IOWA NUTRIENT REDUCTION STRATEGY

Matt Lechtenberg – Iowa Dept. of Agriculture & Land Stewardship (IDALS)

Nutrient Reduction Strategy highlights

- Reduce nitrogen (N) and phosphorus (P) loads to Iowa waters and the Gulf of Mexico by at least 45% (*Gulf Hypoxia Task Force*)
- Led by Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources, and Iowa State University
- Integration of non-point (*agriculture*) and point (*industrial and municipal wastewater treatment plants*) sources working together for common goal
 - Of 36M acres in Iowa, 90% in agricultural use and 24M acres in row crops

*The strategy is a dynamic document that will change over time as new information, data, and science is discovered and adopted

Iowa Update

- Strategy Released in 2013
 - Collaborative, science-based assessment
- Iowa Legislature established Water Quality Initiative
 - Leveraging resources (RCPP, private \$, other federal funding, and landowners)
- Engage partners, build capacity and overcome barriers to scale-up
- Accountability and tracking Logic Model (<u>www.nutrientstrategy.iastate.edu/documents</u>)
- 2018 Legislative Session passes longer-term sustainable funding.
 - Over \$270M over the next 12 years to advance lowa NRS.

Iowa Nutrient Reduction Strategy 2018-19 Annual Progress Report

NUPABLE BY new Department of Applicatives and Land Stewartship read Department of Notice's Resources says State University

101C 817 111 208

Iowa Water Quality Initiative

IOWA DEPARTMENT O

Nitrogen Practices

Phosphorus Practices

Nitrogen moves primarily as nitrate-N with water

	Practice	Practice Comments		% Corn Yield Change**
		Average (SD*)	Average (SD*)	
at	Timing	Moving from fall to spring pre-plant application	6 (25)	4 (16)
		Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)**
	Source	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
m		Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
Nitrogen Manag	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:corn price ratio) compared to current estimated application rate. (ISU Corn Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soilfertiilty/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	31 (29)	-6 (7)
		Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
Use	Perennial	Energy Crops – Compared to spring-applied fertilizer	72 (23)	
		Land Retirement (CRP) - Compared to spring-applied fertilizer	85 (9)	
and	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
	Grazed Pastures	No pertinent information from Iowa – assume similar to CRP	85	
	Drainage Water Mgmt.	No impact on concentration	33 (32)	
	Shallow Drainage	No impact on concentration	32 (15)	
iel i	Wetlands	Targeted water quality	52	
÷	Bioreactors		43 (21)	
Edge-	Buffers	Only for water that interacts with the active zone below the buffer. This would only be a fraction of all water that makes it to a stream.	91 (20)	
	Saturated Buffers	Divert fraction of tile drainage into riparian buffer to remove Nitrate-N by denitrification.	50 (13)	

Phosphorus moves primarily with eroded soil

	Practice	Comments	% P Load Reduction*	% Corn Yield Change ^b
		Average (SD ^c)	Average (SD ^c)	
	Phosphorus Application	Applying P based on crop removal – Assuming optimal STP level and P incorporation	0.6 ^d	0
se		Soil-Test P – No P applied until STP drops to optimum	17"	0
Practic	Source of	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application	46 (45)	-1 (13)
ement	Phosphorus	Beef manure compared to commercial fertilizer – Runoff shortly after application	46 (96)	
Manag	Placement of	Broadcast incorporated within 1 week compared to no incorporation, same tillage	36 (27)	0
horus /	Phosphorus	With seed or knifed bands compared to surface application, no incorporation	24 (46)	0
dso	Cover Crops	Winter rye	29 (37	-6 (7)
H.	Tillage	Conservation till – chisel plowing compared to moldboard plowing	33 (49)	0 (6)
		No till compared to chisel plowing	90 (17)	-6 (8)
Je Se	Perennial Vegetation	Energy Crops	34 (34)	
nd U nanç		Land Retirement (CRP)	75	
CF		Grazed pastures	59 (42)	
trol Field S	Terraces		77 (19)	
on Con Ige-of- actices	Buffers		58 (32)	
Erosi and Eu Pr	Control	Sedimentation basins or ponds	85	

Reporting Structure Logic Model

Conservation Investment - Inputs the numbers

\$360,770,000 **CRP** - Rental Payments \$149,480,000 Public - Base Programs \$ 26,350,000 Est. Farmer & Landowner Investment \$ 20,120,000 Public - NRS-focused 2019 2018 \$ 3,350,000 2017 Private - NRS-focused 2016 200 Ó 50 100 150 250 300 350 400 Funding (\$ Millions)

Funding obligated for Nutrient Reduction Strategy efforts by partner organizations

*Farmer & Landowner Investment accounts only for select practices that received cost-share funding.

Updated Baseline Assessment

- NPS •
- **Historical progress** • on P loss from cropland
- Primarily driven by • reduction in tillage

- Pasture

- Hay

- Oats

- Wheat

BMP Mapping -Land

- Select BMPs identifiable w/ available data
- 2007-2010 Benchmark
- Documentation
- Historical
- WS Modeling

Statewide Practice Summary						
Pond Dams	Grassed		WASCOBs			
(number)	waterways (ac)	Terraces (ft)	(number)			
114,423	327,904	469,257,556	246,139			

Estimated >\$6B in investment based on today's costs.

Learn more at

https://www.gis.iastate.edu/gisf/projects/conservation-practices

Updated Baseline Assessment

- <u>NPS</u>
- Historical progress on P loss from cropland
- Nitrogen needs more emphasis

						20 NRS Pu	013 blication	2018 Annual Report
								─
1980-1996					2006-2010	la ser e sel e l	20	16
Historic Baseline					INKS Bend	nmark I	Benchi	ad NRS mark II
		1980-96	2006-10	Change		Maior ca	use of c	hange
		Baseline	Benchmark	1980-96	, . Sto	najor ca		
		Load	Load (tons)	2006-10				
		(tons)	2000 (10115)	2000 10	•			
Nitrogen	NPS	278,852*	293,395	5.2%	Increase	Land us	se chang	je
	PS	13,170	14,054	6.7%	Increase	Flow in	crease	
	Total	292,022	307,449	5.3%	Increase			
Phosphorus	NPS	21,436	16,800	21.6%	Decrease	Reduce	ed tillage	and soil
						test P		
	PS	2,386	2,623	9.9%	Increase	Flow in	crease	
	Total	23,822	19,423	18.5%	Decrease			

*The method used to derive the total nitrogen estimate of 292,022 tons indirectly reflected the point source contributions.

Water Quality Initiative highlights

- Addressing the scale needed to address the goals of the NRS
 - Traditionally soil conservation and in-field nutrient management based
 - Advance understanding and critical practices and delivery of practices focusing on addressing nutrient reduction
 - Leverage and expand state and farmer resources
- Tracking and documenting progress
 - Collective effort of management and practice installation
 - ISU established measurement coordinator in 2015
 - Utilize information to inform progress, but also inform/prioritize resources

Iowa Water Quality Initiative

IOWA DEPARTMENT OF AGRICULTURE & LAND STEWARDSHIP

IOWA NUTRIENT REDUCTION STRATEGY

Iowa Water Quality Initiative

IOWA DEPARTMENT OF AGRICULTURE & LAND STEWARDSHIP

IOWA NUTRIENT REDUCTION STRATEGY

- Over 250 partners engaged in the process to date.
- Water Quality Initiative (WQI) est in 2013 to begin implementation.
- **2 new groups** formed to help address key areas of the lowa NRS
 - Iowa Agricultural Water Alliance (IAWA)
 - Advance farmer-led watershed and water quality related activities
 - Increase the pace and scale of NRS practice adoption

Iowa Nutrient Research and Education Council (INREC)

- Test and verify new and emerging technologies to reduce nutrient loss
- Provide education to ag retailers, agronomists and CCAs to deliver NRS message and broaden adoption
- Foster engagement in WQ practice delivery/messaging
- Track and measure private implementation through network of ag retailers and co-ops (pilot phase)

Conservation Infrastructure

3 Working Groups to start

- Cover crops
- Conservation Drainage
- Strategy

Focus on key practices, identify and overcome barriers to adoption.

Conservation practices are economically compelling and easier for farmers and landowners to implement and increased investments in conservation practices lead to healthy soil and improved water quality for the benefits of all lowans and downstream communities.

Nutrient Reduction Exchange

Iowa League of Cities Conservation Innovation Grant in 2015

 Purpose: to register and track nutrient reductions resulting from installed best management practices (BMPs) that target INRS goals

- **1) Process** NPDES permit integration (DNR) & application submittals (ISU and DNR)
- 2) Incentives evaluation of regulatory authority and potential for use
- 3) Database USACE RIBITS Iowa Pilot ensuring an easy to use electronic application submittal process
- 4) NRE placement evaluation of NRE placement in rule or policy
- 5) Nutrient Load Reduction Model evaluation and implementation of a specific model or models for load reduction estimates.

"Actual reductions may vary year to year, but are based on the best science available for lowa conditions. Reductions are not additive.

Nutrient Management

Meet the nutrient needs of the crop to be grown, while minimizing the loss of nutrients to surface and groundwater

4Rs

Right source Right rate Right time Right place

Sidedressing, Tillage, Spring-Applied Nitrogen, Nutrient Source, Soil-Test P, P Placement, Sitespecific P Management, Nitrification Inhibitor, and Nitrogen Application Rate

Cover Crops

Reduce soil erosion

Improve soil structure & permeability

Provide ground cover

Scavenge residual nitrogen

Average of 28-31% reduction in N concentration and 29% reduction in P loss

Bioreactors

Bioreactors are lined pits filled with woodchips; tile drainage water flows through and denitrifying bacteria converts nitrate into di-nitrogen gas.

One bioreactor can treat up to 100 acres of tiledrained land.

Saturated Buffers

Saturated Buffers are lateral tile systems that re-distribute tile drainage water through the streamside buffer to denitrify before reaching the stream

One saturated buffer can treat up to 200 acres of tile-drained land.

- Expanded Technical Assistance Capacity
- ACPF/Watershed planning
- Focused outreach to landowners/farmers
- Flexibility through CRP and NRCS standards
- Adaptive to changes presented through research
- Prioritize Sat. Buffer over Bioreactor

Wetlands

Wetlands are strategically located and designed to remove nitrate from tiledrainage water from cropland areas.

The larger the wetland, the greater the percentage of N and P removal; nitrate concentration reduction averages 52%. Wetlands also provide improved aesthetics and Iowa game and waterfowl habitat.

Wetland Opportunities and Challenges options

- Breakpoint (traditional)
- Created/Excavated or "Tile Zone"
- Floodplain
- Build off of current understanding from monitoring existing sites translated to new site concepts
- Pros and cons to navigate through all of these types of sites:
 - Advantages: costs (easements, construction, etc.), improved performance, habitat value
 - Challenges: permitting, costs, private landowners, time
 - Focus on expanding opportunity, not one vs. the other

Wetland Opportunities and Challenges options

- Expands the number of sites feasible in the basin:
- Conceptual watershed
- 13 breakpoint sites
- + 5 potential TZ sites
- + 3 potential floodplain sites

Expanded Capacity in Iowa to Advance Wetlands

- Expanded Delivery Partnerships
 - Ducks Unlimited
 - Iowa Nutrient Research and Education Council (INREC)
- Expanded Funding Opportunities:
 - Regional Conservation Partnership
 Program (RCPP)
 - Mississippi River Basin Healthy Watersheds Initiative (MRBI)
 - EPA-Gulf of Mexico Funding
 - Private sector (DU, TNC, IPPA, others)

Thank you

Questions?

Matt Lechtenberg Water Quality Initiative Coordinator (515) 281-3857 matthew.lechtenberg@iowaagriculture.gov

Minnesota's Nutrient Reduction Strategy

Tracking Progress in the Mississippi Headwaters State

Dave Wall | Environmental Research Scientist

Photo by Karla Lundstrom

NRS finalized in 2014 by 11 organizations

https://www.pca.state.mn.us/water/nutrient-reduction-strategy

Strategy implementation to reduce nutrients in water

Nutrient Reduction Strategy 5-year Progress Report

August 2020

5-year Progress Report on Minnesota's Nutrient Reduction Strategy

Nutrients in water

MINNESOTA POLLUTION CONTROL AGENCY

https://www.pca.state.mn.us/water/nutrient-reduction-strategy

Presentation Outline

Minnesota Clean Water Fund – boosted state BMP \$\$

More than **30** program advances since 2014

Education, Outreach and Research	Voluntary Programs	Regulatory Programs	Watershed Partnerships and Tools
 Nitrogen Smart training for farmers and farm-advisors Annual nutrient management and conservation tillage conferences Forever Green Initiative Discovery Farms Minnesota Office of Soil Health Guidance manuals for agricultural best management practices, drainage, urban stormwater management Conservation professionals training and certification Nutrient Management Initiative Center for Changing Landscapes 	 Minnesota Agricultural Water Quality Certification 4R Certification led by private industry (cropland nutrient management) Red River Basin Initiative and Red River Valley Drainage Water Management Minnesota Conservation Reserve Enhancement Program Board of Water and Soil Resources Cover Crop Demonstration Program Clean Water Fund – increases for BMP implementation Point – nonpoint trading Reinvest in Minnesota Multi-purpose drainage water management 	 Municipal and Industrial Wastewater Program Groundwater Protection Rule (Nitrogen Fertilizer) Minnesota Riparian Buffer Law Feedlot and land application of manure rules and program Urban Stormwater Runoff Program Subsurface Sewage Treatment Program 	 Watershed Restoration and Protection Strategies (WRAPS) in over 50 HUC-8 watersheds One Watershed, One Plan (1W1P) Program Groundwater Restoration and Protection Strategies Watershed Conservation Planning Initiative Small focus watersheds – Federal Section 319 Program (20 watersheds) Guidance on Lake Protection for WRAPS and 1W1P National Water Quality Initiative and Mississippi River Basin Healthy Watershed Initiative Watershed-based Funding Implementation Program Root River Field to Stream Partnership

All 30+ programs described in:

120

Appendix A: State-level Nutrient Reduction Program Advancements

5-year Progress Report on Minnesota's Nutrient Reduction Strategy

MINNESOTA

Nutrient Reduction Strategy

https://www.pca.state.mn.us/water/ nutrient-reduction-strategy

Minnesota Agricultural Water Quality Certification

Photo from MDA

Voluntary Partnership:

- Producers
- Government agencies
- Private sector

WQ certified farmers get:

- 10 yrs of regulatory certainty
- Priority \$ for new practices
- Community recognition

Growth since 2015:

- 900+ farms
- 600,000+ acres
- 1800+ new practices
- 46,000+ lbs P reduced
Forever Green Program

- Developing new cropping systems for continuous living cover
 - plant breeding
 - agronomic systems
 - food science
 - economics
- Supply Chain Development
- Market Development

MN Groundwater Protection Rule Nitrogen fertilizer restrictions adopted in 2019

2.6 million acres

Fall N fertilizer restrictions in vulnerable areas

BMPs can phase from voluntary to regulatory in drinking water supply management areas, depending on nitrate levels/trends & BMP adoption rates

<100,000 acres

https://www.mda.state.mn.us/nfr

Minnesota Buffer Law

https://bwsr.state.mn.us/minnesota-buffer-law

streams

Wastewater Permitting Program - Phosphorus

Ρ

Mississippi River Basin = Lake Superior = Lake Winnipeg

Over 70% reduction from:

- 2000 1 mg/L effluent performance standard for new/expanded plants
- 2008 Lake Eutrophication Standards & wastewater rules
- 2014 River Eutrophication Standards
- 2014 Nutrient Reduction Strategy

Wastewater Permitting Program – Nitrogen (N)

Ν

Wastewater N strategy - steps:

- 1. Monitor influent & effluent nitrogen
- 2. Evaluate N reduction optimization
- 3. Develop N management plan templates
- 4. Encourage voluntary N removal when upgrading facility
- 5. Establish N effluent limits after nitrate water quality standards developed
- 6. Develop point/nonpoint trading options

Presentation Outline: Progress with our watershed approach

Minnesota's watershed approach aims to meet local & downstream needs

Watershed load reduction targets – to collectively achieve downstream load reduction goals

Minnesota's watershed approach works at multiple scales

Watershed science informing local planning across the entire state Smaller-scale focus watersheds

Farm and field-scale implementation & monitoring

New private-public collaborative watershed partnerships developing

Cannon River Agricultural Collaborative

Headwaters Agricultural Sustainability Partnership (central Minnesota)

Cedar River Watershed Partnership

Presentation Outline: progress with BMP adoption

How can we tell if practices are being adopted?

- A. Adoption through government support programs
- **B.** Indicators of broader overall adoption
 - 1. U.S. Census of Agriculture
 - 2. MN surveys
 - 3. Satellite imagery
 - 4. Fertilizer sales & nutrient use efficiency
- C. Permitting reporting & inspections
 - 1. Wastewater point sources
 - 2. Urban stormwater
 - 3. Feedlots & manure spreading
 - 4. Septic systems

A. Adoption through government programs

New tracking system for state and federal programs

- NRCS federal EQIP, CSP, RCPP
- BWSR eLINK-tracked state cost-shared BMPs
- **BWSR** CREP and RIM tracking
- **MDA** Ag BMP Loan Program, Ag Water Quality Cert.
- MPCA Clean Water Partnership & 319 program

Aggregated and tracked at 4 scales

- 1. Subwatershed (HUC12)
- 2. Major watershed (HUC8)
- 3. Major drainage basin
- 4. Statewide

HUC8 watershed tracking of government-supported BMPs

BMPs Installed 2004-2018	BMP Count
Tillage/residue management	11,382
Designed erosion control & trapping	10,236
Nutrient management (cropland)	9,992
Septic System Improvements	7,874
Converting land to perennials	7,696
Open tile inlet & side inlet improvements	7,136
Stream banks, bluffs & ravines protected/restored	6,073
Buffers and filters - field edge	5,348
Add living cover to annual crops in fall/spring	4,508
Habitat & stream connectivity management	4,026
Pasture management	3,087
Drainage ditch modifications	2,715
Agricultural tile drainage water treatment/storage	1,184
Urban Stormwater Runoff Control	1,114
Changing rotations to less erosive crops	455
Feedlot runoff controls	173
Forestry Management	138
Wetland restoration/creation	104
In Lake Management	4
Other	51,878
Grand Total	135,123

www.pca.state.mn.us/water/healthier-watersheds

Major River Basin & Statewide tracking of new BMPs adopted each year through government programs

The third and the second secon

https://www.pca.state.mn.us/water/ nutrient-reduction-strategy

Living Cover (326,657 acres total)

Practices that reduce nutrient and soil loss by keeping plants growing continuously, including the Fall and Spring months. Common practices include cover crops and conservation cover.

Cropland Erosion Control (317,642 acres total)

Designed to reduce runoff and soil losses. This group consists primarily of farming practices that leave crop residue on the surface or structural practices that reduce or capture runoff and eroded soil.

Drainage Water Retention and Treatment (15,678 acres total)

Practices designed to slow down waters leaving tile-drained landscapes or otherwise treat tile-waters for nutrient removal prior to entering streams. Wetland restoration and controlled drainage management are the most common practices, but other emerging practices include saturated buffers and bioreactors.

Nutrient Management (69,134 acres total)

Managing the amount, form, placement, and timing of nutrient and soil amendments such that nutrients are used most efficiently by the crops, at the same time minimizing leaching and runoff to surface and ground water.

Statewide tracking example: New acres of living cover added each year through gov't programs

Practices needing widespread increased adoption

Current

Government program BMPs (2014-18) compared to Nutrient Reduction Strategy milestone scenario for 2025

Note: dark blue acres

do not include private

government programs

adoption outside of

Acres of Agricultural BMPs Added 2014-2018 NRS Milestones for 2025

Multiple indicators in combination start to tell a story

Hay/haylage Grass/pasture

Changes in phosphorus relative frequencies over time: Minnesota

How can we tell if practices are being adopted at needed scales?

- A. Adoption through government support programs (previous 3 slides)
- B. Indicators of broader overall adoption
 - 1. Census of Agriculture and surveys
 - 2. Satellite imagery
 - 3. Fertilizer sales
 - 4. Nutrient use efficiency trends
- C. Permitting reporting & inspections

In combination indicates MN is falling short of Nutrient Strategy BMP scenarios

Presentation Outline: trends in the water

10-year nutrient concentration trends

20-year nutrient concentration trends

More precipitation leading to higher nutrient loads

Annual Precipitation Departure, 2000 - 2019

Difference from 20th Century

Source:

DNR State Climatology Office and the DNR Watershed Health Assessment Framework

Nitrate and phosphorus loads Mississippi River at Red Wing

Nitrate loads increasing since late 1990's

Phosphorus loads with no detected trend since late 1990's

In Conclusion

- 5-year progress report recently completed
- Advanced 30+ large-scale programs affecting nutrients
- Agricultural BMP adoption not keeping pace with scenarios outlined in nutrient strategy
- Wastewater over 70% reduction in phosphorus; nitrogen is now highly-monitored
- River phosphorus concentrations decreased 20-50% (20 yrs) but higher river flows offsetting load reductions
- River nitrogen concentrations and loads increasing by over 25% (20 yrs)
- 10-year Minnesota State Water Plan (Sept. 2020)

• Combining nutrient & climate practices to reduce & mitigate effects of climate change

Thank You!

www.pca.state.mn.us/water/nutrient-reduction-strategy

David Wall

david.wall@state.mn.us

651-757-2806

2020 ILLINOIS NLRS PARTNERSHIP WORKSHOP NOVEMBER 6, 2020

JOHN MATHEWS OHIO EPA- DIVISION OF SURFACE WATER

Lead Up To H2Ohio

2000 - 2010

 Increase in Harmful Algal Blooms (HAB) in Western Lake Erie Basin

2010

- Ohio Phosphorus Task Force Report
- HAB closes Grand Lake St. Marys beaches

2013

- Ohio Farm Bureau Federation Healthy Waters Initiative
- Ohio Nutrient Reduction Strategy
- Ohio Phosphorus Task Force Report II

Lead Up To H2Ohio

2015

Additions to Ohio's Nutrient Reduction Strategy

2019

- Gov. DeWine pushes water quality as a top priority and supports long-term funding
- July 2019 H2Ohio established in state biennium budget

2020

- First sign-up for H2Ohio for agricultural practices.
- Ohio Agricultural Conservation Initiative

The Ohio Agriculture Conservation Initiative (OACI) is an unprecedented partnership between agriculture, conservation, environmental, and research communities to recognize farmers for their dedication to utilize established methods to improve water quality in Ohio and to increase the number of best management practices being implemented on farms.

- Create a universally recognized farmer certification program, with a pilot program beginning in early 2020, that will help increase adoption of best management practices and recognize farmers who demonstrate a commitment to continuous improvement.
- Create a confidential farm practices
 assessment that will benchmark best
 management practices adoption and track
 progress toward our goals

Available Cash for the State Fiscal Biennium 2020-2021 (SFB: July 1, 2019 – June 30, 2021)

ODA: \$30.3 million

Agricultural best management practices for water quality

ODNR: \$46.2 million

Support, maintain and create wetlands throughout the state

Ohio EPA: \$8.675 million

Support watershed planning, scientific research and data collection, infrastructure improvements addressing lead, and technology R&D

H2Ohio used science and economics to identify 10 practices that achieve 40% phosphorus reduction

100+

of phosphorus reduction practices based on agronomic & scientific research 30+

Management practices chosen for impact potential based research, interviews, & quantitative modeling

10

Best management practices that will play a major role in reducing phosphorus runoff by 40%

H2Ohio Phosphorus Reduction Best Practices

- Soil testing
 Variable-rate fertilization
 Subsurface nutrient application
 - **4** Manure incorporation
 - **5** Conservation crop rotation

6 Cover crops
7 Drainage water management
8 Two-stage ditch construction
9 Edge-of-field buffers
10 Wetlands

A REPORT OF A DESCRIPTION OF A DESCRIPTI

Ten Cost Effective Practices

Voluntary Nutrient Management Planning:

Nutrient management plans give farmers information on where to place fetilizer, when, and how much.

Variable-rate fertilization: Applying specific fertilizer levels based on the need of each sub-acre to reduce fertilizer application without risk of losing vield.

Subsurface nutrient application:

Applying specific fertilizer below the surface to reduce nutrient loss.

Manure incorporation: Mixing manure into the soil to keep it in place and minimize nutrient loss.

Conservation crop rotation:

Planting certain crops that reduce erosion and enrich the soil thus reducing runoff and sediment delivery.

Cover crops:

When planted after the main harvest, cover crops reduce erosion, hold nutrients in the soil, and improve soil health.

Drainage water management:

Slowing down runoff to give phosphorus more time to settle back in the soil.

Two-stage ditch construction: Creating modified drainage ditches to slow water flow and allow the phosphorus to settle.

Edge-of-field buffers:

When trees, shrubs or strips of grass are planted along farm fields in the right place, the plants hold on to phosphorus and prevent its release into the water.

Wetlands:

Wetland vegetation and soils absorb phosphorus, slow down the movement of water, offer a natural filtering process, and allow phosphorus to settle.
Goals for agricultural best practices: significantly increasing adoption rates of the highest priority practices can help meet reduction targets

Staged launch: H2Ohio at ODA will start in Maumee before expanding to the rest of Ohio

2020: Maumee sub-basin

2021: Western Lake Erie Basin

14 counties

22 counties

H2Ohio Cropland Practice Goals

Phosphorus Placement 280,000 Acres

> Variable Rate Application 450,000 Acres

VNMP Development & Implementation 1,000,000 Acres

H2Ohio Statewide Projects

Lake Erie Basin Projects

- 1 Cullen Park Wetland Restoration
- 2 Grassy Island Flow-through Wetland Restoration
- 3 Maumee Bay State Park Wetland Reconnection
- 4 South Shore Wetland Reconnection Projects
- 5 Muddy Creek Bay Wetland Restoration
- 7 Inner Bay Shoals & Islands Restoration
- 9 Inner Bay Coastal Wetlands Restoration
- 10 St. Joseph Confluence Wetland Reconnection
- 11 St. Joseph River Restoration Project
- 13 Oak Openings Preserve Wetland Restoration
- 15 Little Portage Nutrient Reduction & Coastal Wetland Restoration
- 16 Redhorse Bend Preserve Wetland Restoration
- 17 Forder Bridge Floodplain Reconnection
- 20 Oakwoods Nature Preserve Wetland Restoration Project
- 21 Oakwoods Nature Preserve Wetland Restoration Project
- 22 Fruth Outdoor Center Wetland Restoration
- 23 Andreoff Wetland Restoration
- 24 Sandusky River Headwaters Preserve Wetland & Habitat Restoration
- 25 Van Order Wetland & Forest Restoration
- 26 Navarre March Wetland Restoration & Reconnection

Ohio River Basin Projects

- A Burntwood-Langenkamp Wetland Conservation Area
- B Brooks Park Wetland Creation & Water Quality Initiative
- D East Fork Lake Nutrient Reduction & Wetland Initiative

- Coastal Projects

- WLEB and Other Statewide Projects

Ohio Department of Natural Resources

Providing Clean and Safe Water to Ohio

Wetland Creation, Restoration, and Enhancement

ODNR H2Ohio Prioritized wetland projects based on:

1) Priority location: Highest nutrient contributing watersheds first (Maumee River and Western Lake Erie Basin watersheds)

2) Those that receive drainage and may treat a large area of agricultural landscape,

3) Those having sizable wetland pool area relative to the contributing watershed, and

4) Those offer additional benefits, such as ease of design-build execution or assured long-term support from project partners.

Ohio Environmental Protection Agency

Providing Clean and Safe Water to Ohio

\$4,210,000

For seven critical water and sewer projects

four drinking water projects in Columbiana, Coshocton, Noble, and Pike counties serving more than 4,000 people in rural Ohio.

three wastewater projects in Miami, Meigs, and Williams counties serving 600 people and 250 homes.

lead service lines to be replaced at daycares totalling \$725,000

\$1,750,000

Amount to go to seven local health districts for replacement of household sewage treatment systems

180 🚆

Home sewage treatment systems to be replaced

installing an additional 20 rain gages to improve weather forecasting and rainfall estimates in northwest Ohio.

Ohio has nearly one million homes served by household sewage treatment systems.

H2Ohio funds will repair and replace failing systems which contribute to poor water quality in Lake Erie.

The health departments in Erie, Ottawa, Paulding, Putnam, Sandusky, Williams, and Wood counties are receiving funds to repair or replace an estimated 180 systems.

First Year Investments

After the first year, the H2Ohio Initiative has invested \$66,740,000 throughout Ohio on nutrient reduction, wetlands restoration, infrastructure construction, monitoring, and water technology. Increasing Nonpoint Implementation Strategies to the Ohio River Basin

Increasing Nonpoint Implementation Strategies to the Ohio River Basin

Black Creek Example

Table 13: Estimated Nutrient Loading Reductions from Each Objective

Objective Number	Best Management Practice	Total Acreage Treated	Estimated Annual Phosphorus Load Reduction (lbs)	Estimated Spring Phosphorus Load Reduction (lbs)
1	Grassed Waterways ^a	1,100	440	280
2	Drainage Water Management Structures and Saturated Buffers	500	250	160
3	Nutrient Management (Planning and Implementation) ^b	10,000	6,000	3,900
4	Wetlands ^c	3,750 ^d	1,970	1,280
5	Cover Crops	8,600	1,200	780
	TOTAL	24,350*	9,860	6,400

2 Critical Area Overview

(Source Model: Spreadsheet Tool for Estimating Pollutant Loads (STEPL), Version 4.4, (USEPA, 2019))

JOHN MATHEWS, MANAGER NONPOINT SOURCE PROGRAM OHIO EPA – DIVISION OF SURFACE WATER John.Mathews@epa.ohio.gov 614-265-6685