNNS LAKE	42.423333	-88.195	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	.46	.58	lb/d	.4	.45	mg/L	N	N	1/7/2020	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120 UNNA TO DL	006- MED TRIB JNNS LAKE	42.423333	-88.195	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.49	.61	lb/d	.41	.48	mg/L	N	N	12/5/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP,	Lake	Minor	NPDES Individual	Effective	N	4952	07120 UNNA	006- MED TRIB	42.423333	-88.195	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.6	.81	lb/d	.49	.58	mg/L	N	N	11/7/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DE FOX LAKE, IL 60020	R FOX LAKE-TALL O OAKS STP,	Lake	Minor	NPDES Individual	Effective	N	4952	07120 UNNA	006- MED TRIB	42.423333	-88.195	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.84	.99	lb/d	.67	.74	mg/L	N	N	10/8/2019	BAS	ENF
IL0045144	FOX LAKE,	100 INDUSTRIAL DF	VILLAGE OF	Lake	Minor	Permit NPDES	Effective	N	4952	TO DU 07120	JNNS LAKE	42.423333	-88.195	08/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	.53	.74	lb/d	.49	.65	mg/L	N	N	9/7/2019	BAS	ENF
11 0045144		FOX LAKE, IL 60020	VILLAGE OF	Lake	Minor	Permit	Effective	N	4952	UNNA TO DU	MED TRIB	42 423333	-88 195	07/31/2019	001-0	00665-1-0	Phosphorus	Effluent Gross	•	18	31	lb/d	16	25	ma/l	N	N	8/14/2019	BAS	ENE
120043144	VILLAGE OF	FOX LAKE, IL 60020	OAKS STP, VILLAGE OF	Lake	WIND	Individual Permit	Liective		4302	UNNA TO DL	MED TRIB JNNS LAKE	42.420000	-00.135	01/31/2013	001-0	00003-1-0	total [as P]	Endent Gross	2	.10	.01	15/4		.20	ing/L			0/14/2013	DAG	LNI
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120 UNNA TO DL	006- MED TRIB JNNS LAKE	42.423333	-88.195	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	S	.57	1.04	lb/d	.46	.57	mg/L	N	N	7/9/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120 UNNA TO DL	006- MED TRIB JNNS LAKE	42.423333	-88.195	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.45	.65	lb/d	.34	.4	mg/L	N	N	6/14/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120 UNNA TO DU	006- MED TRIB JNNS LAKE	42.423333	-88.195	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	.33	.46	lb/d	.27	.34	mg/L	N	N	5/10/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP,	Lake	Minor	NPDES Individual	Effective	N	4952	07120 UNNA	006- MED TRIB	42.423333	-88.195	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	s	.4	.56	lb/d	.34	.48	mg/L	N	N	4/13/2019	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DF FOX LAKE, IL 60020	R FOX LAKE-TALL OAKS STP,	Lake	Minor	NPDES Individual	Effective	N	4952	07120 UNNA	006- MED TRIB	42.423333	-88.195	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.38	.46	lb/d	.31	.43	mg/L	N	N	3/13/2019	BAS	ENF
IL0045144	FOX LAKE,	100 INDUSTRIAL DE	VILLAGE OF	Lake	Minor	Permit NPDES	Effective	N	4952	TO DL	JNNS LAKE	42.423333	-88.195	01/31/2019	001-0	00665-1-0	Phosphorus,	Effluent Gross	s	.4	.56	lb/d	.36	.51	mg/L	N	N	2/5/2019	BAS	ENF
IL0045144	FOX LAKE.	100 INDUSTRIAL DF	VILLAGE OF	Lake	Minor	Permit	Effective	N	4952	TO DL	JNNS LAKE	42.423333	-88.195	12/31/2018	001-0	00665-1-0	Phosphorus	Effluent Gross	s	.44	.92	lb/d	.36	.55	mg/L	N	N	1/4/2019	BAS	ENF
	VILLAGE OF	FOX LAKE, IL 60020	OAKS STP, VILLAGE OF			Individual Permit				UNNA TO DU	MED TRIB JNNS LAKE						total [as P]													

NPDES ID	Permit Name	Permittee Address Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary Pri SIC NA	imary State Water AICS Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Q	Quantity 2 Q U	luantity Inits	Concentration Concentration 2	n Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio	DMR Stay Type Received Code Date	Change of Limit Status	Limit Type Code
II 0045144	FOX LAKE		Lake	Minor	NPDES	Effective	N	4952	07120006-	42 423333	-88 195	11/30/2018	001-0	00665-1-0	Phosphorus	Effluent Gross		39	62	lb/d	4	49	ma/l	N	Exists	12/6/2018	Code	ENE
120043144	VILLAGE OF	FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake		Individual Permit	Lifective		4002	UNNAMED TRIB TO DUNNS LAKE		-00.135	11/30/2010	001-0	00003-1-0	total [as P]	Endent Gross		.55	.02	10/4		.40	iiig/L	N		12/0/2010	DAG	
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Effective	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.49	.77	lb/d	.41	.58	mg/L	N	N	11/7/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020 VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.71	1.13	lb/d	.52	.55	mg/L	N	N	10/8/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.63	.69	lb/d	.52	.56	mg/L	N	N	9/5/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.61	.67	lb/d	.51	.58	mg/L	N	N	8/8/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP,	Lake	Minor	NPDES Individual	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.73	1.01	lb/d	.51	.68	mg/L	N	N	7/12/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP,	Lake	Minor	NPDES	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.57	.78	lb/d	.43	.55	mg/L	N	N	6/7/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP,	Lake	Minor	NPDES Individual	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.38	.46	lb/d	.33	.43	mg/L	N	N	5/8/2018	BAS	ENF
IL0045144	FOX LAKE,	100 INDUSTRIAL DR FOX LAKE-TALL	Lake	Minor	Permit NPDES	Admin	N	4952	07120006-	42.423333	-88.195	03/31/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross	6	.44	.54	lb/d	.4	.45	mg/L	N	N	4/4/2018	BAS	ENF
IL0045144	FOX LAKE,	100 INDUSTRIAL DR FOX LAKE-TALL	Lake	Minor	Permit NPDES	Admin	N	4952	07120006-	42.423333	-88.195	02/28/2018	001-0	00665-1-0	Phosphorus,	Effluent Gross	6	.4	.83	lb/d	.32	.45	mg/L	N	N	3/9/2018	BAS	ENF
11 0045144	VILLAGE OF	FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Laka	Minor	Individual Permit	Continued	N	4050	UNNAMED TRIB TO DUNNS LAKE	40 400000	00.405	01/21/2010	001.0	00665.4.0	total [as P]	Effluent Cross		42	61	16/4	27	F		N	N	2/40/2018	DAG	
120045144	VILLAGE OF	FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake		Individual Permit	Continued	N	4952	UNNAMED TRIB TO DUNNS LAKE	42.423333	-00.195	01/31/2018	001-0	00005-1-0	total [as P]	Entuent Gross	5	.43	.01	ID/U	.31	.5	mg/L	N		2/19/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.43	.64	lb/d	.4	.6	mg/L	N	N	1/5/2018	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.46	.59	lb/d	.41	.51	mg/L	N	N	12/25/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.65	.74	lb/d	.55	.62	mg/L	N	N	11/15/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020 VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.73	.91	lb/d	.64	.75	mg/L	N	N	10/24/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.51	.59	lb/d	.42	.49	mg/L	N	N	9/12/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020 VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.75	1.1	lb/d	.5	.67	mg/L	N	N	8/11/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.6	.74	lb/d	.48	.56	mg/L	N	N	7/7/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP,	Lake	Minor	NPDES Individual	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.45	.57	lb/d	.34	.43	mg/L	N	N	6/7/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP.	Lake	Minor	NPDES	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.49	.59	lb/d	.37	.41	mg/L	N	N	5/9/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE-TALL FOX LAKE, IL 60020 OAKS STP,	Lake	Minor	NPDES Individual	Admin Continued	N	4952	07120006- UNNAMED TRIB	42.423333	-88.195	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.43	.58	lb/d	.37	.43	mg/L	N	N	4/13/2017	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020 FOX LAKE, IL 60020	Lake	Minor	Permit NPDES Individual	Admin Continued	N	4952	TO DUNNS LAKE 07120006- UNNAMED TRIB	42.423333	-88.195	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	6	.43	.57	lb/d	.41	.52	mg/L	N	N	3/9/2017	BAS	ENF
IL0045144	FOX LAKE,	VILLAGE OF 100 INDUSTRIAL DR FOX LAKE-TALL	Lake	Minor	Permit NPDES	Admin	N	4952	TO DUNNS LAKE	42.423333	-88.195	01/31/2017	001-0	00665-1-0	Phosphorus,	Effluent Gross	6	.38	.44	lb/d	.34	.41	mg/L	N	N	2/7/2017	BAS	ENF
		VILLAGE OF			Permit	Conunuea			TO DUNNS LAKE						IOIAI [AS P]													

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	r Permit Type	Permit Status	Federal Grant Flag	Primary P SIC N Code C	rimary State Water IAICS Body code	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Qu	uantity 2 Quar Units	ity Concentration	on Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Code	Change of Limit Status Code	Limit Type Code
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.3	.5	/d	.3	.4	mg/L	N	N	1/6/2017		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.36	.43	/d	.4	.4	mg/L	N	N	12/9/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.51	.6	/d	.5	.6	mg/L	N	N	11/10/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.45	.49	/d	.4	.5	mg/L	N	N	10/4/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.5	/d	.4	.5	mg/L	N	N	9/8/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.6	/d	.4	.5	mg/L	N	N	8/4/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.6	/d	.5	.5	mg/L	N	N	7/13/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.3	.5 1	/d	.3	.4	mg/L	N	N	6/8/2016	-	BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.29	.36	/d	.3	.3	mg/L	N	N	5/5/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.72	/d	.3	.5	mg/L	N	N	4/7/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.32	.45	/d	.3	.4	mg/L	N	N	3/8/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.34	.68	/d	.3	.5	mg/L	N	N	2/3/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.52	.85	/d	.4	.5	mg/L	N	N	1/11/2016		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.46	.54 I	/d	.4	.5	mg/L	N	N	12/7/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.34	.56	/d	.3	.5	mg/L	N	N	11/12/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.34	.44	/d	.3	.4	mg/L	N	N	10/6/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.9 1	/d	.5	.7	mg/L	N	N	9/14/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.5 1	/d	.3	.4	mg/L	N	N	8/4/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.6	1	/d	.5	.7	mg/L	N	N	7/7/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.49	.62	/d	.4	.5	mg/L	N	N	6/3/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.6	/d	.4	.5	mg/L	N	N	5/5/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.47	.59	/d	.4	.5	mg/L	N	N	4/8/2015		BAS	ENF
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.38	.54	/d	.3	.4	mg/L	N	N	3/3/2015		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Federal Grant Flag	Primary Primary SIC NAICS Code Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity	2 Quantity Units	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR S Received C Date	tay Type C ode L S	change of limit status	Limit Type Code
IL0045144	FOX LAKE, VILLAGE OF	100 INDUSTRIAL DR FOX LAKE, IL 60020	FOX LAKE-TALL OAKS STP, VILLAGE OF	Lake	Minor	NPDES Individual Permit	Admin Continued	N	4952	07120006- UNNAMED TRIB TO DUNNS LAKE	42.423333	-88.195	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	5	.39	.65	lb/d		.3	.5	mg/L	N	N	2/10/2015	C	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	12/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.09	mg/L	N	N	1/25/2020		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	11/30/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.11	mg/L	N	N	12/24/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	10/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.31	mg/L	N	N	11/25/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	09/30/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.69	mg/L	N	N	10/23/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	08/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.14	mg/L	N	N	9/23/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	07/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						1	mg/L	N	N	8/25/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	06/30/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	3						.29	mg/L	N	N	7/24/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	05/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.18	mg/L	N	N	6/24/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	04/30/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.52	mg/L	N	N	5/24/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	03/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.2	mg/L	N	N	4/24/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	02/28/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.1	mg/L	N	N	3/25/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	01/31/2019	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.14	mg/L	N	N	2/25/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	12/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.18	mg/L	N	N	1/2/2019		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	11/30/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.43	mg/L	N	N	12/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	10/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.29	mg/L	N	N	11/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	09/30/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.38	mg/L	N	N	10/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	08/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross	5						.33	mg/L	N	N	9/23/2018		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major M Indicato	inor Permit Type r	Permit Status	Federal Grant Flag	Primary P SIC N Code C	Primary State Water NAICS Body Code	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2 Quantity Units	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Sta Received Co Date	y Type Ch de Liv St	hange of mit atus	Limit Type Code
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	07/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.65	mg/L	N	N	8/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	06/30/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.52	mg/L	N	N	7/24/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	05/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.48	mg/L	N	N	6/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	04/30/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	5/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	03/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.53	mg/L	N	N	4/24/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	02/28/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.16	mg/L	N	N	3/25/2018		BAS	ENF
IL0054615	Camp Henry Horner	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	01/31/2018	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	2/25/2018		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60047	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	12/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.31	mg/L	N	N	1/22/2018		BAS	ENF
IL0054615	Camp Henry Horner	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	11/30/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.64	mg/L	N	N	12/23/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60047	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	10/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.68	mg/L	N	N	11/25/2017		BAS	ENF
IL0054615	Camp Henry Horner	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	09/30/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.9	mg/L	N	N	10/24/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	08/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						1	mg/L	N	N	9/24/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	07/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.43	mg/L	N	N	8/24/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	06/30/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						.51	mg/L	N	N	7/24/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	05/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						2.3	mg/L	N	N	6/25/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	04/30/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	5/23/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	03/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						3.03	mg/L	N	N	4/24/2017		BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60047	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKI	42.363333 E	-88.148333	02/28/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross						4	mg/L	N	N	3/26/2017		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County	Major M Indicato	inor Permit Type r	Permit Status	Federal Grant Flag	Primary I SIC I Code 0	Primary State Water NAICS Body Code	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Worst % Desc. exced.	Quantity	1 Quantity 2 Quantity Concentrat Units 1	on Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Stay Type Received Code Date	Change of Limit Status	Limit Type Code
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	01/31/2017	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				.538	mg/L	N	N	2/22/2017	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	12/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				5.48	mg/L	N	N	1/24/2017	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	11/30/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				5.9	mg/L	N	N	12/24/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	10/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				6.14	mg/L	N	N	11/22/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	09/30/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				6.62	mg/L	N	N	10/24/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	08/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				9.9	mg/L	N	N	9/25/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	07/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				9.5	mg/L	N	N	8/23/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	06/30/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				5.96	mg/L	N	N	7/24/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	05/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				2.83	mg/L	N	N	6/24/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	04/30/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				2.19	mg/L	N	N	5/25/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	03/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				2.72	mg/L	N	N	4/24/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	02/29/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				2.62	mg/L	N	N	3/23/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	01/31/2016	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				3.37	mg/L	N	N	2/23/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	12/31/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				4.27	mg/L	N	N	1/25/2016	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	11/30/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				1.18	mg/L	N	N	12/25/2015	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	10/31/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				7.38	mg/L	N	N	11/24/2015	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60047	CAMP HENRY HORNER STP	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	09/30/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross				5.93	mg/L	N	N	10/25/2015	BAS	ENF
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 6004	CAMP HENRY HORNER STP 1	Lake	Minor	NPDES Individual Permit	Effective	N	7032	07120006- WOOSTER LAKE	42.363333	-88.148333	08/31/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross					mg/L	N	Y		BAS	ENF

NPDES ID	Permit Name	Permittee Address	Facility Name	County Maior Min	or Permit Type	Permit	Federal	Primary	Primary State	te Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1 Quantity 2	Quantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stav Type Change of	of Limit Type
				Indicator		Status	Grant Flag	SIC Code	NAICS Bod Code	dy	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		Units	1	2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0054615	CAMP HENRY HORNER	26710 WEST NIPPERSINK ROAD INGLESIDE, IL 60041	CAMP HENRY HORNER STP	Lake Minor	NPDES Individual Permit	Effective	N	7032	0712 WOO	20006- OOSTER LAKE	42.363333	-88.148333	07/31/2015	001-0	00665-1-1	Phosphorus, total [as P]	Effluent Gross							mg/L	N	Y		BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	1/22/2020	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.87	mg/L	N	N	12/25/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	mg/L	N	N	11/26/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.9	mg/L	N	N	10/23/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	9/24/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.8	mg/L	N	N	8/24/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI **E**	mg/L	N	Y	7/12/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.3	mg/L	N	N	6/6/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	5/7/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	4/5/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.15	mg/L	N	N	3/12/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	2/12/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.89	mg/L	N	N	1/11/2019	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.89	mg/L	N	N	12/20/2018	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.59	mg/L	N	N	11/21/2018	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.46	mg/L	N	N	10/24/2018	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1	mg/L	N	N	9/21/2018	BAS	ENF
IL0074985	SPRING GROVE, VILLAGE OF	7401 MEYER RD SPRING GROVE, IL 60081	SPRING GROVE STP	McHenry Minor	NPDES Individual Permit	Effective	N	4952	0712 NIPF CRE	20006- PERSINK EEK	42.444	-88.235	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.16	mg/L	N	N	8/20/2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min	or Permit Type	Permit	Primary F	Primary State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentratio	n Concentration	Effluent	Non-	DMR	Stay Type Change of	of Limit Type
				Indicator		Status	SIC N Code C	NAICS Body Code	Decimal Degrees	Decimal Degrees	Period End Date	1	MLC - Season ID		Desc.	exced.		2	Units	1 2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code Limit Status	Code
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.545	.734	lb/d	.46	.62	mg/L	N	N	1/21/2020	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.679	1.631	lb/d	.536	1.2	mg/L	N	N	12/20/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.852	2.144	lb/d	.737	1.89	mg/L	N	N	11/20/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.581	1.602	lb/d	.585	1.7	mg/L	N	N	10/17/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.578	1.241	lb/d	.551	1.2	mg/L	N	N	9/19/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.666	1.658	lb/d	.559	1.4	mg/L	N	N	8/21/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389 E	-88.966389	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.087	.263	lb/d	.071	.21	mg/L	N	N	7/23/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.15	.193	lb/d	.099	.31	mg/L	N	N	6/17/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.416	2.715	lb/d	.963	1.86	mg/L	N	N	5/14/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.321	1.623	lb/d	.283	1.52	mg/L	N	N	4/20/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.053	.089	lb/d	.04	.07	mg/L	N	N	3/21/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.057	.131	lb/d	.047	.11	mg/L	N	N	2/19/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	12/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.042	.068	lb/d	.034	.05	mg/L	N	N	1/17/2019	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	11/30/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.218	1.394	lb/d	.166	.95	mg/L	N	N	12/14/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.035	.052	lb/d	.034	.05	mg/L	N	N	11/15/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	09/30/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.085	.152	lb/d	.08	.13	mg/L	N	N	10/19/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	08/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.151	.527	lb/d	.145	.54	mg/L	N	N	9/20/2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary State Water NAICS Body Code	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratio 3	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change o Code Limit Status	f Limit Type Code
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD LJ	37.666389 KE	-88.966389	07/31/2018	3 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.253	.618	lb/d	.246	.57	mg/L	N	N	8/17/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD LJ	37.666389 KE	-88.966389	06/30/2018	3 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.129	.283	lb/d	.121	.28	mg/L	N	N	7/19/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD LI	37.666389 KE	-88.966389	05/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.337	.508	lb/d	.224	.3	mg/L	N	N	6/22/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	04/30/2018	3 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.319	.572	lb/d	.273	.52	mg/L	N	N	5/22/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	03/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.518	1.036	lb/d	.394	.78	mg/L	N	N	4/24/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	02/28/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.434	.99	lb/d	.349	.92	mg/L	N	N	3/14/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	01/31/2018	8 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.754	1.647	lb/d	.662	1.58	mg/L	N	N	2/22/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.664	1.182	lb/d	.596	1.02	mg/L	N	N	1/18/2018	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.681	1.902	lb/d	.611	1.51	mg/L	N	N	12/8/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.371	1.301	lb/d	.341	1.2	mg/L	N	N	11/21/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.224	.558	lb/d	.227	.62	mg/L	N	N	10/19/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.607	.876	lb/d	.608	.93	mg/L	N	N	9/13/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.528	1.079	lb/d	.59	.98	mg/L	N	N	8/11/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 IB KE	-88.966389	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.668	.943	lb/d	.587	.78	mg/L	N	N	7/13/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 IIB KE	-88.966389	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.899	1.361	lb/d	.694	.9	mg/L	N	N	6/14/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 KE	-88.966389	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.833	1.541	lb/d	.718	1.2	mg/L	N	N	5/5/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	07140106- UNNAMED TI TO CRAB ORCHARD L/	37.666389 IB KE	-88.966389	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.146	.35	lb/d	.127	.304	mg/L	N	N	4/21/2017	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine	or Permit Type	Permit Status	Primary SIC	Primary S NAICS B	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration	Concentration	Concentration	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Change o Code Limit	f Limit Type Code
							Code	Code	,	Degrees	Degrees	Date		Season ID										Exists	Vio. Exists	Date	Status Code	
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.205	.882	lb/d	.166	.68	mg/L	N	N	3/24/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.008	.031	lb/d	.006	.02	mg/L	N	N	2/24/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.019	.035	lb/d	.014	.02	mg/L	N	N	1/20/2017	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.145	.682	lb/d	.123	.58	mg/L	N	N	12/20/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.014	.034	lb/d	.013	.03	mg/L	N	N	11/22/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.0169	1.294	lb/d	.139	1.07	mg/L	N	N	10/18/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.116	.395	lb/d	.095	.351	mg/L	N	N	9/22/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.068	.151	lb/d	.057	.13	mg/L	N	N	8/18/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB FO CRAB DRCHARD LAKE	37.666389	-88.966389	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.085	.156	lb/d	.071	.132	mg/L	N	N	7/8/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB FO CRAB DRCHARD LAKE	37.666389	-88.966389	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.128	.272	lb/d	.1	.181	mg/L	N	N	6/28/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB FO CRAB DRCHARD LAKE	37.666389	-88.966389	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.095	.189	lb/d	.079	.146	mg/L	N	N	5/12/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB FO CRAB ORCHARD LAKE	37.666389	-88.966389	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.135	.273	lb/d	.101	.181	mg/L	N	N	4/17/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.102	.192	lb/d	.084	.161	mg/L	N	N	3/13/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.155	.474	lb/d	.132	.4	mg/L	N	N	2/21/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.122	.227	lb/d	.094	.19	mg/L	N	N	1/21/2016	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.362	1.068	lb/d	.326	.994	mg/L	N	N	12/16/2015	BAS	ENF
IL0001147	UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	William on	s Minor	NPDES Individual Permit	Effective	9223	0 U T C	07140106- JNNAMED TRIB TO CRAB DRCHARD LAKE	37.666389	-88.966389	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.541	.898	lb/d	.418	.703	mg/L	N	N	11/22/2015	BAS	ENF

NPDES II	D Permit Name	Facility Name	County Major M	Minor Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type Change o	f Limit Type
			Indicate	or	Status	Code	Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1 2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.455	.862	lb/d	.351	.563	mg/L	N	N	10/22/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.45	.836	lb/d	.303	.611	mg/L	N	N	9/25/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.499	1.116	lb/d	.359	.836	mg/L	N	N	8/21/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.428	.672	lb/d	.321	.482	mg/L	N	N	7/22/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.45	1.072	lb/d	.334	.857	mg/L	N	N	6/12/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.411	1.17	lb/d	.256	.635	mg/L	N	N	5/13/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.151	.317	lb/d	.088	.183	mg/L	N	N	4/9/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.514	1.222	lb/d	.336	.857	mg/L	N	N	3/11/2015	BAS	ENF
IL0001	147 UNITED STATES PENITENTIARY	UNITED STATES PENITENTIARY STP	Williams Minor on	NPDES Individual Permit	Effective	9223		07140106- UNNAMED TRIB TO CRAB ORCHARD LAKE	37.666389	-88.966389	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.326	.706	lb/d	.239	.51	mg/L	N	N	2/12/2015	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.73	mg/L	N	N	1/28/2020	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.79	mg/L	N	N	12/19/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.21	mg/L	N	N	11/15/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.36	mg/L	N	N	10/2/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.98	mg/L	N	N	9/23/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.37	mg/L	N	N	8/27/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.8	mg/L	N	N	7/22/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.64	mg/L	N	N	6/17/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.36	mg/L	N	N	5/16/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.36	mg/L	N	N	4/25/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	_				1.96	mg/L	N	N	3/11/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	_				2.52	mg/L	N	N	2/19/2019	BAS	ENF
IL0020	001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton Minor	NPDES Individual Permit	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				_		3.48	mg/L	N	N	1/28/2019	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	y Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	f Limit Type Code
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.72	mg/L	N	N	12/6/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.51	mg/L	N	N	11/27/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.41	mg/L	N	N	10/26/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Effective	4952		07140204-LAKE BRANCH	38.603333	-89.608333	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						6	mg/L	N	N	9/17/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.71	mg/L	N	N	8/21/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI A	mg/L	N	N	7/16/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.38	mg/L	N	N	6/25/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.27	mg/L	N	N	5/18/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.54	mg/L	N	N	4/10/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						6.27	mg/L	N	N	3/19/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					6.72	mg/L	N	N	2/14/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						5.71	mg/L	N	N	1/2/2018	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						5.95	mg/L	N	N	12/14/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						5.64	mg/L	N	N	11/20/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						5.1	mg/L	N	N	10/27/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.53	mg/L	N	N	9/8/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.54	mg/L	N	N	8/7/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.89	mg/L	N	N	7/14/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.82	mg/L	N	N	6/9/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.82	mg/L	N	N	5/3/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.41	mg/L	N	N	4/11/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.74	mg/L	N	N	3/8/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.87	mg/L	N	N	2/14/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.76	mg/L	N	N	1/24/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.76	mg/L	N	N	1/3/2017	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.84	mg/L	N	N	11/16/2016	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.64	mg/L	N	N	10/12/2016	BAS	ENF
IL0020001	AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual Permit	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.7	mg/L	N	N	9/21/2016	BAS	ENF

NPDES	D Permit Name	Facility Name	County	y Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	1 Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change of Code Limit Status Code	of Limit Type Code
IL0020	0001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.5	mg/L	N	N	8/17/2016	BAS	ENF
IL0020	0001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.62	mg/L	N	N	7/19/2016	BAS	ENF
IL0020	0001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			_	_		2.28	mg/L	N	N	6/17/2016	BAS	ENF
IL0020	0001 AVISTON. VILLAGE OF	AVISTON STP, VILLAGE OF	Clinton	Minor	Permit NPDES Individual	Admin Continued	4952		07140204-LAKE BRANCH	38.603333	-89.608333	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.59	mg/L	N	N	5/13/2016	BAS	ENF
IL0020	0001 AVISTON. VILLAGE OF	AVISTON STP,	Clinton	Minor	Permit NPDES Individual	Admin	4952		07140204-LAKE BRANCH	38.603333	-89.608333	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						3.16	mg/L	N	N	4/20/2016	BAS	ENF
IL0020	0001 AVISTON.	AVISTON STP,	Clinton	Minor	Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	02/29/2016	001-0	00665-1-0	Phosphorus,	Effluent						3.16	mg/L	N	N	3/14/2016	BAS	ENF
IL0020	0001 AVISTON.	AVISTON STP,	Clinton	Minor	Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	01/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						NODI A	mg/L	N	N	2/10/2016	BAS	ENF
IL0020	0001 AVISTON.	AVISTON STP,	Clinton	Minor	Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	12/31/2015	001-0	00665-1-0	Phosphorus,	Effluent						NODI A	mg/L	N	N	1/11/2016	BAS	ENF
IL0020	0001 AVISTON.	AVISTON STP,	Clinton	Minor	Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	11/30/2015	001-0	00665-1-0	Phosphorus,	Effluent						NODI A	mg/L	N	N	12/15/2015	BAS	ENF
IL0020	0001 AVISTON.	AVISTON STP,	Clinton	Minor	Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	10/31/2015	001-0	00665-1-0	Phosphorus,	Effluent						NODI A	mg/L	N	N	11/18/2015	BAS	ENF
IL0020	VILLAGE OF 0001 AVISTON.	AVISTON STP,	Clinton	Minor	Individual Permit NPDES	Admin	4952		07140204-LAKE	38.603333	-89.608333	09/30/2015	001-0	00665-1-0	Phosphorus,	Gross Effluent						NODI A	mg/L	N	N	10/27/2015	BAS	ENF
IL0020	VILLAGE OF 0001 AVISTON.	VILLAGE OF AVISTON STP,	Clinton	Minor	Individual Permit NPDES	Continued Admin	4952		BRANCH 07140204-LAKE	38.603333	-89.608333	08/31/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI A	mg/L	N	N	9/29/2015	BAS	ENF
IL0020	VILLAGE OF 0001 AVISTON.	VILLAGE OF AVISTON STP,	Clinton	Minor	Individual Permit NPDES	Continued Admin	4952		BRANCH 07140204-LAKE	38.603333	-89.608333	07/31/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI A	mg/L	N	N	8/14/2015	BAS	ENF
IL0020	VILLAGE OF	VILLAGE OF AVISTON STP,	Clinton	Minor	Individual Permit NPDES	Continued Admin	4952		BRANCH 07140204-LAKE	38.603333	-89.608333	06/30/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI A	mg/L	N	N	7/17/2015	BAS	ENF
IL0020	VILLAGE OF	VILLAGE OF	Clinton	Minor	Individual Permit NPDES	Continued Admin	4952		BRANCH 07140204-LAKE	38.603333	-89.608333	05/31/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross						NODI A	mg/L	N	N	6/8/2015	BAS	ENF
IL0020	VILLAGE OF	VILLAGE OF	Clinton	Minor	Individual Permit NPDES	Continued	4952		BRANCH	38.603333	-89.608333	04/30/2015	001-0	00665-1-0	total [as P]	Gross						NODI A	ma/L	N	N	5/15/2015	BAS	ENF
11.0020			Clinton	Minor	Individual Permit	Continued	4952		BRANCH	38 603333	-80 608333	03/31/2015	001-0	00665-1-0	total [as P]	Gross							ma/l	N	N	5/15/2015	BAS	ENE
11.0020		VILLAGE OF	Clinton	Minor	Individual Permit	Continued	4052		BRANCH	38 603333	80.609333	02/28/2015	001.0	00665 1 0	total [as P]	Gross						NODIA	mg/L		N	4/20/2015	BAS	
120020	VILLAGE OF	VILLAGE OF	Clinton	Minor	Individual Permit	Continued	4932		BRANCH	20,003333	-09.000333	02/20/2013	001-0	00005-1-0	total [as P]	Gross						NODIA	mg/L	N	N	4/20/2013	DAG	
IL0020	VILLAGE OF	VILLAGE OF	Clinton	Minor	Individual Permit	Continued	4952		BRANCH	38.603333	-89.608333	01/31/2015	001-0	00665-1-0	total [as P]	Gross						NODIA	mg/L	N	N	3/17/2015	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.4	1.4	mg/L	N	N	1/28/2020	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.5	1.5	mg/L	N	N	12/29/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.1	1.1	mg/L	N	N	11/26/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.6	1.6	mg/L	N	N	11/6/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2	2	mg/L	N	N	10/4/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.8	1.8	mg/L	N	N	9/4/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Effective	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.5	1.5	mg/L	N	N	7/9/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.75	mg/L	N	N	7/9/2019	BAS	ENF
IL0020	0079 RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	n Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	5/1/2019	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % G exced.	Quantity 1 Quant 2	ity Quantity Units	Concentration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.14	mg/L	N	N	5/1/2019	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.9	mg/L	N	N	4/1/2019	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP,	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.3	mg/L	N	N	3/3/2019	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204-	37.803333	-88.26	12/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						1	mg/L	N	N	1/30/2019	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204-	37.803333	-88.26	11/30/2018	001-0	00665-1-0	Phosphorus,	Effluent						1.4	mg/L	N	N	12/26/2018	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204-	37.803333	-88.26	10/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						1.9	mg/L	N	N	11/6/2018	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	09/30/2018	001-0	00665-1-0	Phosphorus,	Effluent						11	mg/L	N	N	10/19/2018	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	08/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						12.3	mg/L	N	N	9/25/2018	BAS	ENF
IL0020079	VILLAGE OF RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Continued Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	07/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2.81	mg/L	N	N	8/27/2018	BAS	ENF
IL0020079	VILLAGE OF RIDGWAY,	VILLAGE OF RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Continued Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	06/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						1.1	mg/L	N	N	7/26/2018	BAS	ENF
IL0020079	VILLAGE OF RIDGWAY,	VILLAGE OF RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Continued Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	05/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross						1	mg/L	N	N	6/28/2018	BAS	ENF
IL0020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit NPDES	Continued	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	04/30/2018	001-0	00665-1-0	total [as P]	Gross						1.1	ma/L	N	N	5/25/2018	BAS	ENF
11.0020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit	Continued	4952		CRAWFORD CREEK 05140204-	37 803333	-88.26	03/31/2018	001-0	00665-1-0	total [as P]	Gross						3	ma/l	N	N	4/26/2018	BAS	ENE
11.0020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit	Continued	1002		CRAWFORD CREEK	37 803333	-88.26	02/28/2018	001-0	00665-1-0	total [as P]	Gross						7.8	mg/L	N	N	3/12/2018	BAS	ENE
11.0020073	VILLAGE OF	VILLAGE OF	Callatin	Minor	Individual Permit	Continued	4052		CRAWFORD CREEK	27 002222	-00.20	01/21/2019	001.0	00665 1 0	total [as P]	Gross						2.2	mg/L			2/26/2019	PAG	
120020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit	Continued	4952		CRAWFORD CREEK	37.003333	-00.20	42/24/2017	001-0	00005-1-0	total [as P]	Gross						2.2	mg/L		N	2/20/2010	DAG	
120020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit	Continued	4952		CRAWFORD CREEK	37.803333	-88.26	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Gross						2.19	mg/L	N	N	1/3/2018	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.5	mg/L	N	N	12/13/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.67	mg/L	N	N	11/14/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.56	mg/L	N	N	10/4/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3	mg/L	N	N	9/8/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.74	mg/L	N	N	8/10/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.37	mg/L	N	N	7/11/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.79	mg/L	N	N	7/11/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.9	mg/L	N	N	5/15/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.94	mg/L	N	N	4/4/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						9.36	mg/L	N	N	3/16/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.93	mg/L	N	N	2/7/2017	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	1/19/2017	BAS	ENF
					Permit				CREEK																			

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % Q exced.	uantity 1 Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change o Code Limit Status Code	f Limit Type Code
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Pormit	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.26	mg/L	N	N	12/2/2016	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.36	mg/L	N	N	11/21/2016	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.33	mg/L	N	N	10/18/2016	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent					1.44	mg/L	N	N	9/21/2016	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204- CRAWEORD	37.803333	-88.26	07/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					1.87	mg/L	N	N	8/22/2016	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204-	37.803333	-88.26	06/30/2016	001-0	00665-1-0	Phosphorus,	Effluent					1	mg/L	N	N	7/24/2016	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Permit NPDES	Admin	4952		CREEK 05140204-	37.803333	-88.26	05/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					1.47	mg/L	N	N	6/14/2016	BAS	ENF
IL0020079	RIDGWAY,	RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	04/30/2016	001-0	00665-1-0	Phosphorus,	Gross Effluent					1.1	mg/L	N	N	5/12/2016	BAS	ENF
IL0020079	VILLAGE OF RIDGWAY,	VILLAGE OF RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Admin	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	03/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent					7.57	mg/L	N	N	4/12/2016	BAS	ENF
IL0020079	VILLAGE OF RIDGWAY,	VILLAGE OF RIDGWAY STP,	Gallatin	Minor	Individual Permit NPDES	Continued	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	02/29/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross					.1	mg/L	N	N	3/14/2016	BAS	ENF
IL0020079	VILLAGE OF	VILLAGE OF	Gallatin	Minor	Individual Permit NPDES	Continued	4952		CRAWFORD CREEK 05140204-	37.803333	-88.26	01/31/2016	001-0	00665-1-0	total [as P]	Gross					.1	mg/L	N	N	2/10/2016	BAS	ENF
11.0020070	VILLAGE OF	VILLAGE OF	Callatin	Minor	Individual Permit	Continued	4052		CRAWFORD CREEK	07.000000	00.20	40/04/0045	001.0	000005.4.0	total [as P]	Gross							N		4/40/0046	DAG	
120020079	VILLAGE OF	VILLAGE OF	Gallauri		Individual Permit	Continued	4952		CRAWFORD CREEK	37.003333	-00.20	12/31/2013	001-0	00005-1-0	total [as P]	Gross					.1	nig/L		N	1/12/2010	DAS	EINF
IL0020079	RIDGWAY, VILLAGE OF	VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Gross					.1	mg/L	N	N	12/7/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	11/12/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	10/19/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD CREEK	37.803333	-88.26	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	9/24/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual Permit	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	8/20/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	7/20/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		05140204- CRAWFORD	37.803333	-88.26	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	6/12/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	5/8/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	4/14/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	3/10/2015	BAS	ENF
IL0020079	RIDGWAY, VILLAGE OF	RIDGWAY STP, VILLAGE OF	Gallatin	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 05140204- CRAWFORD	37.803333	-88.26	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	1/13/2015	BAS	ENF
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	Permit NPDES	Admin	4952		CREEK 05120114-	38.376667	-88.35	09/30/2017	001-0	00665-1-0	Phosphorus,	Effluent				.9		mg/L	N	N	10/9/2017	BAS	ENF
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	Permit NPDES	Admin	4952		CREEK 05120114-	38.376667	-88.35	08/31/2017	001-0	00665-1-0	Phosphorus,	Effluent				.9		mg/L	N	N	9/6/2017	BAS	ENF
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	Permit NPDES	Admin	4952		CREEK 05120114-	38.376667	-88.35	07/31/2017	001-0	00665-1-0	Phosphorus,	Effluent				.9		mg/L	N	N	8/2/2017	BAS	ENF
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		JOHNSON CREEK 05120114-	38.376667	-88.35	06/30/2017	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent				.9		mg/L	N	N	7/6/2017	BAS	ENF
IL0020605	OF FAIRFIELD, CITY	CITY OF FAIRFIELD STP,	Wayne	Minor	Individual Permit NPDES	Continued Admin	4952		JOHNSON CREEK 05120114-	38.376667	-88.35	05/31/2017	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent				.9		mg/L	N	N	6/5/2017	BAS	ENF
	OF	CITY OF			Individual Permit	Continued			JOHNSON CREEK						total [as P]	Gross						Ĵ					

	Pormit Namo	Escility Namo	County	Major Min	or Pormit Typo	Dormit	Drimony	Drimary	State Water	Latitudo in	Longitudo in	Mon	Limit Sot	Baram Cd	Paramotor	Moniloc	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concontration Concontration	Effluon	Non	DMP	Stay Type	Change of	Limit Type
NPDESID	Fermit Name	Facility Name	County	Indicator	or Permit Type	Status	SIC	NAICS	Body	Decimal	Decimal	Period End	Linit Set	MLC -	Farameter	Desc.	exced.	Quantity	2	Units	1 2	3 Units	Vio.	Receipt	Received	Code	Limit	Code
							Code	Code	-	Degrees	Degrees	Date		Season ID									Exists	Vio.	Date		Status	
IL0020605	FAIRFIELD, CITY OF	FAIRFIELD STP, CITY OF	Wayne	Minor	NPDES Individual	Admin Continued	4952		05120114- JOHNSON	38.376667	-88.35	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.9	mg/L	N	Exists N	5/3/2017		BAS	ENF
					Permit				CREEK																	_		
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	03/31/2017	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	4/3/2017		BAS	ENF
		CITTOF			Permit	Continued			CREEK						ioiai [as F]	GIUSS												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	3/2/2017		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	01/31/2017	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	2/6/2017		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
11.0020605			Wayne	Minor	Permit	Admin	4052		CREEK	29 276667	99.25	12/31/2016	001.0	00665.1.0	Phoenhorus	Effluont					0	ma/l	N	N	1/5/2017		PAS	ENE
120020003	OF OF	CITY OF	wayne	WIITO	Individual	Continued	4352		JOHNSON	30.370007	-00.00	12/31/2010	001-0	00003-1-0	total [as P]	Gross						ilig/L			1/3/2011		DAG	
					Permit				CREEK																			
IL0020605	OF	CITY OF	Wayne	Minor	Individual	Continued	4952		05120114- JOHNSON	38.376667	-88.35	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Gross					.9	mg/L	N	N	12/1/2016		BAS	ENF
					Permit	Contantaou			CREEK						total [do 1]	0.000												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	10/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	11/2/2016		BAS	ENF
		CITTOF			Permit	Continued			CREEK						ioiai [as F]	GIUSS												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	09/30/2016	001-0	00665-1-0	Phosphorus,	Effluent					.8	mg/L	N	N	10/3/2016		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	08/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	9/2/2016		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
11.0020605		FAIRFIELD STP	Wayne	Minor	Permit NPDES	Admin	4952		CREEK 05120114-	38 376667	-88 35	07/31/2016	001-0	00665-1-0	Phosphorus	Effluent					8	ma/l	N	N	8/9/2016		BAS	ENE
120020003	OF	CITY OF	wayne	WIITIO	Individual	Continued	4352		JOHNSON	50.570007	-00.00	0113112010	001-0	00003-1-0	total [as P]	Gross					.0	ing/L			0/3/2010		DAG	
			14/		Permit	Adusta	4050		CREEK	00.070007	00.05	00/00/0040	001.0	00005.4.0	Discolution	F (0)									7/40/0040		540	ENE
IL0020605	OF	CITY OF	Wayne	Minor	Individual	Admin Continued	4952		05120114- JOHNSON	38.376667	-88.35	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Gross					.9	mg/L	N	N	7/13/2016		BAS	ENF
	0.				Permit	Contantada			CREEK						total [do 1]	0.000												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	05/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					.8	mg/L	N	N	6/14/2016		BAS	ENF
	OF	CITYOF			Permit	Continued			CREEK						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	04/30/2016	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	5/4/2016		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	03/31/2016	001-0	00665-1-0	Phosphorus,	Effluent					.8	mg/L	N	N	4/5/2016		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
11.0020605		FAIRFIELD STP	Wayne	Minor	Permit NPDES	Admin	4952		CREEK 05120114-	38 376667	-88 35	02/29/2016	001-0	00665-1-0	Phosphorus	Effluent					8	ma/l	N	N	3/3/2016		BAS	ENE
120020000	OF	CITY OF	, ina jino		Individual	Continued	1002		JOHNSON	00.070007	00.00	02/20/2010			total [as P]	Gross									0/0/2010		2,10	2.4
					Permit	A. J	4050		CREEK	00.070007	00.05	04/04/0040	001.0	00005.4.0	Diamata	F (0)								N	0/4/0040		D40	
IL0020605	OF	CITY OF	vvayne	winor	Individual	Continued	4952		JOHNSON	38.370007	-66.30	01/31/2016	001-0	00000-1-0	total [as P]	Gross					.9	mg/L	IN	IN	2/4/2016		BAS	ENF
	-				Permit	-			CREEK																			
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	12/31/2015	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	1/7/2016		BAS	ENF
		CITION			Permit	Continued			CREEK						lotal [as F]	GIUSS												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	11/30/2015	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	12/2/2015		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	10/31/2015	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	11/2/2015		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP.	Wavne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	09/30/2015	001-0	00665-1-0	Phosphorus.	Effluent					.9	ma/L	N	N	10/6/2015		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross						, , , , , , , , , , , , , , , , , , ,						
11.0020605			Wayna	Minor	Permit	Admin	4052		CREEK	39 376667	99.35	09/31/2015	001.0	00665.1.0	Phoenhorus	Effluont					0	ma/l	N	N	0/4/2015		PAS	ENE
120020003	OF OF	CITY OF	wayne	WIITO	Individual	Continued	4352		JOHNSON	30.370007	-00.00	00/01/2010	001-0	00003-1-0	total [as P]	Gross						ilig/L			3/4/2013		DAG	
					Permit		1050		CREEK			07/04/0045													0///00//5		5.0	
IL0020605	OF	CITY OF	Wayne	Minor	Individual	Admin Continued	4952		05120114- JOHNSON	38.376667	-88.35	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Gross					.58	mg/L	N	N	8/4/2015		BAS	ENF
	0.				Permit	Contantada			CREEK						total [do 1]	0.000												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	06/30/2015	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	7/7/2015		BAS	ENF
	OF	CITY OF			Permit	Continued			CREEK						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP,	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	05/31/2015	001-0	00665-1-0	Phosphorus,	Effluent					.9	mg/L	N	N	6/4/2015		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
IL0020605	FAIRFIELD, CITY	FAIRFIELD STP.	Wayne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	04/30/2015	001-0	00665-1-0	Phosphorus,	Effluent	-		-		.87	mg/L	N	N	5/8/2015	-	BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												1
IL0020605	FAIRFIELD CITY	FAIRFIELD STP	Wavne	Minor	NPDES	Admin	4952		05120114-	38.376667	-88.35	03/31/2015	001-0	00665-1-0	Phosphorus	Effluent					9	ma/l	N	N	4/6/2015		BAS	ENF
	OF	CITY OF			Individual	Continued			JOHNSON						total [as P]	Gross												
11.0020605			Wayne	Miner	Permit	Admin	4050		CREEK	39 276667	00.25	02/28/2045	001.0	00665 1 0	Phoenhorus	Effluent					0		NI	NI	3/4/2045		BAC	
120020003	OF	CITY OF	vvayne		Individual	Continued	4902		JOHNSON	30.370007	-00.00	02/20/2015	001-0	00000-1-0	total [as P]	Gross					.s	ing/∟	IN	IN	5/4/2015		DAG	LINF
					Permit				CREEK	00.5	05.77	0.4/0.1/2-2		00005											0/1100			
IL0020605	OF	CITY OF	wayne	winor	Individual	Aamin Continued	4952		JOHNSON	38.376667	-88.35	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Eπuent Gross					.9	mg/L	N	N	2/4/2015		BAS	ENF
	-				Permit				CREEK																			

NPDES ID	Permit Name	Facility Name	County Major Mind Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratior 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change of Code Limit Status Code	of Limit Type Code
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/16/2020	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/10/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/11/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/29/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/27/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	8/16/2019	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin	4952		07130004-	40.421667	-89.426667	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	7/22/2019	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	05/31/2019	001-0	00665-1-0	Phosphorus,	Effluent						.36	mg/L	N	N	6/27/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	5/23/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/21/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/21/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/25/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/25/2019	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/28/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/12/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				NODI C	mg/L	N	N	10/16/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/25/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/17/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/23/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/28/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/22/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/26/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/21/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/16/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/15/2018	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/15/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/24/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/18/2017	PML	ENF

NPDES ID	Permit Name	Facility Name	County Major Mind Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratior 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change of Code Limit Status Code	of Limit Type Code
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Pormit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/22/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/22/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				NODI C	mg/L	N	N	7/24/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.41	mg/L	N	N	6/23/2017	PML	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.36	mg/L	N	N	5/24/2017	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.21	mg/L	N	N	4/28/2017	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	3/3/2017	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	01/31/2017	001-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	2/10/2017	PML	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	12/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.3	mg/L	N	N	1/13/2017	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	11/30/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.4	mg/L	N	N	12/23/2016	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	10/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.5	mg/L	N	N	11/11/2016	BAS	ENF
IL0020737	VILLAGE OF 7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	09/30/2016	001-0	00665-1-0	Phosphorus,	Gross Effluent						1	mg/L	N	N	10/6/2016	BAS	ENF
IL0020737	VILLAGE OF 7 HOPEDALE,	VILLAGE OF HOPEDALE STP,	Tazewell Minor	Individual Permit NPDES	Continued Admin	4952		INDIAN CREEK 07130004-	40.421667	-89.426667	08/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross						1	mg/L	N	N	9/16/2016	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	07/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						2.2	mg/L	N	N	8/25/2016	BAS	ENF
IL0020737	VILLAGE OF 7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Individual Permit NPDES	Continued Admin	4952		07130004-	40.421667	-89.426667	06/30/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						1.6	mg/L	N	N	7/20/2016	BAS	ENF
IL0020737	VILLAGE OF 7 HOPEDALE,	VILLAGE OF HOPEDALE STP,	Tazewell Minor	Individual Permit NPDES	Continued Admin	4952		07130004-	40.421667	-89.426667	05/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						1.4	mg/L	N	N	6/8/2016	BAS	ENF
11.0020737			Tazewell Minor	Individual Permit	Continued	4952		INDIAN CREEK	40 421667	-89 426667	04/30/2016	001-0	00665-1-0	total [as P]	Gross						16	ma/l	N	N	5/24/2016	BAS	ENE
11.0020737	VILLAGE OF	VILLAGE OF		Individual Permit	Continued	4052		INDIAN CREEK	40.421007	-03.420007	02/24/2010	001-0	00005-1-0	total [as P]	Gross						0.0	mg/L		N	4/25/2010	DAG	
120020737	VILLAGE OF	VILLAGE OF		Individual Permit	Continued	4952		INDIAN CREEK	40.421007	-09.420007	03/31/2010	001-0	00005-1-0	total [as P]	Gross						2.5	ing/L		IN .	4/25/2010	DAG	ENF
IL0020737	VILLAGE OF	VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		INDIAN CREEK	40.421667	-89.426667	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Gross						1.8	mg/L	N	N	3/7/2016	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.69	mg/L	N	N	2/9/2016	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.98	mg/L	N	N	1/21/2016	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	12/14/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.2	mg/L	N	N	11/16/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.2	mg/L	N	N	10/23/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	9/10/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.69	mg/L	N	N	8/14/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.66	mg/L	N	Y	10/6/2016	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	mg/L	N	N	6/22/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mind Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change of Code Limit Status Code	of Limit Type Code
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	mg/L	N	N	5/11/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	4/2/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1	mg/L	N	N	3/6/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	2/9/2015	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/16/2020	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/10/2019	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin	4952		07130004-	40.421667	-89.426667	10/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	11/11/2019	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	09/30/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	10/29/2019	BAS	ENF
IL0020737	7 HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin	4952		07130004-	40.421667	-89.426667	08/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	9/27/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/16/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/22/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.42	mg/L	N	N	6/27/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/23/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/21/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/21/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952	_	07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/25/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/25/2019	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/28/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/12/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				NODI C	mg/L	N	N	10/16/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952	_	07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					NODI C	mg/L	N	N	9/25/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/17/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					NODI C	mg/L	N	N	7/23/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					NODI C	mg/L	N	N	6/28/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/22/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/26/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/21/2018	BAS	ENF
IL0020737	7 HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/16/2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mino Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratior 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	f Limit Type Code
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/15/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/15/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/24/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/18/2017	BAS	ENF
IL0020737	HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin	4952		07130004-	40.421667	-89.426667	08/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	9/22/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	07/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	8/22/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	06/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	7/24/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	05/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						.24	mg/L	N	N	6/23/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	04/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent						.36	mg/L	N	N	5/24/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	03/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						.31	mg/L	N	N	4/28/2017	BAS	ENF
IL0020737	HOPEDALE,	HOPEDALE STP,	Tazewell Minor	Permit NPDES Individual	Admin	4952		07130004-	40.421667	-89.426667	02/28/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	3/3/2017	BAS	ENF
IL0020737		HOPEDALE STP,	Tazewell Minor	Permit NPDES	Admin	4952		07130004-	40.421667	-89.426667	01/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	2/10/2017	BAS	ENF
IL0020737	HOPEDALE,	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004-	40.421667	-89.426667	12/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent						1.1	mg/L	N	N	1/16/2020	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	12/10/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	11/11/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.5	mg/L	N	N	10/29/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3	mg/L	N	N	9/27/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	8/16/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.61	mg/L	N	N	7/22/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.53	mg/L	N	N	6/27/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.56	mg/L	N	N	5/23/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	mg/L	N	N	4/21/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.62	mg/L	N	N	3/21/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	2/25/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				.77	mg/L	N	N	1/25/2019	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1	mg/L	N	N	12/28/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.3	mg/L	N	N	11/12/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual Permit	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.73	mg/L	N	N	10/16/2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.2	mg/L	N	N	9/25/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	8/17/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					1.7	mg/L	N	N	7/23/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.7	mg/L	N	N	6/28/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.73	mg/L	N	N	5/22/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.64	mg/L	N	N	4/26/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	3/21/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.8	mg/L	N	N	2/16/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	12/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	1/15/2018	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	11/30/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.9	mg/L	N	N	12/15/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	10/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.8	mg/L	N	N	11/24/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	09/30/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.5	mg/L	N	N	10/18/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	08/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	9/22/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	07/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.3	mg/L	N	N	8/22/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	06/30/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	7/24/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	05/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.74	mg/L	N	N	6/23/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	04/30/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	5/24/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	03/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	4/28/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	02/28/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	3/3/2017	BAS	ENF
IL0020737	HOPEDALE, VILLAGE OF	HOPEDALE STP, VILLAGE OF	Tazewell Minor	Permit NPDES Individual	Admin Continued	4952		07130004- INDIAN CREEK	40.421667	-89.426667	01/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	2/10/2017	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.95	mg/L	N	N	1/31/2020	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	mg/L	N	N	12/3/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.66	mg/L	N	N	11/7/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.6	mg/L	N	N	10/15/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				3.5	mg/L	N	N	10/6/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.2	mg/L	N	N	8/27/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				1	mg/L	N	N	7/11/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.25	mg/L	N	N	7/1/2019	BAS	ENF

Lines: Lines: <thline:< th=""> <thline:< th=""> Line:</thline:<></thline:<>	NPDES ID	Permit Name	Facility Name	County	/ Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantity 2	antity (Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change Code Limit Status	of Limit Type Code
Distance Biologram Biologram <th< th=""><th>IL0020761</th><th>ABINGDON, CITY OF</th><th>ABINGDON STP, CITY OF</th><th>Knox</th><th>Minor</th><th>NPDES Individual</th><th>Admin Continued</th><th>4952</th><th></th><th>07130005-DAGO SLOUGH</th><th>40.786667</th><th>-90.391667</th><th>04/30/2019</th><th>001-0</th><th>00665-1-0</th><th>Phosphorus, total [as P]</th><th>Effluent Gross</th><th></th><th></th><th></th><th></th><th></th><th>.68</th><th>mg/L</th><th>N</th><th>N</th><th>5/14/2019</th><th>BAS</th><th>ENF</th></th<>	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.68	mg/L	N	N	5/14/2019	BAS	ENF
Alter Alter <th< td=""><td>IL0020761</td><td>ABINGDON, CITY OF</td><td>ABINGDON STP, CITY OF</td><td>Knox</td><td>Minor</td><td>Permit NPDES Individual</td><td>Admin Continued</td><td>4952</td><td></td><td>07130005-DAGO SLOUGH</td><td>40.786667</td><td>-90.391667</td><td>03/31/2019</td><td>001-0</td><td>00665-1-0</td><td>Phosphorus, total [as P]</td><td>Effluent Gross</td><td></td><td></td><td></td><td></td><td></td><td>.68</td><td>mg/L</td><td>N</td><td>N</td><td>4/30/2019</td><td>BAS</td><td>ENF</td></th<>	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.68	mg/L	N	N	4/30/2019	BAS	ENF
Line Mathematical Stress Mat	IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.61	mg/L	N	N	3/7/2019	BAS	ENF
Image: bit is an	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	01/31/2019	001-0	00665-1-0	Phosphorus,	Effluent						.57	mg/L	N	N	2/19/2019	BAS	ENF
n N	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	12/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						1	mg/L	N	N	1/7/2019	BAS	ENF
Image: product of the stand sta	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2018	001-0	00665-1-0	Phosphorus,	Effluent						1.8	mg/L	N	N	1/7/2019	BAS	ENF
Image: protect in the stand of the	IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	10/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2.4	mg/L	N	N	11/5/2018	BAS	ENF
max max <td>11 0020761</td> <td>OF ABINGDON CITY</td> <td>CITY OF</td> <td>Knox</td> <td>Minor</td> <td>Individual Permit NPDES</td> <td>Continued</td> <td>4952</td> <td></td> <td>SLOUGH</td> <td>40 786667</td> <td>-90 391667</td> <td>09/30/2018</td> <td>001-0</td> <td>00665-1-0</td> <td>total [as P]</td> <td>Gross</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td>ma/l</td> <td>N</td> <td>N</td> <td>10/4/2018</td> <td>BAS</td> <td>ENF</td>	11 0020761	OF ABINGDON CITY	CITY OF	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH	40 786667	-90 391667	09/30/2018	001-0	00665-1-0	total [as P]	Gross						11	ma/l	N	N	10/4/2018	BAS	ENF
No. 0 Gale Mar. Organ Mar. Mar. <td>11.0020761</td> <td></td> <td></td> <td>Knox</td> <td>Minor</td> <td>Individual Permit</td> <td>Continued</td> <td>4052</td> <td></td> <td>SLOUGH</td> <td>40 796667</td> <td>00 201667</td> <td>09/21/2019</td> <td>001.0</td> <td>00665 1 0</td> <td>total [as P]</td> <td>Gross</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>N</td> <td>N</td> <td>0/4/2018</td> <td>BAS</td> <td>ENE</td>	11.0020761			Knox	Minor	Individual Permit	Continued	4052		SLOUGH	40 796667	00 201667	09/21/2019	001.0	00665 1 0	total [as P]	Gross								N	N	0/4/2018	BAS	ENE
LALCOR PRICOL N View View View View <	120020761	OF	CITY OF	Knox	Mirior	Individual Permit	Continued	4952		SLOUGH	40.780007	-90.391067	08/31/2018	001-0	00005-1-0	total [as P]	Gross						4	mg/L	IN .	N	9/4/2018	BAS	ENF
Line Line Note Note <th< td=""><td>IL0020761</td><td>ABINGDON, CITY OF</td><td>ABINGDON STP, CITY OF</td><td>Knox</td><td>Minor</td><td>NPDES Individual Permit</td><td>Admin Continued</td><td>4952</td><td></td><td>07130005-DAGO SLOUGH</td><td>40.786667</td><td>-90.391667</td><td>07/31/2018</td><td>001-0</td><td>00665-1-0</td><td>Phosphorus, total [as P]</td><td>Effluent Gross</td><td></td><td></td><td></td><td></td><td></td><td>2.2</td><td>mg/L</td><td>N</td><td>N</td><td>8/1/2018</td><td>BAS</td><td>ENF</td></th<>	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.2	mg/L	N	N	8/1/2018	BAS	ENF
LIEUC MRECK MRECK <th< td=""><td>IL0020761</td><td>ABINGDON, CITY OF</td><td>ABINGDON STP, CITY OF</td><td>Knox</td><td>Minor</td><td>NPDES Individual Permit</td><td>Admin Continued</td><td>4952</td><td></td><td>07130005-DAGO SLOUGH</td><td>40.786667</td><td>-90.391667</td><td>06/30/2018</td><td>001-0</td><td>00665-1-0</td><td>Phosphorus, total [as P]</td><td>Effluent Gross</td><td></td><td></td><td></td><td></td><td></td><td>3.2</td><td>mg/L</td><td>N</td><td>N</td><td>7/18/2018</td><td>BAS</td><td>ENF</td></th<>	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.2	mg/L	N	N	7/18/2018	BAS	ENF
LIXED MPRODUC	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	6/5/2018	BAS	ENF
LADECH BARCHOON STY BARCHOON STY BARCHOON STY	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	mg/L	N	N	5/1/2018	BAS	ENF
LADING CON MANCOLUS Y No. Parcel Y <td>IL0020761</td> <td>ABINGDON, CITY OF</td> <td>ABINGDON STP, CITY OF</td> <td>Knox</td> <td>Minor</td> <td>NPDES Individual</td> <td>Admin Continued</td> <td>4952</td> <td></td> <td>07130005-DAGO SLOUGH</td> <td>40.786667</td> <td>-90.391667</td> <td>03/31/2018</td> <td>001-0</td> <td>00665-1-0</td> <td>Phosphorus, total [as P]</td> <td>Effluent Gross</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>.74</td> <td>mg/L</td> <td>N</td> <td>N</td> <td>4/10/2018</td> <td>BAS</td> <td>ENF</td>	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.74	mg/L	N	N	4/10/2018	BAS	ENF
Locative Americanie (Life) Mark	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.4	mg/L	N	N	3/8/2018	BAS	ENF
L Marcolan Ma	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.5	mg/L	N	N	2/5/2018	BAS	ENF
Normal Normal<	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						2.3	mg/L	N	N	1/2/2018	BAS	ENF
Action Androm Admin Addition Ad	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2017	001-0	00665-1-0	Phosphorus,	Effluent						2.6	mg/L	N	N	12/5/2017	BAS	ENF
Lot Cirl Or Cirl Or Manual Schule Schule Manual (self)	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	10/31/2017	001-0	00665-1-0	Phosphorus,	Effluent						4.4	mg/L	N	N	11/6/2017	BAS	ENF
OF CITY OF CITY OF CITY OF CITY OF No Admin Scudie Scudie Offer	IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	09/30/2017	001-0	00665-1-0	Phosphorus,	Effluent						4.2	mg/L	N	N	10/5/2017	BAS	ENF
OF CITV OF I Individual Parmit Continued Continit Continitit Continu	IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	08/31/2017	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2.9	mg/L	N	N	9/5/2017	BAS	ENF
OF CITY OF S Individual permit Connuced permit SLOUGH SLOUGH SLOUGH	IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	07/31/2017	001-0	00665-1-0	total [as P] Phosphorus.	Gross						3.1	ma/L	N	N	8/10/2017	BAS	ENF
Locore Off-Section Nick Mind Nick	11.0020761		CITY OF	Knov	Minor	Individual Permit	Continued	4052		SLOUGH	40 786667	-90 391667	06/30/2017	001-0	00665-1-0	total [as P]	Gross						2.2	ma/l	N	N	7/6/2017	BAS	ENE
Louzore Asingtable (Ling Asingtable) (Ling	120020701	OF	CITY OF		Minior	Individual Permit	Continued	4352		SLOUGH	40.700007	-30.331007	05/04/0017	001-0	00005-1-0	total [as P]	Gross						2.2	ing/L			0/4/0047		
L0020761 ABINGDON, STP, CITY OF Knox Minor NPDES Admin- Continued 4952 O'' 30005-DAGO 40.78667 -90.39167 04/30/2017 001-0 00665-10 Phosphorus, total [as P] Effluent Gross Effluent Gross <th< td=""><td>IL0020761</td><td>OF</td><td>CITY OF</td><td>Knox</td><td>Minor</td><td>Individual Permit</td><td>Continued</td><td>4952</td><td></td><td>SLOUGH</td><td>40.786667</td><td>-90.391667</td><td>05/31/2017</td><td>001-0</td><td>00665-1-0</td><td>total [as P]</td><td>Gross</td><td></td><td></td><td></td><td></td><td></td><td>.93</td><td>mg/L</td><td>N</td><td>N</td><td>6/1/2017</td><td>BAS</td><td>ENF</td></th<>	IL0020761	OF	CITY OF	Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40.786667	-90.391667	05/31/2017	001-0	00665-1-0	total [as P]	Gross						.93	mg/L	N	N	6/1/2017	BAS	ENF
LL0202761 ABINGDON, CITY OF ABINGDON, STP, CITY OF Knox Minor NPDES Individual Permit Admin continued Permit 4952 O 713005-DAGO SLOUGH 40.78667 90.391667 01-0 0065-1-0 total [a P] Phosphorus, total [a P] Effluent Gross C I N 5/23/2017 N N S/23/2017 BAS ENF LL0020761 ABINGDON, CITY OF ABINGDON STP, CITY OF Minor Minor NPDES No Admin Permit 4952 0713005-DAGO SLOUGH 40.786667 90.391667 01-0 0065-1-0 Phosphorus, total [a P] Effluent Gross C C C 1.6 N N N S/23/2017 BAS ENF LL0020761 ABINGDON, CITY OF ABINGDON STP, CITY OF Minor Ninor N/2005 Admin Continued 4952 07130005-DAGO SLOUGH 40.786667 90.391667 01-0 0665-1-0 Phosphorus, total [a P] Effluent Gross C C C 1.6 N N N N N N N N N N N N N N N N N N	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.59	mg/L	N	N	5/23/2017	BAS	ENF
IL0020761 ABINGDON, CITY OF ABINGDON, STP, CITY OF Knox Mior NPDES Individual Permit Admin Continued 4952 O 7130005-DAGO SLOUGH 40.786667 -90.391667 01-0 0065-1-0 Phosphorus, total [as P] Effluent Gross C Image: Continued N 3/2/2017 BAS Effluent Gross IL0020761 ABINGDON, CITY OF Mior Nior NPDES Individual Continued Admin Continued 4952 0.7130005-DAGO SLOUGH -90.391667 -90	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.5	mg/L	N	N	5/23/2017	BAS	ENF
ILD020761 ABINGDON, CITY OF Minor NPDEs longue Admin on transmission Admin SLOUGH 4952 Or 130005-DAGO SLOUGH 01/31/2017 001-0 0665-1-0 Phosphorus, total [as P] Effluent Gross Gross Effluent Gross Gross Admin Gross Minor N N N N N N BAS ENF	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	3/2/2017	BAS	ENF
	IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	2/13/2017	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	/ Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % of exced.	Quantity 1 Qu 2	uantity	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	f Limit Type Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.8	mg/L	N	Exists N	1/7/2017	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	12/5/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.66	mg/L	N	N	11/1/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.79	mg/L	N	N	10/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						1.9	mg/L	N	N	9/12/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	07/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						.78	mg/L	N	N	8/8/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	06/30/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.4	mg/L	N	N	7/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	05/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						.61	mg/L	N	N	6/6/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	04/30/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.3	mg/L	N	N	5/3/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin	4952		07130005-DAGO	40.786667	-90.391667	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						1.6	mg/L	N	N	4/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin	4952		07130005-DAGO	40.786667	-90.391667	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						1	mg/L	N	N	3/1/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin	4952		07130005-DAGO	40.786667	-90.391667	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.99	mg/L	N	N	2/9/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.42	mg/L	N	N	1/19/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						1.9	mg/L	N	N	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						2.4	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.3	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	mg/L	N	N	9/7/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.72	mg/L	N	N	9/7/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	Y	9/7/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	6/6/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952	_	07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.1	mg/L	N	N	5/5/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	mg/L	N	N	4/13/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	3/4/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	2/10/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/31/2020	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/3/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/7/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.35	mg/L	N	N	10/15/2019	BAS	ENF
	1	1				1	1	1	1		1	1		1	1	1		I		1	1		1	1	1		1	

NPDES ID	Permit Name	Facility Name	County	/ Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Qu 2	uantity	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	i Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change Code Limit Status Code	e of Limit Type Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/6/2019	BAS	B ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/27/2019	BAS	S ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2019	003-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	7/11/2019	BAS	6 ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	05/31/2019	003-0	00665-1-0	Phosphorus,	Effluent						.27	mg/L	N	N	7/1/2019	BAS	6 ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	04/30/2019	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	5/14/2019	BAS	S ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	03/31/2019	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	4/30/2019	BAS	6 ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	02/28/2019	003-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	3/7/2019	BAS	S ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	01/31/2019	003-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	2/19/2019	BAS	6 ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	12/31/2018	003-0	00665-1-0	total [as P] Phosphorus.	Gross						NODI C	ma/L	N	N	1/7/2019	BAS	S ENF
11.0020761		CITY OF	Knov	Minor	Individual Permit	Continued	4052		SLOUGH	40 786667	-90 391667	11/30/2018	003-0	00665-1-0	total [as P]	Gross							mg/l	N	N	1/7/2019	BAS	S ENE
120020701			Know	Minor	Individual Permit	Continued	4352		SLOUGH	40.700007	-50.551007	10/2010	003-0	00005-1-0	total [as P]	Gross						NODIC	mg/L		N	11//2013		
IL0020761	OF	CITY OF	Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40.786667	-90.391667	10/31/2018	003-0	00665-1-0	total [as P]	Gross						NODIC	mg/L	N	N	11/5/2018	BAS	> ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/4/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/4/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/1/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Pormit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/18/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/5/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/1/2018	BAS	6 ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/10/2018	BAS	S ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/8/2018	BAS	6 ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2018	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/5/2018	BAS	S ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2017	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/2/2018	BAS	6 ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2017	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	12/5/2017	BAS	S ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	10/31/2017	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	11/6/2017	BAS	6 ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	09/30/2017	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	10/5/2017	BAS	S ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	08/31/2017	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	9/5/2017	BAS	6 ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	07/31/2017	003-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	8/10/2017	BAS	S ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	06/30/2017	003-0	00665-1-0	total [as P] Phosphorus.	Gross Effluent						NODI C	mg/L	N	N	7/6/2017	BAS	6 ENF
0020761			Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40 786667	-90 391667	05/31/2017	003-0	00665-1-0	total [as P]	Gross						NODIC	ma/l	N	N	6/1/2017	RAC	S FNF
120020701	OF	CITY OF			Individual Permit	Continued	-332		SLOUGH		00.001007	00/01/2017	000-0	00000-1-0	total [as P]	Gross							ing/L			5/1/2017		

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Q 2	Quantity	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change Code Limit Status Code	of Limit Type Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2017	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/23/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952	_	07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2017	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/23/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2017	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/2/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	01/31/2017	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	2/13/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	12/31/2016	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	1/7/2017	BAS	ENF
IL0020761	OF ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2016	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	12/5/2016	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	10/31/2016	003-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	11/1/2016	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40,786667	-90.391667	09/30/2016	003-0	00665-1-0	total [as P]	Gross						.34	ma/L	N	N	10/4/2016	BAS	ENF
10020761			Knox	Minor	Individual Permit	Continued	4052		SLOUGH	40 796667	00.201667	09/21/2016	003.0	00665 1 0	total [as P]	Gross						NODLC	mg/l	N	N	0/12/2016	BAS	ENE
120020761	OF	CITY OF	Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40.786667	-90.391067	08/31/2016	003-0	00005-1-0	total [as P]	Gross						NODIC	mg/L	IN	IN	9/12/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/8/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/6/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/3/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/29/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/1/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2016	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/9/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2015	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.21	mg/L	N	N	1/19/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2015	003-0	00665-1-0	Phosphorus,	Effluent						.36	mg/L	N	N	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	10/31/2015	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	09/30/2015	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	OF ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	08/31/2015	003-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	9/7/2015	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	07/31/2015	003-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						.22	mg/L	N	N	9/7/2015	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	06/30/2015	003-0	00665-1-0	total [as P] Phosphorus.	Gross						.33	ma/L	N	Y	9/7/2015	BAS	ENF
11.0020761		CITY OF	Knov	Minor	Individual Permit	Continued	/052		SLOUGH	40 786667	-90 391667	05/31/2015	003-0	00665-1-0	total [as P]	Gross						NODLC	mg/l	N	N	6/6/2015	BAS	ENE
1.0020701	OF	CITY OF		Minut	Individual Permit	Continued	+352		SLOUGH	40.700007	00.001007	04/20/2015	000-0	00005 1 0	total [as P]	Gross						NODIO	ing/L		·N	5/0/2013	DA0	
120020761	OF	CITY OF	KNOX	WINOr	NPDES Individual Permit	Aamin Continued	4952		SLOUGH	40.786667	-90.391667	04/30/2015	003-0	00005-1-0	Phosphorus, total [as P]	Gross						NODIC	mg/L	N	N	5/5/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2015	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/13/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2015	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/4/2015	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2015	003-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/10/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Q	Quantity 2	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change Code Limit Status Code	of Limit Type Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/31/2020	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/3/2019	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						.76	mg/L	N	N	11/7/2019	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	09/30/2019	A01-0	00665-1-0	Phosphorus,	Effluent						.54	mg/L	N	N	10/15/2019	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	08/31/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	10/6/2019	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	07/31/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	8/27/2019	BAS	ENF
IL0020761	OF ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	06/30/2019	A01-0	00665-1-0	total [as P] Phosphorus,	Effluent						.25	mg/L	N	N	7/11/2019	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	05/31/2019	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						.61	mg/L	N	N	7/1/2019	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	04/30/2019	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						.55	mg/L	N	N	5/14/2019	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	03/31/2019	A01-0	00665-1-0	total [as P] Phosphorus.	Gross						.67	ma/L	N	N	4/30/2019	BAS	ENF
11 0020761		CITY OF	Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40 786667	-90 391667	02/28/2019	A01-0	00665-1-0	total [as P]	Gross						54	mg/l	N	N	3/7/2019	BAS	ENE
10020701			Know	Minor	Individual Permit	Continued	4052		SLOUGH	40.700007	00.001007	01/20/2010	401.0	000005 1 0	total [as P]	Gross						.04	mg/L		N	0/1/2010		
120020761	OF	CITY OF	Knox	Minor	Individual Permit	Continued	4952		SLOUGH	40.780007	-90.391067	01/31/2019	A01-0	00005-1-0	total [as P]	Gross						.59	mg/L	IN	IN	2/19/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Gross						.54	mg/L	N	N	1/7/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/7/2019	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.51	mg/L	N	N	11/5/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.54	mg/L	N	N	10/4/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/4/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/1/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/18/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/5/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/1/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.5	mg/L	N	N	4/10/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/28/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.4	mg/L	N	N	3/8/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/5/2018	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	12/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/2/2018	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	11/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/5/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	10/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	11/6/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	09/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	10/5/2017	BAS	ENF
	UF	CITY OF			Permit	Continued			SLOUGH						total [as P]	Gross												

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % (exced.	Quantity 1 Qua 2	antity Q U	Quantity Concentration Inits 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change Code Limit Status Code	of Limit Type Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/5/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/10/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	7/6/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	05/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						.38	mg/L	N	N	6/1/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	04/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent						.59	mg/L	N	N	5/23/2017	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	03/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	5/23/2017	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	02/28/2017	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	3/2/2017	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP,	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	01/31/2017	A01-0	00665-1-0	total [as P] Phosphorus,	Gross						.74	mg/L	N	N	2/13/2017	BAS	ENF
11.0020761		CITY OF	Knox	Minor	Individual Permit NPDES	Continued	4952		SLOUGH	40 786667	-90 391667	12/31/2016	A01-0	00665-1-0	total [as P]	Gross						NODLC	ma/l	N	N	1/7/2017	BAS	FNF
10020701	OF		- Know	Ndin en	Individual Permit	Continued	4052		SLOUGH	40.700007	00.001007	11/20/2010	401.0	000005 4 0	total [as P]	Gross						NODIC				40/5/0040		
120020761	OF	CITY OF	KNOX	Minor	Individual Permit	Continued	4952		SLOUGH	40.780007	-90.391067	11/30/2016	A01-0	00005-1-0	total [as P]	Gross						NODIC	mg/L			12/5/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	10/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.5	mg/L	N	N	11/1/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	09/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.38	mg/L	N	N	10/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Permit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	08/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.56	mg/L	N	N	9/12/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual Pormit	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	07/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.45	mg/L	N	N	8/8/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	06/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	05/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/6/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	04/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	5/3/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	03/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/11/2016	BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	02/29/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/1/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGO SLOUGH	40.786667	-90.391667	01/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent	_					NODI C	mg/L	N	N	2/9/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	12/31/2015	A01-0	00665-1-0	Phosphorus,	Effluent						.29	mg/L	N	N	1/19/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		07130005-DAGO	40.786667	-90.391667	11/30/2015	A01-0	00665-1-0	Phosphorus,	Effluent						.36	mg/L	N	N	1/4/2016	BAS	ENF
IL0020761	ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit	Admin	4952		07130005-DAGO	40.786667	-90.391667	10/31/2015	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	OF ABINGDON, CITY	ABINGDON STP,	Knox	Minor	Permit NPDES	Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	09/30/2015	A01-0	00665-1-0	Phosphorus,	Gross Effluent						NODI C	mg/L	N	Y	1/4/2016	BAS	ENF
IL0020761	OF ABINGDON, CITY	CITY OF ABINGDON STP.	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	08/31/2015	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	N	9/7/2015	BAS	ENF
IL0020761	OF ABINGDON. CITY	CITY OF ABINGDON STP	Knox	Minor	Individual Permit NPDES	Continued Admin	4952		SLOUGH 07130005-DAGO	40.786667	-90.391667	07/31/2015	A01-0	00665-1-0	total [as P] Phosphorus	Gross Effluent						.72	ma/L	N	N	9/7/2015	BAS	ENF
0020761			Knov	Minor	Permit	Continued	4052		SLOUGH	40 786667	-00 301667	06/30/2015	A01.0	00665-1.0	total [as P]	Gross						54		N	v	Q/7/201E	DAG	
10020701	OF	CITY OF			Individual Permit	Continued	4902		SLOUGH	40.700007	-90.001007	00/30/2013	A01-0	00005-1-0	total [as P]	Gross						.04	ing/L	N	Г 	0/0/0015	BAS	
1L0020761	OF	CITY OF	KNOX	Minor	Individual Permit	Continued	4952		SLOUGH	40.786667	-90.391667	05/31/2015	AU1-U	00665-1-0	Pnosphorus, total [as P]	Gross						NODIC	mg/L	N	N	6/6/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mind	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
				Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1	2 :	3 1	Units	Vio. Exists	Receipt Vio.	Received Date	Code	Limit Status	Code
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGC SLOUGH	40.786667	-90.391667	04/30/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	5/5/2015		BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	NPDES Individual	Admin Continued	4952		07130005-DAGC SLOUGH	40.786667	-90.391667	03/31/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	4/13/2015		BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGC SLOUGH	40.786667	-90.391667	02/28/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/4/2015		BAS	ENF
IL0020761	ABINGDON, CITY OF	ABINGDON STP, CITY OF	Knox	Minor	Permit NPDES Individual	Admin Continued	4952		07130005-DAGC SLOUGH	40.786667	-90.391667	01/31/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/10/2015		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.48		lb/d		.95		mg/L	N	N	1/8/2020		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.242		lb/d		.89		mg/L	N	N	12/9/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.43		lb/d		.94		mg/L	N	N	11/5/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.269		lb/d		.975		mg/L	N	N	10/7/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.714		lb/d		.96		mg/L	N	N	9/6/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.034		lb/d		.96		mg/L	N	N	8/9/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.873		lb/d		.83		mg/L	N	N	7/9/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.253		lb/d		.966		mg/L	N	N	6/10/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952	_	CREEK 07140204- DOUGLAS	38.41	-89.980833	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.611		lb/d		.97		mg/L	N	Y	10/7/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.07		lb/d		.44		mg/L	N	N	4/25/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.06		lb/d		.53		mg/L	N	N	3/25/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.5		lb/d		.7		mg/L	N	N	2/20/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.59		lb/d		.63		mg/L	N	N	1/21/2019		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.48		lb/d		.45		mg/L	N	N	12/17/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.81		lb/d		.34		mg/L	N	N	11/21/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.66		lb/d		.29		mg/L	N	N	10/15/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.17		lb/d		.36		mg/L	N	N	9/19/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.65		lb/d		.33		mg/L	N	N	8/14/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.53		lb/d		1		mg/L	N	N	7/25/2018		BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	n Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.59		lb/d		.8		mg/L	N	N	7/3/2018		BAS	ENF
IL0020834	VILLAGE OF	VILLAGE OF	St. Clair		Individual Permit	Effective	4952		DOUGLAS CREEK	38.41	-89.980833	03/31/2010	001-0	00665-1-0	Phosphorus, total [as P]	Gross		4.15		lb/d		./4		mg/L	N	Y	0/28/2018		BAS	ENF
IL0020834	VILLAGE OF	VILLAGE OF	St. Clair		Individual Permit	Ellective	4952		DOUGLAS CREEK	38.41	-09.980833	00/00/0012	001-0	00005 1 0	total [as P]	Gross		4.94		ID/d		.99		mg/L	N	Ý	0/00/0010		BAS	ENF
IL0020834	VILLAGE OF	VILLAGE OF	St. Clair	Minor	NPDES Individual Permit	Effective	4952		U/140204- DOUGLAS CREEK	38.41	-89.980833	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Gross		3.94		Ib/d		.87		mg/L	N	Y	6/28/2018		BAS	ENF
1L0020834	VILLAGE OF	VILLAGE OF	St. Clair	Ninor	Individual Permit	Ellective	4952		DOUGLAS CREEK	38.41	-89.980833	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Gross		1.34		ID/d		./4		mg/L	N	Y	4/18/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity Quantity 2 Units	Concentration Con 1 2	ncentration	Concentration Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change o Code Limit Status	of Limit Type Code
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Pormit	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.39	lb/d		1	mg/L	N	Y	4/12/2018	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.14	lb/d		.84	mg/L	N	N	12/27/2017	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.43	lb/d		.94	mg/L	N	N	12/1/2017	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.22	lb/d		.72	mg/L	N	N	10/23/2017	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		1.54	lb/d		.8	mg/L	N	N	9/21/2017	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		07140204-	38.41	-89.980833	07/31/2017	001-0	00665-1-0	Phosphorus,	Effluent		.69	lb/d		.38	mg/L	N	N	8/30/2017	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		07140204-	38.41	-89.980833	06/30/2017	001-0	00665-1-0	Phosphorus,	Effluent		1.39	lb/d		.64	mg/L	N	Y	8/30/2017	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		CREEK 07140204-	38.41	-89.980833	05/31/2017	001-0	00665-1-0	Phosphorus,	Effluent		3.74	lb/d		.61	mg/L	N	Y	8/30/2017	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		DOUGLAS CREEK 07140204-	38.41	-89.980833	04/30/2017	001-0	00665-1-0	Phosphorus,	Gross Effluent		3.09	lb/d		1	mg/L	N	Y	8/30/2017	BAS	ENF
IL0020834	VILLAGE OF SMITHTON,	VILLAGE OF SMITHTON STP,	St. Clair	r Minor	Individual Permit NPDES	Effective	4952		DOUGLAS CREEK 07140204-	38.41	-89.980833	03/31/2017	001-0	00665-1-0	total [as P] Phosphorus,	Gross		2.61	lb/d		.98	mg/L	N	Y	8/30/2017	BAS	ENF
IL0020834	VILLAGE OF	VILLAGE OF SMITHTON STP.	St. Clair	r Minor	Individual Permit NPDES	Effective	4952		DOUGLAS CREEK 07140204-	38.41	-89.980833	02/28/2017	001-0	00665-1-0	total [as P] Phosphorus.	Gross		1.68	lb/d		.75	ma/L	N	Y	8/30/2017	BAS	ENF
11.0020834			St. Clair	r Minor	Individual Permit	Effective	4052		DOUGLAS CREEK	29.41	80.080833	01/31/2017	001.0	00665.1.0	total [as P]	Gross		2.34	lb/d		80		N		8/30/2017	PAS	ENE
120020834	VILLAGE OF	VILLAGE OF	St. Clair		Individual Permit	Ellective	4952		DOUGLAS CREEK	30.41	-09.900000	01/31/2017	001-0	00005-1-0	total [as P]	Gross		2.34			.09	IIIg/L			0/44/0047	DAG	ENF
IL0020834	VILLAGE OF	VILLAGE OF	St. Clair	r Minor	Individual Permit	Effective	4952		DOUGLAS CREEK	38.41	-89.980833	12/31/2016	001-0	00665-1-0	total [as P]	Gross		1.59	ID/d		.05	mg/L	N	N	2/14/2017	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.67	lb/d		.65	mg/L	N	N	12/27/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.23	lb/d		1	mg/L	N	Y	12/27/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.02	lb/d		.95	mg/L	N	N	11/10/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual Permit	Effective	4952		07140204- DOUGLAS CREEK	38.41	-89.980833	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.99	lb/d		.81	mg/L	N	Y	11/10/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.04	lb/d		.8	mg/L	N	Y	11/10/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.94	lb/d		.37	mg/L	N	Y	11/10/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.38	lb/d		.43	mg/L	N	N	6/30/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.62	lb/d		.47	mg/L	N	N	5/25/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.82	lb/d		.92	mg/L	N	N	4/24/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.29	lb/d		.78	mg/L	N	N	3/24/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.84	lb/d		1	mg/L	N	N	2/25/2016	BAS	ENF
IL0020834	SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair	r Minor	Permit NPDES Individual	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	68	9.53	lb/d		1.68	mg/L	Y	N	1/25/2016	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	11/30/2015	001-0	00665-1-0	Phosphorus,	Effluent		2.95	lb/d		1	mg/L	N	N	12/24/2015	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		CREEK 07140204-	38.41	-89.980833	10/31/2015	001-0	00665-1-0	Phosphorus,	Effluent		.97	lb/d		.56	mg/L	N	N	11/25/2015	BAS	ENF
IL0020834	SMITHTON,	SMITHTON STP,	St. Clair	r Minor	Permit NPDES	Effective	4952		07140204-	38.41	-89.980833	09/30/2015	001-0	00665-1-0	Phosphorus,	Effluent		.69	lb/d		.41	mg/L	N	N	10/23/2015	BAS	ENF
	VILLAGE OF	VILLAGE OF			Individual Permit				DOUGLAS CREEK						total [as P]	Gross											

NPDES ID	Permit Name	Facility Name	County Major Indica	Minor Permit Typ tor	e Permit Status	Primar SIC Code	y Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change o Code Limit Status	f Limit Type Code
IL0020834	4 SMITHTON, VILLAGE OF	SMITHTON STP, VILLAGE OF	St. Clair Minor	NPDES Individual	Effective	4952		07140204- DOUGLAS	38.41	-89.980833	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.94		lb/d	.72		mg/L	N	Exists N	9/25/2015	BAS	ENF
IL0020834	4 SMITHTON, VILLAGE OF	SMITHTON STP,	St. Clair Minor	Permit NPDES Individual	Expired	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		1.64		lb/d	.68		mg/L	N	N	8/25/2015	BAS	ENF
IL0020834	4 SMITHTON, VILLAGE OF	SMITHTON STP,	St. Clair Minor	Permit NPDES Individual	Expired	4952		CREEK 07140204- DOUGLAS	38.41	-89.980833	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		3.72		lb/d	.84		mg/L	N	N	7/25/2015	BAS	ENF
IL0020834	4 SMITHTON,	SMITHTON STP,	St. Clair Minor	Permit NPDES	Expired	4952		CREEK 07140204- DOLIGLAS	38.41	-89.980833	05/31/2015	6 001-0	00665-1-0	Phosphorus,	Effluent		3.66		lb/d	1		mg/L	N	N	6/18/2015	BAS	ENF
IL0020834	4 SMITHTON,	SMITHTON STP,	St. Clair Minor	Permit NPDES	Expired	4952		07140204-	38.41	-89.980833	04/30/2015	001-0	00665-1-0	Phosphorus,	Effluent		3.4		lb/d	1		mg/L	N	N	5/25/2015	BAS	ENF
IL0020834	4 SMITHTON,	SMITHTON STP,	St. Clair Minor	Permit NPDES	Expired	4952		07140204-	38.41	-89.980833	03/31/2015	001-0	00665-1-0	Phosphorus,	Effluent		3.42		lb/d	.94		mg/L	N	N	4/23/2015	BAS	ENF
IL0020834	4 SMITHTON,	SMITHTON STP,	St. Clair Minor	Permit NPDES	Expired	4952		CREEK 07140204-	38.41	-89.980833	02/28/2015	001-0	00665-1-0	Phosphorus,	Effluent		1.36		lb/d	.57		mg/L	N	N	3/19/2015	BAS	ENF
IL0020834	4 SMITHTON,	SMITHTON STP,	St. Clair Minor	Permit NPDES	Expired	4952		CREEK 07140204-	38.41	-89.980833	01/31/2015	6 001-0	00665-1-0	Phosphorus,	Effluent		2.33		lb/d	.9		mg/L	N	N	2/19/2015	BAS	ENF
IL0020966	6 RIDGE FARM,	RIDGE FARM ST	P, Vermilio Minor	Permit NPDES	Effective	4952		000GLAS CREEK 05120108-	39.923333	-87.655	12/31/2019	001-0	00665-1-0	Phosphorus,	Effluent						NODI 9	mg/L	N	N	1/21/2020	BAS	ENF
	VILLAGE OF	VILLAGE OF	n	Individual Permit				UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER						total [as P]	Gross												
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	12/24/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	10/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	11/24/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	09/30/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	10/22/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	08/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	9/23/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	07/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI 9	mg/L	N	N	8/20/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	06/30/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.6	mg/L	N	N	7/23/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	05/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	mg/L	N	N	6/23/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.9	mg/L	N	N	5/12/2019	BAS	ENF
IL0020966	6 RIDGE FARM, VILLAGE OF	RIDGE FARM ST VILLAGE OF	P, Vermilio Minor n	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	03/31/2019	0 001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.92	mg/L	N	N	4/14/2019	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mir Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Q	Quantity	Quantity Units	Concentration	Concentration 2	Concentration	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type C Code Li St	hange of imit tatus	Limit Type Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.86	mg/L	N	N	3/11/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							1.1	mg/L	N	N	2/9/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	1/21/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	12/23/201	3	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	11/24/201	3	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							1.68	mg/L	N	N	10/19/201	3	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		NVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	9/24/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	8/19/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		NVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	7/15/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		NVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	6/10/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		NVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI 9	mg/L	N	N	5/17/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		O5120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	4/4/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/5/2018		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/5/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mir Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	o Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION BIVER	39.923333	-87.655	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/26/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n) Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION BIVER	39.923333	-87.655	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	12/8/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	11/17/201	7	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	10/20/201	7	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	9/8/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	8/30/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	7/10/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	7/10/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	Y	7/7/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	5/5/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	Y	4/27/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/3/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		KIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/12/201		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STE VILLAGE OF	P, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		KIVER 05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/12/201		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	y Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	I Quantity Quanti 2 Units	ty Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0020966	RIDGE FARM,	RIDGE FARM STP	P, Vermilio	o Minor	NPDES	Effective	4952		05120108- UNNAMED	39.923333	-87.655	10/31/2016	001-0	00665-1-0	Phosphorus, total (as P)	Effluent						NODI C	mg/L	N	Exists Y	1/12/2017		BAS	ENF
					Permit				TRIBUTARY OF LITTLE VERMILION						total [ao 1]														
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Effective	4952		RIVER 05120108- UNNAMED TRIBUTARY OF	39.923333	-87.655	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/9/2016		BAS	ENF
									LITTLE VERMILION RIVER																				
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	11/9/2016		BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STP	P, Vermilio	o Minor	NPDES	Effective	4952		RIVER 05120108-	39.923333	-87.655	07/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	10/18/2016		BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit				UNNAMED TRIBUTARY OF LITTLE VERMILION						total [as P]	Gross													
IL0020966	RIDGE FARM,	RIDGE FARM STP	P, Vermilio	o Minor	NPDES	Effective	4952		RIVER 05120108-	39.923333	-87.655	06/30/2016	001-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	9/28/2016		BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit				UNNAMED TRIBUTARY OF LITTLE VERMILION						total [as P]	Gross													
IL0020966	RIDGE FARM,	RIDGE FARM STP	P, Vermilio	o Minor	NPDES	Effective	4952		05120108-	39.923333	-87.655	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	6/27/2016		BAS	ENF
					Permit				TRIBUTARY OF LITTLE VERMILION RIVER						(ou. (ao 1)	0.000													
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	D Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	6/27/2016		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		RIVER 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.23	lb/y	r				N	N	4/12/2016		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.63	lb/y	r				N	N	4/1/2016		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.43	lb/y	r				N	N	3/2/2016		BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STP	, Vermilio	o Minor	NPDES	Admin	4952	_	VERMILION 05120108-	39.923333	-87.655	12/31/2015	001-0	00665-1-0	Phosphorus,	Effluent		21.97	lb/y	r				N	N	1/22/2016		BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit	Continued			UNNAMED TRIB TO LITTLE VERMILION						total [as P]	Gross													
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE VERMILION	39.923333	-87.655	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		21.71	lb/y	r				N	N	12/29/2015		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	D Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE VERMILION	39.923333	-87.655	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		21.5	lb/y	r				N	N	11/6/2015		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		20.2	lb/y	r				N	N	10/2/2015		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		19.4	lb/y	r				N	N	10/2/2015		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	P, Vermilio n	o Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		18.4	lb/y	r				N	N	8/21/2015		BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STP	P, Vermilio	o Minor	NPDES	Admin	4952	_	VERMILION 05120108-	39.923333	-87.655	06/30/2015	001-0	00665-1-0	Phosphorus,	Effluent		12.7	lb/y	r				N	N	7/2/2015		BAS	ENF
11.0020066			n Vermilio	Minor	Permit	Admin	4052		UNNAMED TRIB TO LITTLE VERMILION	30 000000	_87.655	05/31/2015	001.0	00665.1.0	Total [as P]	Effluent		11	lin 6	r				N	N	6/7/2015		BAS	
120020900	VILLAGE OF	VILLAGE OF	n		Individual Permit	Continued	4902		UNNAMED TRIB TO LITTLE VERMILION	39.923333	-07.000	03/31/2013	001-0	00000-1-0	total [as P]	Gross								IN		0///2013		DAO	LINF

NPDES ID	Permit Name	Facility Name	County	Major Min	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type Change	of Limit Type
				Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1	2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		10.8		lb/yr					N	N	6/7/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.8		lb/yr					N	Y	6/7/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF	P, Vermilio) Minor	NPDES	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5		lb/yr					N	Y	6/5/2015	BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STR	P, Vermilio	o Minor	Permit NPDES	Admin	4952		TO LITTLE VERMILION 05120108-	39.923333	-87.655	01/31/2015	001-0	00665-1-0	Phosphorus,	Effluent		1		lb/yr					N	N	3/20/2015	BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit	Continued			UNNAMED TRIB TO LITTLE VERMILION						total [as P]	Gross													
IL0020966	RIDGE FARM, VILLAGE OF	VILLAGE OF	n, Vermilio	Minor	NPDES Individual Permit	Admin Continued	4952		UNNAMED TRIB TO LITTLE VERMILION	39.923333	-87.655	03/31/2016	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process Complete						1.2	1.3	mg/L	N	N	4/12/2016	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	02/29/2016	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process						1.7	1.8	mg/L	N	N	4/1/2016	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	01/31/2016	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process						1.1	1.2	mg/L	N	N	3/2/2016	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF	P, Vermilio	Minor	NPDES	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	12/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment,						1.9	2.9	mg/L	N	N	1/22/2016	BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STR	P, Vermilio	o Minor	Permit NPDES	Admin	4952		TO LITTLE VERMILION 05120108-	39.923333	-87.655	11/30/2015	001-0	00665-8-0	Phosphorus,	Process Complete Other						3.75	6.5	mg/L	N	N	12/29/2015	BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit	Continued	1050		UNNAMED TRIB TO LITTLE VERMILION		07.055	10/01/0015		00005.0.0	total [as P]	Treatment, Process Complete											11/0/00 15		
IL0020966	RIDGE FARM, VILLAGE OF	VILLAGE OF	n, Vermilio	Minor	NPDES Individual Permit	Admin Continued	4952		UNNAMED TRIB TO LITTLE VERMILION	39.923333	-87.655	10/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process Complete						4.8	5.7	mg/L	N	N	11/6/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	09/30/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process						4	4.1	mg/L	N	N	10/2/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STR VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Admin Continued	4952		05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	08/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process						3.3	3.9	mg/L	N	N	10/2/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	07/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment, Process						1.7	2.3	mg/L	N	N	8/21/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STR VILLAGE OF	P, Vermilic n	o Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	06/30/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment, Process						1.4	1.8	mg/L	N	N	7/2/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	05/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment, Process		_				1.6	2	mg/L	N	N	6/7/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n) Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB TO LITTLE	39.923333	-87.655	04/30/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment, Process						2.9	6	mg/L	N	N	6/7/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STR VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	03/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment, Process						1	1.7	mg/L	N	Y	6/7/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilic n) Minor	NPDES Individual	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	02/28/2015	001-0	00665-8-0	Phosphorus, total [as P]	Other Treatment,						3	4.6	mg/L	N	Y	6/5/2015	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STR VILLAGE OF	P, Vermilio n) Minor	NPDES	Admin Continued	4952		VERMILION 05120108- UNNAMED TRIB	39.923333	-87.655	01/31/2015	001-0	00665-8-0	Phosphorus, total [as P]	Complete Other Treatment,						1.26	1.48	mg/L	N	N	3/20/2015	BAS	ENF
IL0020966	RIDGE FARM,	RIDGE FARM STR	P, Vermilio	o Minor	Permit NPDES	Effective	4952		TO LITTLE VERMILION 05120108-	39.923333	-87.655	12/31/2019	B01-0	00665-EG-0	Phosphorus,	Process Complete Effluent						2.2	2.4	mg/L	N	N	1/21/2020	BAS	ENF
	VILLAGE OF	VILLAGE OF	n		Individual Permit				UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER						total [as P]	Gross													

NPDES ID	Permit Name	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % Qua exced.	antity 1 (Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Cha Code Limi Stat	nge of L t (us	_imit Type Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF	39.923333	-87.655	12/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		8.65		lb/d				N	Exists N	1/21/2020	Cod	BAS	ENF
IL0020966		RIDGE FARM STP,	Vermilio	Minor	NPDES	Effective	4952		VERMILION RIVER 05120108-	39.923333	-87.655	11/30/2019	B01-0	00665-J-1	Phosphorus,	Intermediate		17		lb/d				N	N	12/24/2019	•	BAS	ENF
	VILLAGE OF				Permit				TRIBUTARY OF LITTLE VERMILION RIVER						iolai [as F]	Process Complete													
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	10/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		5		lb/d				N	N	11/24/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		O5120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	09/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		16		lb/d				N	N	10/22/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	08/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		3.5		lb/d				N	N	9/23/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	07/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		4.26		lb/d				N	N	8/20/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	06/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.6		lb/d				N	N	7/23/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	05/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1		lb/d				N	N	6/23/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	04/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.75		lb/d				N	N	5/12/2019	F	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	03/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.77		lb/d				N	N	4/14/2019	F	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	02/28/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.55		lb/d				N	N	3/11/2019	E	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	01/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.9		lb/d				N	N	2/9/2019	E	BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Y	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	12/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.3		lb/d				N	N	1/21/2019		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, VILLAGE OF	Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	11/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.3		lb/d				N	N	12/23/2018		BAS	ENF
NPDES ID	Permit Name	Facility Name	County	Major Mine	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentration Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type	
-----------	---------------------------	------------------------------	------------------	------------	-------------------------------	-----------	-------------	---------------	--	--------------------	--------------------	--------------------	-----------	--------------------	-----------------------------	---	---------	------------	----------	----------	-----------------------------	-----------------------------	----------------	---------------------------	------------------	-----------	-------------------------	------------	
-				Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1 2	3 Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code	Limit Status Code	Code	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	10/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.56		lb/d			N	N	11/24/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	09/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.76		lb/d			N	N	10/19/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	08/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		2.2		lb/d			N	N	9/24/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	07/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.96		lb/d			N	N	8/19/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	06/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.89		lb/d			N	N	7/15/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	05/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.85		lb/d			N	N	6/10/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	04/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		.88		lb/d			N	N	5/17/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	03/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		3.2		lb/d			N	N	4/4/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	02/28/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		4.4		lb/d			N	N	3/5/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	01/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		2		lb/d			N	N	3/5/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	12/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		16.7		lb/d			N	N	1/26/2018		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	11/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		14.7		lb/d			N	N	12/8/2017		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	10/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		11.2		lb/d			N	N	11/17/2017		BAS	ENF	
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STF VILLAGE OF	P, Vermilio n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	09/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		10.2		lb/d			N	N	10/20/2017		BAS	ENF	

NPDES ID	Permit Name	Facility Name Cou	nty Major Mi	nor Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon. Period End	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentration Concentration	Effluent	Non-	DMR Received	Stay Type	Change of	Limit Type
			indicator		Status	Code	Code	Douy	Degrees	Degrees	Date		Season ID		Dest.	exced.		-	onita		o onto	Exists	Vio. Exists	Date	Code	Status Code	Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	08/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	9.2		lb/d			N	N	9/8/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	07/31/2017	7 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	8		lb/d			N	N	8/30/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	06/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	7		lb/d			N	N	7/10/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	05/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	5		lb/d			N	N	7/7/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	04/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	4.3		lb/d			N	Y	7/7/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	03/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	3.2		lb/d			N	N	5/5/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	02/28/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	•	2.1		lb/d			N	Y	4/27/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION BIVER	39.923333	-87.655	01/31/2017	7 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	1		lb/d			N	N	2/3/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	12/31/2016	6 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	•	1220.8		lb/d			N	N	1/12/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	11/30/2016	6 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	1219.4		lb/d			N	N	1/12/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	10/31/2016	6 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	2	1217.6		lb/d			N	Y	1/12/2017		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	09/30/2016	6 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	2	1216.8		lb/d			N	N	11/9/2016		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	08/31/2016	6 B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	1217		lb/d			N	Y	11/9/2016		BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP, Verr VILLAGE OF n	nilio Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION RIVER	39.923333	-87.655	07/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete	3	10.77		lb/d			N	Y	10/18/2016		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	y Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity Quantity 2 Units	Concentration	Concentration 2	Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF	39.923333	-87.655	06/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		8.63	lb/d				N	Exists Y	9/28/2016		Code BAS	ENF
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	, Vermilic n) Minor	NPDES	Effective	4952		VERMILION RIVER 05120108- UNNAMED	39.923333	-87.655	05/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment,	•	6.73	lb/d				N	N	6/27/2016		BAS	ENF
					Permit				LITTLE VERMILION RIVER							Complete												
IL0020966	RIDGE FARM, VILLAGE OF	RIDGE FARM STP VILLAGE OF	, Vermilic n	Minor	NPDES Individual Permit	Effective	4952		05120108- UNNAMED TRIBUTARY OF LITTLE VERMILION	39.923333	-87.655	04/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		5.33	lb/d				N	Y	6/27/2016		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual	Effective	4952		05120114- LITTLE WABASH	38.691667	-88.348333	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.2	lb/d		1.2	mg/L	N	N	1/24/2020		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual	Effective	4952		05120114- LITTLE WABASH	38.691667	-88.348333	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.2	lb/d		1.2	mg/L	N	N	12/19/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH	38.691667	-88.348333	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.2	lb/d		1.2	mg/L	N	N	11/20/2019	1	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.2	lb/d		1.2	mg/L	N	N	10/24/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	lb/d		1	mg/L	N	N	9/24/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.5	lb/d		1.2	mg/L	N	N	8/22/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	lb/d		1.2	mg/L	N	N	7/23/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.5	lb/d		1.2	mg/L	N	N	6/24/2019		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952		05120114- LITTLE WABASH RIVER	38.691667	-88.348333	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Gross		1	Ib/d		1	mg/L	N	N	5/23/2019		BAS	ENF
11.0020974	VILLAGE OF	VILLAGE OF	Clay	Minor	Individual Permit	Effective	4952		LITTLE WABASH RIVER	38 691667	-88 348333	02/28/2019	001-0	00665-1-0	total [as P]	Gross		085	lb/d		085	mg/L	N	N	3/22/2019		BAS	ENE
11.0020974	VILLAGE OF	VILLAGE OF	Clay	Minor	Individual Permit	Effective	4002		LITTLE WABASH RIVER	38 691667	-88 348333	01/31/2019	001-0	00665-1-0	total [as P]	Gross			lb/d		89	mg/L	N	N	2/21/2019		BAS	ENE
IL0020974	VILLAGE OF	VILLAGE OF	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	12/31/2018	001-0	00665-1-0	total [as P]	Gross		1.1	lb/d		1.1	ma/L	N	N	1/25/2019		BAS	ENF
IL0020974	VILLAGE OF CLAY CITY,	VILLAGE OF CLAY CITY,	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	11/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross		1.3	lb/d		1.2	mg/L	N	N	12/21/2018	•	BAS	ENF
IL0020974	VILLAGE OF CLAY CITY,	VILLAGE OF CLAY CITY,	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	10/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		2	lb/d		1.2	mg/L	N	N	11/20/2018		BAS	ENF
IL0020974	VILLAGE OF CLAY CITY,	VILLAGE OF CLAY CITY,	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	09/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		2.2	lb/d		1.2	mg/L	N	N	10/24/2018		BAS	ENF
IL0020974	VILLAGE OF CLAY CITY,	VILLAGE OF CLAY CITY,	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	08/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		2.3	lb/d		< 1.2	mg/L	N	N	9/20/2018		BAS	ENF
IL0020974	VILLAGE OF	CLAY CITY,	Clay	Minor	Individual Permit NPDES	Effective	4952		LITTLE WABASH RIVER 05120114-	38.691667	-88.348333	07/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross		3	lb/d		1.2	mg/L	N	N	8/24/2018		BAS	ENF
IL0020974	CLAY CITY,		Clay	Minor	Permit NPDES	Effective	4952		RIVER 05120114-	38.691667	-88.348333	06/30/2018	001-0	00665-1-0	Phosphorus,	Effluent		2.4	lb/d		1.2	mg/L	N	N	7/24/2018		BAS	ENF
IL0020974	CLAY CITY,	CLAY CITY,	Clay	Minor	Permit NPDES Individual	Effective	4952		RIVER 05120114- LITTLE WARASH	38.691667	-88.348333	05/31/2018	001-0	00665-1-0	Phosphorus,	Effluent		3.2	lb/d		1.2	mg/L	N	N	6/21/2018		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	Permit NPDES Individual	Effective	4952		RIVER 05120114- LITTLE WABASH	38.691667	-88.348333	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	lb/d		1.2	mg/L	N	N	5/24/2018		BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	Permit NPDES Individual	Effective	4952		RIVER 05120114- LITTLE WABASH	38.691667	-88.348333	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.6	lb/d		1.2	mg/L	N	N	4/25/2018		BAS	ENF
					Permit				RIVER																			1

NPDES ID	Permit Name	Facility Name	County	y Major Min	or Permit Type	Permit	Primary F	Primary State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentration Concentratio	n Effluen	t Non-	DMR	Stay Type Change o	of Limit Type
				Indicator		Status	SIC N Code (IAICS Body Code	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1 2	3 Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Effective	4952	05120114- LITTLE WABAS RIVER	38.691667 H	-88.348333	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.6		lb/d	1.2	mg/L	N	N	3/23/2018	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual	Effective	4952	05120114- LITTLE WABAS	38.691667 H	-88.348333	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.095		lb/d	.095	mg/L	N	N	2/15/2018	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual	Effective	4952	05120114- LITTLE WABAS	38.691667 H	-88.348333	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1		lb/d	1	mg/L	N	N	1/24/2018	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	Permit NPDES Individual	Effective	4952	RIVER 05120114- LITTLE WABAS	38.691667	-88.348333	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	.095		lb/d	.095	mg/L	N	N	12/20/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	Permit NPDES Individual	Effective	4952	RIVER 05120114- LITTLE WABAS	38.691667	-88.348333	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.1		lb/d	< 1.2	mg/L	N	N	11/22/2017	BAS	ENF
IL0020974	CLAY CITY,	CLAY CITY,	Clay	Minor	Permit NPDES Individual	Effective	4952	RIVER 05120114-	38.691667	-88.348333	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		1.8		lb/d	< 1.2	mg/L	N	N	10/16/2017	BAS	ENF
IL0020974	CLAY CITY,	CLAY CITY,	Clay	Minor	Permit NPDES	Effective	4952	RIVER 05120114-	38.691667	-88.348333	08/31/2017	001-0	00665-1-0	Phosphorus,	Effluent		1.6		lb/d	< 1.2	mg/L	N	N	9/22/2017	BAS	ENF
IL0020974	CLAY CITY,	CLAY CITY,	Clay	Minor	Permit NPDES	Admin	4952	RIVER 05120114-	38.691667	-88.348333	07/31/2017	001-0	00665-1-0	Phosphorus,	Effluent					1.3	1.3 mg/L	N	N	8/23/2017	BAS	ENF
	VILLAGE OF	VILLAGE OF			Permit	Conunded		DITCH TRIB TC LTL WABASH RV						lotal [as P]	Gross											
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.3	1.3 mg/L	N	N	7/20/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.85	.85 mg/L	N	N	6/23/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.98	.98 mg/L	N	N	5/15/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.7	1.7 mg/L	N	N	4/21/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.6	1.6 mg/L	N	N	3/21/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.9	1.9 mg/L	N	N	2/21/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.3	1.3 mg/L	N	N	1/23/2017	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.3	1.3 mg/L	N	N	12/19/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.9	.9 mg/L	N	N	11/14/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.97	.97 mg/L	N	N	10/24/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.2	1.2 mg/L	N	N	9/23/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952	05120114- UNNAMED DITCH TRIB TC LTL WABASH RV	38.691667	-88.348333	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.5	1.5 mg/L	N	N	8/19/2016	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	y Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantity Quanti 2 Units	ty Concentratio 1	n Concentration 2	Concentratio 3	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status Code	Limit Type Code
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.6	1.6	mg/L	N	N	7/20/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.1	1.1	mg/L	N	N	6/16/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.86	.86	mg/L	N	N	5/17/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1	1	mg/L	N	N	4/11/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.2	1.2	mg/L	N	N	3/23/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.56	.56	mg/L	N	N	2/17/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.97	.97	mg/L	N	N	1/19/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.7	1.7	mg/L	N	N	12/18/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.68	.68	mg/L	N	Y	10/3/2016	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.68	.68	mg/L	N	N	11/24/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				3.1	3.1	mg/L	N	N	9/15/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH	38.691667	-88.348333	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.1	1.1	mg/L	N	N	7/17/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2	2	mg/L	N	N	8/20/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.6	1.6	mg/L	N	N	6/15/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2	2	mg/L	N	N	5/15/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.95	.95	mg/L	N	N	4/14/2015	BAS	ENF
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.9	1.9	mg/L	N	N	3/17/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	y Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change Code Limit Status	of Limit Type Code
IL0020974	CLAY CITY, VILLAGE OF	CLAY CITY, VILLAGE OF	Clay	Minor	NPDES Individual Permit	Admin Continued	4952		05120114- UNNAMED DITCH TRIB TO LTL WABASH RV	38.691667	-88.348333	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.1	1.1	mg/L	N	N	2/17/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.6	lb/d	.1	.11	mg/L	N	N	1/16/2020	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.5	lb/d	.08	.08	mg/L	N	N	12/13/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.3	.3	lb/d	.06	.06	mg/L	N	N	11/8/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.2	.2	lb/d	.07	.08	mg/L	N	N	10/18/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.2	.2	lb/d	.05	.05	mg/L	N	N	9/23/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	' McLeai	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.6	.7	lb/d	.08	.09	mg/L	N	N	8/22/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.6	.6	lb/d	.06	.07	mg/L	N	N	7/23/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1	1.1	lb/d	.06	.08	mg/L	N	N	6/24/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.3	2.1	lb/d	.11	.18	mg/L	N	N	5/23/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	.7	lb/d	.07	.07	mg/L	N	N	4/25/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.7	1.8	lb/d	.14	.14	mg/L	N	N	3/25/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.1	1.6	Ib/d	.12	.15	mg/L	N	N	2/11/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.2	1.8	Ib/d	.14	.2	mg/L	N	N	1/21/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	2.2	Ib/d	.2	.3	mg/L	N	N	1/2/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.9	.9	Ib/d	.1	.11	mg/L	N	N	11/20/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	.7	Ib/d	.12	.13	mg/L	N	N	10/25/2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min	or Permit Type	Permit Status	Primary SIC	Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 2	on Concentratio	n Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Change of Code Limit	of Limit Type Code
							Code	Code		Degrees	Degrees	Date		Season ID										Exists	Vio. Exists	Date	Status Code	
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	.9	lb/d	.18	.22	mg/L	N	N	9/25/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.9	1.1	lb/d	.15	.16	mg/L	N	N	8/22/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.4	lb/d	.12	.13	mg/L	N	N	7/24/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.6	2.5	lb/d	.27	.39	mg/L	N	N	6/26/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.9	2.9	lb/d	.18	.25	mg/L	N	N	5/30/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.6	3.5	lb/d	.27	.31	mg/L	N	N	5/15/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.6	1.9	lb/d	.47	.57	mg/L	N	N	3/22/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.5	1.5	lb/d	.48	.48	mg/L	N	N	2/20/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.5	2.2	lb/d	.39	.54	mg/L	N	N	1/2/2018	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.6	.8	lb/d	.19	.26	mg/L	N	N	12/14/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.5	lb/d	.15	.21	mg/L	N	N	11/28/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.1	.2	lb/d	.05	.08	mg/L	N	N	10/24/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.1	.2	lb/d	.06	.1	mg/L	N	N	9/25/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.2	.3	lb/d	.09	.12	mg/L	N	N	8/3/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.8	lb/d	.1	.16	mg/L	N	N	7/24/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.5	.8	lb/d	.07	.11	mg/L	N	N	6/21/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean	Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	3.1	lb/d	.25	.25	mg/L	N	N	5/31/2017	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	/ Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % C exced.	Quantity 1	Quantity 2	Quantity Units	Concentration 0 1 2	Concentration	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.3	1.5	lb/d		.23	.27	mg/L	N	N	4/21/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.7	2	lb/d		.27	.33	mg/L	N	N	3/1/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.7	4.3	lb/d		.32	.45	mg/L	N	N	2/1/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	4.2	lb/d		.39	.51	mg/L	N	N	1/10/2017	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.4	.4	lb/d		.15	.16	mg/L	N	N	12/1/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.1	1.3	lb/d		.23	.25	mg/L	N	N	11/2/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3	2.6	lb/d		.28	.32	mg/L	N	N	10/26/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.8	2.2	lb/d		.23	.27	mg/L	N	N	9/26/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.3	1.6	lb/d		.2	.25	mg/L	N	N	8/24/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.7	2.6	lb/d		.28	.37	mg/L	N	N	7/25/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	1.6	lb/d		.2	.22	mg/L	N	N	6/22/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.6	3.2	lb/d		.29	.33	mg/L	N	N	5/17/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3	3.3	lb/d		.34	.39	mg/L	N	N	4/22/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.3	4.9	lb/d		.6	.64	mg/L	N	N	3/7/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.7	3.8	lb/d		.39	.43	mg/L	N	N	2/12/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	3	lb/d		.28	.32	mg/L	N	N	1/14/2016	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	1.1	lb/d		.17	.26	mg/L	N	N	12/17/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	Count	y Major Min	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type Change of	of Limit Type
		-		Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units 1	2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.9	1.7	lb/d	.18	.3	mg/L	N	N	11/24/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.9	1.1	lb/d	.19	.22	mg/L	N	N	10/30/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1	1.1	lb/d	.17	.2	mg/L	N	N	9/29/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.8	3	lb/d	.16	.23	mg/L	N	N	8/25/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.4	2.3	lb/d	.13	.21	mg/L	N	N	7/28/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.1	2.8	lb/d	.22	.27	mg/L	N	N	7/21/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	.7	lb/d	.08	.08	mg/L	N	Y	7/17/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	4.2	lb/d	.44	.56	mg/L	N	N	5/11/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.3	6.9	lb/d	.7	.8	mg/L	N	Y	5/11/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Admin Continued	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	3.7	lb/d	.55	.89	mg/L	N	N	3/16/2015	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/15/2020	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	12/13/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.57	mg/L	N	N	11/8/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/17/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	(McLea	Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/23/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	IN Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/22/2019	BAS	ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	/ McLea	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.19	mg/L	N	N	7/23/2019	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mino Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity	Quantity Conce Units 1	entration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change Code Limit Status	e of Limit Type Code
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							1.43	mg/L	N	N	6/24/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.19	mg/L	N	N	5/23/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.16	mg/L	N	N	4/25/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.16	mg/L	N	N	3/25/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.44	mg/L	N	N	2/11/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.5	mg/L	N	N	1/21/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/2/2019	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.83	mg/L	N	N	11/20/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	09/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	10/25/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	08/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	9/25/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	07/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	8/22/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	06/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	7/24/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	05/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	6/26/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	04/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.55	mg/L	N	N	5/30/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	03/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							1.23	mg/L	N	N	5/15/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	02/28/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.98	mg/L	N	N	3/22/2018	BAS	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLean Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	01/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/20/2018	BAS	S ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % Quantit exced.	ty 1 Quantity 2	Quantity Concentration Units 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Chang Code Limit Status	e of Limit Type Code
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	12/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N N	1/2/2018	BA	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	11/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.1	mg/L	N	N	12/14/2017	BA	S ENF
IL0021563	LEROY, CITY OF	LEROY STP, CITY OF	McLear	n Minor	NPDES Individual Permit	Effective	4952		07130009- UNMAMED TRIB OF N FORK SALT CREEK	40.34	-88.755	10/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	11/28/2017	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.064	lb/d		.031	mg/L	Y	N	1/21/2020	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.065	lb/d		.03	mg/L	Y	N	12/26/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.052	lb/d		.033	mg/L	Y	N	10/22/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.052	lb/d		.033	mg/L	Y	N	10/30/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.055	lb/d		.035	mg/L	Y	N	9/23/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.068	lb/d		.041	mg/L	Y	N	8/27/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.038	Ib/d		.038	mg/L	Y	N	7/22/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.026	Ib/d		.016	mg/L	Y	N	7/8/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.032	lb/d		.05	mg/L	Y	N	5/21/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.038	lb/d		.024	mg/L	Y	N	4/18/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	D Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650	.036	lb/d		.024	mg/L	Y	N	3/25/2019	BA	S ENF

NPDES ID	Permit Name	Facility Name	County Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary State Water NAICS Body Code	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratior 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change Code Limit Status Code	e of Limit Type Code
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.058	lb/d		.096	mg/L	Y	N	2/21/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.1	lb/d		.06	mg/L	Y	N	1/16/2019	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.033	lb/d		.018	mg/L	Y	N	12/21/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.081	lb/d		.036	mg/L	Y	N	11/24/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.05	lb/d		.029	mg/L	Y	N	10/22/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.017	lb/d		.016	mg/L	Y	N	9/18/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.05	lb/d		.029	mg/L	Y	N	8/23/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			0	lb/d		0	mg/L	N	N	7/23/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.09	lb/d		.046	mg/L	Y	N	6/20/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.044	lb/d		.024	mg/L	Y	N	5/17/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.086	lb/d		.069	mg/L	Y	N	4/17/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.06	lb/d		.044	mg/L	Y	N	3/21/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.044	lb/d		.028	mg/L	Y	N	2/23/2018	BA	S ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.032	lb/d		.023	mg/L	Y	N	1/20/2018	BA	S ENF

NPDES ID	Permit Name	Facility Name	County Major Mind Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary State W NAICS Body Code	ter Latit Deci Degi	tude in L imal D rees D	_ongitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratior 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Fxists	DMR Received Date	Stay Type Change Code Limit Status Code	of Limit Type Code
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	10.46	-87.68	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.038	lb/d		.021	mg/L	Y	N	12/18/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	10.46	-87.68	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.07	lb/d		.042	mg/L	Y	N	11/18/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.07	lb/d		.041	mg/L	Y	N	10/20/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.06	lb/d		.028	mg/L	Y	N	9/20/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.02	lb/d		.016	mg/L	Y	N	8/17/2017	BAS	ENF
IL0022250) TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.044	lb/d		.028	mg/L	Y	N	7/31/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	2147483650)	.032	lb/d		.016	mg/L	Y	N	6/26/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.038	lb/d		.021	mg/L	N	N	5/16/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.016	lb/d		.02	mg/L	N	N	4/19/2017	BAS	ENF
IL0022250) TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.017	lb/d		.011	mg/L	N	N	3/17/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	10.46	-87.68	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.02	lb/d		.014	mg/L	N	N	2/17/2017	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	10.46	-87.68	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.021	lb/d		.04	mg/L	N	N	1/16/2017	BAS	ENF
IL0022250) TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.018	lb/d		.011	mg/L	N	N	12/16/2016	BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	0512010 UNNAM TO HOC BRANCI STORM	D TRIB PESTON VIA SEWER	40.46	-87.68	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.06	lb/d		.032	mg/L	N	N	11/16/2016	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mind Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary State NAICS Body Code	Water La De De	atitude in ecimal egrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change Code Limit Status Code	of Limit Type Code
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.09	lb/d		.054	mg/L	N	N	10/15/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.034	lb/d		.062	mg/L	N	N	9/15/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.1	lb/d		.092	mg/L	N	N	8/15/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.128	lb/d		.067	mg/L	N	N	7/15/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.11	lb/d		.1	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			< .134	lb/d		< .095	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.135	lb/d		.09	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.145	lb/d		.092	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.046	lb/d		.037	mg/L	N	N	5/25/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.068	lb/d		.043	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.046	lb/d		.031	mg/L	N	N	5/25/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.06	lb/d		.04	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.2	lb/d		.12	mg/L	N	N	6/13/2016	BAS	ENF
IL0022250	0 TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio Minor n	NPDES Individual Permit	Effective	2033	05120 UNNA TO HO BRAN STOR	0109- AMED TRIB OOPESTON NCH VIA RM SEWER	40.46	-87.68	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			< .034	lb/d		.026	mg/L	N	N	6/13/2016	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration 1	Concentration C 2 3	Concentration	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0022250	TEASDALE	TEASDALE	Vermilio	Minor	NPDES	Effective	2033		05120109-	40.46	-87.68	07/31/2015	001-0	00665-1-0	Phosphorus.	Effluent			.015	lb/d			.012	mg/L	N	Exists	6/13/2016		Code BAS	ENF
	FOODS INC	FOODS INC	n		Individual Permit				UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	10.10	0.00				total [as P]	Gross											0,10,2010		2,10	
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.073	lb/d			.085	mg/L	N	N	6/13/2016		BAS	ENF
IL0022250	TEASDALE FOODS INC	TEASDALE FOODS INC	Vermilio n	Minor	NPDES Individual Permit	Effective	2033		05120109- UNNAMED TRIB TO HOOPESTON BRANCH VIA STORM SEWER	40.46	-87.68	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross			.027	lb/d			.029	mg/L	N	N	6/13/2016		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross								mg/L	N	Y			BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	1/29/2020		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	11/9/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952	_	CREEK 07130011- SEMINARY	39.418333	-90.403333	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	11/8/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	10/10/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	8/11/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	8/11/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	6/25/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	5/25/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	3/23/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	3/23/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	2/23/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	1/25/2019		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	12/3/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	10/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	10/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	9/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	Y	8/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	7/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	4/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	_				NODI C		mg/L	N	N	4/25/2018		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP, CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C		mg/L	N	N	3/24/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	y Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3 Units	Effluen Vio. Exists	t Non- Receipt Vio. Exists	DMR Received Date	Stay Type Change c Code Limit Status Code	of Limit Type Code
IL0022390	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	3/24/2018	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	2/10/2018	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	12/5/2017	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	11/25/2017	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	11/23/2017	BAS	ENF
IL0022390	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent					NODI C	mg/L	N	N	10/11/2017	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent					NODI C	mg/L	N	N	8/25/2017	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent					NODI C	mg/L	N	N	7/25/2017	BAS	ENF
IL002239	0 WHITE HALL,	WHITE HALL STF	P, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	05/31/2017	001-0	00665-1-0	Phosphorus,	Effluent					NODI C	mg/L	N	N	7/5/2017	BAS	ENF
IL002239	0 WHITE HALL,	WHITE HALL STF	P, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	04/30/2017	001-0	00665-1-0	Phosphorus,	Effluent					NODI C	mg/L	N	Y	7/5/2017	BAS	ENF
IL0022390	0 WHITE HALL,	WHITE HALL STF	P, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	03/31/2017	001-0	00665-1-0	Phosphorus,	Effluent					NODI C	mg/L	N	N	4/25/2017	BAS	ENF
IL002239	0 WHITE HALL,	WHITE HALL STF	P, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent					NODI C	mg/L	N	Y	4/25/2017	BAS	ENF
IL002239	0 WHITE HALL,	WHITE HALL STF	P, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	01/31/2017	001-0	00665-1-0	total [as P] Phosphorus,	Effluent					NODI C	mg/L	N	N	3/14/2017	BAS	ENF
IL0022390	0 WHITE HALL,	CITY OF WHITE HALL STF	P, Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	12/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent					NODI C	mg/L	N	N	1/25/2017	BAS	ENF
IL002239	CITY OF 0 WHITE HALL,	CITY OF WHITE HALL STF	P, Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	11/30/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent					NODI C	mg/L	N	N	11/12/2016	BAS	ENF
IL002239	CITY OF 0 WHITE HALL,	CITY OF WHITE HALL STF	P, Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	10/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent					NODI C	mg/L	N	N	10/25/2016	BAS	ENF
IL0022390	CITY OF	CITY OF	P, Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	09/30/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent					NODI C	mg/L	N	N	10/25/2016	BAS	ENF
IL0022390	CITY OF	CITY OF	P. Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39,418333	-90.403333	08/31/2016	001-0	00665-1-0	total [as P]	Gross					NODIC	ma/L	N	N	9/24/2016	BAS	ENF
11 002239		CITY OF	Greene	- Minor	Individual Permit	Effective	4952		SEMINARY CREEK	39 418333	-90 403333	07/31/2016	001-0	00665-1-0	total [as P]	Gross					NODLC	ma/l	N	N	8/25/2016	BAS	ENE
11.0022330			, Greene	Minor	Individual Permit	Effective	4052		SEMINARY CREEK	30 419333	00.403333	06/30/2016	001.0	00665 1 0	total [as P]	Gross					NODIC	mg/L		N	7/23/2016	BAS	
1.0022390		CITY OF	, Greene	- Minor	Individual Permit		4952		SEMINARY CREEK	20 440222	-90.403333	00/30/2010	001-0	00003-1-0	total [as P]	Gross					NODIC				6/05/0040	DAG	
120022390	CITY OF	CITY OF	, Greene		Individual Permit	Ellecuve	4952		SEMINARY CREEK	39.418333	-90.403333	05/31/2016	001-0	00665-1-0	total [as P]	Gross					NODIC	mg/L		N	6/25/2016	BAS	ENF
IL0022390	CITY OF	CITY OF	, Greene	e Minor	NPDES Individual Permit	Effective	4952		O7130011- SEMINARY CREEK	39.418333	-90.403333	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Gross					NODIC	mg/L	N	N	5/25/2016	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	CITY OF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	4/22/2016	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	3/25/2016	BAS	ENF
IL0022390	0 WHITE HALL, CITY OF	WHITE HALL STF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	2/25/2016	BAS	ENF
IL0022390	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	1/25/2016	BAS	ENF
IL002239	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI **E**	mg/L	N	Y	12/18/2015	BAS	ENF
IL0022390	0 WHITE HALL, CITY OF	WHITE HALL STF CITY OF	P, Greene	e Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C	mg/L	N	N	11/25/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mir Indicator	nor Permit Type	Permit Status	Primary SIC	Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % C exced.	Quantity 1 Qua 2	ntity Quan Units	tity Concentration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Change c Code Limit	of Limit Type Code
							Code	Code		Degrees	Degrees	Date		Season ID										Exists	Vio. Exists	Date	Status Code	
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C		mg/L	N	N	10/25/2015	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI C		mg/L	N	N	9/25/2015	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					NODI **E**		mg/L	N	Y	8/25/2015	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	11/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							mg/L	N	Y		BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	10/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	1/29/2020	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	09/30/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	11/9/2019	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	08/31/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	11/8/2019	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	07/31/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	Y	10/10/2019	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	06/30/2019	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	8/11/2019	BAS	ENF
IL0022390	CITY OF WHITE HALL,	CITY OF WHITE HALL STP	, Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	05/31/2019	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						NODI C	mg/L	N	Y	8/11/2019	BAS	ENF
IL0022390	CITY OF	CITY OF	Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	04/30/2019	A01-0	00665-1-0	total [as P] Phosphorus,	Gross						NODI C	mg/L	N	Y	6/25/2019	BAS	ENF
11 0022390	CITY OF	CITY OF	Greene	Minor	Individual Permit	Effective	4952		SEMINARY CREEK	39 418333	-90 403333	03/31/2019	A01-0	00665-1-0	total [as P]	Gross						NODLC	ma/l	N	N	5/25/2019	BAS	ENE
11.0022000	CITY OF	CITY OF	Croone	Minor	Individual Permit	Effective	4052		SEMINARY CREEK	20 419222	00.403232	02/28/2010	401.0	00665 1 0	total [as P]	Gross						NODIC	mg/L	N	N	3/22/2010	BAS	ENE
120022390	CITY OF	CITY OF	, Greene		Individual Permit	Ellective	4952		SEMINARY CREEK	39.410333	-90.403333	02/20/2019	A01-0	00005-1-0	total [as P]	Gross						NODIC	IIIg/L	IN	IN	5/25/2019	BAS	
IL0022390	CITY OF	CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	01/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/23/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	12/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/23/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	11/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	1/25/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	10/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/3/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	09/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	08/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	07/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	9/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	06/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	Y	8/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	05/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP. CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	04/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	03/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	02/28/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/24/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	01/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/24/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	12/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	2/10/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	11/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	12/5/2017	BAS	ENF
	GITTUF				Permit				CREEK						iotai [as P]	GIUSS												

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit	of Limit Type Code
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	NPDES	Effective	4952		07130011-	39.418333	-90.403333	10/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	Exists	11/25/2017	Code BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	09/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	11/23/2017	BAS	ENF
IL0022390	CITY OF	CITY OF WHITE HALL STP	, Greene	e Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	08/31/2017	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent							NODI C	mg/L	N	N	10/11/2017	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Individual Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	07/31/2017	A01-0	00665-1-0	Phosphorus,	Gross							NODI C	mg/L	N	N	8/25/2017	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	06/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	7/25/2017	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	05/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent							NODI C	mg/L	N	N	7/10/2017	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	04/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent							NODI C	mg/L	N	Y	7/10/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	03/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	4/25/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	02/28/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	Y	4/25/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	01/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/14/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	12/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/25/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	11/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/14/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	10/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	11/12/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	09/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	10/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	08/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	9/24/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	07/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	8/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	06/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	7/23/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	05/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	6/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	04/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	5/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	03/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	4/22/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	02/29/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	01/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	12/31/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/25/2016	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	11/30/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.94	mg/L	N	N	12/18/2015	BAS	ENF
IL0022390	CITY OF	CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	10/31/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	11/25/2015	BAS	ENF
IL0022390	CITY OF	CITY OF	, Greene	Minor	NPDES Individual Permit		4952		07130011- SEMINARY CREEK	39.418333	-90.403333	09/30/2015	A01-0	00005 1 0	Phosphorus, total [as P]	Gross							NODI C	mg/L	N	N	10/25/2015	BAS	ENF
IL0022390	CITY OF	CITY OF	, Greene	Minor	Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	07/21/2015	A01-0	00665-1-0	Phosphorus, total [as P]	Emuent Gross								mg/L	N	N	9/25/2015	BAS	ENF
120022390	CITY OF	CITY OF	, Greene	ivinor	Individual Permit	Ellective	4952		SEMINARY CREEK	39.418333	-90.403333	07/31/2015	AU1-0	0005-1-0	total [as P]	Gross							NODI-*E**	mg/L	N	Ý	8/25/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % Q exced.	Quantity 1 Quant 2	ity Quantity Units	Concentration	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	11/30/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							mg/L	N	Exists Y		Code BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	10/31/2019	B01-0	00665-1-0	Phosphorus,	Effluent						1.2	mg/L	N	Y	1/29/2020	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	09/30/2019	B01-0	00665-1-0	Phosphorus,	Effluent						1.4	mg/L	N	N	11/9/2019	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	08/31/2019	B01-0	00665-1-0	Phosphorus,	Effluent						.65	mg/L	N	Y	11/8/2019	BAS	ENF
IL0022390	CITY OF WHITE HALL,	CITY OF WHITE HALL STP	, Greene	Minor	Individual Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	07/31/2019	B01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						.96	mg/L	N	Y	10/10/2019	BAS	ENF
IL0022390	CITY OF	CITY OF	Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	06/30/2019	B01-0	00665-1-0	total [as P] Phosphorus,	Gross						1	mg/L	N	N	8/11/2019	BAS	ENF
IL0022390	CITY OF	CITY OF	Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39,418333	-90.403333	05/31/2019	B01-0	00665-1-0	total [as P]	Gross						.75	mg/L	N	Y	8/11/2019	BAS	ENF
	CITY OF	CITY OF	Creene	Minor	Individual Permit	Effective	4052		SEMINARY CREEK	20.440222	00.402222	04/20/2010		000005.4.0	total [as P]	Gross						77				6/25/2010	DAG	
IL0022390	CITY OF	CITY OF	, Greene	Minor	Individual Permit	Ellecuve	4952		SEMINARY CREEK	39.418333	-90.403333	04/30/2019	B01-0	00665-1-0	total [as P]	Gross						.11	mg/∟	N	ř	6/25/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	03/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.45	mg/L	N	N	5/25/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	02/28/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.347	mg/L	N	N	3/23/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	01/31/2019	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.7	mg/L	N	N	3/23/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	12/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.59	mg/L	N	N	2/23/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	11/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	Y	1/25/2019	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual	Effective	4952		07130011- SEMINARY	39.418333	-90.403333	10/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.6	mg/L	N	N	12/3/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	09/30/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						4.3	mg/L	N	N	10/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	08/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.75	mg/L	N	N	10/25/2018	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP	, Greene	Minor	Permit NPDES Individual	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	07/31/2018	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.16	mg/L	N	Y	9/25/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011- SEMINARY	39.418333	-90.403333	06/30/2018	B01-0	00665-1-0	Phosphorus,	Effluent						1.87	mg/L	N	Y	8/25/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	05/31/2018	B01-0	00665-1-0	Phosphorus,	Effluent						1.87	mg/L	N	N	7/25/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	04/30/2018	B01-0	00665-1-0	Phosphorus,	Effluent						.73	mg/L	N	N	6/23/2018	BAS	ENF
IL0022390	WHITE HALL,	WHITE HALL STP	, Greene	e Minor	Permit NPDES	Effective	4952		CREEK 07130011-	39.418333	-90.403333	03/31/2018	B01-0	00665-1-0	Phosphorus,	Effluent						.278	mg/L	N	N	4/25/2018	BAS	ENF
IL0022390	CITY OF WHITE HALL,	CITY OF WHITE HALL STP	, Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	02/28/2018	B01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2.13	mg/L	N	N	3/24/2018	BAS	ENF
IL0022390	CITY OF	CITY OF WHITE HALL STP	, Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39.418333	-90.403333	01/31/2018	B01-0	00665-1-0	total [as P] Phosphorus,	Gross						.99	mg/L	N	N	3/24/2018	BAS	ENF
11 0022390	CITY OF	CITY OF	Greene	Minor	Individual Permit NPDES	Effective	4952		SEMINARY CREEK 07130011-	39 418333	-90 403333	12/31/2017	B01-0	00665-1-0	total [as P]	Gross						2.26	mg/l	N	N	2/10/2018	BAS	ENE
11 0022200		CITY OF	Greene	Minor	Individual Permit	Effortivo	4052		SEMINARY CREEK	30 419333	00 403232	11/20/2017	B01.0	00665 1 0	total [as P]	Gross						2.20		N	NI	12/10/2047		ENIE
120022390	CITY OF	CITY OF	, Greene		Individual Permit	Enecuve	4952		SEMINARY CREEK	39.410333	-90.403333	11/30/2017	BUI-U		total [as P]	Gross						2.14	mg/L	Ň	N	12/19/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Mínor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	10/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.89	mg/L	N	N	11/25/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	09/30/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.87	mg/L	N	N	11/23/2017	BAS	ENF
IL0022390	WHITE HALL, CITY OF	WHITE HALL STP CITY OF	, Greene	Minor	NPDES Individual Permit	Effective	4952		07130011- SEMINARY CREEK	39.418333	-90.403333	08/31/2017	B01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	10/11/2017	BAS	ENF
																	I											

Index set Mark	Stay Type Change of Limit Type Code Limit Code Status
Index Index <th< th=""><th>Code BAS ENF</th></th<>	Code BAS ENF
And the length of the	BAS ENF
And the series And the	BAS ENF
And	BAS ENF
And and and and and and and and and an antipart of the state	BAS ENF
Indication Normation Permit CREEK	BAS ENF
ILL0022390 WHITE HALLS, PRIME Minor NPDES Effective 4952 07130011- 07130011- 39.418333 -90.403333 12/31/2016 B01-0 Phosphorus, Effluent Effluent Minor N N N 1/25/2017	BAS ENF
Individual SEMINARY	BAS ENF
Indication Indicat	BAS ENF
Inclusion Normation Permit CREEK CREEK CREEK Permit Perm	BAS ENF
Index Index Permit CREEK CREEK Index Index <t< td=""><td>BAS ENF</td></t<>	BAS ENF
Inclusion Inclusion Permit CREEK CREEK CREEK Inclusion Inclusion <td>BAS ENF</td>	BAS ENF
Image: Constraint of the state of	BAS ENF
Image: Constraint of the state of	BAS ENF
Image: Constraint of the state of	BAS ENF
Index Index Index Index Permit CREK CREK Index Index <thi< td=""><td>BAS ENF</td></thi<>	BAS ENF
Index Index Index Index Permit Permit CREK Index Index <t< td=""><td>BAS ENF</td></t<>	BAS ENF
Inclusion Inclusion Permit CREK	BAS ENF
Index in the second s	BAS ENF
Inclusion Inclusion Permit CREK	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	BAS ENF
Index Index Permit Permit <td>BAS ENF</td>	BAS ENF
Index FARMER CITY, CITY OF FARMER CITY, STP, CITY OF FARMER CITY, STP, CITY OF FARMER CITY, STP, CITY OF Minor NPDEs lavidual Permit Effective A952 0713009-SALT CREEK 40.235 -88.65 10/31/2019 O01-0 Phosphorus, total [as P] Effuent Gross Gross Image: Construction of the c	

NPDES ID	Permit Name	Facility Name	County	y Major Mine Indicator	or Permit Type	Permit Status	Primary SIC	y Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentratio	n Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Change of Code Limit	f Limit Type Code
			_				Code	Code		Degrees	Degrees	Date		Season ID									-	Exists	Vio. Exists	Date	Status Code	
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.84	mg/L	N	N	10/25/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	10/11/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.81	mg/L	N	N	9/19/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY STP. CITY OF	De Wit	t Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.3	mg/L	N	N	8/13/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	05/31/2019	001-0	00665-1-0	Phosphorus,	Effluent						.48	mg/L	N	N	7/8/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	04/30/2019	001-0	00665-1-0	Phosphorus,	Effluent						.42	mg/L	N	N	6/3/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	03/31/2019	001-0	00665-1-0	Phosphorus,	Effluent						.58	mg/L	N	N	4/26/2019	BAS	ENF
IL0022462	CITY OF FARMER CITY,	STP, CITY OF	De Wit	t Minor	Individual Permit NPDES	Effective	4952		CREEK 07130009-SALT	40.235	-88.65	02/28/2019	001-0	00665-1-0	total [as P] Phosphorus,	Gross						.82	mg/L	N	N	4/14/2019	BAS	ENF
11 0022462	CITY OF	STP, CITY OF	De Wit	t Minor	Individual Permit	Effective	4952		CREEK	40 235	-88.65	01/31/2019	001-0	00665-1-0	total [as P]	Gross						11	mg/l	N	N	3/8/2019	BAS	ENE
120022402	CITY OF	STP, CITY OF	Devit		Individual Permit	Elicouve	4332		CREEK	40.200	-00.00	01/31/2013	001-0	00003-1-0	total [as P]	Gross							ilig/L			3/0/2013		
IL0022462	CITY OF	STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		CREEK	40.235	-88.65	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Gross						1.4	mg/L	N	N	1/31/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	mg/L	N	N	12/31/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.88	mg/L	N	N	11/30/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.83	mg/L	N	N	10/5/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.8	mg/L	N	N	10/3/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				.66	mg/L	N	N	8/24/2018	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						1	mg/L	N	N	8/2/2018	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	05/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						.51	mg/L	N	N	6/25/2018	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	04/30/2018	001-0	00665-1-0	Phosphorus,	Effluent						.38	mg/L	N	N	5/31/2018	BAS	ENF
IL0022462	CITY OF FARMER CITY,	FARMER CITY	De Wit	t Minor	Individual Permit NPDES	Effective	4952		O7130009-SALT	40.235	-88.65	03/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						.53	mg/L	N	N	4/27/2018	BAS	ENF
IL0022462	CITY OF	STP, CITY OF	De Wit	t Minor	Individual Permit NPDES	Effective	4952		CREEK	40.235	-88.65	02/28/2018	001-0	00665-1-0	total [as P]	Gross						.6	mg/L	N	N	3/27/2018	BAS	ENF
11.0000460	CITY OF	STP, CITY OF	De Witt	4 Min	Individual Permit	T#a ativa	4050		CREEK	40.025	00.05	04/04/0040	001.0	000005.4.0	total [as P]	Gross						1.0		N	N	0/07/0040		
IL0022462	CITY OF	STP, CITY OF	De wit		Individual Permit	Ellecuve	4952		CREEK	40.235	-88.00	01/31/2018	001-0	00665-1-0	total [as P]	Gross						1.3	mg/∟		N	2/2//2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.66	mg/L	N	N	2/6/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.9	mg/L	N	N	12/15/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	mg/L	N	N	11/22/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	NPDES	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				.75	mg/L	N	N	11/1/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Wit	t Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	mg/L	N	N	10/3/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent	_					NODI C	mg/L	N	N	8/30/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Wit	t Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	06/30/2017	001-0	00665-1-0	Phosphorus,	Effluent						.88	mg/L	N	N	7/26/2017	BAS	ENF
	CITY OF	STP, CITY OF			Individual Permit				CREEK						total [as P]	Gross												

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0022462	FARMER CITY,	FARMER CITY STP. CITY OF	De Witt	Minor	NPDES	Effective	4952		07130009-SALT CREEK	40.235	-88.65	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						.37	mg/L	N	Exists N	6/26/2017	Code BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	04/30/2017	001-0	00665-1-0	Phosphorus,	Effluent						.3	mg/L	N	N	5/25/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	03/31/2017	001-0	00665-1-0	Phosphorus,	Effluent						.56	mg/L	N	N	4/26/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	02/28/2017	001-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	3/26/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT	40.235	-88.65	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	2/24/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY STP. CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		_				NODI C	mg/L	N	N	1/24/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY STP_CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT	40.235	-88.65	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						NODI C	mg/L	N	N	12/23/2016	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY STP. CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/27/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/26/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		_				.57	mg/L	N	N	9/26/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.84	mg/L	N	N	8/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	7/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.46	mg/L	N	N	5/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.42	mg/L	N	N	3/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	2.59	4.28	lb/d	.5	.57	mg/L	N	N	2/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES	Admin Continued	4952		07130009-SALT CREEK TRIB TO	40.235	-88.65	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.85	2.63	lb/d	.32	.35	mg/L	N	N	1/25/2016	BAS	ENF
IL0022462	FARMER CITY.	FARMER CITY	De Witt	Minor	Permit	Admin	4952		CLINTON LAKE	40.235	-88.65	11/30/2015	001-0	00665-1-0	Phosphorus.	Effluent		1.79	3.47	lb/d	.5	.52	ma/L	N	N	12/23/2015	BAS	ENF
	CITY OF	STP, CITY OF			Individual Permit	Continued			CREEK TRIB TO CLINTON LAKE						total [as P]	Gross												
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.9	4.99	lb/d	.95	1.3	mg/L	N	N	11/25/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952	_	07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	13	3.11	8.99	lb/d	1.13	1.4	mg/L	Y	N	10/22/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.35	3.27	lb/d	.56	.8	mg/L	N	N	9/23/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Admin Continued	4952		07130009-SALT CREEK TRIB TO	40.235	-88.65	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.17	4.5	lb/d	.4	.6	mg/L	N	N	8/17/2015	BAS	ENF
IL0022462	FARMER CITY,		De Witt	Minor	NPDES	Admin	4952		07130009-SALT	40.235	-88.65	06/30/2015	001-0	00665-1-0	Phosphorus,	Effluent		1.92	2.85	lb/d	.32	.38	mg/L	N	N	7/14/2015	BAS	ENF
11.0000.100			D- 14/"	Mi=	Permit	Admin	4050		CLINTON LAKE	40.005	00.05	05/04/0045	004.0	00005 1 0	Dho	GIUSS			4.70	16.7.1		00			K1	6/40/0045		
1LUUZZ402	CITY OF	STP, CITY OF	De witt		Individual Permit	Continued	4952		CREEK TRIB TO CLINTON LAKE	40.233	-08.00	03/31/2015	001-0	0000-1-0	total [as P]	Gross			1.70	ם/מו	ς2. Γ	.20	mg/L	IN	IN	0/18/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC	Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration	Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Change Code Limit	of Limit Type Code
							Code	Code		Degrees	Degrees	Date		Season ID										Exists	Vio. Exists	Date	Status Code	
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.39	1.44	lb/d	.37	.41	mg/L	N	N	5/21/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.04	1.2	lb/d	.29	.36	mg/L	N	N	4/16/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.37	1.38	lb/d	.38	.39	mg/L	N	N	3/20/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Admin Continued	4952		07130009-SALT CREEK TRIB TO CLINTON LAKE	40.235	-88.65	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.3	1.6	lb/d	.3	.33	mg/L	N	N	2/20/2015	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/31/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.31	mg/L	N	N	12/31/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.3	mg/L	N	N	11/25/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/25/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	08/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/11/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	9/19/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.29	mg/L	N	N	8/13/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	05/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.41	mg/L	N	N	7/8/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.42	mg/L	N	N	6/3/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.56	mg/L	N	N	4/26/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/28/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.56	mg/L	N	N	4/14/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2019	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.71	mg/L	N	N	3/8/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.56	mg/L	N	N	1/31/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/31/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/30/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.61	mg/L	N	N	10/5/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	10/3/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	8/24/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	mg/L	N	N	8/2/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	05/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	6/25/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Gross						.33	mg/L	N	N	5/31/2018	BAS	ENF
IL0022462	CITY OF	STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2018	A01-0	00005 1 5	Phosphorus, total [as P]	Gross						.51	mg/L	N	N	4/27/2018	BAS	ENF
ILUU22462	CITY OF	STP, CITY OF	De Witt	WINOr	Individual Permit	Ellective	4952		CREEK	40.235	-88.65	02/28/2018	A01-0	00005-1-0	Phosphorus, total [as P]	Gross						1.2	mg/L	N	N	3/2//2018	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity Q 2 U	Quantity Inits	Concentration 1	Concentration C 2 3	Concentration	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change o Code Limit Status Code	f Limit Type Code
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2018	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/27/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/6/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	12/15/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	10/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	11/22/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	09/30/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	11/1/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	08/31/2017	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	10/3/2017	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	07/31/2017	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent							NODI C	mg/L	N	N	8/30/2017	BAS	ENF
IL0022462	CITY OF FARMER CITY,	STP, CITY OF	De Witt	Minor	Individual Permit NPDES	Effective	4952		CREEK 07130009-SALT	40.235	-88.65	06/30/2017	A01-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent							NODI C	mg/L	N	N	7/26/2017	BAS	ENF
IL0022462	CITY OF	STP, CITY OF	De Witt	Minor	Individual Permit NPDES	Effective	4952		CREEK	40.235	-88.65	05/31/2017	A01-0	00665-1-0	total [as P] Phosphorus.	Gross							.47	ma/L	N	N	6/26/2017	BAS	ENF
11.0022462		STP, CITY OF	Do Witt	Minor	Individual Permit	Effective	4052		CREEK	40.235	89.65	04/30/2017	401.0	00665.1.0	total [as P]	Gross							34		N	N	5/25/2017	BAS	ENE
120022402	CITY OF	STP, CITY OF	De Will		Individual Permit	Ellecuve	4952		CREEK	40.235	-00.03	04/30/2017	A01-0	00005-1-0	total [as P]	Gross							.34	ng/L	IN .		5/25/2017	BAS	EINF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODIC	mg/L	N	N	4/26/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/28/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	3/26/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2017	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	2/24/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	1/24/2017	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	12/23/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	11/27/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	10/26/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.71	mg/L	N	N	9/26/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							.87	mg/L	N	N	8/25/2016	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	Permit NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2016	A01-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross							NODI C	mg/L	N	N	7/25/2016	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	05/31/2016	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	6/25/2016	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	04/30/2016	A01-0	00665-1-0	Phosphorus,	Effluent							.37	mg/L	N	N	5/25/2016	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	03/31/2016	A01-0	00665-1-0	Phosphorus,	Effluent							NODI C	mg/L	N	N	4/25/2016	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit NPDES	Effective	4952		07130009-SALT	40.235	-88.65	02/29/2016	A01-0	00665-1-0	Phosphorus,	Effluent							.28	mg/L	N	N	3/25/2016	BAS	ENF
IL0022462	CITY OF FARMER CITY,	STP, CITY OF	De Witt	Minor	Individual Permit NPDES	Effective	4952		CREEK 07130009-SALT	40.235	-88.65	12/31/2019	B01-0	00665-J-1	total [as P] Phosphorus,	Gross		3.46	6.05	lb/d		.99	1.1	mg/L	N	N	12/31/2019	BAS	ENF
	CITY OF	STP, CITY OF			Individual Permit				CREEK						total [as P]	Treatment, Process Complete													
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		2.56	5.72	lb/d		.77	.89	mg/L	N	N	12/31/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	NPDES	Effective	4952		07130009-SALT	40.235	-88.65	10/31/2019	B01-0	00665-J-1	Phosphorus,	Complete Intermediate		2.5	6.78	lb/d		.79	1.1	mg/L	N	N	11/25/2019	BAS	ENF
					Permit											Process Complete													

	Pormit Namo	Escility Namo	County	Major M	linor Pormit Type	Pormit	Primany	Drimony	State Water	Latitudo in	Longitudo in	Mon	Limit Sot	Param Cd	Paramotor	Mon Loc	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concontratio	n Concontration	Effluent	Non	DMD	Stay Type Change o	
NPDESID	Permit Name	гасшту мате	County	Indicato	or	Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date	Limit Set	MLC - Season ID	Parameter	Desc.	exced.	Quantity 1	2	Units	1 2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code Limit Status	Code
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	NPDES	Effective	4952		07130009-SALT	40.235	-88.65	09/30/2019	B01-0	00665-J-1	Phosphorus,	Intermediate	•	2	5.39	lb/d	.83	.84	mg/L	N	Exists N	10/25/2019	Code BAS	ENF
					Permit				ONLER						total [as I]	Process Complete												
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		2.3	3.8	lb/d	1	1.2	mg/L	N	N	10/11/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	2.66	3.82	lb/d	.8	.82	mg/L	N	N	9/19/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	3	3.96	6	lb/d	.82	1	mg/L	N	N	8/13/2019	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	NPDES	Effective	4952		07130009-SALT	40.235	-88.65	05/31/2019	B01-0	00665-J-1	Phosphorus,	Complete Intermediate	•	3.15	4.05	lb/d	.535	.54	mg/L	N	N	7/8/2019	BAS	ENF
	CITY OF	STP, CITY OF			Permit				CREEK						total [as P]	Process Complete												
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		2.22	2.56	lb/d	.41	.42	mg/L	N	N	6/3/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	4.02	5.08	lb/d	.7	.7	mg/L	N	N	4/26/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/28/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	3	3.23	5.8	lb/d	.88	.88	mg/L	N	N	4/14/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2019	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	;	2.72	5.96	lb/d	.96	1.1	mg/L	N	N	3/8/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment,	9	1.53	5.45	lb/d	.59	.86	mg/L	N	N	1/31/2019	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment,)	6.71	9.69	lb/d	.97	1.4	mg/L	N	N	12/31/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment,	;	2.97	5.5	lb/d	.81	.88	mg/L	N	N	11/30/2018	BAS	ENF
IL0022462	FARMER CITY,	FARMER CITY	De Witt	Minor	Permit	Effective	4952		07130009-SALT	40.235	-88.65	09/30/2018	B01-0	00665-J-1	Phosphorus,	Process Complete Intermediate		2.3	6.16	lb/d	.79	.84	mg/L	N	N	10/5/2018	BAS	ENF
	CITY OF	STP, CITY OF			Individual Permit				CREEK						total [as P]	Treatment, Process Complete												
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.42	2.6	lb/d	.67	.8	mg/L	N	N	10/3/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process)	1.86	3.96	lb/d	.62	.66	mg/L	N	N	8/24/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	3	2.54	3.72	lb/d	.61	.62	mg/L	N	N	8/2/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	05/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	3	1.36	2.21	lb/d	.44	.51	mg/L	N	N	6/25/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	;	1.11	2.07	lb/d	.39	.54	mg/L	N	N	5/31/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	;	.81	1.59	lb/d	.25	.34	mg/L	N	N	4/27/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/28/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	3	2.09	5.97	lb/d	.66	.93	mg/L	N	N	3/27/2018	BAS	ENF
IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2018	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	1.91	4.98	lb/d	.79	1.3	mg/L	N	N	2/27/2018	BAS	ENF
																Complete												

NMM NMM NMM NMM NMM		D	E 114 - Maria	0		N	D	During and	Dutana	01-1-141-1	1	1		1	D	D		10/	0	0	0		0			New	DWD	01	6 1
MAME MAME MAME MAME M	NPDES ID	Permit Name	Facility Name	County	Indicat	tor	Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Mon. Period End Date	Limit Set	MLC - Season ID	Parameter	Mon. Loc. Desc.	exced.	Quantity 1	Quantity 2	Units	1 2	3	Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Code Limit Status	Code
Image: state Image: state<	IL0022462	FARMER CITY,	FARMER CITY STP. CITY OF	De Witt	Minor	NPDES	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate	,	1.08	1.54	lb/d	.62	.66	mg/L	N	Exists N	2/6/2018	Code BAS	ENF
Intro Spectrol Spectro Spectrol Spectro						Permit											Process Complete												
Lifter Northole <	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		2.1	3.68	lb/d	.89	.9	mg/L	N	N	12/15/2017	BAS	ENF
LAMAM Mark Line Ma	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	2.14	4.12	lb/d	.99	1.1	mg/L	N	N	11/22/2017	BAS	ENF
Line Applicity Ref Sind Sind Sind <t< th=""><td>IL0022462</td><td>FARMER CITY, CITY OF</td><td>FARMER CITY STP, CITY OF</td><td>De Witt</td><td>Minor</td><td>NPDES Individual Permit</td><td>Effective</td><td>4952</td><td></td><td>07130009-SALT CREEK</td><td>40.235</td><td>-88.65</td><td>09/30/2017</td><td>B01-0</td><td>00665-J-1</td><td>Phosphorus, total [as P]</td><td>Intermediate Treatment, Process</td><td>•</td><td>.97</td><td>2</td><td>lb/d</td><td>.58</td><td>.75</td><td>mg/L</td><td>N</td><td>N</td><td>11/1/2017</td><td>BAS</td><td>ENF</td></t<>	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	.97	2	lb/d	.58	.75	mg/L	N	N	11/1/2017	BAS	ENF
MARKEY PARKEY PARKEY PARKEY PARKEY PARKEY <td>IL0022462</td> <td>FARMER CITY, CITY OF</td> <td>FARMER CITY STP, CITY OF</td> <td>De Witt</td> <td>Minor</td> <td>NPDES Individual Permit</td> <td>Effective</td> <td>4952</td> <td></td> <td>07130009-SALT CREEK</td> <td>40.235</td> <td>-88.65</td> <td>08/31/2017</td> <td>B01-0</td> <td>00665-J-1</td> <td>Phosphorus, total [as P]</td> <td>Complete Intermediate Treatment, Process</td> <td></td> <td>1.17</td> <td>3.14</td> <td>lb/d</td> <td>.74</td> <td>1.3</td> <td>mg/L</td> <td>N</td> <td>N</td> <td>10/3/2017</td> <td>BAS</td> <td>ENF</td>	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		1.17	3.14	lb/d	.74	1.3	mg/L	N	N	10/3/2017	BAS	ENF
Line in the state Mark bit in the state <th< th=""><td>IL0022462</td><td>FARMER CITY, CITY OF</td><td>FARMER CITY STP, CITY OF</td><td>De Witt</td><td>Minor</td><td>NPDES Individual Permit</td><td>Effective</td><td>4952</td><td>_</td><td>07130009-SALT CREEK</td><td>40.235</td><td>-88.65</td><td>07/31/2017</td><td>B01-0</td><td>00665-J-1</td><td>Phosphorus, total [as P]</td><td>Complete Intermediate Treatment, Process</td><td>•</td><td>1.75</td><td>3.15</td><td>lb/d</td><td>1</td><td>1.4</td><td>mg/L</td><td>N</td><td>N</td><td>8/30/2017</td><td>BAS</td><td>ENF</td></th<>	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	07/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	1.75	3.15	lb/d	1	1.4	mg/L	N	N	8/30/2017	BAS	ENF
LUE Defect of the of the o	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	06/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	2.13	3.74	lb/d	.75	.88	mg/L	N	N	7/26/2017	BAS	ENF
LULE Dependent	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	05/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	2.31	3.55	lb/d	.44	.49	mg/L	N	N	6/26/2017	BAS	ENF
LUDDER HUMBER CFF HUMBER CFF HUMBER CFF HUMBER CFF	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	04/30/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		2.69	4.08	lb/d	.46	.55	mg/L	N	N	5/25/2017	BAS	ENF
LXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	03/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	2.48	4.2	lb/d	.56	.56	mg/L	N	N	4/26/2017	BAS	ENF
Datability of the properties Datability of the properites Datability of the properity of the proproprop	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	02/28/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	24	4.43	7.28	lb/d	1.24	1.9	mg/L	Y	N	3/26/2017	BAS	ENF
Losses Losses Control Nove Process Process Control Process Control Process Control Process Control Process Pro	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	01/31/2017	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	2.44	3.92	lb/d	.61	.77	mg/L	N	N	2/24/2017	BAS	ENF
Ling 22402 FARMER CITY De Viel More More <th< th=""><td>IL0022462</td><td>FARMER CITY, CITY OF</td><td>FARMER CITY STP, CITY OF</td><td>De Witt</td><td>Minor</td><td>NPDES Individual Permit</td><td>Effective</td><td>4952</td><td></td><td>07130009-SALT CREEK</td><td>40.235</td><td>-88.65</td><td>12/31/2016</td><td>B01-0</td><td>00665-J-1</td><td>Phosphorus, total [as P]</td><td>Complete Intermediate Treatment, Process</td><td></td><td>2.65</td><td>5.63</td><td>lb/d</td><td>.6</td><td>.75</td><td>mg/L</td><td>N</td><td>N</td><td>1/24/2017</td><td>BAS</td><td>ENF</td></th<>	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	12/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		2.65	5.63	lb/d	.6	.75	mg/L	N	N	1/24/2017	BAS	ENF
Locz2462 FAMER CITY	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	11/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		1.5	3.38	lb/d	.5	.52	mg/L	N	N	12/23/2016	BAS	ENF
LD022462 FARMER CITV, CITV OF RAPMER CITV, STP, CITV OF Number Restrict Minor Minor NPDES Individual Permit Effective Restrict A 2.3 A 8.65 OP30205 B01-0 Op65-1-1 Proceptide Proceptide Number CitV Restrict Number CitV Restrict Number CitV Restrict Number CitV Restrict Number CitV Restrict Restrict B01-0 Op65-1-1 Proceptide Restrict Number CitV Restrict Restrict Number CitV Restrict Number CitV Restrit Number CitV Restrict <t< th=""><td>IL0022462</td><td>FARMER CITY, CITY OF</td><td>FARMER CITY STP, CITY OF</td><td>De Witt</td><td>Minor</td><td>NPDES Individual Permit</td><td>Effective</td><td>4952</td><td></td><td>07130009-SALT CREEK</td><td>40.235</td><td>-88.65</td><td>10/31/2016</td><td>B01-0</td><td>00665-J-1</td><td>Phosphorus, total [as P]</td><td>Complete Intermediate Treatment, Process</td><td></td><td>1.04</td><td>1.73</td><td>lb/d</td><td>.43</td><td>.46</td><td>mg/L</td><td>N</td><td>N</td><td>11/27/2016</td><td>BAS</td><td>ENF</td></t<>	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	10/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		1.04	1.73	lb/d	.43	.46	mg/L	N	N	11/27/2016	BAS	ENF
L002246 FARMER CITY CITY OF FARMER CITY STP, CITY OF De Witt STP, CITY OF Minor STP, CITY OF Minor STP, CITY OF Minor STP	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	09/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	1.96	3.21	lb/d	.47	.52	mg/L	N	N	10/26/2016	BAS	ENF
L002246 FARMER CITY CITY OF FARMER CITY STP, CITY OF De Vit STP, CITY OF Minor NPDES Individual Permit Effective Sto 40.25 -88.65 07/31/2016 B1-0 One 65-J-1 Phosphores, total [as P] Individual Prestine A N N 8/25/2016 BA Description Individual Prestine N N N R R R R N N R	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	08/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process	•	2.21	3.36	lb/d	.52	.61	mg/L	N	N	9/26/2016	BAS	ENF
Lange and the curry of an transformed and transformed a	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	07/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		2.62	5.1	lb/d	.7	.72	mg/L	N	N	8/25/2016	BAS	ENF
And with the problem of the	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	06/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	.8	3	lb/d	.32	.5	mg/L	N	N	7/25/2016	BAS	ENF
Index and participation FARMER CITY, CITY OF FARMER CITY, FARMER CITY, CITY OF FARMER CITY, STP, CITY OF F	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952	_	07130009-SALT CREEK	40.235	-88.65	05/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process	•	2.49	4.2	lb/d	.46	.56	mg/L	N	N	6/25/2016	BAS	ENF
	IL0022462	FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	04/30/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process Complete		1.63	3	lb/d	.31	.4	mg/L	N	N	5/25/2016	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration 1	Concentration 2	Concentration	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	of Limit Type Code
IL0022462	2 FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	03/31/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Intermediate Treatment, Process		3.23	6.38	lb/d		.83	.9	mg/L	N	N	4/25/2016	BAS	ENF
IL0022462	2 FARMER CITY, CITY OF	FARMER CITY STP, CITY OF	De Witt	Minor	NPDES Individual Permit	Effective	4952		07130009-SALT CREEK	40.235	-88.65	02/29/2016	B01-0	00665-J-1	Phosphorus, total [as P]	Complete Intermediate Treatment, Process		1.76	4.75	lb/d		.48	.76	mg/L	N	N	3/25/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	NPDES Individual	Effective	4952		07120005- GOOSEBERRY	41.106667	-88.412778	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Complete Effluent Gross						2.3	2.4	mg/L	N	N	1/8/2020	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	Permit NPDES Individual	Effective	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.7	2.4	mg/L	N	N	12/6/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingston	o Minor	Permit NPDES Individual Permit	Effective	4952		CREEK 07120005- GOOSEBERRY CREEK	41.106667	-88.412778	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.3	2.8	mg/L	N	N	11/7/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.8	3.1	mg/L	N	N	11/4/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.4	3.6	mg/L	N	N	9/5/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.3	2.4	mg/L	N	N	8/6/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	1.2	mg/L	N	N	7/9/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.97	1.5	mg/L	N	N	6/4/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingst	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						.87	1.2	mg/L	N	N	5/7/2019	BAS	ENF
IL0022641	VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Gross						1.4	.99	mg/L	N	N	4/2/2019	BAS	ENF
1L0022041	VILLAGE OF	VILLAGE OF	n	o Minor	Individual Permit	Effective	4952		GOOSEBERRY CREEK	41.106667	-00.412770	01/31/2010	001-0	00665 1 0	total [as P]	Gross						1.2	1.5	mg/L	N	N	2/5/2019	BAS	
11 0022641	VILLAGE OF	VILLAGE OF	n	o Minor	Individual Permit	Effective	4952		GOOSEBERRY CREEK 07120005-	41 106667	-88 412778	12/31/2018	001-0	00665-1-0	total [as P]	Gross						1.0	1.6	mg/L	N	N	1/8/2019	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	VILLAGE OF	n	o Minor	Individual Permit NPDES	Effective	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	11/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross						2.9	3	mg/L	N	N	12/6/2018	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	VILLAGE OF DWIGHT STP,	n Livingste	o Minor	Individual Permit NPDES	Effective	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	10/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						3.4	4.4	mg/L	N	N	11/5/2018	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	VILLAGE OF DWIGHT STP,	n Livingst	o Minor	Individual Permit NPDES	Admin	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	09/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						3.1	3.3	mg/L	N	N	10/2/2018	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	DWIGHT STP,	n Livingste	o Minor	Individual Permit NPDES	Admin	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	08/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross						4.2	4.5	mg/L	N	N	9/7/2018	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	n Livingste	o Minor	Permit NPDES	Admin	4952		CREEK 07120005- COOSEBERBY	41.106667	-88.412778	07/31/2018	001-0	00665-1-0	Phosphorus,	Effluent						4.3	5	mg/L	N	N	8/9/2018	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto	o Minor	Permit NPDES Individual	Admin	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						2.9	3	mg/L	N	N	7/12/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingst	o Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.4	2.6	mg/L	N	N	6/5/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	1.4	mg/L	N	N	5/9/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.1	1.6	mg/L	N	N	4/4/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto	o Minor	Permit NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.6	3.1	mg/L	N	N	3/7/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingston	o Minor	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.8	2.9	mg/L	N	N	2/6/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto n	o Minor	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.6	4.8	mg/L	N	N	1/4/2018	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingston	o Minor	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.7	2.8	mg/L	N	N	12/7/2017	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Min	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	l ongitude in	Mon	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1 Qu	uantity (Quantity	Concentration	Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type Change o	of Limit Type
	r ennit nume	r donity runic	Indicator		Status	SIC	NAICS	Body	Decimal	Decimal	Period End	Linit Oct	MLC -	runneter	Desc.	exced.	2	l	Units	1	2	3	Units	Vio.	Receipt	Received	Code Limit	Code
						Code	Code		Degrees	Degrees	Date		Season ID											Exists	Vio. Exists	Date	Status	
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.3	3.8	mg/L	N	N	11/3/2017	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3.2	3.3	mg/L	N	N	10/6/2017	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	08/31/2017	001-0	00665-1-0	Phosphorus,	Effluent						2.1	2.2	mg/L	N	N	9/7/2017	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005-	41.106667	-88.412778	07/31/2017	001-0	00665-1-0	Phosphorus,	Effluent						2.1	2.2	mg/L	N	N	8/10/2017	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	n Livingsto Minor	Individual Permit NPDES	Admin	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	06/30/2017	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2	1.5	mg/L	N	N	7/18/2017	BAS	ENF
IL0022641	VILLAGE OF	VILLAGE OF	n Livingsto Minor	Individual Permit NPDES	Continued	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	05/31/2017	001-0	00665-1-0	total [as P] Phosphorus.	Gross						2.4	1.7	ma/L	N	N	6/7/2017	BAS	ENF
11.0022641	VILLAGE OF	VILLAGE OF	n Livingsto Minor	Individual Permit	Continued	1052		GOOSEBERRY CREEK	41 106667	-88 / 12778	04/30/2017	001-0	00665-1-0	total [as P]	Gross						1	1 7	ma/l	N	v	8/10/2017	BAS	ENE
10022041	VILLAGE OF	VILLAGE OF	n Livingste Miner	Individual Permit	Continued	4052		GOOSEBERRY CREEK	44.400007	00.410770	02/24/2047	001.0	000005 1 0	total [as P]	Gross							4.7	mg/L		N	4/44/2017		
IL0022641	VILLAGE OF	VILLAGE OF	n	Individual Permit	Continued	4952		GOOSEBERRY CREEK	41.106667	-88.412778	03/31/2017	001-0	00665-1-0	total [as P]	Gross						2	1.7	mg/L	N	N	4/11/2017	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.3	1.6	mg/L	N	N	3/9/2017	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.2	1.3	mg/L	N	N	2/3/2017	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.2	3.1	mg/L	N	N	1/4/2017	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.9	2.5	mg/L	N	N	12/7/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						3	3.2	mg/L	N	N	11/8/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.8	2.3	mg/L	N	N	10/5/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	Permit NPDES Individual	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2.7	3.5	mg/L	N	N	9/7/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.4	1.9	mg/L	N	N	8/10/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						2	1.9	mg/L	N	N	7/11/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						1.9	1.9	mg/L	N	N	6/9/2016	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP,	Livingsto Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent						2	2.2	mg/L	N	N	5/9/2016	BAS	ENF
IL0022641		DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	03/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.7	2	mg/L	N	N	4/8/2016	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005- GOOSEBEREY	41.106667	-88.412778	02/29/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.6	1.8	mg/L	N	N	3/15/2016	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005-	41.106667	-88.412778	01/31/2016	001-0	00665-1-0	Phosphorus,	Effluent						1.8	1.8	mg/L	N	N	2/15/2016	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005-	41.106667	-88.412778	12/31/2015	001-0	00665-1-0	Phosphorus,	Effluent						2	2.1	mg/L	N	N	1/8/2016	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	DWIGHT STP,	n Livingsto Minor	Individual Permit NPDES	Continued Admin	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	11/30/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						2.6	3.6	mg/L	N	N	12/7/2015	BAS	ENF
IL0022641	VILLAGE OF DWIGHT,	VILLAGE OF DWIGHT STP,	n Livingsto Minor	Individual Permit NPDES	Continued Admin	4952		GOOSEBERRY CREEK 07120005-	41.106667	-88.412778	10/31/2015	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent						4.5	4.7	mg/L	N	N	11/5/2015	BAS	ENF
IL0022641	VILLAGE OF	VILLAGE OF	n Livingsto Minor	Individual Permit NPDES	Continued	4952		GOOSEBERRY CREEK 07120005-	41,106667	-88,412778	09/30/2015	001-0	00665-1-0	total [as P]	Gross						4	4.3	ma/L	N	N	10/8/2015	BAS	ENF
11 0022644	VILLAGE OF		n Livingste Miser	Individual Permit	Continued	4052		GOOSEBERRY CREEK	41 106667	_88 410770	08/21/2045	001-0	00665 1 0	total [as P]	Gross						1 7	17	mg/L	N	NI	0/11/2015		
ILUU22641	VILLAGE OF	VILLAGE OF	n	Individual Permit	Continued	4952		GOOSEBERRY CREEK	41.100007	-00.412778	07/04/2015	001-0	0-0-000	total [as P]	Gross						1./	1./	mg/L	N	N	9/11/2015	BAS	ENF
ILUU22641	VILLAGE OF	VILLAGE OF	n Minor	NPDES Individual Permit	Aamin Continued	4952		GOOSEBERRY CREEK	41.106667	-88.412778	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	⊑πuent Gross						.92	.97	mg/L	N	N	8/17/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mind	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity	Quantity	Concentration Concentration	Concentration	Concentration	Effluent	Non-	DMR	Stay Type Change of	f Limit Type
			Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2	Units	1 2	3	Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code Limit Status Code	Code
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Admin Continued	4952		07120005- GOOSEBERRY	41.106667	-88.412778	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2	2.9	mg/L	N	N	7/8/2015	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Admin Continued	4952	_	07120005- GOOSEBERRY	41.106667	-88.412778	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.8	2.4	mg/L	N	N	6/10/2015	BAS	ENF
IL0022641	I DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES Individual	Admin	4952		CREEK 07120005- GOOSEBERBY	41.106667	-88.412778	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent					2.9	2.9	mg/L	N	N	5/7/2015	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Admin	4952		CREEK 07120005-	41.106667	-88.412778	03/31/2015	001-0	00665-1-0	Phosphorus,	Effluent					2.5	1.9	mg/L	N	N	4/6/2015	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	n Livingsto Minor	NPDES	Admin	4952		CREEK 07120005-	41.106667	-88.412778	02/28/2015	001-0	00665-1-0	Phosphorus,	Effluent					2	2	mg/L	N	N	3/6/2015	BAS	ENF
II 0022641		VILLAGE OF	n Livingsto Minor	Individual Permit	Continued	4952		GOOSEBERRY CREEK 07120005-	41 106667	-88 412778	01/31/2015	001-0	00665-1-0	total [as P]	Gross					26	32	ma/l	N	N	2/6/2015	BAS	ENE
	VILLAGE OF	VILLAGE OF	n	Individual Permit	Continued	4002		GOOSEBERRY CREEK	41.100001	00.412170	01/01/2010	0010		total [as P]	Gross						0.2	ing/2			210/2010	5,6	
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	12/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/8/2020	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Pormit	Effective	4952		07120005- GOOSEBERRY	41.106667	-88.412778	11/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	12/6/2019	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Effective	4952		07120005- GOOSEBERRY	41.106667	-88.412778	10/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	11/7/2019	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	Permit NPDES Individual	Effective	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	09/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					NODI C	mg/L	N	N	11/4/2019	BAS	ENF
IL0022641		DWIGHT STP,	Livingsto Minor	Permit NPDES	Effective	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	08/31/2019	002-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	9/5/2019	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	Livingsto Minor	Permit NPDES	Effective	4952		CREEK 07120005-	41.106667	-88.412778	07/31/2019	002-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	8/6/2019	BAS	ENF
IL0022641	DWIGHT,	DWIGHT STP,	n Livingsto Minor	Permit NPDES	Effective	4952		CREEK 07120005-	41.106667	-88.412778	06/30/2019	002-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	7/9/2019	BAS	ENF
IL0022641	VILLAGE OF	VILLAGE OF	n Livingsto Minor	Individual Permit NPDES	Effective	4952		GOOSEBERRY CREEK 07120005-	41,106667	-88.412778	05/31/2019	002-0	00665-1-0	total [as P]	Gross						NODIC	ma/L	N	N	6/4/2019	BAS	ENF
11.00000044	VILLAGE OF	VILLAGE OF	n Miner	Individual Permit	Effe ethice	4050		GOOSEBERRY CREEK	44 400007	00 440770	04/20/2040	002.0	00005.4.0	total [as P]	Gross						NODIO		N	N	5/7/2040	DAC	
120022041	VILLAGE OF	VILLAGE OF	n	Individual Permit	Ellective	4952		GOOSEBERRY CREEK	41.100007	-00.412770	04/30/2019	002-0	00005-1-0	total [as P]	Gross						NODIC	ing/L			5///2019	DAS	
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	03/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	4/2/2019	BAS	ENF
IL0022641	DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual Permit	Effective	4952		07120005- GOOSEBERRY CREEK	41.106667	-88.412778	02/28/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	3/5/2019	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Effective	4952		07120005- GOOSEBERRY	41.106667	-88.412778	01/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	2/5/2019	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	NPDES Individual	Effective	4952		07120005- GOOSEBERRY	41.106667	-88.412778	12/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross						NODI C	mg/L	N	N	1/8/2019	BAS	ENF
IL0022641	I DWIGHT, VILLAGE OF	DWIGHT STP, VILLAGE OF	Livingsto Minor n	Permit NPDES Individual	Effective	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	11/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_					NODI C	mg/L	N	N	12/6/2018	BAS	ENF
IL0022641		DWIGHT STP,	Livingsto Minor	Permit NPDES	Effective	4952		CREEK 07120005- GOOSEBERRY	41.106667	-88.412778	10/31/2018	002-0	00665-1-0	Phosphorus,	Effluent						NODI C	mg/L	N	N	11/5/2018	BAS	ENF
IL0023086	ST JOSEPH,	ST JOSEPH STP	, Champai Minor	Permit NPDES	Effective	4952		CREEK 05120109-SALT	40.105	-88.051667	12/31/2019	001-0	00665-1-0	Phosphorus,	Effluent					2.3	2.3	mg/L	N	N	1/5/2020	BAS	ENF
	VILLAGE OF	VILLAGE OF	gn	Individual Permit				FORK VERMILION RIVER						total [as P]	Gross												
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP VILLAGE OF	, Champai Minor gn	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION	40.105	-88.051667	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					3.1	3.1	mg/L	N	N	12/8/2019	BAS	ENF
IL0023086	3 ST JOSEPH,	ST JOSEPH STP	, Champai Minor	NPDES	Effective	4952		RIVER 05120109-SALT	40.105	-88.051667	10/31/2019	001-0	00665-1-0	Phosphorus,	Effluent					5.3	5.3	mg/L	N	N	11/17/2019	BAS	ENF
	VILLAGE OF	VILLAGE OF	gn	Permit				VERMILION RIVER						total [as P]	GIUSS												
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP VILLAGE OF	, Champai Minor gn	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION	40.105	-88.051667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					4.2	4.2	mg/L	N	N	10/5/2019	BAS	ENF
IL0023086	ST JOSEPH,	ST JOSEPH STP	, Champai Minor	NPDES	Effective	4952		RIVER 05120109-SALT	40.105	-88.051667	08/31/2019	001-0	00665-1-0	Phosphorus,	Effluent					3.5	3.5	mg/L	N	N	9/15/2019	BAS	ENF
			911	Permit				VERMILION							0088												

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	nor Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantity Q 2 U	Quantity (Jnits 1	Concentration 1	Concentration 2	Concentration 3	n Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change o Code Limit Status	of Limit Type Code
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION	40.105	-88.051667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2.8	2.8	mg/L	N	N	8/4/2019	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					3	3	mg/L	N	N	7/5/2019	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.6	1.6	mg/L	N	N	6/1/2019	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.1	1.1	mg/L	N	N	5/1/2019	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES	Effective	4952		RIVER 05120109-SALT FORK	40.105	-88.051667	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.1	1.1	mg/L	N	N	4/11/2019	BAS	ENF
IL0023086	ST JOSEPH,	ST JOSEPH STP,	Champ	ai Minor	Permit NPDES	Effective	4952		VERMILION RIVER 05120109-SALT FORK	40.105	-88.051667	02/28/2019	001-0	00665-1-0	Phosphorus,	Effluent					1.4	1.4	mg/L	N	N	3/11/2019	BAS	ENF
IL0023086	ST JOSEPH,	ST JOSEPH STP,	Champ	ai Minor	NPDES	Effective	4952		VERMILION RIVER 05120109-SALT	40.105	-88.051667	01/31/2019	001-0	00665-1-0	Phosphorus,	Effluent					1.3	1.3	mg/L	N	N	2/3/2019	BAS	ENF
11.0023086	VILLAGE OF		gn	ai Minor	Individual Permit	Effective	4952		FORK VERMILION RIVER	40 105	-88 051667	12/31/2018	001-0	00665-1-0	total [as P]	Gross					16	1.6	ma/l	N	N	1/11/2019	BAS	ENE
	VILLAGE OF	VILLAGE OF	gn		Individual Permit		4002		FORK VERMILION RIVER	40.100					total [as P]	Gross					1.0		ing/2			1/1/2010		
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION RIVER	40.105	-88.051667	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2.2	2.2	mg/L	N	N	12/8/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION	40.105	-88.051667	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.4	1.4	mg/L	N	N	11/5/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		05120109-SALT FORK VERMILION	40.105	-88.051667	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					.6	.6	mg/L	N	N	10/13/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		OS120109-SALT FORK VERMILION	40.105	-88.051667	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					3.8	3.8	mg/L	N	N	9/10/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.6	1.6	mg/L	N	N	8/5/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.1	1.1	mg/L	N	N	7/4/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2.3	2.3	mg/L	N	N	6/10/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Effective	4952		RIVER 05120109-SALT FORK VERMILION	40.105	-88.051667	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.4	1.4	mg/L	N	N	5/13/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES	Expired	4952		RIVER 05120109-SALT FORK	40.105	-88.051667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.6	1.6	mg/L	N	N	4/5/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	Permit NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					3	3	mg/L	N	N	3/14/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2.6	2.6	mg/L	N	N	2/10/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					2.7	2.7	mg/L	N	N	1/9/2018	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Etfluent Gross					2.2	2.2	mg/L	N	N	12/3/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					3.3	3.3	mg/L	N	N	11/10/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					4.2	4.2	mg/L	N	N	10/11/2017	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantity Quantity 2 Units	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	f Limit Type Code
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				4.3	4.3	mg/L	N	N	9/6/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				4	4	mg/L	N	N	8/18/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				3.4	3.4	mg/L	N	N	7/8/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.4	1.4	mg/L	N	N	6/9/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.2	1.2	mg/L	N	N	5/6/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.2	2.2	mg/L	N	N	4/6/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.3	2.3	mg/L	N	N	3/4/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.1	2.1	mg/L	N	N	2/5/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.8	1.8	mg/L	N	N	1/3/2017	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	Permit NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.7	2.7	mg/L	N	N	12/3/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.4	2.4	mg/L	N	N	11/6/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.4	1.4	mg/L	N	N	10/2/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				4.3	4.3	mg/L	N	N	9/4/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.1	2.1	mg/L	N	N	8/2/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.4	2.4	mg/L	N	N	7/5/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.9	1.9	mg/L	N	N	6/12/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.6	1.6	mg/L	N	N	5/7/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2	2	mg/L	N	N	4/2/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.7	1.7	mg/L	N	N	3/13/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.3	1.3	mg/L	N	N	2/6/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.2	2.2	mg/L	N	N	1/3/2016	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				3.3	3.3	mg/L	N	N	12/2/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				4.1	5.2	mg/L	N	N	11/22/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				3	3	mg/L	N	N	10/8/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				3.3	3.3	mg/L	N	N	9/17/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2	2	mg/L	N	N	8/3/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.8	.8	mg/L	N	N	7/12/2015	BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.6	1.6	mg/L	N	N	6/8/2015	BAS	ENF

	Demait News	Facility Name	Count	MalanMi	n en Dennik Tune	De musit	Duine and	Duine en r	Ctata Matan	Latituda in	Lawaitu da in	Man	Linut Cat	Denem Cal	Devenueten	Man Las	Manat 0/	Oursestitu 4	Ouentitu Ouentitu	Concentration	Componition	C	Concentration	E fflue ant	New	DMD	Chau Tuna	Observe of	Lineit Trues
NPDES ID	Permit Name	Facility Name	County	Indicator	nor Permit Type	Status	SIC	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date	Limit Set	MLC - Season ID	Parameter	Desc.	exced.	Quantity 1	2 Units	1	2	3	Units	Vio. Exists	Receipt Vio.	Received Date	Code	Limit Status	Code
IL0023086	ST JOSEPH,	ST JOSEPH STP,	Champ	oai Minor	NPDES	Expired	4952		05120109-SALT	40.105	-88.051667	04/30/2015	001-0	00665-1-0	Phosphorus,	Effluent					2.2	2.2	mg/L	N	Exists N	5/3/2015		Code BAS	ENF
IL0023086	ST JOSEPH.	ST JOSEPH STP.	gn Champ	ai Minor	Permit NPDES	Expired	4952		05120109-SALT	40.105	-88.051667	03/31/2015	001-0	00665-1-0	Phosphorus.	Effluent					2.7	2.7	ma/L	N	N	4/5/2015		BAS	ENF
	VILLAGE OF	VILLAGE OF	gn		Individual Permit				FORK						total [as P]	Gross													
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual Permit	Expired	4952		05120109-SALT FORK	40.105	-88.051667	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.9	1.9	mg/L	N	N	3/6/2015		BAS	ENF
IL0023086	ST JOSEPH, VILLAGE OF	ST JOSEPH STP, VILLAGE OF	Champ gn	oai Minor	NPDES Individual	Expired	4952		05120109-SALT FORK	40.105	-88.051667	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross					1.3	1.3	mg/L	N	N	2/8/2015		BAS	ENF
IL0023094	EAST ALTON,	EAST ALTON STP,	, Madiso	on Minor	Permit NPDES	Effective	4952		07110009- WOOD RIVER	38.858611	-90.126111	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		NODI C	lb/d		NODI C		mg/L	N	N	1/17/2020		BAS	ENF
					Permit				MISSISSIPPI RIVER																				
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madiso	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	12/19/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madiso	on Minor	NPDES	Effective	4952		07110009- WOOD RIVER.	38.858611	-90.126111	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	11/15/2019		BAS	ENF
					Permit				MISSISSIPPI RIVER																				
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	10/18/2019		BAS	ENF
IL0023094	EAST ALTON,	EAST ALTON STP,	, Madisc	on Minor	NPDES	Effective	4952		RIVER 07110009-	38.858611	-90.126111	08/31/2019	001-0	00665-1-0	Phosphorus,	Effluent		NODI C	lb/d		NODI C		mg/L	N	N	9/20/2019		BAS	ENF
	VILLAGE OF	VILLAGE OF			Permit				MISSISSIPPI RIVER						total [as P]	Gross													
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	8/16/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	on Minor	NPDES Individual	Effective	4952		07110009- WOOD RIVER,	38.858611	-90.126111	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	7/18/2019		BAS	ENF
11.0000004			N4 - 17 - 1	. Maria	Permit		4050		MISSISSIPPI RIVER	00.050044	00.400444	05/04/0040	001.0	00005.4.0		5 (0)		NODLO			NODLO					0/40/0040		540	
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madiso	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODIC	lb/d		NODI C		mg/L	N	N	6/13/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	5/21/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	4/23/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	n Minor	NPDES Individual Permit	Effective	4952		RIVER 07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	3/14/2019		BAS	ENF
IL0023094	EAST ALTON,	EAST ALTON STP,	, Madiso	on Minor	NPDES	Effective	4952		RIVER 07110009-	38.858611	-90.126111	01/31/2019	001-0	00665-1-0	Phosphorus,	Effluent		NODI C	lb/d		NODI C		mg/L	N	N	2/22/2019		BAS	ENF
	VILLAGE OF	VILLAGE OF			Individual Permit				WOOD RIVER, MISSISSIPPI RIVER						total [as P]	Gross													
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	1/17/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madiso	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	12/13/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madiso	n Minor	NPDES Individual	Effective	4952		KIVER 07110009- WOOD RIVER,	38.858611	-90.126111	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	11/15/2018		BAS	ENF
IL0023094	EAST ALTON,	EAST ALTON STP,	, Madiso	n Minor	NPDES	Effective	4952		RIVER 07110009-	38.858611	-90.126111	09/30/2018	001-0	00665-1-0	Phosphorus,	Effluent		NODI C	lb/d		NODI C		mg/L	N	N	10/18/2018		BAS	ENF
	VILLAGE OF	VILLAGE OF			Individual Permit				WOOD RIVER, MISSISSIPPI RIVER						total [as P]	Gross													
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	Madisc	on Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	9/21/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP, VILLAGE OF	, Madisc	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	8/17/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mino	or Permit Type	Permit Status	Primary SIC	Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity Quantity	Concentration	Concentration	Concentration Concentration 3 Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Code	Change of Limit	Limit Type Code
				indicator		oluluo	Code	Code	Douy	Degrees	Degrees	Date		Season ID			execu.		2 01113		-		Exists	Vio. Exists	Date	Cout	Status Code	Cout
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	7/20/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	6/15/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	5/10/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	4/19/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	3/15/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	2/9/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	1/10/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	12/14/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	11/13/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	10/19/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	9/14/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	8/17/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	7/20/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	6/12/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	5/18/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	4/20/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	3/17/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	2/10/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	1/20/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.9	lb/d		.48	mg/L	N	N	12/16/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C	mg/L	N	N	11/10/2016		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quan 2	tity Quantity Units	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code L	Change of Limit Status	Limit Type Code
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	10/13/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	9/13/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	8/12/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	7/14/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	6/17/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	5/19/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	4/15/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	3/11/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	2/12/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	1/15/2016		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	12/10/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	11/20/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	10/21/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	9/14/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	8/21/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	7/17/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	6/18/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODIC	lb/d		NODI C		mg/L	N	N	5/18/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODIC	lb/d		NODI C		mg/L	N	N	4/17/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODIC	lb/d		NODI C		mg/L	N	N	3/19/2015		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		NODI C	lb/d		NODI C		mg/L	N	N	2/20/2015		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Min	or Permit Type	Permit	Primary	Primary State Wate	r Latitude i	n Longitude in	n Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	I Quantity Quantity	Concentration	Concentration	Concentration Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
				Indicator		Status	SIC Code	NAICS Body Code	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2 Units	1	2	3 Units	Vio. Exists	Receipt Vio. Exists	Received Date	Code	Limit Status Code	Code
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁷ ER, Pl	1 -90.12611	1 12/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.2	lb/d		.6	mg/L	N	N	1/17/2020		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁷ ER, Pl	1 -90.12611	1 11/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.9	lb/d		.9	mg/L	N	N	12/19/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP	38.8586 ⁷ ER, Pl	1 -90.12611	1 10/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	lb/d		.6	mg/L	N	N	11/15/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP	38.8586 ⁷ ER, Pl	1 -90.12611	1 09/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.5	lb/d		.8	mg/L	N	N	10/18/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁷ ER, Pl	1 -90.12611	1 08/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.4	lb/d		.81	mg/L	N	N	9/20/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁷ ER, Pl	1 -90.12611	1 07/31/2019	0 002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.7	lb/d		.8	mg/L	N	N	8/16/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ER, Pl	1 -90.12611	1 06/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.6	lb/d		.8	mg/L	N	N	7/18/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ER, Pl	1 -90.12611	1 05/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.3	lb/d		.5	mg/L	N	N	6/13/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁻ ER, Pl	1 -90.12611	1 04/30/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.1	lb/d		.4	mg/L	N	N	5/21/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ER, Pl	1 -90.12611	1 03/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.3	lb/d		.5	mg/L	N	N	4/23/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ² ER, Pl	1 -90.12611	1 02/28/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.47	lb/d		.44	mg/L	N	N	3/14/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁷ ER, Pl	1 -90.12611	1 01/31/2019	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	lb/d		.4	mg/L	N	N	2/22/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ² ER, Pl	1 -90.12611	1 12/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.8	lb/d		.4	mg/L	N	N	1/17/2019		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ² ER, 기	1 -90.12611	1 11/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.1	lb/d		.5	mg/L	N	N	12/13/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁴ ER, Pl	1 -90.12611	1 10/31/2018	8 002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.2	lb/d		.6	mg/L	N	N	11/15/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁴ ER, Pl	1 -90.12611	1 09/30/2018	8 002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.8	lb/d		.5	mg/L	N	N	10/18/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586 ⁴ ER, Pl	1 -90.12611	1 08/31/2018	8 002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	10	4	lb/d		1.1	mg/L	Y	N	9/21/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586′ ER, Pl	1 -90.12611	1 07/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.8	lb/d		1	mg/L	N	N	8/17/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	ER, Pl	1 -90.12611	1 06/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Ettluent Gross		2.3	lb/d		.58	mg/L	N	N	7/20/2018		BAS	ENF
IL0023094	EAST ALTON,	EAST ALTON STP	, Madisor	n Mínor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	ER, Pl	1 -90.12611	1 05/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Ettluent Gross		1.9	lb/d		.5	mg/L	N	N	6/15/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952	07110009- WOOD RIV MISSISSIP RIVER	38.8586′ ER, Pl	-90.12611	04/30/2018	002-0	00665-1-0	Phosphorus, total [as P]	Gross		2.3	lb/d		.4	mg/L	N	N	5/10/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity Quantity	Concentration	Concentration	Concentration Concentration	Effluent	Non-	DMR	Stay Type	Change of	Limit Type
				Indicator		Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.		2 Units	1	2	3 Units	Vio. Exists	Receipt Vio. Evists	Received Date	Code L	₋imit Status Code	Code
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	03/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.5	lb/d		.6	mg/L	N	N	4/19/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Effective	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	02/28/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	lb/d		.5	mg/L	N	N	3/15/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	01/31/2018	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	lb/d		.7	mg/L	N	N	2/9/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	12/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.4	lb/d		.9	mg/L	N	N	1/10/2018		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	11/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.4	lb/d		.6	mg/L	N	N	12/14/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	10/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.3	lb/d		.9	mg/L	N	N	11/13/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	09/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	lb/d		.8	mg/L	N	N	10/19/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	08/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	lb/d		.8	mg/L	N	N	9/14/2017		BAS	ENF
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	07/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.4	lb/d		.6	mg/L	N	N	8/17/2017		BAS	ENF
IL0023094	VILLAGE OF	VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	06/30/2017	002-0	00665-1-0	Phosphorus, total [as P]	Gross		2.7	Ib/d		.6	mg/L	N	N	7/20/2017		BAS	
IL0023094	VILLAGE OF	VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	05/31/2017	002-0	00665-1-0	Phosphorus, total [as P]	Gross		2.4	ID/Q		.3	mg/L	N	N	6/12/2017		BAS	ENF
120023094	VILLAGE OF	VILLAGE OF	Madisor	Minor	Individual Permit	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	30.030011	-90.120111	02/21/2017	002-0	00665 1.0	total [as P]	Gross		2.0	lb/d		.0	mg/L	N	N	3/16/2017		BAS	
IL0023094	VILLAGE OF	VILLAGE OF	Madisor	1 Minor	Individual Permit	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	38.838011	-90.126111	03/31/2017	002-0	00665 1.0	Phosphorus, total [as P]	Gross		2.4	ID/O		.0	mg/L	N	N	4/20/2017		BAS	ENF
1L0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP	Madisor	1 Minor	NPDES Individual Permit	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	02/28/2017	002-0	00665-1-0	Phosphorus, total [as P]	Gross		2.5	ib/d		.0	mg/L	N	N	2/10/2017		BAS	ENF
11.0023094	VILLAGE OF	VILLAGE OF	Madisor	n Minor	Individual Permit	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90 126111	12/31/2016	002-0	00665-1-0	total [as P]	Gross		2.5	lb/d		.0	mg/L	N	N	1/20/2017		BAS	ENF
IL0023094	VILLAGE OF	VILLAGE OF	. Madisor	1 Minor	Individual Permit	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	11/30/2016	002-0	00665-1-0	total [as P]	Gross		2.4	lb/d		.0	ma/L	N	N	12/16/2016		BAS	ENF
IL0023094	VILLAGE OF	VILLAGE OF	, Madisor	n Minor	Individual Permit NPDES	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	10/31/2016	002-0	00665-1-0	total [as P]	Gross		2.9	lb/d		.87	mg/L	N	N	11/10/2016		BAS	ENF
IL0023094	VILLAGE OF	VILLAGE OF	, Madisor	n Minor	Individual Permit NPDES	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	09/30/2016	002-0	00665-1-0	total [as P]	Gross		2.8	lb/d		.69	mg/L	N	N	10/13/2016		BAS	ENF
IL0023094	VILLAGE OF EAST ALTON.	VILLAGE OF EAST ALTON STP	, Madisor	n Minor	Individual Permit NPDES	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	08/31/2016	002-0	00665-1-0	total [as P] Phosphorus.	Gross		4.3	lb/d		.9		N	N	9/13/2016		BAS	ENF
IL0023094	VILLAGE OF	VILLAGE OF	, Madisor	n Minor	Individual Permit NPDES	Continued	4952		WOOD RIVER, MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	07/31/2016	002-0	00665-1-0	total [as P]	Gross		4.1	lb/d		.7	ma/L	N	N	8/12/2016		BAS	ENF
	VILLAGE OF	VILLAGE OF			Individual Permit	Continued			WOOD RIVER, MISSISSIPPI RIVER						total [as P]	Gross												
NPDES ID	Permit Name	Facility Name	County	Maior Mir	nor Permit Type	Permit	Primary	v Primarv	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity 1	Quantity Quantity	Concentration Concentration	Concentration Concentration	Effluent	Non-	DMR	Stav Type Change of	Limit Type		
------------	---------------------------	------------------------------	--------------	-----------	---	--------------------	-------------	---------------	--	--------------------	--------------------	--------------------	-----------	--------------------	-----------------------------	-------------------	---------	------------	-------------------	-----------------------------	-----------------------------	----------------	-----------------	------------------	----------------------	------------		
		,	,	Indicator	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Status	SIC Code	NAICS Code	Body	Decimal Degrees	Decimal Degrees	Period End Date		MLC - Season ID		Desc.	exced.	,	2 Units	1 2	3 Units	Vio. Exists	Receipt Vio.	Received Date	Code Limit Status	Code		
IL0023094	EAST ALTON,	EAST ALTON STP	, Madisor	n Minor	NPDES	Admin	4952		07110009-	38.858611	-90.126111	06/30/2016	002-0	00665-1-0	Phosphorus,	Effluent		2	lb/d	.7	mg/L	N	Exists N	7/14/2016	Code BAS	ENF		
	VILLAGE OF	VILLAGE OF			Permit	Continued			MISSISSIPPI RIVER						lotal [as F]	GIUSS												
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	05/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.7	lb/d	.63	mg/L	N	N	6/17/2016	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	04/30/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	lb/d	.7	mg/L	N	N	5/19/2016	BAS	ENF		
IL0023094	EAST ALTON,	EAST ALTON STP	, Madisor	n Minor	NPDES	Admin	4952		RIVER 07110009-	38.858611	-90.126111	03/31/2016	002-0	00665-1-0	Phosphorus,	Effluent		2.9	lb/d	.8	mg/L	N	N	4/15/2016	BAS	ENF		
	VILLAGE OF	VILLAGE OF			Individual Permit	Continued			WOOD RIVER, MISSISSIPPI RIVER						total [as P]	Gross												
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	02/29/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.7	lb/d	.7	mg/L	N	N	3/11/2016	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	01/31/2016	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.6	lb/d	.5	mg/L	N	N	2/12/2016	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		RIVER 07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	12/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.6	lb/d	.63	mg/L	N	N	1/15/2016	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		RIVER 07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	11/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.4	lb/d	.7	mg/L	N	N	12/10/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES	Admin Continued	4952		RIVER 07110009- WOOD RIVER,	38.858611	-90.126111	10/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.6	lb/d	.79	mg/L	N	N	11/20/2015	BAS	ENF		
IL0023094	EAST ALTON,	EAST ALTON STP	, Madisor	n Minor	Permit NPDES	Admin	4952		MISSISSIPPI RIVER 07110009-	38.858611	-90.126111	09/30/2015	002-0	00665-1-0	Phosphorus,	Effluent		2.8	lb/d	.8	mg/L	N	N	10/21/2015	BAS	ENF		
11.0023094	FAST ALTON	FAST ALTON STP	Madisor	Minor	Permit	Admin	4952		MISSISSIPPI RIVER	38 858611	-90 126111	08/31/2015	002-0	00665-1-0	Phosphorus	Effluent		17	lb/d		ma/l	N	N	9/14/2015	BAS	ENE		
	VILLAGE OF	VILLAGE OF	, Mudisor		Individual Permit	Continued	4002		WOOD RIVER, MISSISSIPPI RIVER	00.000011	00.120111	00/01/2010	002.0		total [as P]	Gross								0/14/2010				
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	07/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.5	lb/d	.47	mg/L	N	N	8/21/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI RIVER	38.858611	-90.126111	06/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.8	lb/d	.73	mg/L	N	N	7/17/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	05/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.7	lb/d	.9	mg/L	N	N	6/18/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	04/30/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.1	lb/d	.8	mg/L	N	N	5/18/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		RIVER 07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	03/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.1	lb/d	.45	mg/L	N	N	4/17/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Permit	Admin Continued	4952		RIVER 07110009- WOOD RIVER, MISSISSIPPI	38.858611	-90.126111	02/28/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.9	lb/d	.71	mg/L	N	N	3/19/2015	BAS	ENF		
IL0023094	EAST ALTON, VILLAGE OF	EAST ALTON STP VILLAGE OF	, Madisor	n Minor	NPDES Individual Pormit	Admin Continued	4952		RIVER 07110009- WOOD RIVER,	38.858611	-90.126111	01/31/2015	002-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.1	lb/d	.39	mg/L	N	N	2/20/2015	BAS	ENF		
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champa	ai Minor	NPDES	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3	lb/d	.56	mg/L	N	N	1/6/2020	BAS	ENF		
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champa	ai Minor	Permit NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.7	lb/d	.93	mg/L	N	N	12/3/2019	BAS	ENF		
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champa gn	ai Minor	NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.9	lb/d	.95	mg/L	N	N	11/5/2019	BAS	ENF		
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champa gn	ai Minor	Permit NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	1	4.5	lb/d	1.01	mg/L	Y	N	10/2/2019	BAS	ENF		
					Permit				KIVEK			1					1											

NPDES ID	Permit Name	Facility Name	County Ma Ind	ajor Minor Permit Ty dicator	pe Permit Status	Primary SIC Code	y Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 1 2	Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.2		lb/d	.99	mg/L	N	Exists N	9/5/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min	Permit nor NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.3		lb/d	.7	mg/L	N	N	8/16/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champai Min	Permit nor NPDES	Admin	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	06/30/2019	001-0	00665-1-0	Phosphorus,	Effluent		3.8		lb/d	.57	mg/L	N	N	7/10/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champai Min	nor NPDES	Admin	4952		RIVER 07130006-	40.185	-88.401667	05/31/2019	001-0	00665-1-0	Phosphorus,	Effluent		6.9		lb/d	.69	mg/L	N	N	6/6/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champai Min	nor NPDES	Admin	4952		RIVER 07130006-	40.185	-88.401667	04/30/2019	001-0	00665-1-0	Phosphorus,	Effluent		8		lb/d	.81	mg/L	N	N	5/9/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	gn Champai Min	nor NPDES	Admin	4952		RIVER 07130006-	40.185	-88.401667	03/31/2019	001-0	00665-1-0	Phosphorus,	Effluent		7.7		lb/d	.9	mg/L	N	N	4/5/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	gn Champai Min	nor NPDES	Admin	4952		RIVER 07130006-	40.185	-88.401667	02/28/2019	001-0	00665-1-0	Phosphorus,	Effluent		7.4		lb/d	.93	mg/L	N	N	3/5/2019		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	gn Champai Min	nor NPDES	Continued Admin	4952		SANGAMON RIVER 07130006-	40.185	-88.401667	01/31/2019	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		6.6		lb/d	.81	mg/L	N	N	2/4/2019		BAS	ENF
IL0024414	MAHOMET STP	VILLAGE OF MAHOMET STP,	gn Champai Min	nor NPDES	Continued Admin	4952		SANGAMON RIVER 07130006-	40.185	-88.401667	12/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		5.7		lb/d	.84	mg/L	N	N	1/7/2019		BAS	ENF
IL0024414	MAHOMET STP	VILLAGE OF MAHOMET STP,	gn Champai Min	nor NPDES	Continued	4952		SANGAMON RIVER 07130006-	40.185	-88.401667	11/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		5.1		lb/d	.78	mg/L	N	N	12/5/2018		BAS	ENF
IL0024414	MAHOMET STP	VILLAGE OF	gn Champai Min	Individual Permit nor NPDES	Continued	4952		SANGAMON RIVER 07130006-	40.185	-88.401667	10/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross		4.2		lb/d	.83	mg/L	N	N	11/15/2018		BAS	ENF
11 0024414	MAHOMET STP	VILLAGE OF	gn Champai Min	Individual Permit	Continued	4952		SANGAMON RIVER	40 185	-88 401667	09/30/2018	001-0	00665-1-0	total [as P]	Gross		4.2		lb/d	82	ma/l	N	N	10/9/2018		BAS	ENE
11.0024414	MAHOMET STR	VILLAGE OF	gn Champai Min	Individual Permit	Continued	4002		SANGAMON RIVER	40.185	99 401667	08/31/2018	001.0	00665 1 0	total [as P]	Gross		3.3		lb/d		mg/L	N	N	0/13/2018		BAS	ENE
120024414	MALIONETOTE	VILLAGE OF	gn	Individual Permit	Continued	4952		SANGAMON RIVER	40.105	-00.401007	07/04/0040	001-0	00005-1-0	total [as P]	Gross		5.5			.,	ing/L	N		0/0/0010		BAG	
IL0024414	MAHOMETSTP	VILLAGE OF	gn	Individual Permit	Continued	4952		SANGAMON RIVER	40.185	-88.401007	07/31/2018	001-0	00005-1-0	total [as P]	Gross		4.7		D/d	.69	mg/L	N		8/2/2018		BAS	ENF
IL0024414	MAHOMETSTP	VILLAGE OF	gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Gross		8.6		lb/d	.93	mg/L	N	N	7/5/2018		BAS	ENF
IL0024414	MAHOMET STP	VILLAGE OF	gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.7		lb/d	.88	mg/L	N	N	6/12/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		7.1		lb/d	.94	mg/L	N	N	5/7/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.6		lb/d	.89	mg/L	N	N	4/2/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.7		lb/d	.55	mg/L	N	N	3/6/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3		lb/d	.54	mg/L	N	N	2/5/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3		lb/d	.59	mg/L	N	N	1/5/2018		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.7		lb/d	.4	mg/L	N	N	12/5/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual Pormit	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.1		lb/d	.75	mg/L	N	N	11/3/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.6		lb/d	.68	mg/L	N	N	10/10/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3		lb/d	.57	mg/L	N	N	9/6/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.9		lb/d	.47	mg/L	N	N	9/2/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.3		lb/d	.98	mg/L	N	N	7/11/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champai Min gn	nor NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		7.8		lb/d	1	mg/L	N	N	6/8/2017		BAS	ENF
				Permit				RIVER																			1

NPDES ID	Permit Name	Facility Name	County	y Major Mino Indicator	or Permit Type	Permit Status	Primary SIC	Primary NAICS	State Water Body	Latitude in Decimal	Longitude in Decimal	Mon. Period End	Limit Set	Param Cd - MLC -	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity 2	Quantity Units	Concentration Concentration 2	Concentration Concentration Units	Effluent Vio.	Non- Receipt	DMR Received	Stay Type Code	Change of Limit	Limit Type Code
							Code	Code		Degrees	Degrees	Date		Season ID									Exists	Vio. Exists	Date		Status Code	
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.3		lb/d	.44	mg/L	N	N	5/4/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.94		lb/d	.18	mg/L	N	N	4/4/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.63		lb/d	.69	mg/L	N	N	3/1/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champ	pai Minor	Permit NPDES	Admin	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	01/31/2017	001-0	00665-1-0	Phosphorus,	Effluent		5.4		lb/d	.93	mg/L	N	N	2/10/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champ	pai Minor	Permit NPDES	Admin	4952		RIVER 07130006-	40.185	-88.401667	12/31/2016	001-0	00665-1-0	Phosphorus,	Effluent		1.9		lb/d	.36	mg/L	N	N	1/13/2017		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP,	Champ	pai Minor	Permit NPDES	Admin	4952		07130006-	40.185	-88.401667	11/30/2016	001-0	00665-1-0	Phosphorus,	Effluent		.93		lb/d	.2	mg/L	N	N	12/6/2016		BAS	ENF
IL0024414	MAHOMET STP	VILLAGE OF MAHOMET STP,	gn Champ	pai Minor	Individual Permit NPDES	Continued Admin	4952		SANGAMON RIVER 07130006-	40.185	-88.401667	10/31/2016	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		.79		lb/d	.18	mg/L	N	N	11/3/2016		BAS	ENF
II 0024414	MAHOMET STP	VILLAGE OF	gn Champ	pai Minor	Individual Permit NPDES	Continued	4952		SANGAMON RIVER 07130006-	40 185	-88 401667	09/30/2016	001-0	00665-1-0	total [as P]	Gross		2.6		lb/d	43	ma/l	N	N	10/7/2016		BAS	ENE
11.0024414		VILLAGE OF	gn	nai Minor	Individual Permit	Continued	/052		SANGAMON RIVER	40 185	-88 401667	08/31/2016	001-0	00665-1-0	total [as P]	Gross		4.8		lb/d	72	mg/l	N	N	9/13/2016		BAS	ENE
120024414		VILLAGE OF	gn		Individual Permit	Continued	4050		SANGAMON RIVER	40.105	-00.401007	07/04/0010	001-0	00003-1-0	total [as P]	Gross		4.0		15/4	.12	ingr_			0/0/0010		540	
IL0024414	MAHOMETSTP	VILLAGE OF	gn	Dai Minor	NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Gross		4.9		lb/d	.81	mg/L	N	N	8/3/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	12	7.02		lb/d	1.12	mg/L	Y	N	7/14/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON RIVER	40.185	-88.401667	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.3		lb/d	.75	mg/L	N	N	6/9/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	bai Minor	NPDES Individual Permit	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		6.79		lb/d	.83	mg/L	N	N	6/8/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.77		lb/d	.39	mg/L	N	N	4/4/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.3		lb/d	.36	mg/L	N	N	3/3/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	13	7.8		lb/d	1.13	mg/L	Y	N	2/4/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	NPDES Individual	Admin Continued	4952		07130006- SANGAMON	40.185	-88.401667	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		8.4		lb/d	.96	mg/L	N	N	1/5/2016		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ gn	pai Minor	Permit NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross	_	5.2		lb/d	.92	mg/L	N	N	12/26/2015		BAS	ENF
IL0024414	MAHOMET STP	MAHOMET STP, VILLAGE OF	Champ	pai Minor	Permit NPDES Individual	Admin Continued	4952		RIVER 07130006- SANGAMON	40.185	-88.401667	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.69		lb/d	.16	mg/L	N	N	11/3/2015		BAS	ENF
11 0026093	RICHMOND	RICHMOND STP	McHen	nry Minor	Permit NPDES	Effective	4952		RIVER 07120006-	42 475	-88.3	12/31/2019	001-0	00665-1-0	Phosphorus	Effluent		3 14		lb/d	58	mg/l	N	N	1/29/2020		BAS	ENE
	VILLAGE OF	VILLAGE OF		.,	Individual Permit				NORTH BRANCH OF NIPPERSINK CREEK						total [as P]	Gross												
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHen	nry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK	42.475	-88.3	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.41		lb/d	.4	mg/L	N	N	1/2/2020		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHen	nry Minor	NPDES Individual Permit	Effective	4952		CREEK 07120006- NORTH BRANCH OF NIPPERSINK	42.475	-88.3	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		4.25		lb/d	.61	mg/L	N	N	11/25/2019		BAS	ENF
11 0026002	RICHMOND		McHon	ny Miner	NPDES	Effectivo	4052		CREEK	12 175	_00.2	09/30/2010	001.0	00665 1 0	Phosphorus	Effluent		3 73		lb/d	56		N	N	11/1/2010		BAS	ENE
120020093	VILLAGE OF	VILLAGE OF	WCI IEI		Individual Permit	LIECUVE	4932		NORTH BRANCH OF NIPPERSINK CREEK	42.473	-00.3	09/30/2019	001-0	00003-1-0	total [as P]	Gross		5.15		Ibra		ing/L		N	11/1/2019		BAG	LNI
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP,	McHen	nry Minor	NPDES	Effective	4952		07120006- NORTH	42.475	-88.3	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.7		lb/d	.99	mg/L	N	N	9/23/2019		BAS	ENF
					Permit				BRANCH OF NIPPERSINK CREEK																			

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quantit 2	ty Quantity Units	Concentration 1	Concentration 2	Concentration 3	Concentration Units	Effluent Vio. Exists	Non- Receipt Vio. Exists	DMR Received Date	Stay Type Code	Change of Limit Status Code	Limit Type Code
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.43	lb/d		.74		mg/L	N	N	9/3/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.57	lb/d		.65		mg/L	N	N	7/30/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		5.21	lb/d		.71		mg/L	N	N	7/3/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.39	lb/d		.74		mg/L	N	N	5/21/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.1	lb/d		.6		mg/L	N	N	4/29/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK	42.475	-88.3	02/28/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.19	lb/d		.8		mg/L	N	N	3/25/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.95	lb/d		.95		mg/L	N	N	3/5/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.74	lb/d		.96		mg/L	N	N	1/24/2019		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.43	lb/d		.8		mg/L	N	N	12/19/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.26	lb/d		.39		mg/L	N	N	11/29/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.42	lb/d		.17		mg/L	N	N	10/8/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.7	lb/d		.33		mg/L	N	N	9/6/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.64	lb/d		.3		mg/L	N	N	8/2/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.56	lb/d		.56		mg/L	N	N	7/5/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.36	lb/d		.62		mg/L	N	N	6/5/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.5	lb/d		.66		mg/L	N	N	5/1/2018		BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.53	lb/d		.7		mg/L	N	N	4/6/2018		BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 (Quantity Quantity 2 Units	Concentration 1	Concentration 2	Concentration Concentration 3 Units	Effluent Vio. Exists	t Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	Limit Type Code
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.65	lb/d		.27	mg/L	N	N	3/7/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.43	lb/d		.25	mg/L	N	N	2/21/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.78	lb/d		.46	mg/L	N	N	1/17/2018	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	ry Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.05	lb/d		.39	mg/L	N	N	12/18/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.12	lb/d		.89	mg/L	N	N	11/21/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.17	lb/d		.54	mg/L	N	N	10/6/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.57	lb/d		.7	mg/L	N	N	9/19/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.04	lb/d		.42	mg/L	N	N	8/2/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.7	lb/d		.5	mg/L	N	N	7/17/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.91	lb/d		.21	mg/L	N	N	6/22/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.03	lb/d		.46	mg/L	N	N	5/9/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.8	lb/d		.72	mg/L	N	N	4/25/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.99	lb/d		.56	mg/L	N	N	3/6/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.33	lb/d		.69	mg/L	N	N	2/24/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Effective	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.15	lb/d		.63	mg/L	N	N	1/4/2017	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.73	lb/d		.83	mg/L	N	N	12/20/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.12	lb/d		.67	mg/L	N	N	11/9/2016	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Major Mino Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 (Quantity Quantity 2 Units	Concentration 1	Concentration 2	Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status Code	Limit Type Code
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.82	lb/d		.5	mg/L	N	N	10/10/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.26	lb/d		.73	mg/L	N	N	9/13/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.1	lb/d		.56	mg/L	N	N	8/22/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.55	lb/d		.59	mg/L	N	N	7/12/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.08	lb/d		.62	mg/L	N	N	6/21/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.58	lb/d		.39	mg/L	N	N	5/6/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.12	lb/d		.62	mg/L	N	N	4/18/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.45	lb/d		.82	mg/L	N	N	3/14/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.36	lb/d		.75	mg/L	N	N	2/8/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		2.11	lb/d		.58	mg/L	N	N	1/6/2016	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.79	lb/d		.75	mg/L	N	N	12/8/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.36	lb/d		.79	mg/L	N	N	11/25/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.64	lb/d		.74	mg/L	N	N	10/1/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.67	lb/d		.97	mg/L	N	N	9/16/2015	BAS	ENF
ILUU26093	VILLAGE OF	VILLAGE OF	McHenr		NPDES Individual Permit	Aamin Continued	4952		NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	07/31/2015	001-0	00005 1 0	Phosphorus, total [as P]	Gross		1.97	lb/d		.83	mg/L	N	N	8/20/2015	BAS	ENF
IL0026093	RICHMOND,	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.3	lb/d		.54	mg/L	N	N	7/7/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenr	y Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.31	lb/d		.68	mg/L	N	N	6/9/2015	BAS	ENF

NPDES ID	Permit Name	Facility Name	County Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1 Quanti 2	ty Quantity Units	Concentration 1	Concentration 2	Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Change of Code Limit Status	Limit Type Code
IL0026093	3 RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenry Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.49	lb/d		.67	mg/L	N	N	5/11/2015	BAS	ENF
IL0026093	3 RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenry Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.96	lb/d		.49	mg/L	N	N	4/17/2015	BAS	ENF
IL0026093	3 RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenry Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.96	lb/d		.7	mg/L	N	N	3/24/2015	BAS	ENF
IL0026093	RICHMOND, VILLAGE OF	RICHMOND STP, VILLAGE OF	McHenry Minor	NPDES Individual Permit	Admin Continued	4952		07120006- NORTH BRANCH OF NIPPERSINK CREEK	42.475	-88.3	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.75	lb/d		.54	mg/L	N	N	2/24/2015	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	12/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.15	lb/d		.43	mg/L	N	N	1/7/2020	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	11/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.89	lb/d		.26	mg/L	N	N	12/13/2019	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	10/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.26	lb/d		.45	mg/L	N	N	11/7/2019	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	09/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.18	lb/d		.12	mg/L	N	N	10/16/2019	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	08/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.1	lb/d		.08	mg/L	N	N	9/10/2019	BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	07/31/2019	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.13	lb/d		.08	mg/L	N	N	8/15/2019	BAS	ENF
IL0050628	VILLAGE OF	VILLAGE OF	DeKalb Minor	NPDES Individual Permit	Effective	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	06/30/2019	001-0	00665-1-0	Phosphorus, total [as P]	Gross		.32	lb/d		.08	mg/L	N	N	7/10/2019	BAS	ENF
IL0050628	VILLAGE OF	VILLAGE OF	DeKalb Minor	Individual Permit	Effective	4952		LITTLE ROCK CREEK	41.765	-88.631667	05/31/2019	001-0	00665-1-0	total [as P]	Gross		.44	ID/d		.08	mg/L	N	N	6/10/2019	BAS	ENF
11.0050628	VILLAGE OF	VILLAGE OF	DeKalb Minor	Individual Permit	Effective	4952		LITTLE ROCK CREEK	41.705	-88.631667	03/31/2019	001-0	00665-1-0	total [as P]	Gross		.2	lb/d		.00	mg/L		N	4/15/2019	BAS	ENE
IL0050628	VILLAGE OF	VILLAGE OF	DeKalb Minor	Individual Permit NPDES	Effective	4952		LITTLE ROCK CREEK 07120007-	41.765	-88.631667	02/28/2019	001-0	00665-1-0	total [as P]	Gross		.67	lb/d		.121	mg/L	N	N	3/8/2019	BAS	ENF
IL0050628	VILLAGE OF	VILLAGE OF	DeKalb Minor	Individual Permit NPDES	Effective	4952		LITTLE ROCK CREEK 07120007-	41.765	-88.631667	01/31/2019	001-0	00665-1-0	total [as P]	Gross		.62	lb/d		.16	ma/L	N	N	2/8/2019	BAS	ENF
IL0050628	VILLAGE OF 3 HINCKLEY,	VILLAGE OF HINCKLEY STP,	DeKalb Minor	Individual Permit NPDES	Effective	4952		LITTLE ROCK CREEK 07120007-	41.765	-88.631667	12/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross Effluent		.7	lb/d		.246	mg/L	N	N	1/9/2019	BAS	ENF
IL0050628	VILLAGE OF B HINCKLEY,	VILLAGE OF HINCKLEY STP,	DeKalb Minor	Individual Permit NPDES	Effective	4952		LITTLE ROCK CREEK 07120007-	41.765	-88.631667	11/30/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross		.41	lb/d		.181	mg/L	N	N	12/6/2018	BAS	ENF
IL0050628	VILLAGE OF B HINCKLEY,	VILLAGE OF HINCKLEY STP,	DeKalb Minor	Individual Permit NPDES	Effective	4952		LITTLE ROCK CREEK 07120007-	41.765	-88.631667	10/31/2018	001-0	00665-1-0	total [as P] Phosphorus,	Gross		.25	lb/d		.25	mg/L	N	N	11/14/2018	BAS	ENF
IL0050628	VILLAGE OF B HINCKLEY,	HINCKLEY STP,	DeKalb Minor	Individual Permit NPDES	Effective	4952		CREEK 07120007-	41.765	-88.631667	09/30/2018	001-0	00665-1-0	Phosphorus,	Gross Effluent		.88	lb/d		.71	mg/L	N	N	10/5/2018	BAS	ENF
IL0050628	VILLAGE OF	HINCKLEY STP,	DeKalb Minor	Individual Permit NPDES	Effective	4952		CREEK 07120007-	41.765	-88.631667	08/31/2018	001-0	00665-1-0	Phosphorus,	Effluent		.28	lb/d		.22	mg/L	N	N	9/12/2018	BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP,	DeKalb Minor	Permit NPDES Individual	Effective	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	07/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		.48	lb/d		.22	mg/L	N	N	8/7/2018	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	Permit NPDES Individual	Effective	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	06/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.02	lb/d		.344	mg/L	N	N	7/5/2018	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	Permit NPDES Individual	Effective	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	05/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.32	lb/d		.129	mg/L	N	N	6/11/2018	BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	Permit NPDES Individual	Effective	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	04/30/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.327	lb/d		.12	mg/L	N	N	5/3/2018	BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb Minor	Permit NPDES Individual	Effective	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	03/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.3	lb/d		.08	mg/L	N	N	4/5/2018	BAS	ENF
				Permit				CREEK																		

NPDES ID	Permit Name	Facility Name	County	/ Major Mine Indicator	or Permit Type	Permit Status	Primary SIC Code	Primary NAICS Code	State Water Body	Latitude in Decimal Degrees	Longitude in Decimal Degrees	Mon. Period End Date	Limit Set	Param Cd - MLC - Season ID	Parameter	Mon. Loc. Desc.	Worst % exced.	Quantity 1	Quantity Quantity 2 Units	Concentration Concentration	Concentration Concentration 3 Units	Effluent Vio. Exists	Non- Receipt Vio.	DMR Received Date	Stay Type Code	Change of Limit Status	Limit Type Code
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Pormit	Effective	4952		07120007- LITTLE ROCK	41.765	-88.631667	02/28/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.19	lb/d	.08	mg/L	N	N	3/7/2018		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	01/31/2018	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.3	lb/d	.13	mg/L	N	N	2/7/2018		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	12/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.72	lb/d	.29	mg/L	N	N	1/15/2018		BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	11/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.41	lb/d	.61	mg/L	N	N	12/6/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP,	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	10/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		.32	lb/d	.26	mg/L	N	N	11/15/2017	,	BAS	ENF
IL0050628	B HINCKLEY,	HINCKLEY STP,	DeKalb	Minor	Permit NPDES Individual	Admin	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	09/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		.94	lb/d	.46	mg/L	N	N	10/6/2017		BAS	ENF
IL0050628	B HINCKLEY,	HINCKLEY STP,	DeKalb	Minor	Permit NPDES	Admin	4952		CREEK 07120007-	41.765	-88.631667	08/31/2017	001-0	00665-1-0	Phosphorus,	Effluent		.32	lb/d	.23	mg/L	N	N	9/11/2017		BAS	ENF
IL0050628	B HINCKLEY,	HINCKLEY STP,	DeKalb	Minor	Permit NPDES Individual	Admin	4952		CREEK 07120007-	41.765	-88.631667	07/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		.38	lb/d	.27	mg/L	N	N	8/4/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	06/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent		.34	lb/d	.194	mg/L	N	N	7/17/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	05/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.48	lb/d	.08	mg/L	N	N	6/19/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	04/30/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		3.02	lb/d	.39	mg/L	N	N	5/17/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	03/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		.29	lb/d	.08	mg/L	N	N	4/11/2017		BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	02/28/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.04	lb/d	.36	mg/L	N	N	3/7/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	01/31/2017	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross		1.33	lb/d	.454	mg/L	N	N	2/2/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	12/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.044	mg/L	N	N	1/17/2017		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	11/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.554	mg/L	N	N	12/8/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	Permit NPDES Individual	Admin Continued	4952		CREEK 07120007- LITTLE ROCK	41.765	-88.631667	10/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.51	mg/L	N	N	11/16/2016	3	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	09/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.01	mg/L	N	N	10/13/2016	3	BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	08/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.63	mg/L	N	N	9/13/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952	_	07120007- LITTLE ROCK	41.765	-88.631667	07/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.16	mg/L	N	N	8/17/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	06/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.74	mg/L	N	N	7/12/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	05/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.47	mg/L	N	N	6/6/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	04/30/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.44	mg/L	N	N	5/9/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	03/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				2.17	mg/L	N	N	4/6/2016		BAS	ENF
IL0050628	3 HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	02/29/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				1.62	mg/L	N	N	3/8/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	01/31/2016	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.66	mg/L	N	N	2/10/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	12/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.296	mg/L	N	N	1/13/2016		BAS	ENF
IL0050628	B HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	11/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	Effluent Gross				.214	mg/L	N	N	12/11/2015	5	BAS	ENF

NPDES ID	Permit Name	Facility Name	County	Maior Min	or Permit Type	Permit	Primary	Primary	State Water	Latitude in	Longitude in	Mon.	Limit Set	Param Cd -	Parameter	Mon. Loc.	Worst %	Quantity	1 Quanti	tv Quantitv	Concentration	Concentration	Concentration Concentration	Effluent	Non-	DMR	Stav Type	Change of	Limit Type
			- sunty	Indicator		Status	SIC	NAICS	Body	Decimal	Decimal	Period End	1	MLC -		Desc.	exced.	Landy	2	Units	1	2	3 Units	Vio.	Receipt	Received	Code	Limit	Code
							Code	Code		Degrees	Degrees	Date		Season ID										Exists	Vio. Exists	Date		Status Code	
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK	41.765	-88.631667	10/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						.356	mg/L	N	N	11/17/201	5	BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	09/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						2.2	mg/L	N	N	10/26/201	5	BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	08/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						2.3	mg/L	N	N	9/21/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	07/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						1.4	mg/L	N	N	8/20/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	06/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						.7	mg/L	N	N	7/17/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	05/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						2.35	mg/L	N	N	6/15/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	04/30/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						2.6	mg/L	N	N	5/7/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	03/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						3.1	mg/L	N	N	4/15/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	02/28/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						1.7	mg/L	N	N	3/24/2015		BAS	ENF
IL0050628	HINCKLEY, VILLAGE OF	HINCKLEY STP, VILLAGE OF	DeKalb	Minor	NPDES Individual Permit	Admin Continued	4952		07120007- LITTLE ROCK CREEK	41.765	-88.631667	01/31/2015	001-0	00665-1-0	Phosphorus, total [as P]	, Effluent Gross						2.03	mg/L	N	N	2/25/2015		BAS	ENF

Appendix I Responsiveness Summary

Responsiveness Summary

Upper Fox River-Flint Creek Watershed Total Maximum Daily Load

The responsiveness summary responds to questions and comments received during the public comment period from May 14, 2019, through June 14, 2019, and additional informational meeting from September 11, 2019.

What is a TMDL?

A Total Maximum Daily Load (TMDL) is the sum of the allowable amount of a pollutant that a water body can receive from all contributing sources and still meet water quality standards or designated uses. The Upper Fox River- Flint Creek Watershed TMDL report contains a plan detailing the actions necessary to reduce pollutant loads to the impaired water bodies and ensure compliance with applicable water quality standards. The Illinois EPA implements the TMDL program in accordance with Section 303(d) of the federal Clean Water Act and regulations thereunder.

Background

The Fox River watershed spans across two states, Wisconsin and Illinois. The Fox River headwaters are located in Wisconsin. The river flows south into Illinois along the western portion of the Chicago Metropolitan suburban area. The watershed as a whole drains approximately 2,654 square miles (sq mi) with 1,723 sq mi located within Illinois (IDNR 1995). The Fox River flows 115.1 miles from Wisconsin, through several Illinois Counties (Grundy, Kane, Kendall, Lake, La Salle, McHenry and Will) before discharging into the Illinois River at Ottawa.

The Illinois EPA Integrated Report (303(d)) List and Stream Assessment Report (Illinois EPA, 2018) divides the Fox River watershed into two portions: Upper Fox River watershed (USGS HUC:07120006) and the Lower Fox River watershed (USGS HUC:07120007). The Illinois portion of the Upper Fox River is further divided into five smaller sub-watersheds (10-digit hydrologic unit codes). Three of these subwatersheds (Nippersink Creek, North Branch Nippersink Creek and Squaw Creek) drain through a hydraulically connected system of lakes, commonly known as the Chain of Lakes, to the Fox River. The remaining two, Flint Creek (HUC: 0712000611) and Poplar Creek (HUC: 0712000612), comprise the southern portion of the Upper Fox River watershed and drain approximately 355 square miles (57%) of the Illinois portion of the Upper Fox River are within the Flint Creek sub-watershed of the Upper Fox River (i.e., non Chain of Lakes) watershed.

This Upper Fox River/Flint Creek watershed drains 169 square miles in Lake, McHenry and Cook, representing 27% of the Illinois portion of the Upper Fox River watershed. The Upper Fox River/Chain of Lakes watershed drains to the Fox River at the upstream end of the Fox River in the Upper Fox River/Flint Creek watershed, adding an additional 267 square miles to the drainage area within Illinois (total Illinois 436 sq mi). The impaired portion of Upper Fox River - Flint Creek & Chain O'Lakes subbasins is approximately 401 square miles, and the area identifies those watershed.

The Clean Water Act and USEPA regulations require that states develop TMDLs for waters on the Section 303(d) List. Illinois EPA has developed TMDLs for pollutants that have numeric water quality standards. Therefore,

- A fecal coliform TMDL was developed for Fox River (IL_DT-22), Lake Barrington (RTZT), Honey Lake (RTZU), and Tower Lake (RTZF).
- A phosphorus (total) TMDL was developed for Lake Barrington (RTZT), Drummond Lake (UTI), Echo Lake (RTZR), Grassy Lake (VTI), Honey Lake (RTZU), Island Lake (RTZI), Lake Fairview (STK), Lake Napa Suwe (STO), Lake Louise (VTZJ), Slocum Lake (RTP), Timber Lake (RTZQ,) Tower Lake (RTZF), and Woodland (Highland) Lake (STV).

In addition, a sedimentation/siltation Load Reduction Strategy (LRS) was developed for Fox River (IL_DT-22), while an LRS for total suspended solids (TSS) was developed for all the lakes listed above except Honey Lake (RTZU).

All the waterbodies above are listed as impaired per the 2016 Draft Illinois Integrated Water Quality Report and placed on the 303(d) list.

Illinois EPA contracted with CDM Smith (a TMDL Consultant) to prepare the TMDL report for the Upper Fox River-Flint Creek Watershed project.

Public Meetings

A Stage 1 public meeting was held at the University Center of Lake County, in Grayslake, Illinois on August 25, 2009. The Illinois EPA provided public notice for the meeting by placing a display ad in the Northwest Herald and Grayslake Review newspapers on August 6, 2009. This notice gave the date, time, location, and purpose of the meeting. The notice also provided references to obtain additional information about this specific site, the TMDL Program and other related issues. Approximately 87 individuals and organizations were also sent the public notice by first class mail, as well as many organizations were notified by email.

The public meeting started at 6:00 p.m. on Tuesday, August 25, 2009. It was attended by approximately 39 people and concluded at 8:15 p.m. with the meeting record remaining open until midnight, September 24, 2009. All comments from the Stage 1 public meeting have been incorporated into the final draft report.

A public meeting for the draft Stage 3 TMDL Report was held on May 14, 2019 (1:30 - 3:30 pm), at the Fox Waterway Agency in the Village of Fox Lake, IL. Approximately 30 people participated in the public meeting and the public comment period ended at midnight on June 14, 2019. An additional informational meeting took place on September 11, 2019 (@1:00 pm) in the Village of Port Barrington, IL to inform stakeholders about the TMDL development process. Approximately 15 people participated in this meeting.

Illinois EPA provided public notice for the Draft Stage 3 TMDL report by placing a display-ad in the Lake County Journal (the local newspaper in the Village of Grayslake). In addition, a direct mailing was sent to NPDES Permittees, and stakeholders in the watershed. The notice gave the date, time, location, and purpose of the meeting. The notice also provided references on how to obtain additional information about this specific project, the TMDL program, and other related information. The draft TMDL report was available for review in hard copy at the Fox Waterway Agency, Lake County Stormwater Commission, Grayslake Area Public Library, and electronically on the Agency's webpage: www2.illinois.gov/epa/public-notices/Pages/general-notices.aspx.

Questions & Comments

 Now that the Illinois Nutrient Science Advisory Committee ("NSAC") has recommended nutrient and chlorophyll standards for rivers and streams, will the TMDLs take those values into account? For segment Fox River DT-22, we note that the average level of reported chlorophyll a, corrected is 59 µg/L, well above the 25 µg/L level recommended for rivers by the NSAC. Average phosphorus is reported as 0.16 mg/L, above NSAC's recommended 0.1 mg/L. (Fox/Flint at 1-6) Also, because the Fox River is impounded for 16.3 miles by the Algonquin Dam, it is likely that the lake standard of 0.05 mg/L phosphorus may be more appropriate for this reach of the river.

Response: The Illinois Nutrient Loss Reduction Study - Science Advisory Committee completed a nutrient criteria study in December 2018 for Illinois streams. Illinois EPA (IEPA) will review the recommendation and work with USEPA-Region 5 to develop the next step in adoption of nutrient criteria. IEPA has focused on developing TMDLs to address impairments for parameters that have numeric water quality standards. TMDL calculations require numeric targets based on existing numeric water quality standard in Illinois. The phosphorus water quality standard only applies to Illinois lakes.

Fox River Segment DT-22 is designated as a riverine segment with associated beneficial and designated uses. Illinois does not have nutrient water quality standards, therefore a phosphorus TMDL was not developed for the waterbody segment. However, the TMDL report does include implementation plans and best management practices (BMPs) to address nutrient impairments throughout the watershed.

2. The Fox River Study Group (FRSG) has been collecting monthly samples of the Fox River since April 2002. Were those data included in the development of the TMDLs? Sampling data are available from within Fox River segment DT-22 at Rawsons Bridge Rd. All FRSG data are readily available at http://ilrdss.sws.uiuc.edu/fox/. In addition, the Illinois State Water Survey has completed an analysis of the water quality trends in the river for the last decade. The report-Water Quality Trend Analysis for the Fox River Watershed: Stratton Dam to the Illinois River is available at <a href="http://htttp://http://http://http://htttp://http://http://http://

Response: The FRSG Data was downloaded and reviewed during project development, however, only the data collected under an IEPA approved Quality Assurance Project Plan (QAPP) was used for regulatory assessment purposes. Generally, additional data collected may be used for model verification purposes and for development watershed-based plans (WBPs) component of the TMDL report.

We are very concerned with and object to how waste load allocations ("WLA") are being handled in the TMDLs. As we understand from our reading of the reports and the discussion at the May 14, 2019 public hearing on the reports, all wastewater facilities are simply being given their current phosphorus load as their WLA. While some facilities are achieving relatively low levels of phosphorus in their effluent (~0.5-0.6 mg/L), others have or are estimated to be discharging very high levels of phosphorus (~5-7 mg/L). (Fox/Chain Table 2-4 at 2-9 and Fox/Flint Table 2-8 at 2-11) We understand that these are often small facilities with unsophisticated treatment systems. Yet if MS4 communities will be required to substantially reduce the phosphorus in their runoff to achieve the TMDL targets, then reductions at wastewater facilities should also be considered as a means to reduce phosphorus loads. Because very low levels of phosphorus inputs are needed to achieve the state's water quality standard for lakes, all wastewater facilities, no matter how well they are doing at removing phosphorus, must be considered for further reductions to be a part of the solution to the watershed's phosphorus pollution problem.

A good example of this disparity is Grassy Lake. There are two small wastewater facilities that discharge in this lake sub-watershed. They are estimated to discharge over 0.8 pounds of phosphorus every day. (Fox/Flint Table 2-8 at 2-11). At the same time the MS4 communities in the watershed are allocated less than 0.3 pounds per day of phosphorus runoff from 5,817 acres of land (Fox/Flint Table 2-11 at 2-12) and a reported 78% reduction in phosphorus load is needed to meet the TMDL target (Fox/Flint Table 2-23 at 2-15 in Section 2.3.2.6). Yet it is stated at the beginning of this section that "Percent reductions presented under these scenarios assume no imminent change in current NPDES permit limits or other factors that would impact current waste loads in each sub-watershed. This approach fails to provide reasonable assurance that the phosphorus TMDL for Grassy Lake will be achieved.

Response: As stated in the TMDL report, in the absence of available total phosphorus effluent monitoring data for the two NPDES Permits in Grays Lake sub-watershed (Northern Barrington Elementary School – STP, NPDES Permit No.IL0024716 with DAF 0.005 MGD, & Mount Saint Joseph

Home STP, NPDES Permit No.IL0027286 with DAF=0.0125 MGD), an upper range of total phosphorus concentration was used to calculate the wasteload allocation of 0.292 lbs\day and 0.521 lb\day respectively (refer to Table 2-8 WLAs for Total Phosphorus Loads in the report). The WLA was based on the complexity of the treatment process of the wastewater treatment facilities (in this case, Imhoff Tank\Septic Tank followed by sand filtration).

The Agency agrees with your assessment, and for the TMDL report to meet the goals and provide reasonable assurance, all wastewater effluent dischargers in the watershed will need to evaluate and develop a range of measures (Phosphorus Discharge Optimization Plan) for reducing total phosphorus effluent to the receiving waterbodies. The actions include, possible source reduction measures, operational improvements, and minor facility modifications that will optimize reductions in phosphorus discharges from wastewater treatment facilities.

A Phosphorus Discharge Optimization Plan has been added in the TMDL Report, Section 3 - Implementation Plan (refer to part 3.5.1 - Point Sources of Phosphorus). In addition, the TMDL report has recommended for total phosphorus effluent monitoring requirements, and Phosphorus Discharge Optimization Plan to be included in NPDES permits in the next permit renewal cycle.

4. In both reports, there is uncertainty about what some facilities are discharging because they are not required to measure and report phosphorus in their effluent. Given the phosphorus impairments in the lakes in the Fox River watershed, all facilities with an NPDES permit that have any potential to discharge phosphorus should be required to monitor phosphorus in their effluent. Illinois EPA should modify permits immediately to require this monitoring as it is necessary information for implementation and adaptive management of these TMDLs.

Response: The TMDL reports for both watersheds (Upper Fox River- Chain O'Lakes and Upper Fox River \Flint Creek) include recommendation for total phosphorus effluent monitoring requirements to be required in the next NPDES permit renewal cycle for those facilities that do not have monitoring requirements in their current NPDES permit.

Illinois EPA views the TMDL report as a tool to develop water qualitybased control actions to be incorporated into an overall watershed management approach. The TMDL establishes the link between water quality standards, assessment, and water quality-based solutions. For the TMDL to be successful, NPDES Permittees (Point Sources) in the watershed must work with Illinois EPA's Permit Section to address the wasteload allocation (WLA) during the next cycle of the NPDES permit renewal process.

5. Regarding TMDL endpoints for fecal coliform, we want to raise again the concern that the May through October season for limitations on fecal coliform is too short to cover the months when people are out recreating on these lakes and the Fox River and its tributaries. People are out on boats, canoes and kayaks as soon as they can in the spring and as late as they can in the fall.

Response: The recommendation to change applicability of the fecal coliform season will be discussed with BOW-Programs at the time the Agency develops revised draft bacteria Water Quality Standards.

6. At the May 14 meeting it was mentioned that the NVSS target developed as an LRS for suspended solids was designed to take out the algal component. Can you please explain how this works more thoroughly?

Response: Total suspended solids (TSS) are usually determined by filtering a wastewater sample through a glass fiber filter and then weighing the mass of solids that remain on the filter. In a further step, the solids remaining can be heated to ignition at 600°C at which point the volatile solids, which represent the organic material in the solids, combust or burn off. The remaining solids are considered as inorganic (mineral) matter and are termed non-volatile suspended solids (NVSS), and the suspended solids associated with the mineral fraction are termed fixed suspended solids (FSS). Thus, the process essentially burns off the organic matter (which consists of algae, plankton, plant matter, etc.) in the suspended solids and the remaining mass is weighed.

7. Corrections needed in the Fox/Flint Report:

Figure 1-1 at 1-4: Rawson Bridge is shown in the wrong location. Rawson Bridge Rd crosses the Fox River just east of the town of Oakwood Hills.

Response: This has been corrected.