Developing a Framework to Advance Statewide Phosphorus Reduction Credits for Leaf Collection

34118

Bill Selbig and Roger Bannerman USGS – Wisconsin Water Science Center September 26, 2018

This information is preliminary and is subject to revision. It is being provided to meet the need for timely to The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Governme held liable for any damages resulting from the authorized or unauthorized use of the information

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Describe How to Obtain Credit for Selected Leaf Collection Programs
- To Determine the Most Cost Effective Methods for Leaf Collection.

Source Area Sampling

Impact of Tree Canopy on Phosphorus Loads

Effect of Tree Canopy on Levels of Total P in Street Runoff

Percent Tree Canopy

Waschbusch, 1999

Automated Water Quality Sampling Stations

Seasonal Changes in Phosphorus Sources – Monroe Outfall

Waschbusch, 1999

Example Applications of DISA

Shopping Center

Residential Street

Monitoring source areas and land uses with automatic samplers

06/13/2007

Commercial Street

Strip Commercial 10/18/2007

Seasonal Dissolved P, mg/l, Collected with Automatic Samplers, Selbig, 2012

D:\JAHData\urban\SLAMM\LeafPickup 2012-2014\WI_GEO_FallPhos2014.ppdx Select File File Description Update of the pollutant file using USGS monitored number from several project Ilutants Filterable Pollutants Other Label Solids C Lead Leao Fhosphone C Ehrsohou Zinc C Zinc Cadmiun Cadmiun Nitrates C TKN TKN C Other 2 C Eviene Pollutant Unit: C Other 3 C COD C COD Other 3 C Other 4 C Fecal Coliform Bacteria Other 4 (mg/L) C Chromiur C Other 5 C Chromium Other 5 C Other 6 С Соррел Copper Other 6 Enter Land Use Column Number Enter Multiplier Fraction: Apply Multiplier Land Use Multiplier ==> Pollutant: Filterable Phosphorus (mg/L) Land Use Column Number ==> Land Use ==> Residential Institutiona Sidewalks/Walks - CO 1.7 Streets or Freeway High Traffic Hwys - Mean 1.45 0.0 0.35 0.11 0.0 0.12 Streets or Freeway High Traffic Hwys - COV 17 11 1.78 0.61 0.61 0.6 0.61 0.61 Large Landscaped Areas - Mea 0.61 1.63 1.63 1.63 1.63 1.63 Large Landscaped Areas - COV 1.63 0.61 0.61 0.61 0.61 0.61 0.61 Undeveloped Areas - Mear 1.6 1.63 1.6 1.63 1.63 1.63 mall Landscaped Areas -0.61 0.61 0.61 0.61 0.61 608.00 1.6 1.63 1.63 1.63 1.63 0.61 0.61 0.61 0.61 0.61 0.61 1.6 1.63 olated Areas - COV Ther Pervious Areas 0.6 0.61 0.61 0.61 0.61 0.61 1.6 Save File As.. Print to Text File Save File Cancel Continue

Pollutant Parameter File

Estimate of Annual Phosphorus Load Using WinSLAMM

% Total P Loads for Four Subwatersheds in Lake Wingra Basin

Estimate of Annual Phosphorus Load Using WinSLAMM

- 100 acres of medium density residential
- Standardized rainfall for Madison, WI (1980 – 1999)
- Source area concentrations, other than streets, used default values
- Streets were dominate source of runoff for range of precipitation depths measured
- Varied concentration of Phosphorus by season

Pollutant Parameter File								
Select File D:\JAHData\urban\SLAMM\LeafPickup 2012-2014\WI_GE0_FallPhos2014.ppdx								
File Description: Update of the pollutant file using USGS monitored number from several projects.								
Particulate P	ollutants	Filte	rable Pollut	ants				
	C Lead	🔿 Saliats		🔿 Lead		Othe	r Label	
C Phosphorus	O Zinc	Fhospho	3768	🔿 Zinc				
	🔘 Cadmium	Nitrates		🔘 Cadmie	100	1		- 1
C TKN	O Pyrene	○ <i>TKN</i>		C Other 2		- Pollutant	Linits	_
C COD	O Other 3	C COD		O Other 3		1 Ollatarit	Orinco	
	O Other 4	C Fecal Col	iform Bacteria	O Other 4		⊙ (ma/l	1	
C Chromium	C Other 5	C Chromium	1	C Other 5		(-,	
C Copper	C Other 6	C Copper		C Other 6				
Land Lise Multiplier> Enter Land Lise Column Number Enter Multiplier Fraction: Applu Multiplier								
Lana ose maiupilei -	Pollut	ant: Filterat	le Phoenho	rue (ma/l)	ion.j	- Apply Mak	pilot	
Foliutant. Filterable Fnosphorus (lilg/L)								
Land Use	Column Number ==>	1	2	3	4	5	6	_
	Land Use ==>	Residential	Institutional	Commercial	Industrial	Other Urban	Freeway	▲
Sidewalks/Walks - CO	V	1.76	1.76	1.76	1.76	1.76	1.76	
Streets or Freeway Hig	gh Traffic Hwys - Mean	1.45	0.03	0.03	0.35	0.12	0.11	
Streets or Freeway Hig	gh Traffic Hwys - COV	1.78	1.12	1.12	0.77	1.78	0.64	
Large Landscaped Are	eas - Mean	0.61	0.61	0.61	0.61	0.61	0.61	
Large Landscaped Are	eas - COV	1.63	1.63	1.63	1.63	1.63	1.63	
Undeveloped Areas - I	Mean	0.61	0.61	0.61	0.61	0.61	0.61	
Undeveloped Areas - I		1.63	1.63	1.63	1.63	1.63	1.63	
Small Landscaped Are	0.61	0.61	0.61	0.61	0.61	608.00		
Small Landscaped Areas - CUV		1.53	1.63	1.63	1.53	1.63	1.63	
Isolated Areas - Mean		1.60	1.67	1 62	0.01	1.62	1.62	
Other Pervious Areas	Mean	0.61	0.61	0.61	0.63	0.61	0.61	
Other Pervious Areas	1.63	1.63	1.63	1.63	1.63	1.63	-	
Print to Text File	Other Pervious Areas - COV 1.63 1.63 1.63 1.63 1.63 1.63 1.63 1.63 I.63 I.63 <thi.63< th=""> I.63 <thi.63< th=""> <thi< td=""></thi<></thi.63<></thi.63<>							

Potential P Reduction with Fall Leaf Collection Program

Season	Minimum %	Maximum %	Mean %
Spring	16	43	33
Summer	10	31	24
Fall	37	72	43

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Determine the Most Cost Effective Methods for Leaf Collection.
- To Describe How to Obtain Credit for Selected Leaf Collection Programs

Partners in Leaf Management Study

Funding Provided by:

Clearly making a deep impact.

science for a changing world

Approach: Paired-basin study design

Type of Leaf Management Program to be Tested						
2013 2014 2015 2016 2017						
Control	No Collection	No Collection	No Collection	No Collection	Report	
Test	No Collection	Existing	Vacuum	TBD	Report	

 $\mathsf{TBD} = \mathsf{to} \mathsf{ be determined}$

Control no practices

Test existing/escalated practices

Expected Change in Relationship Between Control and Test Site Pollutant Loads

	Study Basin					
Source Area	Yellowstone	East Kenosha	West Kenosha	Gray Fox		
Area (ac.)	15.9	3.0	2.5	9.1		
Streets	17%	19%	17%	14%		
Driveways	6%	4%	5%	8%		
Roofs	17%	19%	16%	13%		
Sidewalks	5%	3%	4%	1%		
Lawns/Open	55%	54%	58%	63%		
Other Impervious	<1%	0%	0%	1%		
Tree Cover	45%	68%	57%	26%		

Water Quality Monitoring

Measurement of Phosphorus in Water and Leaves

Photos by USGS

Gross Solids (Leaves) Processing Facility - MMSD

Period 09/19 - 10/28/2013

Vegetative "Dam"

Total Phosphorus Concentration – Calibration Phase 2013

Leaf Collection One of few Options to Reduce Dissolved Phosphorus

Leaf collection may be one of only a few options to reduce dissolved phosphorus since structural controls do not effectively remove the dissolved fraction.

Preliminary Information - Subject to Revision. Not for Citation or Distribution

Study of Leaf Collection Management

Test

Collect water-quality samples from a control and test basin to determine if removing leaves will result in measurable changes in phosphorus loads.

Control

Mean total phosphorus concentration during the calibration period in which there was no leaf collection or street cleaning

Photo Credit: USGS

Complete Leaf Removal – Maximum Effort (2015)

- 1. Weekly street cleaning in spring and summer
- 2. Weekly collection of leaf piles followed by street cleaning in fall

Photo Credit: USGS

Photo Credit: USGS

Complete Leaf Removal – Maximum Effort

In addition to municipal efforts, USGS field crews would clear all organic debris from street surface prior to rain event

Photo Credit: USGS

Photo Credit: USGS

Photo Credit: USGS

Mean total phosphorus concentration during the calibration period compared to the treatment period in which there was weekly leaf collection and/or street cleaning

Seasonal Total Phosphorus Yield as a Percent of the 2015 Annual Yield (winter excluded)

Control

Percent Reduction in Nutrient Load - 2015

Parameter

Total Phosphorus-84Total Nitrogen-74

Dissolved Phosphorus-83Dissolved Nitrogen-71

Fall

City of Madison – Leaf Transfer plus Sweeping (2016)

- Transfer leaf piles from terrace into street then pick up with garbage truck
- 2. Leaf collection followed by street cleaning
- 3. Frequency = approximately every 20 days

Leaf Transfer and Street Cleaning Every ~20 Days

Reduction of Nutrient Load in Stormwater Using the Transfer Method - 2016

Nutrient	Percent Reduction
Total Phosphorus	40
Total Nitrogen	
Dissolved Phosphorus	45
Dissolved Nitrogen	

Preliminary Information – Subject to Revision. Not for Citation or Distribution

Photo Credit: City of Madison

What Did We Learn in the Madison Paired Site Projects?

Compared to Leaves on terrace but no cleaning -Baseline

Leaves on terrace, transfer & street clean ~3-4x:

40 Percent Total P Reduction

2

0

5

Leaves on terrace, weekly cleaning + Pickup + Pre rain removal

84 Percent Total P Reduction

Study of Leaf Collection Management

Assumptions: MDR; Avg. Canopy (17%); Maple?

What happened in the fall of 2017?

Use Vacuum System to Clean Streets Once Per Week, but Only Pick-up Leaves four times During the Fall

Before cleaning

After cleaning

Leaf Collection and Street Sweeping Practices

Leaf Co	llection	Street Cleaning			
Method	Frequency	Method	Frequency	Program Name	Year Completed
Transfer	Weekly	Mechanical/blower	Pre-event	Maximum	2015
Transfer	3-4x/season	Mechanical	3-4x/season	SOP	2016
Transfer	3-4x/season	Regenerative Air	Weekly	SOP+	2017
Vacuum	Weekly	Regenerative Air	Weekly	Vacuum	2017

Leaf Collection and Street Sweeping Practices RESULTS

Leaf Collection		Street Cleaning			
Method	Frequency	Method	Frequency	Program Name	Year Completed
Transfer	Weekly	Mechanical/blower	Pre-event	Maximum	2015
Transfer	3-4x/season	Mechanical	3-4x/season	SOP	2016
Transfer	3-4x/season	Regenerative Air	Weekly	SOP+	2017
Vacuum	Weekly	Regenerative Air	Weekly	Vacuum	2017

Study of Leaf Collection Management

Assumptions: MDR; Avg. Canopy (17%); Maple?

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Describe How to Obtain Credit for Selected Leaf Collection Programs
- To Determine the Most Cost Effective Methods for Leaf Collection.

Phosphorus Reduction Credit for Leaf Management Programs

BUREAU OF WATERSHED MANAGEMENT PROGRAM GUIDANCE

RUNOFF MANAGEMENT POLICY AND MANAGEMENT TEAM Storm Water Management Program

> Wisconsin Department of Natural Resources 101 S. Webster Street, P.O. Box 7921 Madison, WI 53707-7921

Interim Municipal Phosphorus Reduction Credit for Leaf Management Programs

> 03-08-18 EGAD Number: 3800-2018-01

Notice: This document is intended solely as guidance, and does not contain any mandatory requirements except where requirements found in statute or administrative rule are referenced. This guidance does not establish or affect legal rights or obligations, and is not finally determinative of any of the issues addressed. This guidance does not create any rights enforceable by any party in litigation with the State of Wisconsin or the Department of Natural Resources. Any regulatory decisions made by the Department of Natural Resources in any matter addressed by this guidance will be made by applying the governing statutes and administrative rules to the relevant facts.

March 8, 2018

1

APPROVED:

Pam Biersach, Director Bureau of Watershed Management

EXAMPLE CALCULATION:

- Leaf collection and street cleaning (>= 4x) = 40%
- Annual phosphorus contribution in Fall = 43% (based on 20-yr average)
- MDR land use with high tree canopy in your city = 60% (as an example)

Annual Phosphorus Reduction Credit = (40% X 43% X 60%) = 10%

Phosphorus Reduction Credit for Leaf Management Programs

BUREAU OF WATERSHED MANAGEMENT PROGRAM GUIDANCE

RUNOFF MANAGEMENT POLICY AND MANAGEMENT TEAM Storm Water Management Program

> Wisconsin Department of Natural Resources 101 S. Webster Street, P.O. Box 7921 Madison, WI 53707-7921

Interim Municipal Phosphorus Reduction Credit for Leaf Management Programs

> 03-08-18 EGAD Number: 3800-2018-01

Notice: This document is intended solely as guidance, and does not contain any mandatory requirements except where requirements found in statute or administrative rule are referenced. This guidance does not establish or affect legal rights or obligations, and is not finally determinative of any of the issues addressed. This guidance does not create any rights enforceable by any party in litigation with the State of Wisconsin or the Department of Natural Resources. Any regulatory decisions made by the Department of Natural Resources in any matter addressed by this guidance will be made by applying the governing statutes and administrative rules to the relevant facts.

March 8, 2018

1

APPROVED:

Pam Biersach, Director Bureau of Watershed Management

EXAMPLE CALCULATION:

- Leaf collection and street cleaning (>= 4x) = 60%
- Annual phosphorus contribution in Fall = 43% (based on 20-yr average)
- MDR land use with high tree canopy in your city = 60% (as an example)

Annual Phosphorus Reduction Credit = (60% X 43% X 60%) = 15%

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Describe How to Obtain Credit for Selected Leaf Collection Programs
- To Determine the Most Cost Effective Methods for Leaf Collection.

How Do We Use Water Quality Monitoring Results to Predict Leaf Management Benefits?

We can use the percent reductions as measured – very site specific – limited to sites we can afford to monitor

To maximize flexibility, the cities will have to determine the benefits of selected management efforts; the results can be used to calibrate a model

Street L	eaning c	OUCLOI DEAICE		
Land U Source	se: Resi Area: St	dential reet Area 1	Total Area: 5 acres	Street Cleaner Productivity
	Line Number	Street Cleaning Date	Street Cleaning Frequency	 Parking density, and parking controls 2 Other (specify equation coefficients)
	1 2	04/15/53	7) 1 Pass/wk	Equation coefficient M (slope, M<1)
	3 4 5		2) 7 Passes/WK 3) All Weekdays 4) 4 Passes/Wk 5) 2 Passes Av/k	Equation coefficient B (intercept, B>1) 580
	6		5) 3 Passes/WK 6) 2 Passes/Wk 7) 1 Pass/Wk	Deddier Deservices
	8 9		8) Every2Wks 9) Every4Wks 10) Every8Wks	© 1. None
l Model I	10 Run Start I	Date: 01/01/81	(11) Every 12 Wks Model Run End Date: 12/31/4	C 2. Light C 3. Medium C 4. Extensive (short term)
Final o ending	cleaning g date (M	period (M/DD/YY):	10/15/89	O 5. Extensive (long term)
				Are Parking Controls Imposed?
<u>C</u> or	ntinue	C <u>l</u> ear	Cancel Edits <u>D</u> elete	Control C Yes © No

What Variables Do We Hope to Focus On?

Cleaning Frequency

Tree Canopy

Leachable P in leaves.

Leaf Accumulation Rate

Species of Tree

27 out of 35 cities responded

Variable	1 per week	2 per month	1 per season
Frequency of Pickup	11	7	3

Variable	Street	Terrace	Bags
Placement of Leaves	9	12	3

Variable	Same Day as Pickup	Other
Street Cleaning Schedule	14	8

Variable	1 Week	2 Weeks
Avg Time Leaves on Curb	17	4

20-Year Distribution of Annual Phosphorus Load by Season

Season	Minimum %	Maximum %	Mean %
Spring	18	42	28
Summer	17	45	29
Fall	27	61	43

Preliminary Information – Subject to Revision. Not for Citation or Distribution

Comparison of Unit Loads Between Test and Control Areas – Mg of P per Ft of Curb

Comparison of Unit Loads Between Test and Control Areas – Mg of P per Ft of Curb

What About Tree Species?

Estimate of the Amount of Phosphorus Leached from Leaves in the Pilot Area During the Fall of 2015

Species name		Leachable P	Total P	% of total	Number of samples	
Common name	Scientific name	μg gm ⁻¹	- % Pleachable	Leachable P	Total P	
Leaves						
Sugar Maple	Acer saccharum Marsh	259 9(113.1)	0.20(0.032)	13.43(6.2)	6	3
Silver Maple	Acer saccharinum L.	232.7(117.6)	0.13(0.040)	7.0(0.43)	3	3
Green Ash	Gladitsia tricanthos I	188.4(73.1)	0.24(0.049) 0.44(0.117)	4.5(2.3)	8	5
White Ash	Fraxinus americana L.	161.9(137.9)	0.14(0.042)	9.6(0.04)	4	2
American Elm	Ulmus americana L.	158.5(66.8)	n.d. ^b	n.d.	2	0
Basswood	Tilia americana L.	95.7(32.1)	0.15(0.045)	7.8(2.1)	5	3
Chinese Elm	Ulmus pumila L.	88.6(36.1)	n.d.	n.d.	2	0
Little Leaf Linden	Tilia cordata L.	86.5 (22.5)	0.09 (n.d.)	6.7(n.d.)	3	1
Pin Oak	Quercus palustris Muenchh.	81.5 (29.3)	n.d.	n.d. $84(2.62)$	2	0
Norway Maple	Acer platanoides L.	80.1 (55.9) 56 1 (40.0)	0.08(0.035)	8.4(3.03) nd	2	0
Weeping Willow	Salix babylonica L.	38.1(1.1)	n.d.	n.d.	2	õ
All Leaves		148.1 (99.4)	0.22(0.147)	9.3(5.4)	52	21
LSD ^a		38.8	0.06	3.4		
Seeds						
Green Ash	Fraxinus pensylvania Fern.	77.6(n.d.)	0.26(n.d.)	3.0(n.d.)	1	1
Sugar Maple	Acer saccharum Marsh.	40.8(12.5)	0.35(n.d.)	1.4 (n.d.)	2	1
Little Leaf Linden	Tilia cordata L.	39.2(11.6)	0.26(n.d.)	1.8(n.d.)	2	1
All Seeds		47.5(18.9)	0.29(0.052)	2.1 (0.8)	5	3

Dorney, 1986

Categories of Leaf Mass on Streets

Category	Average Net Weight, lbs. (lb./ frontage)	Lbs. of Leaves Per Foot of curb
1	5	0.05
2	10	0.13
3	16	0.20
4	25	0.35

Estimating Leachable Phosphorus in Leaves

Using water-quality from test site to estimate P in leaves

Event	Mass of leaves (g)	Measured P (g)	Calculated P (mg/g)
10/06/2016	94,520	36	0.40
10/12/2016	205,364	89	0.40
10/15/2016	113,543	45	0.40
10/25/2016	165,539	297	1.79
11/02/2016	149,731	55	0.40
11/22/2016	46,040	10	0.22

Number we used is 0.17 mg/g – 55% low

Amount of Leachable P in Leaves can Vary

Medium Canopy

What Variables Do We Hope to Focus On?

Cleaning Frequency

Tree Canopy

Leachable P in leaves.

Leaf Accumulation Rate

Species of Tree

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Describe How to Obtain Credit for Selected Leaf Collection Programs
- To Determine the Most Cost Effective Methods for Leaf Collection.

Leaves on terrace, transfer & street clean ~3-4x:

	Leaf Collection		Street Cleaning			
<u>Canopy</u>	Method	Frequency	<u>Method</u>	Frequency	Year of Completion	Comments
	- (Mechanical/blo	. .	2015	
High	Iransfer	weekly	wer	Pre-event	2015	Maximum
High	Transfer	3-4 x	Mechanical	Biweekly	2016	SOP
High	Transfer	Biweekly	Regen Air	weekly	2017	SOP+
High	Vacuum	weekly	Regen Air	weekly	2017	Vacuum
Medium	Transfer	3-4 x	Mechanical	Biweekly	2018	SOP
High	Vacuum	3-4 x	none		2018	Leaf pile collection only
High	Transfer	Biweekly	Mechanical	weekly	2018	SOP+
Medium	Vacuum	Biweekly	Regen Air	Biweekly	2019	FDL
Medium	None		Regen Air	weekly	2019	Oshkosh – leaf piles

 Table 1. Percentage decrease in event-mean concentrations (EMC) of selected constituents in runoff outflow from Monroe Street detention pond, Madison, Wisconsin, February 1987 through April 1988

[Negative (-) percentage indicates an increase in outflow EMC; --, not determined]

	Perce	entage decrease in outfl	ow EMC1
Constituent	Maximum	Minimum	Median
Suspended solids	98	-154	88
Total volatile solids	98	-170	45
Total chemical oxygen demand	90	-327	59
Dissolved chemical oxygen demand	85	-53	25
Total chloride	89	-1,650	-245
Total phosphorus	92	-332	42
Dissolved phosphorus	97	-129	41
Dissolved orthophosphorus	98	-160	58
Total Kjeldahl nitrogen	89	-575	38
Dissolved Kjeldahl nitrogen	70	-369	7
Total nitrite plus nitrate	95	-4	65
Total copper			
Dissolved copper	67	-175	29
Total lead	94	50	71
Dissolved lead		-33	-16

¹Percentage decrease in EMC computed as: (Inflow EMC-Outflow EMC)/Inflow EMC x 100.

5

Why Study Leaf Collection?

- Vegetation Most Important Source of Total P in Urban Runoff.
- Fall is the Season with the highest Total P Load.
- Improved Leaf Collection Can Significantly Reduce Annual Total P Loads
- To Describe How to Obtain Credit for Selected Leaf Collection Programs
- To Determine the Most Cost Effective Methods for Leaf Collection.

Questions?

341 LK