

Introductions – Sign in Sheet

Point Source

Rick Manner Kay Anderson Nick Menninga David St. Pierre Thomas Granato Randy Stein Alec Davis Brenda Carter

Agriculture

Howard Brown Liz Hobart Lauren Lurkins Julie Armstrong Jennifer Tirey Jean Payne Rodney Weinzierl Dick Lyons Kelly Thompson

Stormwater

Eric Schoeny

Drinking Water Supply

Ted Meckes Kevin Culver

University/Technical Assistance Providers

George Czapar Mark David Paul Davidson Laura Christianson

Environmental Groups

Albert Ettinger Carol Hays Brad Klein Cindy Skrukrud

Government

Amy Walkenbach Warren Goetsch Gene Barickman

Introductions – Sign in Sheet

Nutrient Science Advisory Committee

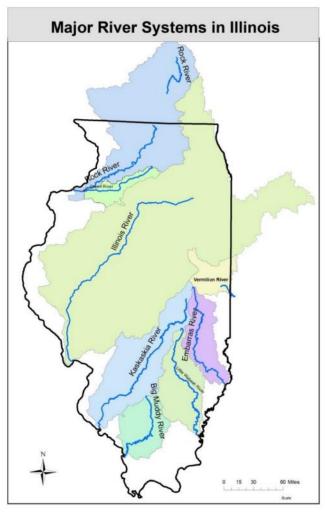
Todd Royer

Candice Bauer


Matt Whiles

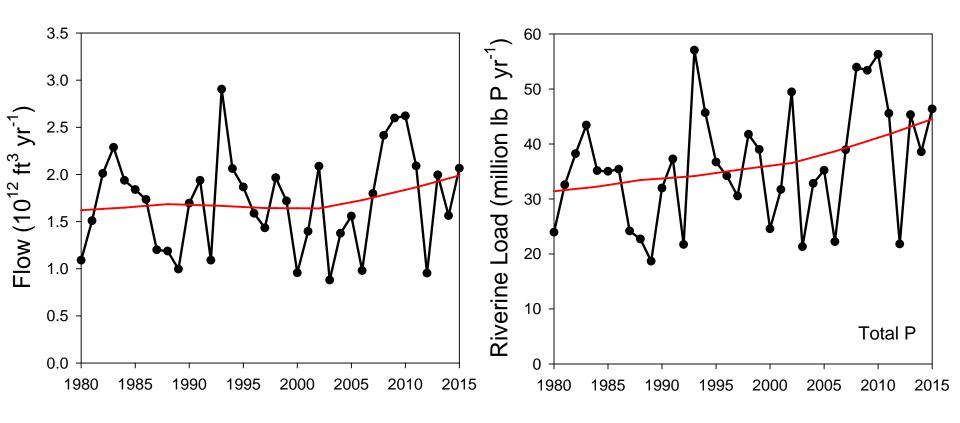
Paul Terrio

Doug McLaughlin

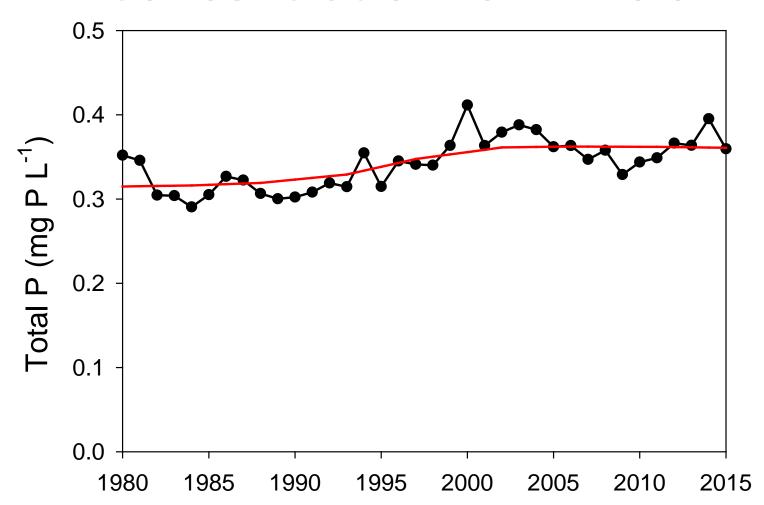

Illinois EPA Update (Amy Walkenbach)

Total P and Nitrate Export from Illinois Rivers: 1980-2015 Update

Mark B. David, Gregory F. McIsaac and Corey A. Mitchell University of Illinois Prepared for the Illinois Nutrient Monitoring Council, Gregg Good, IL EPA Chair August 30, 2016


Background

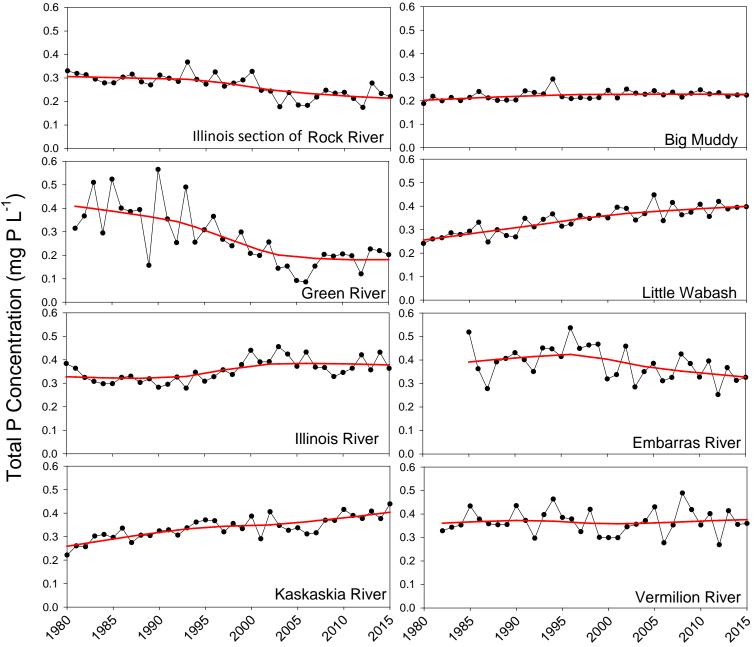
- eight major rivers used to estimate Illinois export of nitrate and total P
 - Rock, Green, Illinois, Kaskaskia, Big Muddy, Little Wabash, Embarras, Vermilion
- previously estimated through 2011
 - ➤ added 2012 to 2015 water years
 - > same methodology (interpolation for nitrate, WRTDS* for total P)
- examined trends in water, nitrate, and total P
 - compared to 1980-1996 baseline period


^{*}Note: For total P calculated with WRDTS, the greatest uncertainty about loads and concentrations is at the end of the record, so that future estimates for the 2011-2015 period could change when additional data become available.

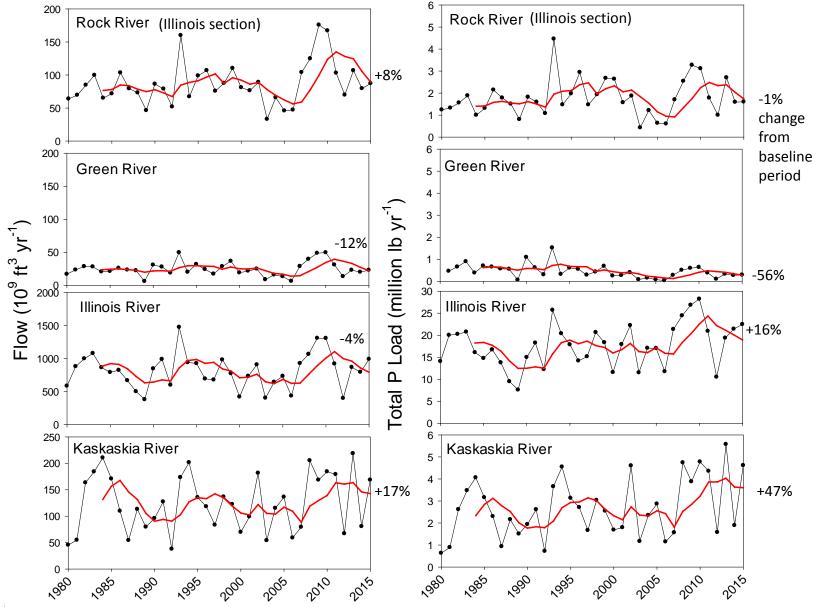
Illinois Export of Water & Total P

Red lines are "locally weighted regression scatterplot smoothing" (LOESS) trend fit

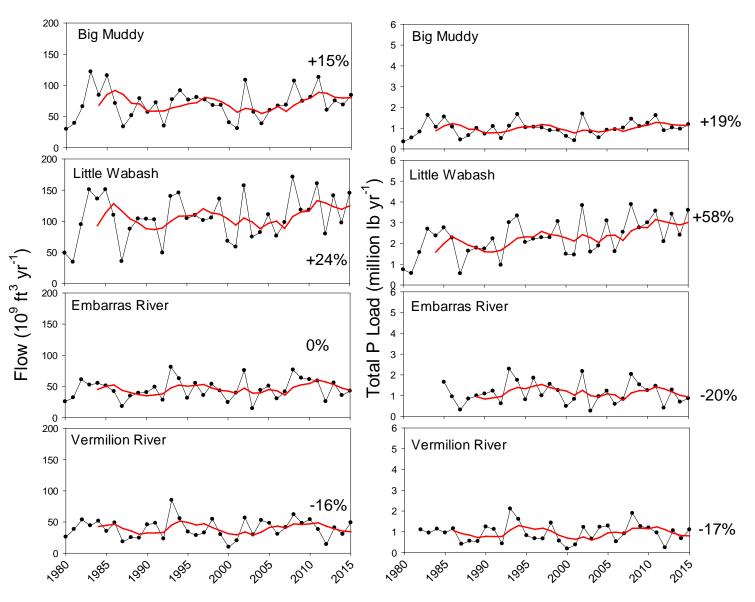
Annual Flow-Weighted Total P Concentration for Illinois


Total P Comparison to 1980-1996

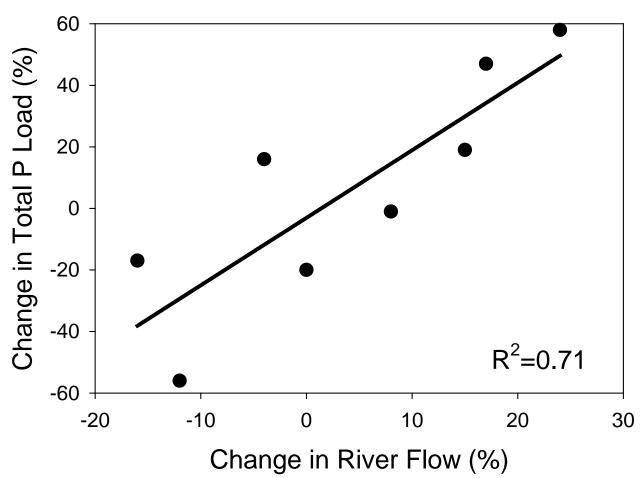
- average total P flux was 33.8 million lb yr⁻¹ during 1980-1996
 - ➤ last 5 years* (2011-2015) flux was 39.5 million lb yr⁻¹
 - > this is about a 17% increase in total P
- \triangleright water flux was 1.70 x 10^{12} ft³ yr⁻¹ during 1980-1996
 - ➤ last 5 years water flux was 1.73 x 10¹² ft³ yr⁻¹
 - this is about a 2% increase
- > suggests a lot of work to do


^{*}Note: For total P calculated with WRDTS, the greatest uncertainty about loads and concentrations is at the end of the record, so that future estimates for the 2011-2015 period could change when additional data become available.

Major River Total P Conc.



Major River Flows and Total P Loads (part 1 of 2)


Red lines are 5-year moving average

Major River Flow and Total P Loads (part 2 of 2)

Total P

(% change in total P load 2011-15 compared to baseline period plotted against % change in river flow)

Total P Trends (how are we doing?)

overall for Illinois

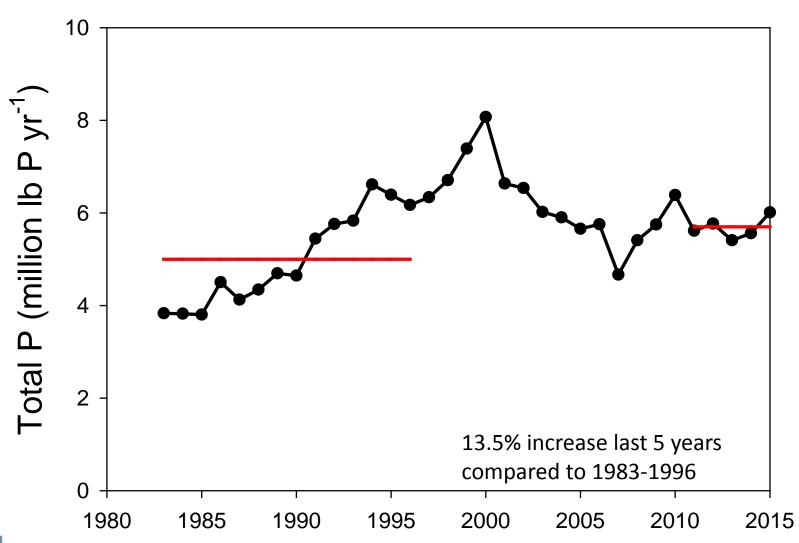
- > total P flux is up
- ➤ flow-weighted total P concentrations increased through ~2000, flat since then

for the eight rivers

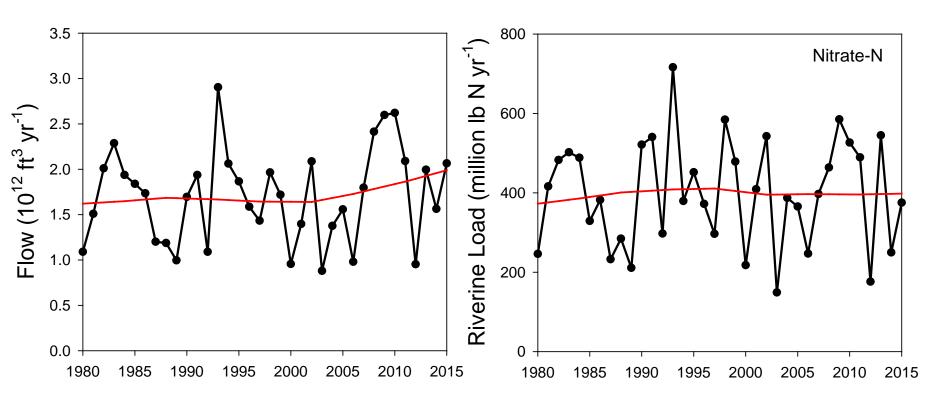
- different trends in loads
- ➤ Vermilion, Green, Embarras: down ↓
- ➤ Illinois, Kaskaskia, Little Wabash: up ↑
- ➢ Big Muddy, Rock: no trend →

why increase?

- > not sure, but several factors may be causal
 - more flow (recent Kaskaskia and Little Wabash flows are 14 and 24% greater)
 - more people and effluent (see next slide)

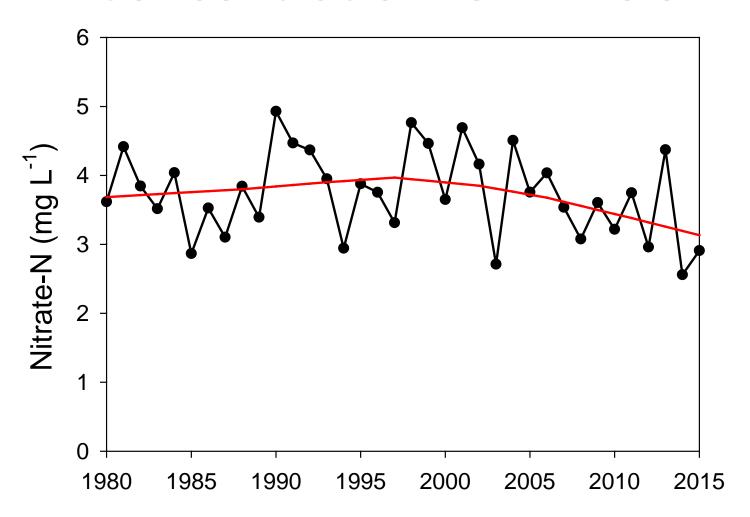

why decrease?

less erosion due to less precipitation/flow (recent Green flow down 16%, Vermilion 12%)

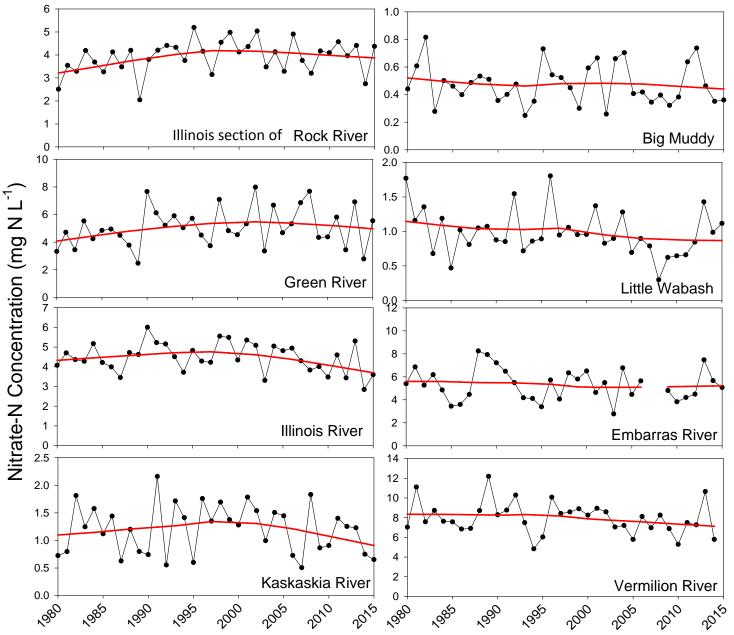


MWRDGC Effluent Total P

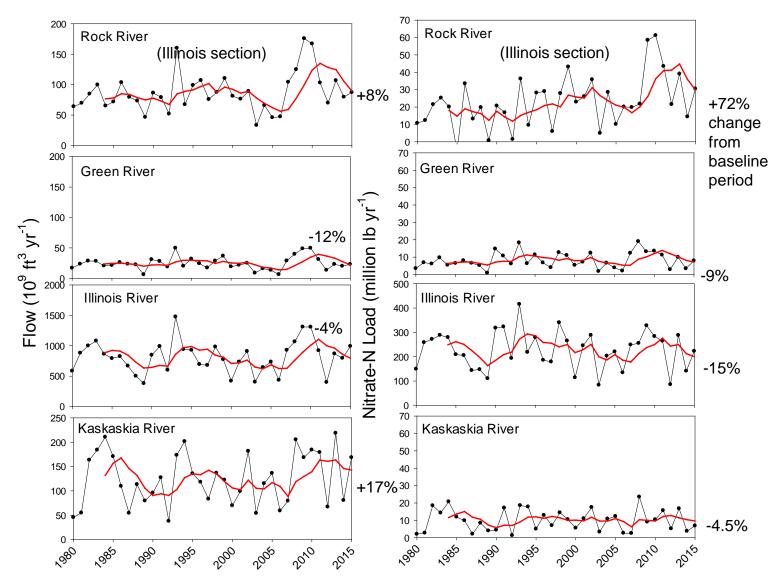
(seven plant total)



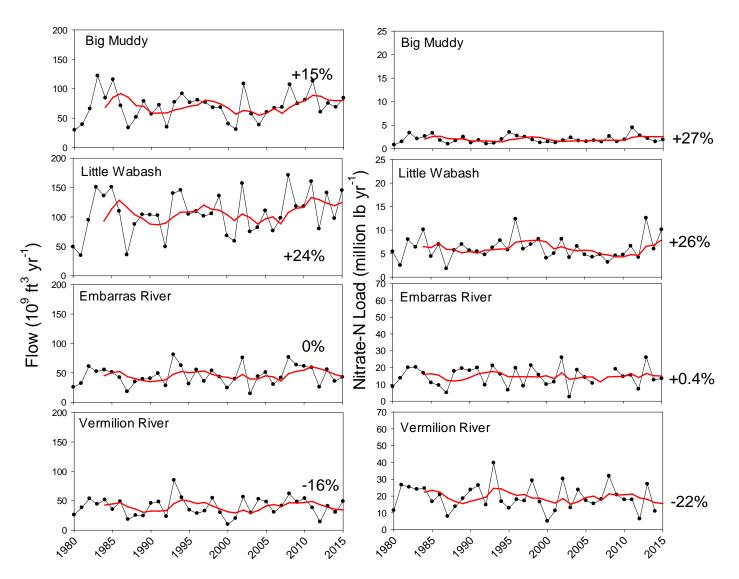
Illinois Export of Water & Nitrate


Annual Flow-Weighted Nitrate Concentration for Illinois

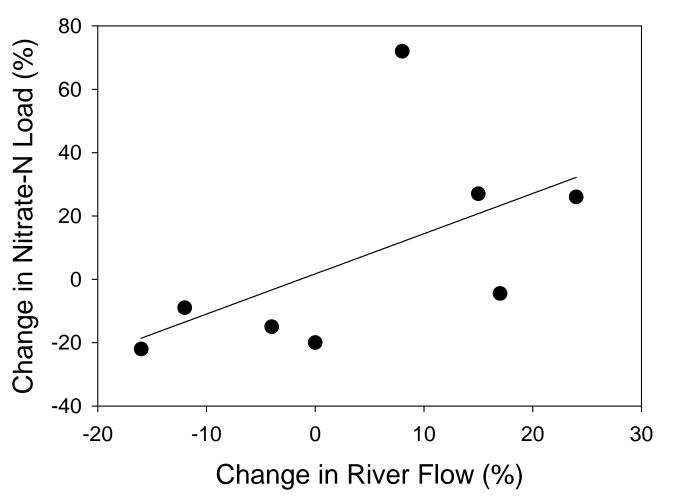
Nitrate Comparison to 1980-1996


- water flux was 1.70 x 10^{12} ft³ yr⁻¹ during 1980-1996 last 5 years water flux was 1.73 x 10^{12} ft³ yr⁻¹
- average nitrate-N flux was 403 million lb yr⁻¹ during 1980-1996
 - ➤ last 5 years (2011-2015) flux was 367 million lb yr⁻¹
 - > this is about a 10% decrease in nitrate
- > suggests progress has been made

Major River Nitrate Conc.



Major River Flows and Nitrate-N Loads (part 1 of 2)



Major River Flows and Nitrate-N Loads (part 2 of 2)

Nitrate-N

(% change in nitrate-N load 2011-15 compared to baseline period plotted against % change in river flow)

Nitrate-N Trends (how are we doing?)

overall for Illinois

- water flux is up slightly ~2%
- nitrate-N flux is down ~10%
- flow-weighted nitrate-N concentration is decreasing

for the eight rivers

- all have downward trends in nitrate-N concentrations, although slight for the Big Muddy and Embarras
- nitrate loads are variable
 - increased in the Illinois section of the Rock (72%!!), Big Muddy and Little Wabash
 - decreased elsewhere

why?

- overall decline may be due to better agricultural N balances
 - fertilizer sales little changed since 1980, harvest removal of N in grain greatly increased (see McIsaac et al., 2016)
- changes in flow are also a factor (doesn't explain Rock)
- increased loads in the Little Wabash and Big Muddy are associated with increased flows (small loads in these rivers compared to state total)

Summary

total P losses have increased

- Improving our water resources with collaboration and innovation
- not clear why, although changes in flow and point source P discharges appear to be important factors
- nitrate losses are decreasing
 - ➤ likely due to improved agricultural N balances
- > 5-year averages seem appropriate for evaluating how we are doing
- continue annual load and trend analysis

Implementation Update

N-Watch − Jean Payne

The INLRS Includes Many of the 4Rs:

- Maximum Return To Nitrogen Calculator (MRTN)
- Use of Nitrification Inhibitors
- Fall BMPs
- Split Application of Nitrogen

Improving our water resources with collaboration and innovation

On-Farm Research & Education Projects Are Underway to Improve the Science and Support for these Activities and Assess Their Impact on Reducing Nutrient Losses

Nitrogen Rate Trials

Report number of participating farmers

7 in 2012

33 in 2013

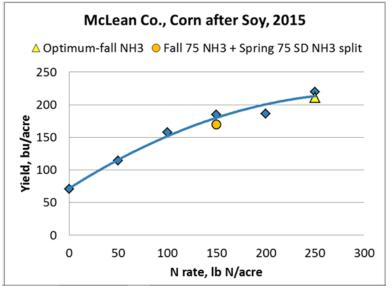
37 in 2014

52 in 2015

60 in 2016

Trials are spring, fall/spring

Results reported to University of Illinois to fine tune MRTN Calculator

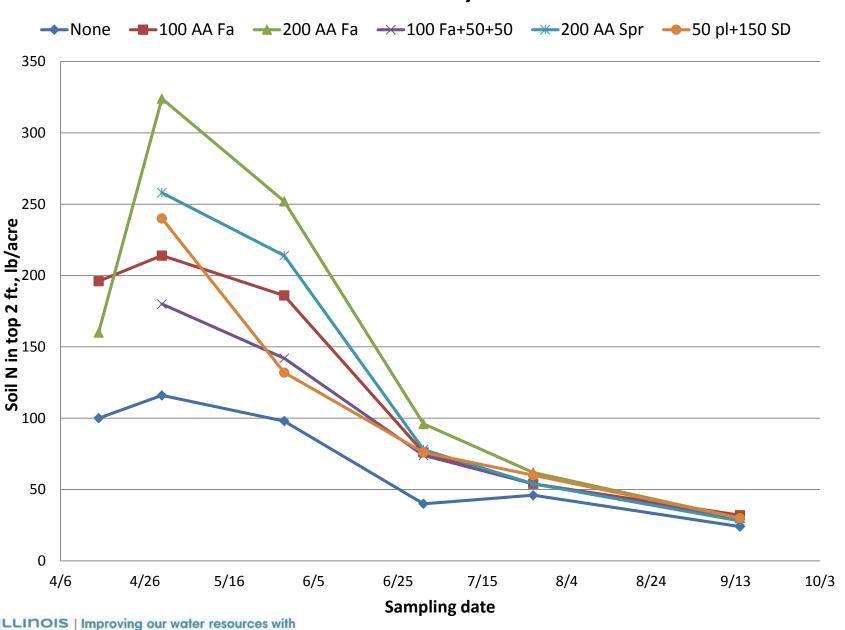

Goal is to develop reliable N rates in individual fields in the priority watersheds

N Rate Trials & N WATCH Updates

IFCA works with UI Dept of Crop Sciences to provide updates on nitrogen levels in soil and nitrogen rate trial results at www.ifca.com and www.illinoiscbmp.org

Keep It 4R Crop Tools	Keep It 4R Crop
Industry Resources	N-Rate Trials
Newsletters	N-Watchne Anhydrous A
Online Training	N-Watch Update program
Illinois CCA	N Calculators please cont
IFCA 14171 Carole Drive Bloomington, IL 61705 Phone (309) 827-2774 Fax (309) 827-2779 Copyright © IFCA 1997-2016	MRTN
	Soil Temps
	Review the May 6, 20 IFCA 4R bulletins are 4R Crop Tools menu b program.

Inventory Residual N


Identify & Track Fall Applied Nitrogen

Track Conversion of Ammonium to Nitrate for Fall and Spring Applications

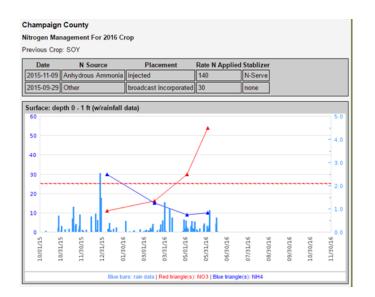
Determine N Movement in Soil Profile Throughout Growing Season

Educational Tool for Ag and Water Supplies

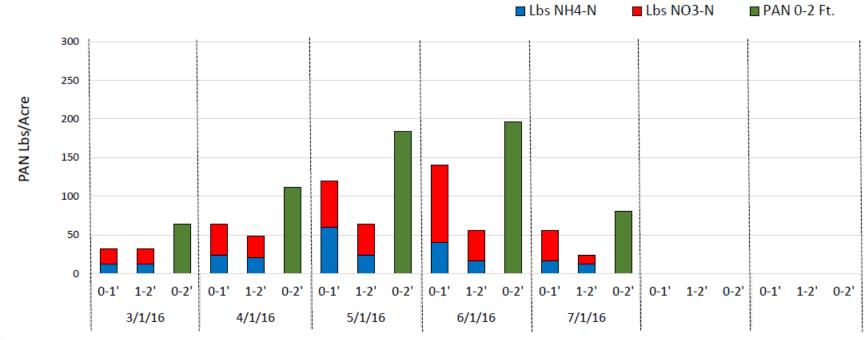
Christian County 2015

collaboration and innovation

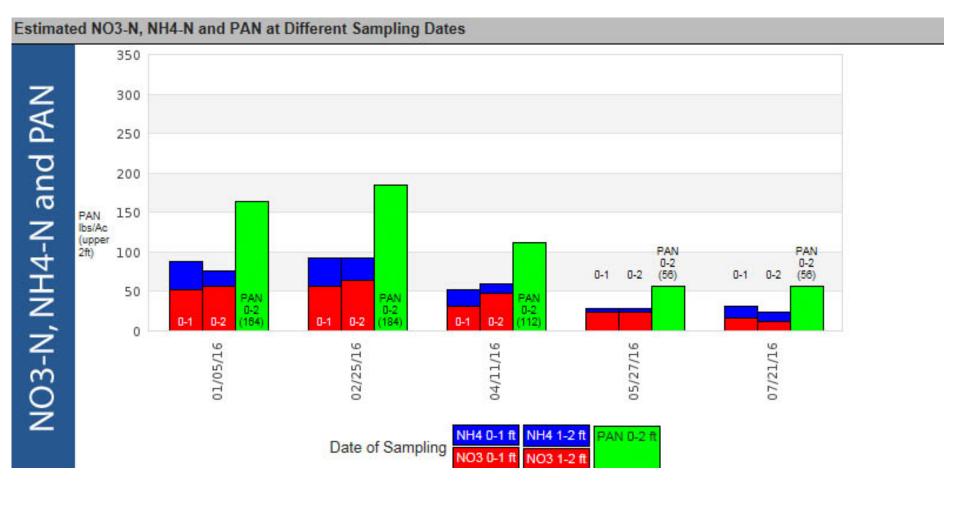
Does the Corn Crop Need More Nitrogen?

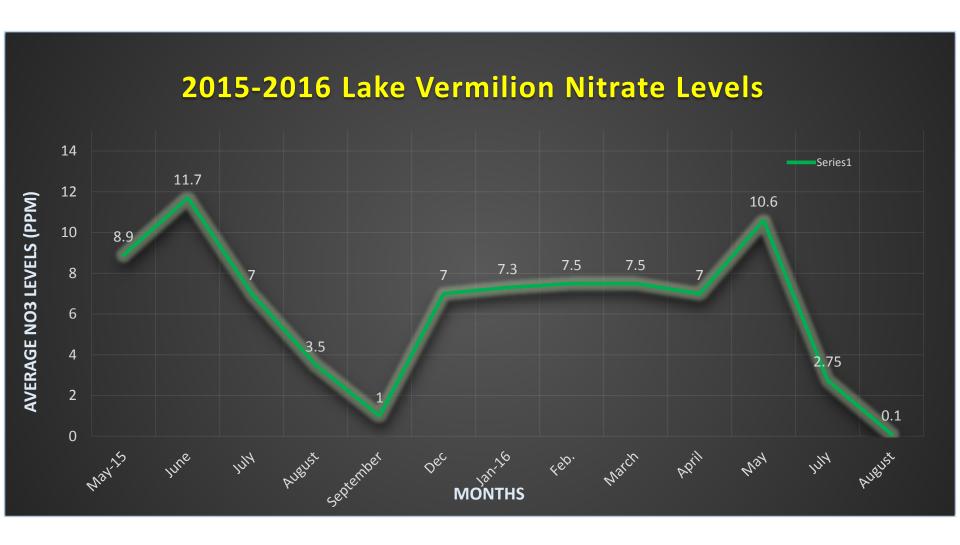

Emerson Nafziger, University of Illinois

Except for some areas of southeastern Illinois, the 2016 com crop went in well, and on June 12 was rated at 75% good or excellent. Warm temperatures have speeded up growth, and although below-normal rainfall, especially in western Illinois, is starting to cause some concern, the 2016 com crop is off to a very good start.


The corn crop this year has excellent stands and there are few drowned-out areas, though there is some unevenness depending on when the crop was planted and how much rain it received after planting. The most noteworthy feature, though, is the dark green color of the crop, especially the crop that was planted in mid-April. This is among the greenest corn crops I have seen in Illinois

Not only is the crop green where N fertilizer has been applied, it is also green where no N fertilizer was applied. In a June 9 photo taken in one of our N trials, the zero-N treatment shows slightly less growth than the treatment with 200 lb. N applied on April 18 as NH3, but leaf color is about the same without N as with a full N rate (Figure 1). We don't expect this to last as N uptake kicks into high gear, but the crop has taken up a fair amount of N that didn't come from fertilizer.


Estimated NO₃-N, NH₄-N, and PAN at Different Sampling Dates



6

Sampling Date

2015-2016 Lake Springfield Nitrate Levels

Implementation Update

➤ N-Watch — Jean Payne

Status of NLRS Workgroups, Forums, and Councils

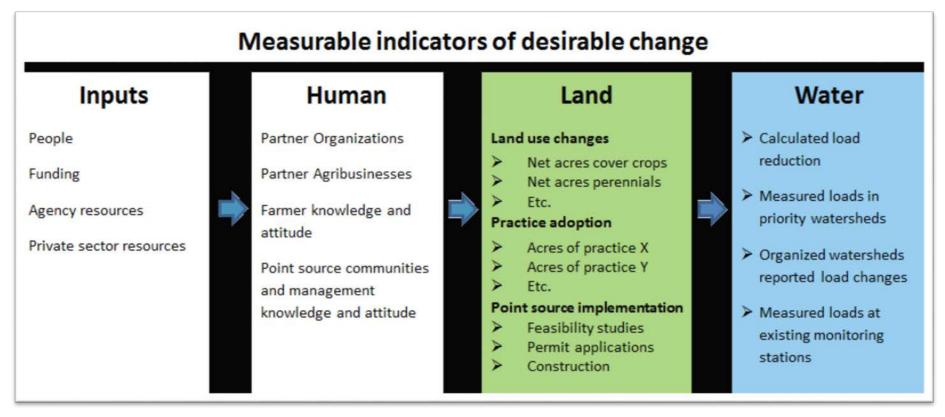
AGRICULTURE WATER QUALITY PARTNERSHIP FORUM (AWQPF)

Warren Goetsch

AWQPF Meetings: Technical Subgroup Meetings:

May 22, 2015 Aug 26, 2015

Sep 22, 2015 Sep 21, 2015


Feb 23, 2016 Jan 26, 2016

May 17, 2016 Mar 29, 2016

Jun 14, 2016

Tracking BMP Implementation – lowa Logic Model

Source: Iowa State University, Extension and Outreach, Measures of Success Committee

Metrics and what are we using to measure them

Land	Units	USDA- NRCS	Illinois EPA	FSA	IDNR	NASS
Red. N rate from backgrnd to MRTN 10%	Cropland acres					NASS Survey
Nitrification inhibitor w/ all fall-applied fert on tile-drained corn	Cropland acres					NASS Survey
Split appl. 50% fall + 50% sp on tiled corn	Cropland acres					NASS Survey
Spring-only appl. on tile-drained corn	Cropland acres					NASS Survey
Split appl. of 40% fall, 10% pre-plant, and 50% side dress	Cropland acres					NASS Survey
Cover crops on all corn/soybean tile ac	Cropland acres			To HUC8 level		NASS Survey
Cover crops corn/soybean non-tile ac	Cropland acres			To HUC8 level		NASS Survey
Bioreactors on 50% of tile-drained land	# Acres treated	EQIP	319 Grant			NASS Survey
Wetlands on 25% of tile-drained land	Acres wetland/ # Acres treated		319 Grant	To HUC8 level	To HUC8 level	NASS Survey
Buffers on all applicable crop land	Acres buffers		319 Grant	To HUC8 level	To HUC8 level	
Perennial/energy = to pasture/hay ac	Cropland acres			To HUC8 level		NASS Survey
Perennial/energy crops 10% tile-drained	Cropland acres			To HUC8 level		NASS Survey
Water table management	#Acres effected	EQIP	319 Grant			

Survey Timetable

- Survey Mailings July 1 and August 1
- Some telephone calling Aug 15 Sep 1
- Editing and Data analysis through Oct 15
- Disclosure review begins October 15
- Summary and publication through Dec 1

Schedule of future AWQPF meetings

Sep 27, 2016 (AWQPF)
Dec 8, 2016 (Tech Subgroup)

Status of NLRS Implementation Workgroups, Forums, and Councils

URBAN STORMWATER WORKING GROUP

Eliana Brown

Jul 20, 2015

Dec 11, 2015

Apr 12, 2016

Aug 8, 2016

Meetings: April 19 and August 8

- 1. General Education
- 2. Education for decision makers
- 3. Tracking

General Education:

Compiled existing public educational products and perform a gap analysis. Found no obvious gaps.

Decided to ask MS4s what info is needed.

Will look at providing climate change fact sheet and evaluation templates.

Education for Decision Makers:

Formed a subgroup to work on an educational series for decision makers.

Partnered with IDNR Coastal Program for the first event which will be held March 20, 2017 in Cook County.

Event will be a luncheon with elected officials followed by afternoon sessions for professional staff.

Tracking:

Formed a subgroup to decide how to track Stormwater BMPs.

Developing spreadsheet analogous to Ag and Point Source.

May develop a reporting template for MS4s to help collect information.

Upcoming call:

Nov 15, 2016

Status of NLRS Workgroups, Forums, and Councils

PERFORMANCE BENCHMARKS + POINT SOURCE WORKING GROUP

Cindy Skrukrud/Rick Manner

Meeting: Aug 17, 2016

POINT SOURCE TRACKING FOR 2011 AND 2015 - All mea	sures will be rep	orted by Priority Watersh	eds and State 1	otal			
Facility/Land Measures	Units?	Measurement provider	Next steps				
Number of permits issued that require nutrient reduction feasibility studies	Number	Illinois EPA	Determine if MINOR facilities should be included			≥d	
Number of nutrient reduction feasibility studies submitted	Number	Illinois EPA	Same as above				
Number of permits with N removal/reduction compliance schedules (i.e. not currently removing nutrients)	Number	Illinois EPA	Same as above	e			
Number of permits with P removal/reduction compliance schedules (i.e. not currently removing nutrients)	Number	Illinois EPA	Same as above	2			
Number of N removal/reduction facilities in place (i.e. currently removing nutrients)	Number	Illinois EPA	Same as above	2			
Number of P removal/reduction facilities in place (i.e. currently removing nutrients)	Number	Illinois EPA	Same as above	2			
Number of facilities monitoring N in their effluent	Number	Illinois EPA	Same as above	2			
Number of facilities monitoring P in their effluent	Number	Illinois EPA	Same as above				
Number of permits with nutrient limits	Number	Illinois EPA	Same as above				
Other measures (such as wetlands, tree program, biosolids BMP, etc)	Acres? Gal/yr?	Illinois EPA	Maybe add this question to IAWA survey				
Wet weather flow reduction in combined systems		combined community	Illinois EPA wi	II generate	list of com	ibined comm	nunities
Water Measures							
Total N load discharged from point sources	lbs/yr	Illinois EPA					
Total P load discharged from point sources	lbs/yr	Illinois EPA					
ILLINOIS Improving our water resources with Collaboration and innovation	h						

IEPA's List of BNR Majors

Facility	NPDES Number	DAF Notes
Algonquin	IL0023329	5.0
Antioch	IL0020354	1.6
Aqua Illinois - University Park	IL0024473	2.43
Beardstown	IL0025135	1.75 Upon expansion
Belleville	IL0021873	12.4
Bolingbrook #3	IL0069744	4.2 Upon expansion
Braidwood	IL0054992	2.0
Fox Lake NWR	IL0020958	12.0
Gilberts	IL0068764	1.25 Upon expansion
Hampshire	IL0020281	1.5 Upon expansion
Huntley West	IL0070688	2.6 Upon expansion
IL American Oak Valley	IL0055981	1.5
IL American Terra Cotta	IL0038202	1.0 Upon expansion
Itasca	IL0079073	3.2
Jerseyville	IL0024465	2.3 Upon expansion
Lake County Mill Creek	IL0071366	2.1
Lake in the Hills	IL0021733	4.5
Manhattan	IL0020222	1.35
Marengo	IL0020729	2.25
McHenry South	IL0066257	4.00 Upon expansion
Minooka	IL0055913	2.2
Mokena	IL0024201	3.3 Upon expansion
Monmouth	IL0036218	4.62
Murphysboro	IL0023248	2.8
Pekin #1	IL0034495	6.84 Upon expansion
Robinson	IL0030732	2.5
Rock Falls	IL0078301	3.0
Salem	IL0023264	2.508
South Beloit	IL0021156	4.99 Upon expansion
Springfield Spring Creek	IL0021989	32.0
Springfield Sugar Creek	IL0021971	15.0 Upon expansion
St. Charles West	IL0026808	1.05 Upon expansion
Stookey Township	IL0025232	1.75
Sycamore	IL0031291	4.99 Upon expansion
Washington	IL0042412	2.29 Upon expansion
Wonder Lake	IL0077836	1.0 Upon completion of construction

Woodstock South IL0034282 3.5 Upon expansion

What is in a name?

- ➤ BNR, versus Bio-P, versus not-BNR/Bio-P
 - ➤ All facilities are biological
 - > All facilities remove a fraction of N and P

- > Interim P rule required monthly avg. P < 1 mg/L
 - Has required Chem-P or Bio-P w/Chem-P backup for expansions
- Optimization will encourage reduced pounds P
 - From all existing facilities
 - Also bringing N into consideration

IEPA's List of BNR Majors

Facility	NPDES Number	DAF Notes
Algonquin	IL0023329	5.0
Antioch	IL0020354	1.6
Aqua Illinois - University Park	IL0024473	2.43
Beardstown	IL0025135	1.75 Upon expansion
Belleville	IL0021873	12.4
Bolingbrook #3	IL0069744	4.2 Upon expansion
Braidwood	IL0054992	2.0
Fox Lake NWR	IL0020958	12.0
Gilberts	IL0068764	1.25 Upon expansion
Hampshire	IL0020281	1.5 Upon expansion
Huntley West	IL0070688	2.6 Upon expansion
IL American Oak Valley	IL0055981	1.5
IL American Terra Cotta	IL0038202	1.0 Upon expansion
Itasca	IL0079073	3.2
Jerseyville	IL0024465	2.3 Upon expansion
Lake County Mill Creek	IL0071366	2.1
Lake in the Hills	IL0021733	4.5
Manhattan	IL0020222	1.35
Marengo	IL0020729	2.25
McHenry South	IL0066257	4.00 Upon expansion
Minooka	IL0055913	2.2
Mokena	IL0024201	3.3 Upon expansion
Monmouth	IL0036218	4.62
Murphysboro	IL0023248	2.8
Pekin #1	IL0034495	6.84 Upon expansion
Robinson	IL0030732	2.5
Rock Falls	IL0078301	3.0
Salem	IL0023264	2.508
South Beloit	IL0021156	4.99 Upon expansion
Springfield Spring Creek	IL0021989	32.0
Springfield Sugar Creek	IL0021971	15.0 Upon expansion
St. Charles West	IL0026808	1.05 Upon expansion
Stookey Township	IL0025232	1.75
Sycamore	IL0031291	4.99 Upon expansion
Washington	IL0042412	2.29 Upon expansion
Wonder Lake	IL0077836	1.0 Upon completion of construction

Woodstock South IL0034282 3.5 Upon expansion

Revised Request for Data

Years Requested					
Biological Nutrient Removal Facilities (both Bio N and Bio P)			If not operating in full BNR, what is the trigger?	YYYY	YYYY
Facility	NPDES Number	DAF	Comments	Start Bio P	Start Bio N
Add your new data in this row if this is correct page to add it					
Algonquin	IL0023329	5.00			
Antioch	IL0020354	1.60			
Aqua Illinois - University Park	IL0024473	2.43			
Beardstown	IL0025135	1.75	Upon expansion		
Belleville	IL0021873	12.40			

From: Then we ask for: For each of the years: **BNR** Influent N (2025)Bio N Effluent N 2015 Bio P Influent P 2011 Neither Effluent P 1996 Data quality 1980

Next Steps

- ✓ Illinois EPA to check feasibility to provide numbers
- ✓ Update on IAWA spreadsheet survey
- ✓ Update from IERG on discussions with their members
- ✓ Next Performance Benchmark call: afternoon of October 13 or 18

NUTRIENT MONITORING COUNCIL (NMC)

Kelly Warner

Meetings:

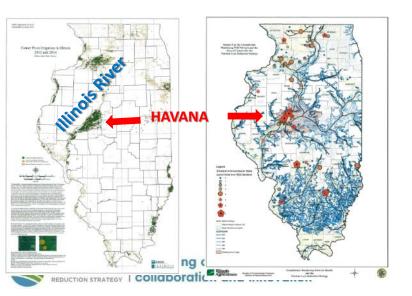
May 13, 2015

Sep. 16, 2015

Dec. 3, 2015

Apr. 5, 2016

Jul. 28, 2016

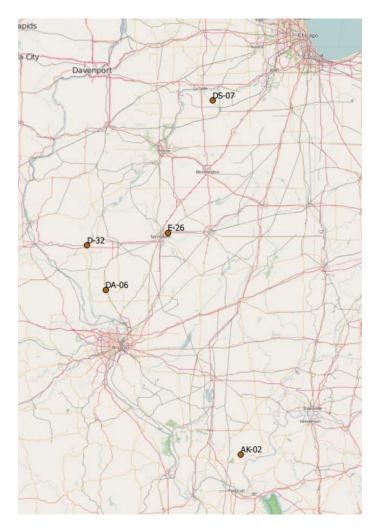

Update from Nutrient Monitoring Council

- 1.) Groundwater implementation
- 2.) New reduction applications (MWRD)
- 3.) Data aggregation and visualization
- 4.) Key parameters for aggregation
- 5.) Status of monitoring loads leaving Illinois

"In general, most sites [in Mississippi River Basin] had increases in nitrate concentration at low streamflows, which suggests increases in legacy nitrate from groundwater or point source contributions."
-from Murphy, Hirsch, Sprague 2013

IEPA-USGS to study continuous nitrate changes in Havana Lowland near the Illinois River




Nutrient Monitoring Council Updated on the Metropolitan Water Reclamation District of Greater Chicago's Nutrient Recovery Efforts

Exploring IEPA Ambient Water Quality Monitoring Network Data with Great Lakes To Gulf Virtual Observatory

- Test with STORET data
- Requested Parameters:
 - ➤ Nitrogen NO3+NO2
 - Nitrogen Kjeldahl
 - Nitrogen Ammonia
 - Phosphorus, Total
 - Phosphorus, Dissolved

Measurement Criteria

- Top "Water Quality" (e.g., nutrients and flow) Monitoring Data Parameters and Associated Information
- ➤ Top "Biological" Monitoring Data Parameters and Associated Information

Example goals to assess biologic change in:

- Taxa richness
- Focal Species abundance and distribution
- Aquatic life designated use
- Primary production

The objective of a real-time continuous monitoring network is to determine baseline nutrient and sediment loading (nitrate, phosphorus, and sediment), seasonal loadings, and storm-event loadings over time.

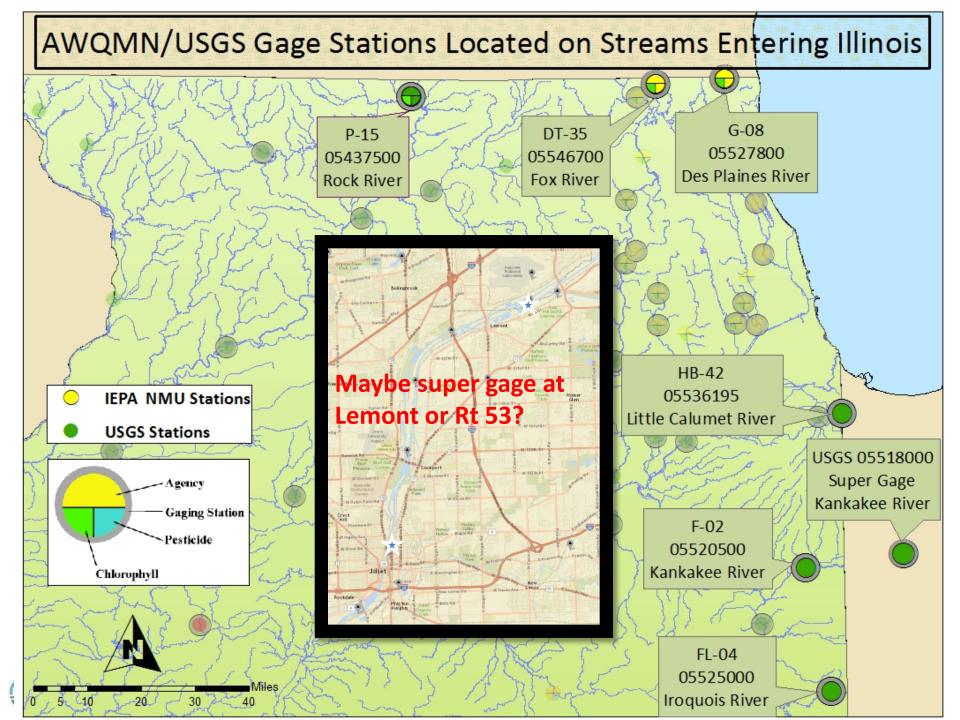
"For both existing and new water-quality monitoring sites, maintain sampling for a minimum of ten years after new agricultural management practices are installed to evaluate their effectiveness in reducing nutrient loading."

From the Northeast-Midwest Institute Weekly Update (July 20, 2015 on Water Data to Answer Urgent Water Policy Questions

Embarras River

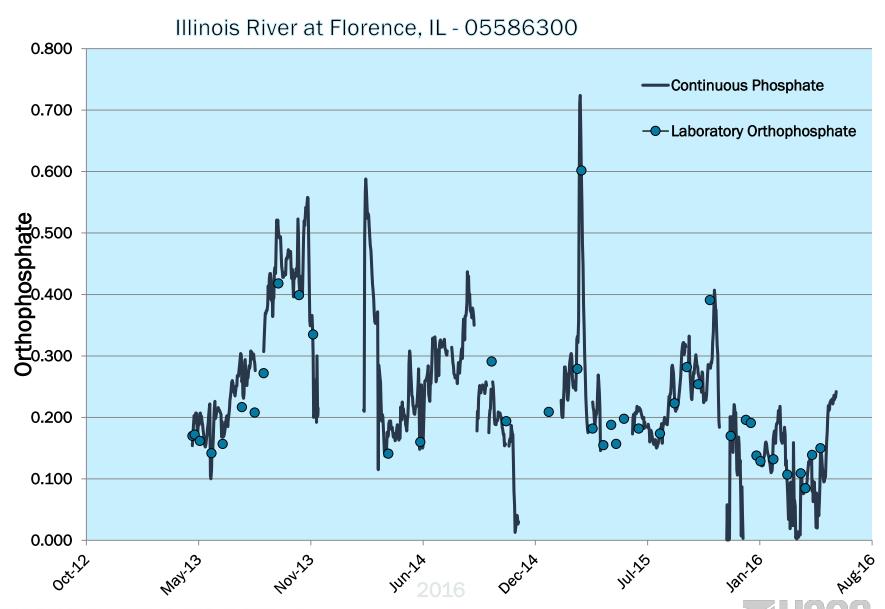
ittle Wabash River at Carmi

Basins cover almost 75% of the land area in the State

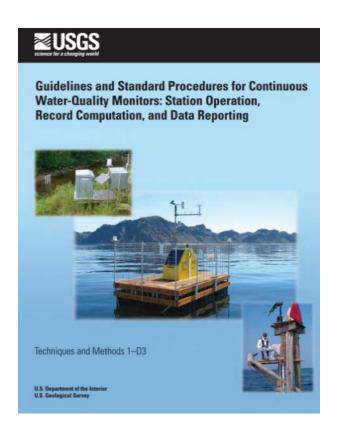

Station Drainage Area Mean Nitrate-Stream Name Location in Illinois only, nitrite mg/l in mi² Rock River Joslin 3,973 3.6 Green River 1,000 4.1 Geneseo Illinois River **Florence** 22,651 4.3 Kaskaskia River **New Athens** 5,189 0.89 Big Muddy River Murphysboro 0.35 2.168 Vermilion River Danville 1,199 6.9 **Embarras River** Lawrenceville 2,348 4.6 Little Wabash River 3,102 0.9 Carmi Source: US National Park Service

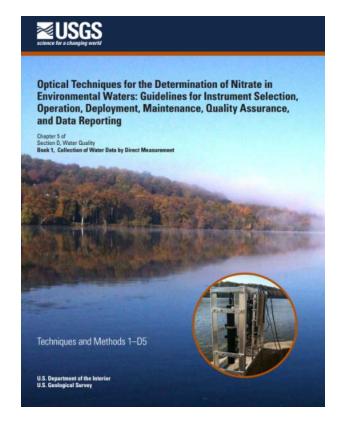
Kaskaskia River at New Athens

Big Muddy River at Murphysboro



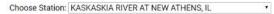
Illinois Nutrient Super Gages

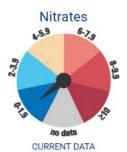

Continuous phosphate



science for a changing world

Consistent techniques and methods are key to quantify change





05595000 KASKASKIA RIVER AT NEW ATHENS, IL

Data last updated: August 05 2016 14:21:36.

Nitrates: 0.20 mg/l as N

Nitrate Load: 1210 lbs/day as N

Water Temperature: Currently Unavailable °C

pH: Currently Unavbailable

Gage Height: 68.87 ft

Phosphates: 27 mg/l as P

Specific Conductance: Currently Unavbailable uS/cm

Dissolved Oxygen: Currently Unavbailable mg/l

Turbidity: Currently unavailable

Pounds of Nitrogen per Day

to 08/09/2016

change date


08/02/2016

Historical View

Chair Extraordinaire is in Ireland!

Status of NLRS Workgroups, Forums, and Councils

NUTRIENT SCIENCE ADVISORY COMMITTEE

Todd Royer

Nutrient Science Advisory Committee

Update to PWG, 30 August 2016 Champaign

NSAC convened in November 2015, with a timeline of 18-24 months to recommend numeric nutrient criteria to IEPA

NSAC has met approximately monthly since Nov. 2015, either by teleconference or in person

At present, NSAC is on-track to complete work by the end of 2017

Approach

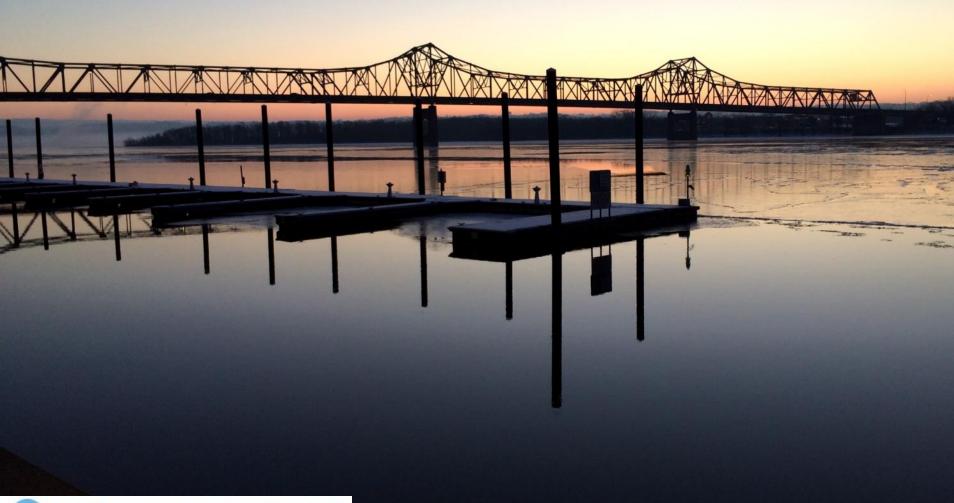
NSAC is committed to a data-driven process that results in a scientifically defensible recommendation to IEPA

Developed a work plan based on principles of an ecological risk assessment (NSAC work plan was shared with the PWG)

NSAC Activities

With assistance from IEPA, compiling all relevant IEPA data from 2006-2014

Determining relevance and applicability of data sets from groups other than IEPA


US EPA is providing support for analysis of data by TetraTech; NSAC has been engaged with TetraTech to develop the analysis work plan and time line

Final results from TetraTech expected in March 2017

NSAC will use the TetraTech analysis, possibly together with other analyses, to arrive at recommendations to IEPA

Final outcome will be based on data analysis, and might include a single state-wide recommendation, or might include recommendations specific to selected geographic regions or selected river classes

PLAN FOR 2017

Process and timeline for 1st biennial report

Measurable indicators of desirable change

Inputs

People

Funding

Agency resources

Private sector resources

Human

Partner Organizations

Partner Agribusinesses

Farmer knowledge and attitude

Point source communities and management knowledge and attitude

Land

Land use changes

- Net acres cover crops
- Net acres perennials
- Etc.

Practice adoption

- Acres of practice X
- Acres of practice Y
- Etc.

Point source implementation

- Feasibility studies
- Permit applications
- Construction

Water

- Calculated load reduction
- Measured loads in priority watersheds
- Organized watersheds reported load changes
- Measured loads at existing monitoring stations

Inputs - financial and staff resources (Anjanette Riley)

- Minimum number of staff members working on nutrient issues
 - "Across sectors, more than 50 staff members worked on nutrient issues between January and July 2016."
- Narrative description of money spent
 - "Strategy partners invested hundreds of thousands of direct and in-kind dollars to support nutrient research and fund plant upgrades."
- Minimum number of wastewater plant feasibility studies conducted

Human - outreach and communication activities

- Narrative descriptions of
 - ➤ People reached
 - ➤ Meetings held
 - ➤ Newsletters sent
 - ➤ Topics covered

E.g. "Thousands of Illinois residents were introduced to the strategy and recommended practices for the agriculture industry at roughly 200 meetings held throughout Illinois."

Process and timeline for 1st biennial report (Warren Goetsch)

End of Jan 2017: Numbers reported to Warren and Trevor

End of Feb 2017: Draft report written and sent to PWG

End of Mar 2017: Comments due to IWRC

End of Apr 2017: Revised report complete

End of May 2017: Final report formatting complete

End of Jun 2017: Release report

Expectations & Proposed Changes... (Amy Walkenbach)

- Policy Working Group
 - ≥2016 two meetings
 - ➤ 2017 one early/mid year meeting, one end of year success workshop and meeting— or is one end of year sufficient
- Nutrient Monitoring Council
 - ≥2016 four meetings (scheduled)
 - ➤ 2017 same pace, participation in end of year workshop

Expectations & Proposed Changes...

- Nutrient Science Advisory Committee
 - > 2016 six+ meetings (scheduled face to face and calls)
 - ➤ 2017 to be determined by committee needs, participation in end of year workshop
- Agricultural Water Quality Partnership Forum
 - ≥ 2016 three meetings (scheduled)
 - ➤ 2017 one early/mid year meeting, participation in end of year workshop
 - Agricultural Water Quality Partnership Forum Technical Subgroup
 - 2016three meetings
 - 2017currently on hiatus, look to AWQPF for direction

Expectations & Proposed Changes...

- Urban Stormwater Working Group
 - ➤ 2016 three meetings (face to face and calls)
 - ➤ 2017 similar pace, participation in end of year workshop
 - ➤ Urban Stormwater Tracking Subgroup
 - 2016two meetings (calls)
 - 2017similar pace
- Benchmark Workgroup
 - ≥ 2016 two meetings

collaboration and innovation

➤ 2017 similar meeting, participation in end of year workshop

Expectations & Proposed Changes...

- Discussion
- Send comments to Illinois EPA by SEPTEMBER 15, 2016

Thank you!

