

AERIAL ASSESSMENT REPORT FOR SALT FORK OF THE VERMILLION RIVER

CHAMPAIGN AND VERMILLION COUNTIES AUGUST 2005 PREPARED BY WAYNE KINNEY, FOR IL. DEPARTMENT OF AGRICULTURE The Illinois Environmental Protection Agency has identified the Salt Fork Vermillion River Watershed as an impaired water. Many of the 303(d) listings for this watershed are for parameters without numeric water quality standards and therefore TMDLs will not be developed for those parameters. The only impairment with sufficient data to allow for TMDL development in the Salt Fork Vermillion River are Nitrates.

Figure 1 Watershed Area of Salt Fork Vermillion River

Assessment Procedure

Low level geo-referenced video was taken of the Salt Fork of the Vermillion River in March, 2004. Video taping was completed by Fostaire Helicopters, Sauget, IL, using a camera mounted beneath a helicopter to record data from just above tree top level in DVD format for further evaluation and assessment. Video mapping began at the I-74 bridge over the Vermillion River near Batestown and progressed upstream to approx. 2.5 miles above the I-74 bridge over the Salt Fork near St. Joseph, Illinois. Aerial video of tributaries was not part of the project, regardless of the stream size or vegetation. After videotaping the stream, the DVD tapes were processed by USGS to produce a georeferenced DVD showing flight data and location. Next, USGS identified features from the video and created shapefiles containing the GPS location, type of feature identified, and the time on the DVD to allow cross referencing. The shape-files along with the DVD were then used to identify and locate the points where ground investigations were needed to verify aerial assessment assumptions and gather additional data.

The ground investigations or "ground truthing" is intended to accomplish two primary functions. First, it provides those viewing videos the opportunity to verify the correct interpretation of the video. Second, the video allows the user to identify and gather field data at the most appropriate locations to more closely represent the entire study portion of the stream.

Figure 2 Channel Profile of Salt Fork Vermillion River

Detailed elevation data is not available; therefore the channel slope is calculated from USGS topo maps by measuring the channel length between contour lines. The report refers to this as "valley profile" although a true valley profile would use a straight line distance down the floodplain rather than channel length. However, this method is used because it incorporates sinuosity into the calculation and allows the channel slope to be assume equal to "valley slope" in order to estimate channel capacity, velocity, etc., although there are short segments where the channel slope may differ significantly near roads, logjams, knickpoints, etc.

Figure 3 Study Reach with Chapter Divisions

Figure 4. Profile Salt Fork with Approximate Chapter Divisions

The DVD has been divided in "chapters" of approximately five minutes of video (Fig. 3) to enhance the ability to navigate within the flight video and provide a simple way to identify and discuss different stream segments. Although the report will begin with a broader more general assessment of the entire study reach, it will also provide an assessment and treatment recommendations by chapter. The chapter divisions are clearly arbitrary and do not reflect "change points" in the stream characteristics or treatment recommendations. For clarity the conclusions and recommendations are presented for each stream "chapter".

The major factors indicating channel condition identified from the aerial assessment have been totaled by DVD chapter in Table 1 below. This tabulation allows a general comparison of the relative dominance of features found in each chapter and provides a means of comparing stream characteristic between chapters. A discussion of the major differences will follow later in this report.

	FEATURE	S IDENTIFI	ED BY CH	APTERSA	LT FORK VE	RMILLION	IRIVER
Chapter	Log Jam	Erosion	Severe Erosion	Geotech Failure	Breakpoint	Bank Control	Deposition
1	0	27	0	5	0	2	2
2	0	11	0	10	5	0	4
3	0	14	0	1	1	1	4
4	0	25	2	1	4	0	3
5	1	16	1	4	4	3	1
6	1	18	0	6	2	0	1
7	2	25	0	3	1	0	1
8	1	15	0	5	0	0	2
9	2	23	0	11	0	0	0
10	1	32	0	2	0	0	1
11	0	15	0	0	0	1	6
Totals	8	221	3	48	17	7	25

Table 1. Features by Chapter identified by Aerial Assessment

Six cross sections were taken at selected locations on Salt Fork after viewing the DVD's. The cross sections are located at "riffle" locations to best represent the channel characteristics and to allow for comparison of width, depth, x-sec. area, etc. along the channel at similar geometric locations. The result of the hydraulic analysis at each site is presented in summary form in Table 2 and the approximate location of each cross section along the channel profile is found in Fig. 5. Aerial views of cross sections locations are shown in Figs. 10 thru 21. Exact locations as Eastings and Northings and more detail can be found in Appendix A

Profile Salt Fork--Approximate Cross Section Locations

Figure 5 Cross section locations along channel profile (approximate)

		CROS	SS SECT	TION SL	JMMAR	YSALT	FORK	VERMI	LLION RIVE	R						
	Valley			BKF	BKF					Vel.	BKF cfs/	BKF	Top Bk	Top Bk/	Top Bk.	Top Bk. D/
X-sec	Slope	ADA	Q2 cfs	Depth	Width	BKF cfs	W/D	Max D	BKF/sq.mi.	FPS	Q2 cfs	X- Area	X- Area	BKF area	Depth	Max D
1	5.5	134	2507	8.17	70	1364	8.57	9.4	10.18	2.4	0.54	572	762	1.33	11.6	1.23
2	5.5	237	3939	9.72	100	2630	10.29	10.5	11.08	2.7	0.67	972	1168	1.20	12.3	1.17
3	2.8	312	3404	7.83	85	1572	10.86	9.1	4.92	2.4	0.46	665	665	1.00	9.1	1.00
4	2.5	369	3436	5.57	111	1940	19.93	7	5.26	3.1	0.56	619	700	1.13	7.7	1.10
5	2.6	457	4143	5.82	134	2541	23.02	7.5	5.56	3.3	0.61	780	1102	1.41	9.8	1.31
6	2.6	473	4258	5.76	141	2614	24.48	7	5.52	3.2	0.61	813	1383	1.70	8.3	1.19

Table 2 Cross Section Summary

A plot of the discharge probability curve from USGS Gage # 3336900 over the last 24 yrs. of continuous record (1967-1991) in Fig. 6 indicates the 2 yr. discharge (50% probability) at approx. 2125 cfs and the 1.5 yr. discharge (67% probability) at approx. 1975 cfs. The drainage area at Gage # 3336900 near St. Joseph is 134 sq. miles; therefore the discharge per sq. mile is 15.9 and 14.7 cfs per sq. mile respectively for the 2 yr. and the 1.5 yr. R.I. discharge. The field determined "bankfull" discharge in the study area ranges from 11.08 to 5.04 cfs/sq. mile. Referring to the gage data this discharge represents a Return Interval (R.I.) of approx. 1.1 yrs at cross sections 1 and 2 near the gage site and a R.I. of less than 1.0 at cross sections 3 thru 6 downstream. While it is expected that the cfs/sq. mile discharge would decrease as the drainage area increases, at first glance this appears to be a rather dramatic and sudden decrease between x-sec 2 and x-sec 3. It should be noted however that the 5.04 cfs/sq. mi. discharge at the field determined bankfull conditions found at x-sec 3 are actually at the top bank elevation and therefore, by definition, cannot be any higher. Additional support for the lower R.I. discharge is found at X-sec. 4, 5 and 6 where the bankfull indicators all yield a discharge per sq. mi. between 5.2 and 5.6 cfs.

Figure 5. Annual Maximum Peak Discharge Probability at St. Joseph Gage (1968-1991)

The proposed reason for this change in R.I. discharge is related more to the channel modifications made at X-sec. 1 and 2 during channelization and building of levees that prevent out-of-bank flow at low R.I. rather than dramatic changes in watershed discharge. Even at the field determined discharge rate of 10-11 cfs/sq. mile at cross sections 1 and 2 the top bank (floodplain elevation) is approx. 2 ft. above the field determined bankfull elevation. The data suggests that the channel has been enlarged in the channelized section to increase its capacity and improve drainage of the upper Salt Fork so that the capacity per sq. mile of drainage is more than twice that of the natural channel at X-sec 3.

Fig. 6 Capacity at Top Bank Compared to Geomorphic Bankfull Capacity

Another analysis of the Annual Maximum Peak Discharges recorded at Gage # 03336900 indicates that there is no trend toward increased runoff in this watershed between 1959 and 1991 when the gage was discontinued. In fact the data indicates a very slight decrease of 2% in maximum annual peaks over this period.

Figure 7. Trendline for Maximum Annual Peak Discharges from 1959 thru 1991

General Observations

- 1. Aerial assessment indicates streambank erosion is generally occurring throughout the study reach with no obvious reaches of concentrated or severe erosion that may indicate a need for special attention.
- 2. There is no apparent increase in watershed runoff from available Annual maximum Peak Discharge data. (1959-1991).
- 3. The upper portion of the study area has been highly modified and has a much larger capacity per unit of drainage area than the middle section between Homer and the confluence of Feather Creek.
- 4. There is a 25 plus mile reach of Salt Fork, from approx. 2.5 miles above St. Joseph down to near the Champaign County line, with approx. 50% or less of the gradient found in the upper 20 miles or the lower 20 miles of the watershed.
- 5. The lower 20 plus miles of the Salt Fork are dominated by a rocky substrate and are generally thought to be vertically stable.
- 6. The steeper gradient reach in the upper end of Salt Fork was not a part of the study reach flown for aerial assessment; therefore no information is presented regarding the vertical or lateral stability above the USGS Gage # 03336900.
- 7. Preliminary calculations indicate that riffle-pool sequences with heights of up to 5 ft. in the low gradient section around St. Joseph would produce no net increase in the flood stage or backwater. Installation of riffle-pool sequences could have a beneficial impact on nitrates, improved DO, increased bank stability and

improved aquatic habitat. A more thorough study would need to be completed to determine the impact on tile outlets and other drainage structures.

8. A more thorough study of the impacts of a riffle-pool sequence near St.Joseph could also determine if there is a positive impact on sediment transport in this reach due to creation of a riffle pool sequence which could reduce potential flooding and maintenance cost.

Recommendations

Chapter 1 through 5

These chapters are located from the beginning of the flight at the I-74 bridge up to about 2 or 3 miles below the Vermillion-Champaign County line. Although this reach has a steeper gradient than the reach above at 3.9 ft/mile, a rocky substrate provides vertical stability. As a result of the vertical stability, cross sections 4, 5 and 6 in this reach have been determined to be near equilibrium with Channel Evolution Stages of 5 or 6. The width depth ratios found at each x-sec are from 20 to 25 with bedload materials of 3 to 4 inch diameter. There is at least a narrow mature woody riparian corridor on nearly all of this reach. Where the riparian area is only one row of trees or less the threat of accelerated erosion rates are high. An example is found at 23:18 and 23:22 on the DVD and Fig.8 and Fig. 9 show the increased erosion and scalloping of the banks. These areas are recommended for additional riparian establishment.

Given these findings the only structural treatment recommended would be to stabilize the eroding bends with the use of Stone Toe Protection, Stream Barbs or Bendway Weirs. The selection of the most appropriate technique would be determined on a case by case basis to include a cost analysis.

There are 114 identified erosion sites in these six chapters, excluding the 27 areas of geotechnical failure. For this report the geotechnical failures are assumed to be cost prohibitive to treat successfully. The 114 sites deemed to be economically and technically treatable will average 500 ft. each in length. A summary of treatment length and cost by chapter is provided in Table 3.

	TREATMENTCHAPTERS 1 THRU 5											
Chapter	Erosion Average Total Average Total Sites Length Length Cost/foot Cost											
1	27	500	13500	\$30.00	\$405,000.00							
2	11	500	5500	\$30.00	\$165,000.00							
3	14	500	7000	\$30.00	\$210,000.00							
4	27	500	13500	\$30.00	\$405,000.00							
5	17	500	8500	\$30.00	\$255,000.00							
Total	96		48000		\$1,440,000.00							

Table 3

Fig. 8 DVD 23:18---Scalloped bank between mature trees

Fig. 9 Erosion where there is no riparian corridor (DVD 23:22)

Fig. 10 Chapter 1 Salt Fork

Fig.11 Chapter 2 Salt Fork

Fig. 12 Chapter 3 Salt Fork

Fig. 13 Chapter 4 Salt Fork

Fig. 14 Chapter 5 Salt Fork

Chapter 6 through 9

This reach represents the lower 60% of the flattest gradient section on Salt Fork and is approximately 16 miles in length. The gradient in this reach is approximately 1.5 ft/mile compared to 3.9 ft/mile downstream and from 3 ft. to 16 ft/mile upstream. Cross section 3, located in the lower half of this reach, shows a change in stream characters from the downstream reach. The width depth ratio drops from 20 to 11 at this site and the bedload is smaller at 2 inches in diameter with no residual rocky substrate. The field determined bankfull discharge is also located at the top bank elevation and is down slightly to 4.92 cfs/sq. mile from 5.26 cfs/sq. mile at x-sec 4. However the top bank height has increased 1.4 ft. and continues to increase in height upstream from this point. At DVD times 34:32 there are the remnants of a large logiam. (Fig. 15) The logiam is indicative of failing banks creating an abundance of trees entering the channel and forming logiams. There are a total of 6 logiams identified in this reach. In this section particularly, logiams can create major problems as any blockage will tend to impede flow, increase out of bank flow and encourage the channel to scour around the blockage. At DVD time 35:58 and 37:06 there are channel cutoffs developing that do not appear to be the result of logiams. These cutoffs are near sharp bends and probably represent the natural process of channel adjustment to watershed conditions. One possible explanation for this is the reduction in gradient in this section and the fact that this reach has not been extensively channelized as it has been above this point. It is therefore possible that the channel is naturally adjusting to the relative loss of sediment transport capacity and is therefore aggrading. As the channel aggrades it loses even more gradient and then begins to form "cutoffs" in order to shorten its length and increase its gradient and therefore its sediment transport capacity. This appears to be a situation where the cutoffs should be allowed to continue developing.

Fig. 15 Remnants of a large logjam (DVD 34:32)

It may be worth investigating the sediment (silt/sand/gravel) accumulations in this reach to determine if aggradation is occurring. If so, channel modification or structural means to narrow the channel may be recommended to gradually increase sediment transport in this reach. It appears that the lower reach (chapters 1 through 5) will easily transport any additional sediment transported from upstream, eliminating the normal concern of "moving the problem" from one reach to the next.

The first logical step is to reduce the amount of sediment required for transport by stabilizing the banks in this reach and upstream to reduce sediment generation. The recommended method for this reach is Stone Toe Protection with possible use of Bendway Weirs and or Stream Barbs in selected location after a more thorough study of sediment transport.

This reach has 81 erosion sites that can be successfully treated with the recommended methods. Each site is again estimated to be an average of 500 ft. in length and the cost per foot is estimated at \$30.00. Table 4 shows a summary of treatment needs and cost.

	IREATMENTCHAFTERS 6 THRU 9												
	Erosion	Average	Total	Average	Total								
Chapter	Sites	Length	Length	Cost/foot	Cost								
6	18	500	9000	\$30.00	\$270,000.00								
7	25	500	12500	\$30.00	\$375,000.00								
8	15	500	7500	\$30.00	\$225,000.00								
9	23	500	11500	\$30.00	\$345,000.00								
Total	81		40500		\$1,215,000.00								

Table 4

Fig. 16 Chapter 6 Salt Fork

Fig. 17 Chapter 7 Salt Fork

Fig. 18 Chapter 8 Salt Fork

Fig. 19 Chapter 9 Salt Fork

Chapter 10 and 11

This reach represents the upper 12 miles of the aerial assessment and the upper 40% of the flat (1.5 ft/mile) section of Salt Fork. This reach has been extensively channelized and cross sections 1 and 2 show a channel capacity of approximately 10 to 11 cfs/sq. mile of drainage at field determined bankfull as compared to 5 to 6 cfs/sq. mile in chapters 1 thru 9. The top bank is still approximately 2 ft. above the field determined bankfull and represents 20 to 30 percent additional area before out of bank flow occurs. The bedload in

this reach is less than 1 inch in diameter (silt and sand). There are still significant bank erosion areas with 47 identified sites in this reach that contribute sediment to the downstream reaches. To reduce sediment contributions these sites should be stabilized.

As stated in the general observations, a preliminary analysis of this reach near St. Joseph indicates that due to the low gradient, a riffle-pool sequence could be installed with riffle height up to 5 ft. in height with no increase in backwater or out of bank flow. This could be significant, both in terms of reducing sediment and increasing sediment transport capacity through this flat gradient reach, as well as for aquatic habitat improvement.

The recommended treatment for this reach is then to explore the feasibility of creating a riff-pool sequence in this 12 mile reach. The bankfull width is from 70 to 100 ft. therefore the appropriate riffle spacing would be from 420 to 600 ft. For a preliminary estimate an average of 500 ft. will be assumed at an average height of 3 ft. These are very preliminary figures and a complete channel profile and determination of impact on drainage structures would be needed as well as confirmation of the backwater and out of bank flow predictions prior to proceeding with a design recommendation. However, for planning purposes, the assumptions made by this report would indicate the following treatment needs and cost estimates.

	TREATMENTCHAPTERS 10 and 11 (option 1)										
Number Average Total Average Total											
Chapter	Riffles	Tons Stone	Tons Stone	Cost/ton	Cost						
10	60	850	51,000	\$30.00	\$1,530,000.00						
11	60	1200	72,000	\$30.00	\$2,160,000.00						
Total	120	1025	123000		\$3,690,000.00						

Table 5

An alternative means of controlling bank erosion would be to use Stone Toe Protection or Stream Barbs in the eroding sections. This option would be less expensive, but would sacrifice the added benefits of aquatic habitat and sediment transport, at least in the early life of the project, although over time the channel near the Stone Toe Protection will likely deepen and narrow creating improved habitat and sediment transport provided the channel is not artificially widened during maintenance operations.

	TREATMENTCHAPTERS 10 and 11 (option 2)											
	Erosion Average Total Average Total											
Chapter	Sites	Length	Length	Cost/foot	Cost							
10	18	800	14400	\$30.00	\$432,000.00							
11	25	800	20,000	\$30.00	\$600,000.00							
Total	43		34400		\$1,032,000.00							

Table 6

Fig. 20 Chapter 10 Salt Fork

Fig. 21 Chapter 11 Salt Fork

APPENDIX A

CROSS SECTION DATA

Stream St	abilizati	on I & E	Form		ILLING	DIS NRCS - Vers	ion 2.05- modified 9,	/12/04 R.Book	
County	Champaign	•	Т	-	R.		Sec		
Date	8/29	/2005		Ву	Wayne Kinr	ney			
Stream Name	_	Salt Fork			_	UTM Coord		E412026	N4445019
Landowner Nam	е	X-Sec 1			-				
Drainage Area		134	sq. mi.				Clear Cells		
Regional Curve	Predictions	:							
Bankfull dimensi	ons	Width Depth	10 6.	1 ft. <mark>2</mark> ft.	Cross Section	onal Area	623	<mark>3</mark> sq. ft.	
Reference Strea	m Gage:								
Salt Fork near St.	loseph			-	Station No. Drainage Area	03336900 134 sq mi	F	Gage Q ₂	2490 cfs 2740 cfs
Champaign Cou	nty,	IL			Dramago / roa	REFERENC	E STREAM DAT		2140 013
USCS Flood Do	ak Diaabar	no Dradiatio							
Valley Slope:	5.5	ft./mi. (use	r-entered)				Reg	ression Q ₂	2759 cfs
		ft/mi (from	worksheet)	Rainf	all 3.00 in	(2 yr, 24 hr)	A	djusted Q2	2507 cfs
	0.0010	ft./ft.	Re	gional Fact	tor 1.057		Typical Rai	nge for Ban	(full Discharge:
		_						1000	to 2010 cfs
Local Stream Me	orphology:								
Channel De	escription:	(c) Clean, v	winding, some	pools and sho	als			•	
Mannings II	0.04	_		Stream L	ength		ft.		
Basic Field Data:				Valley Le	ngth		ft.		
Bankfull Width		70	ft.	Contour I	nterval		feet 🔻		
Width/Depth Rat	tio	8.17	π.	Estimated	a Sinuosity		_		
				Channel Sl	ope:		Bankfull Q from	:	
Max. Bankfull De	epth	9.4	ft.	Surveye	ed: 0.000278	ft./ft.	Cross-Section	1285	cfs
Width at twice m	ax. depth	2000	ft.	Estimate	ed:	ft./ft.	Basic field data	a <u>1442</u>	cfs ofo
Entrenchment R	(io.oii.) atio	28.57		Radius of	Curvature (Rc)		ft.	1304	018
	ullo	20101		Rc	Bankfull width:	0.00			
_			_						
Bankfull Velocity	<u>Check:</u>	(typical Illin	iois streams	Velocity r	verage bankful equired to mov	l velocity betw e Doc:	veen 3 and 5 ft/s	ec.)	
Beuloau.	D ₅₀		in.	Velocity f	rom Cross-Sec	tion data:	2.1	ft /sec	
GOAL: Develop	confidence	by matching	ייי. ע	Velocity f	rom basic field	data:	2.52	ft./sec.	
velocities	from differe	ent sources.	,	Velocity f	rom selected C):	2.4	ft./sec.	
Channel Evolution	on Stage		•	Stream	Type (Rosgen)		L		
Notes									
Deel-full die die s	- 40.40	-f- ('' -							
Dankruil dischar	ye = 10.18	us/sq. mile							

Natur	al Op	en Channel Flow
		back to I&E form
Project: Assisted by: Date:	X-sec 1 Wayne Kinney 8/29/2005	$Q \square \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ Clear Cells
Manning's n	0.000278	assuming uniform, steady flow
Flow Depth:	9.4	ft
Survey Data:		Trial Depth 2 Trial Depth 3
Rod (ft)	Distance (ft)	Channel Flow (Q): 1.284.7 cfs 1.779.6
3.5	-20.0	Channel Velocity: 2.2 ft/sec 2.3
4.8	-9.0	Cross-Sectional Area (A): 572.2 sq.ft. 761.6
5.8	-3.0	Hydraulic Radius (R): 6.9 ft 7.3
12.5	3.0	
13.1	4.0	-40.0 -20.0 0.0 20.0 40.0 60.0 80.0 100.0 Distance (ft)
14.7	10.0	
14.3	20.0	20
14.2	30.0	
14.3	40.0	4.0
15.10	50	
14.30	60	6.0
12.50	64	ε
6.80 5.70	70	
1.20	73	
0.5	86	
0.0	00	12.0
		10.0
		COMMENTS:
		4
		4
		4
		4
		4

Stream Sto	abilizati	on I & E	Form		ILLING	DIS NRCS - Vers	sion 2.05- modified 9,	/12/04 R.Book	
County	Champaign	•	-	Т.	R.		Sec		
Date	8/29	/2005		Ву	Wayne Kinr	ney	1		
Stream Name Landowner Name	e	Salt Fork X-sec 2				UTM Coord.		E410420	N4438345
Drainage Area		237.4	sq. mi.		_		Clear Cells		
Regional Curve I	Predictions.	÷							
Bankfull dimensi	ons	Width Depth	12 7	2 <mark>6</mark> ft. .3 ft.	Cross Section	onal Area	918	<mark>3</mark> sq. ft.	
Reference Stream	m Gage:								
Salt Fork near St. J	oseph			•	Station No.	03336900			2490 cfs
Champaign Cour	nty,	IL			Dialilaye Alea	REFERENC	E STREAM DAT		2740 CIS
USCS Flood Do	ak Diaahara	no Dradiation							
Valley Slope:	5.5	ft./mi. (use	r-entered)				Reç	ression Q ₂	4335 cfs
		ft/mi (from	worksheet)	Rainfa	all 3.00 in	(2 yr, 24 hr)	A	djusted Q ₂	3939 cfs
	0.0010	ft./ft.	R	egional Facto	or <u>1.057</u>		Typical Rai	nge for Ban	full Discharge:
		_						1570	to 3160 cfs
Local Stream Mo	orphology:								
Channel De Manning's "n"	scription:	(c) Clean, v	winding, some	pools and shoa	ls			•	
Manning 5 m	0.04	-		Stream Le	ength		ft.		
Basic Field Data:				Valley Ler	ngth		ft.		
Bankfull Width		100	ft.	Contour Ir	nterval		feet 💌		
Mean Bankfull D	epth	9.72	n.	Estimated	Sinuosity		_		
Width/Deptil Kat	10	10.23		Channel Slo	pe:		Bankfull Q from	:	
Max. Bankfull De	pth	10.5	ft.	Surveyed	d: 0.000278	ft./ft.	Cross-Section	2509	cfs
Width at twice m	ax. depth	1200	ft.	Estimated	d:	ft./ft.	Basic field data	a <u>2752</u>	cfs
Entropolymont B	(21.0 ft.)	12.00		Padius of (Curvoturo (Po)		Selected C	2630	cfs
Entrenchment Ra	allo	12.00		Radius of C	Bankfull width	0.00	n		
				100/1	Darikrair Watri.	0.00			
Bankfull Velocity	Check:	(typical Illin	nois streams	s will have av	verage bankful	l velocity betw	veen 3 and 5 ft/s	ec.)	
Bedload:	D ₉₀	1 💌	in.	velocity re	equired to mov	e D ₉₀ :	2.1	ft./sec.	
COAL Develop	D ₅₀	by motobing	in.	Velocity fr	om Cross-Sec	tion data:	2.58	ft./sec.	
Velocities	from differe	nt sources	J	Velocity fr	om selected C	uala.)·	2.03	ft /sec	
Channel Evolutio	on Stage	II –	•	Stream 1	Гуре (Rosgen)				
Notes									
Bankfull Discharg	ge = 11.08	cfs/sq. mile							

Natur	al Op	en Channel Flow	
		back to I&E fr	<u>orm</u>
Project: Assisted by: Date:	X-sec 2 Wayne Kinney 8/29/2005	$Q \Box \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	
Channel Slope (S): Manning's n : Flow Depth:	0.000278 0.040 10.5	ft/ft assuming uniform, steady flow	
Survey Data:		Trial Depth 2 Selected Flow Depth: 10.5 ft 12.3	Trial Depth 3 11.5
Rod (ft)	Distance (ft)	Channel Flow (Q): 2,509.3 cfs 3,050.7	2,916.8
1.5	-20.0	Channel Velocity: 2.6 ft/sec 2.6	2.7
1.8	-10.0	Cross-Sectional Area (A): 972.4 sq.ft. 1,168.2	1,079.0
3.3	-3.0	Hydraulic Radius (R): 8.5 ft 8.7	9.1
9.3	0.0		1.40.0
12.3	2.0	1-40.0 -20.0 0.0 20.0 40.0 60.0 80.0 100.0 120.0 Distance (ft)	140.0
14.2	5.0		
14.6	10.0		20
14.0	20.0		2.0
14.1	30.0		40
14.00	40	┃ 	# 1
14.20	50		6.0
14.30	60		£
14.40	70		8.0 U
14.80	80		11 B
14.50	90		10.0
12.3	95		
4.0	103		12.0
2.5	108		
2.5	118		14.0
			16.0
			10.0
		COMMENTS:	

Stream St	abilizati	ion I & E	Form		ILLIN	IOIS NRCS - Ver	sion 2.05- modified §	9/12/04 R.Book	
County	Champaign	•		т	F	٦.	Sec	c.	
Date	8/29	/2005		Ву	Wayne Kir	nney			
Stream Name		Salt Fork				UTM Coord	I.	E415591	N4434145
Landowner Nam	ne	Xsec3							
Drainage Area		311.57	sq. mi.				Clear Cells		
Regional Curve	Predictions	:							
Bankfull dimens	ions	Width Depth	14 7	40 ft. <mark>'.9</mark> ft.	Cross Sec	tional Area	110	<mark>4</mark> sq. ft.	
Reference Strea	am Gage:								
Salt Fork near Hor	ner			-	Station No	03338000		Gage Q ₂	3760 cfs
Champaign Cou	intv.	IL			Drainage Are	REFERENC	E STREAM DA	TA ONLY	4290 CTS
Valley Slope:	2.8	ge Prediction ft./mi. (use	ns: r-entered)				Re	gression Q ₂	3883 cfs
<u> </u>		ft/mi (from	worksheet)	Ra	infall 3.00 in	(2 yr, 24 hr)) .	Adjusted Q ₂	3404 cfs
	0.0005	ft./ft.	R	egional Fa	actor 1.057		Typical Ra	inge for Bank	full Discharge:
								1360	to 2730 cfs
Local Stream M	orphology:								
Channel De Manning's "n"	escription:	(c) Clean, v	winding, some	e pools and s	hoals			•	
	0.01	-		Stream	Length		ft.		
Basic Field Data:				Valley I	Length		ft.		
Bankfull Width	Donth	85	ft.	Contou	r Interval		feet		
Width/Depth Ra	tio	10.86	π.	LSuna	led Sindosity		_		
				Channel	Slope:		Bankfull Q from	ו:	
Max. Bankfull D	epth	9.1	ft.	Surve	eyed: 0.000284	ft./ft.	Cross-Sectio	n 1418	cfs ofo
width at twice m	(18.2 ft)		π.	Estima		π./π.	Selected (a <u>1649</u> 0 1572	cis cfs
Entrenchment R	atio	0.00		Radius	of Curvature (Re	c)	ft.	~	
				F	Rc/Bankfull widtl	h: 0.00			
Poplefull Valaait	Chook	(typical Illin	oio otroom	o will boy	avorago hankfi	ull valaaity bat	woon 2 and 5 ft/		
Bedload:	D ₉₀		in.	Velocit	y required to mo	we D ₉₀ :	2.9	ft./sec.	
	D ₅₀		in.	Velocit	y from Cross-Se	ection data:	2.13	ft./sec.	
GOAL: Develop	confidence	by matching	9	Velocit	y from basic fiel	d data:	2.48	ft./sec.	
velocities	s from differe	ent sources.		Velocit	y from selected	Q:	2.4	ft./sec.	
Channel Evoluti	on Stage	IV	·	Stream	m Type (Rosger	n)			
Notes									
5.04 cfs/sq. mi									
0.04 013/34. IIII.									

Stream St	abilizati	ion I & E F	orm	ILLINOIS NRC	S - Version 2.05-	modified 9/12/04 R.Book	
County	Vermilion	•	Т.	R.		Sec.	
Date	8/29	9/2005	Ву	Wayne Kinney			
Stream Name		Salt Fork		UTM	Coord.	E421884	N4436406
Landowner Nam	ne	Xsec4					
Drainage Area		<u>369.3</u> sq.	. mi.		Clear	Cells	
Regional Curve	Predictions	:					
Bankfull dimens	ions	Width Depth	149 ft. 8.3 ft.	Cross Sectional Ar	rea	<mark>1238</mark> sq. ft.	
Reference Strea	am Gage:						
Salt Fork near Hor	mer		-	Station No. 0333	38000	Gage Q ₂	3760 cfs
Champaign Cou	intv.	IL		REFE	RENCE STR	Regression	4290 cfs
USGS Flood-Pe	ak Discharg 2.5	ge Predictions: ft./mi. (user-er	ntered)			Regression Q ₂	3920 cfs
	210	ft/mi (from woi	rksheet) Rain	fall 2.95 in (2 yr.	24 hr)	Adjusted Q ₂	3436 cfs
	0.0005	ft./ft.	Regional Fac	etor 1.057	, T	pical Range for Ban	kfull Discharge:
						1370	to 2750 cfs
Local Stream M	orphology:						
Channel De	escription	(c) Clean, wind	ling, some pools and sho	pals		•	
Marining S TI	0.04	_	Stream I	ength	ft.		
Basic Field Data:			Valley Le	ength	ft.		
Bankfull Width		111 ft.	Contour	Interval	feet	-	
Mean Bankfull D	Depth	5.57 ft.	Estimate	d Sinuosity			
	lio	19.93	Channel S	lope.	Bankfi	III O from:	
Max. Bankfull D	epth	ft.	Survey	ed: 0.000739 ft./ft.	Cros	s-Section 1911	cfs
Width at twice m	nax. depth	ft.	Estimat	ed: ft./ft.	Basic	field data 1968	cfs
F . (0.00	Deliver		S .	elected Q 1940	cfs
	atio	0.00	Radius of	Curvature (Rc)	π.		
			IX.		.00		
Bankfull Velocity	/ Check:	(typical Illinois	streams will have a	average bankfull veloci	ity between 3	and 5 ft/sec.)	
Bedload:	D ₉₀	3 ▼ in.	Velocity	required to move D ₉₀ :		3.6 ft./sec.	
	D ₅₀	in.	Velocity	from Cross-Section da	ita:	3.09 ft./sec.	
GUAL: Develop	confidence	by matching	Velocity	from basic field data:		3.18 ft./sec.	
velocities	nom unen	ent sources.	Velocity			3.1 II./Sec.	
Channel Evoluti	on Stage	VI 💌	Stream	Type (Rosgen)			
Notes							
5 26 cfs/ca mi							
J.20 013/34. IIII.							

Natural Open Channel Flow					
		back to I&E form			
Project: Assisted by: Date:	Xsec4 Wayne Kinney 8/29/2005	$Q \Box \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ Clear Cells			
Channel Slope (S): Manning's n :	0.000739	ft/ft assuming uniform, steady flow			
Flow Depth:	7.0	Trial Depth 2 Trial Depth	3		
Survey Data:		Selected Flow Depth: 7.0 ft 7.7			
Rod (ft)	Distance (ft)	Channel Flow (Q): 1,910.9 <i>cts</i> 2,197.2			
7.8	0.0	Channel Velocity: <u>3.1 ft/sec</u> <u>3.1</u>			
8.2	10.0	Cross-Sectional Area (A): 618.6 sq.ft. 699.6			
9.6	15.0	Hydraulic Radius (\mathbf{R}). 5.4 ft 5.5			
13.9	26.0	0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0	٦		
14.0	30.0	Distance (ft)			
13.0	37.0				
14.2	<u> </u>	2.0			
15.0	65.0				
15.50	75				
15.30	85	6.0			
14.90	95	80 5	-		
14.50	105				
14.10	116				
13.20	120				
6.7	124				
6.6	135				
		16.0			
		18.0			
		COMMENTS:			
		4			

Stream St	abilizat	ion I & E Fo	orm	ILLINOIS NRC	S - Version 2.05-	modified 9/12/04 R.Book	ſ
County	Vermilion	•	т.	R.		Sec.	
Date	8/29	9/2005	Ву	Wayne Kinney			
Stream Name		Salt Fork		UTM	Coord.	E430681	N4438368
Landowner Nam	ne	Xsec5					
Drainage Area		456.9 sq.	mi.		Clear	Cells	
Regional Curve	Predictions	:					
Bankfull dimens	ions	Width Depth	162 ft. 8.8 ft.	Cross Sectional Ar	rea	<mark>1431</mark> sq. ft.	
Reference Strea	am Gage:						
Salt Fork near Hor	mer		-	Station No. 0333	38000	Gage Q ₂	3760 cfs
Champaign Cou	intv.	IL		REFE	SQ.MI RENCE STRE	Regression	4290 cfs
USGS Flood-Pe	eak Dischar	ge Predictions: ft./mi. (user-eni	tered)			Regression Q ₂	4727 cfs
	2.0	ft/mi (from work	ksheet) Rain	fall 2.95 in (2 yr.	24 hr)	Adjusted Q ₂	4143 cfs
	0.0005	ft./ft.	Regional Fac	ctor 1.057	́Ту	pical Range for Ban	kfull Discharge:
						1650	to 3320 cfs
Local Stream M	orphology:						
Channel De	escription	(c) Clean, windir	ng, some pools and sho	pals		-	
Manning's "n"	0.04		0100000		0		ļ
Basic Field Data:			Valley Le	ength	ft.		
Bankfull Width		134 ft.	Contour	Interval	feet	-	
Mean Bankfull	Depth	5.82 ft.	Estimate	ed Sinuosity	1001		
Width/Depth Ra	itio	23.02					
			Channel S	lope:	Bankfu	II Q from:	
Max. Bankfull D	epth	tt.	Survey	ed: 0.000739 ft./ft.	<u>Cros</u>	s-Section 2526	CIS
width at twice h	nax. depth	π.	Estimat	ed:	Basic	1000000000000000000000000000000000000	cis
Entrenchment R	Ratio	0.00	Radius of	Curvature (Rc)	ft.		013
			Ro	c/Bankfull width: 0.	.00		
Bankfull Velocit	y Check:	(typical Illinois)	streams will have a	average bankfull veloci	ity between 3 a	and 5 ft/sec.)	
Deuload:	D ₉₀	3 ▼ <i>I</i> n.	Volcait	from Cross Sastian de	to:	5.0 IT./Sec.	
GOAL - Dovolor	confidance	In.	Velocity	from basic field date:	ata	11./SEC.	
velocities	s from differ	ent sources	Velocity	from selected Q.		3.3 ft /sec.	
Vereenties			Velocity			1./000.	
Channel Evoluti	<u>on Stage</u>	v 🔻	Stream	Type (Rosgen)			
Notes							
5.56 cts/sq. mi.							

Natural Open Channel Flow					
		back to I&E form			
Project: Assisted by: Date:	Xsec5 Wayne Kinney 8/29/2005	$Q \cong \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ Clear Cells			
Channel Slope (S): Manning's n :	0.000739	ft/ft assuming uniform, steady flow			
Flow Depth:	7.5		h 0		
Survey Data:		Selected Flow Depth: 7.5 ft 9.8	13		
Rod (ft)	Distance (ft)	Channel Flow (Q): 2,525.9 cfs 4,028.4			
5.3	0.0	Channel Velocity: 3.2 ft/sec 3.7			
5.5	10.0	Cross-Sectional Area (A): 779.8 sq.ft. 1,102.4			
7.4	18.0	$\begin{array}{ c c c c } \hline Hydraulic Radius (\textbf{R}): & 5.7 \ ft & 6.9 \\ \hline \end{array}$			
10.2	25.0				
13.0	31.0	Distance (ft)			
13.9	43.0				
14.7	60.0	2.0			
15.1	75.0				
15.0	85.0	4.0			
14.50	95				
13.60	120				
13.50	130	┫╵┝━┥ ╗_{┯┿╴┾}╶┾ ╸╞╴ <mark>╞┯╷╴┾╸╞╶┝╸╵╸╵┙</mark> ╶╶┿╸╎┼╴┤ _{╸╸} ┊	Ξļ		
13.30	139		20d		
9.50	147	10.0	"		
4.6	158				
4.2	162	12.0			
3.5	175				
		14.0			
		COMMENTS:			
		4			
		4			
		4			
		4			
		4			
		4			
		<u> </u>			

Stream St	abilizat	ion I & E F	orm	ILLINOIS NRCS - Ve	ersion 2.05- modified 9/12/04 R.	Book
County	Vermilion	•	Т.	R.	Sec.	
Date	8/29	9/2005	Ву	Wayne Kinney		
Stream Name		Salt Fork		UTM Coor	d. E4335	543 N4437281
Landowner Nan	ne	Xsec6		_		
Drainage Area		473.1 sq.	mi.		Clear Cells	
Regional Curve	Predictions	:				
Bankfull dimens	sions	Width Depth	164 ft. 8.9 ft.	Cross Sectional Area	<mark>1465</mark> sq. ft.	
Reference Strea	am Gaqe:					
Salt Fork poor Ho	mor		-	Station No. 03338000	Gage	Q ₂ 3760 cfs
Champaign Cou	untv	ш		Drainage Area 344 sq.m	Regress	ion (<u>4290 cfs</u>
Champaigh Coo	unty,	IL		KEFEKEN	CE STREAM DATA UNL	.1
USGS Flood-Pe	eak Dischar	ge Predictions:	(a		Pagrossion	
Valley Slope:	2.6	ft./mi. (user-er	itered)			Q ₂ 4859 cfs
	0.0005		Ksneet) Raini	all 2.95 in (2 yr, 24 hi	r) Aujusieu	Q2 4258 Cfs
	0.0005	n./n.	Regional Fac	lor <u>1.057</u>	Typical Range for	700 to 3410 cfs
Local Stream M	lorphology:					
Channel De	escription	(c) Clean, wind	ing, some pools and sho	als		•
Marining S 11	0.04	_	Stream I	enath	ft	
Basic Field Data:			Valley Le	ngth	ft.	
Bankfull Width		141 ft.	Contour	nterval	feet 🔻	
Mean Bankfull	Depth	5.76 ft.	Estimate	d Sinuosity		
Width/Depth Ra	atio	24.48				
Max Bankfull D	onth	<i>ft</i>	Channel SI	ope:	Bankfull Q from:	2 of s
Width at twice n	nax denth	ft.	Estimate	ed. 0.000739 IL./IL.	Basic field data 264	o cis
Width at twice in		/î.	Estimate		Selected Q 261	4 cfs
Entrenchment F	Ratio	0.00	Radius of	Curvature (Rc)	ft.	
			Rc	/Bankfull width: 0.00		
Deviation	Charles				turner 2 and 5 th (and)	
Bedload		typical Illinois	Velocity r	equired to move D ₉₀ :	4 2 ft /sec	•
_ 00.000	D ₅₀	in	Velocity f	rom Cross-Section data	3.18 ft /sec	
GOAL: Develop	confidence	by matching	Velocity f	rom basic field data:	3.26 ft./sec	
velocities	s from differ	ent sources.	Velocity f	rom selected Q:	3.2 ft./sec	2
Channel Evoluti	on Stage	V	Stream	Type (Rosgen)		
Notes						
5.52 cts/sq. mi.						

Natural Open Channel Flow					
		back to I&E f	<u>orm</u>		
Project: Assisted by: Date:	Xsec6 Wayne Kinney 8/29/2005	$Q \Box \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ Clear Cells			
Channel Slope (S): Manning's n : Flow Depth:	0.000739 0.040 7.0	ft/ft assuming uniform, steady flow			
Survey Data:	1.0	Trial Depth 2	Trial Depth 3		
Rod (ft)	Distance (ft)	Channel Flow (\mathbf{Q}): 2.583.3 cfs 5.922.9			
4.4	160.0	Channel Velocity: 3.2 ft/sec 4.3			
4.6	151.0	Cross-Sectional Area (A): 813.1 sa ft 1.382.8			
13.9	145.0	Hydraulic Radius (\mathbf{R}): 5.6 ft 8.7			
14.7	138.0				
15.7	128.0	0.0 50.0 100.0 150.0 Distance (ft)	200.0		
15.7	115.0		0.0		
15.8	100.0		20		
15.7	85.0				
15.5	75.0		4.0		
14.80	63		60		
13.90	50		0.0		
14.10	30		8.0 €		
14.80	22		, p		
14.50	21		10.0~		
11.60	17		12.0		
9.4	8				
4.9	0		14.0		
			16.0		
			18.0		
		COMMENTS:			
		4			
		4			
		4			
		4			