

AERIAL ASSESSMENT FOR MIDDLE FORK SHOAL CREEK MONTGOMERY COUNTY

SEPT. 2005 PREPARED BY WAYNE KINNEY FOR IL. DEPT. OF AGRICULTURE Limno-Tech, Inc. has developed a draft TMDL plan for two lakes in this watershed, Lake Glenn Shoals and Old Hillsboro Lake. Lake Glenn Shoals is located on the mainstem of the Middle Fork of Shoal Creek and has been identified as having impairment from phosphorus, total suspended solids and excess algae growth. Old Hillsboro Lake is impaired by the same pollutants with an additional impairment from manganese. Middle Fork of Shoal Creek is not included as an impaired waterbody, but does feed Lake Glenn Shoals.

Assessment Procedure

Low level geo-referenced video was taken of the Middle Fork Shoal Creek in March, 2004. Video taping was completed by Fostaire Helicopters, Sauget, IL, using a camera mounted beneath a helicopter to record data from just above tree top level in DVD format for further evaluation and assessment. Video mapping began at Road 950 East (Red Bridge Road) just below the confluence of Miller Creek and the Middle Fork of Shoal. The mapping progressed upstream to just above Road 2100N in Montgomery Co. Aerial video of tributaries was not part of the project, regardless of the stream size or vegetation.

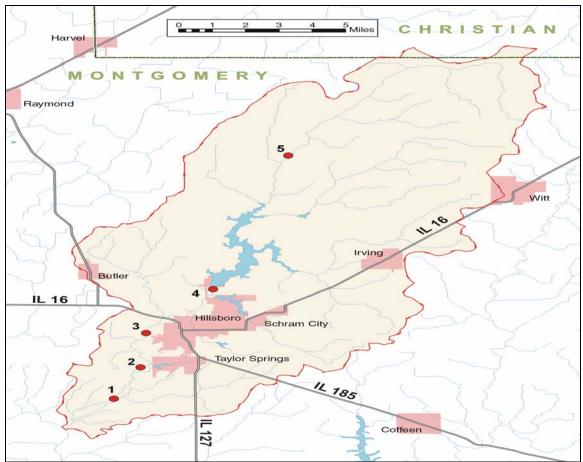


Fig. 1 Aerial Assessment Map of Middle Fork Shoal Creek

After videotaping the stream, the DVD tapes were processed by USGS to produce a georeferenced DVD showing flight data and location. Next, USGS identified features from the video and created shapefiles containing the GPS location, type of feature identified, and the time on the DVD to allow cross referencing. The shape-files along with the DVD were then used to identify and locate the points where ground investigations were needed to verify aerial assessment assumptions and gather additional data.

The ground investigations or "ground truthing" is intended to accomplish two primary functions. First, it provides those viewing videos the opportunity to verify the correct interpretation of the video. Second, the video allows the user to identify and gather field data at the most appropriate locations to more closely represent the entire study portion of the stream.

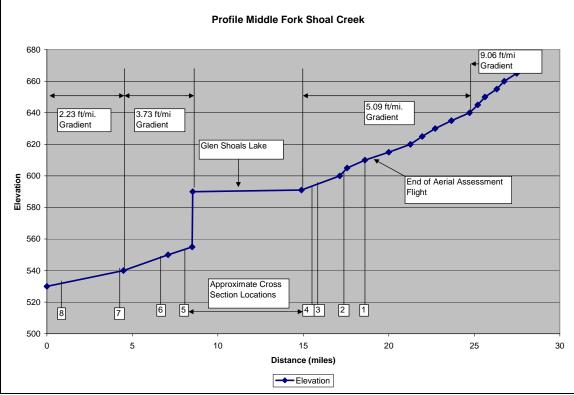


Figure 2 Channel Profile of Middle Fork Shoal Creek

Detailed elevation data is not available; therefore the channel slope is calculated from USGS topo maps by measuring the channel length between contour lines. The report refers to this as "valley profile" although a true valley profile would use a straight line distance down the floodplain rather than channel length. However, this method is used because it incorporates sinuosity into the calculation and allows the channel slope to be assume equal to "valley slope" in order to estimate channel capacity, velocity, etc., although there are short segments where the channel slope may differ significantly near roads, logjams, knickpoints, etc.

CHAPTERS ON DVD AND ASSESSMENT REPORT Middle Fork Shoal CreekMontgomery Co.									
DVD		Beginning	Report	Cross					
Disc	DVD chapter	Time	Chapter	Sections					
1	2	5:00	1	8					
1	3	10:00	2	7					
1	4	15:00	3	5,6					
1	5	20:00	4	3,4					
1	6	25:00	5	1,2					

Note: Flight path is from downstream to upstream

Fig. 3 DVD Chapters and Report Guide

The DVD has been divided into "chapters" of approximately five minutes of video (Fig. 3) to enhance the ability to navigate within the flight video and provide a simple way to identify and discuss different stream segments. Although the report will begin with a broader more general assessment of the entire study reach, it will also provide an assessment and treatment recommendations by chapter or group of chapters. The chapter divisions are clearly arbitrary and do not reflect "change points" in the stream characteristics or treatment recommendations. For clarity the conclusions and recommendations are presented for each stream "chapter".

The major factors indicating channel conditions identified from the aerial assessment have been totaled by DVD chapter in Table 1 below. This tabulation allows a general comparison of the relative dominance of features found in each chapter and provides a means of comparing stream characteristic between chapters. A discussion of the major differences will follow later in this report.

	FEATURES IDENTIFIED BY CHAPTER									
Middle Fork Shoal Creek										
GEOTECH BED BREAK SEVER										
CHAPTER	LOGJAM	FAILURE	DEPOSITION	CONTROL	POINT	EROSION	EROSION			
1	8	8	3	0	0	33	0			
2	2	8	4	0	0	36	2			
3	1	3	3	1	0	40	0			
4	4	0	4	0	1	28	0			
5	4	1	1	1	0	22	0			
Totals	19	20	15	2	1	159	2			

Table 1 Features by Chapter Identified with Aerial Assessment

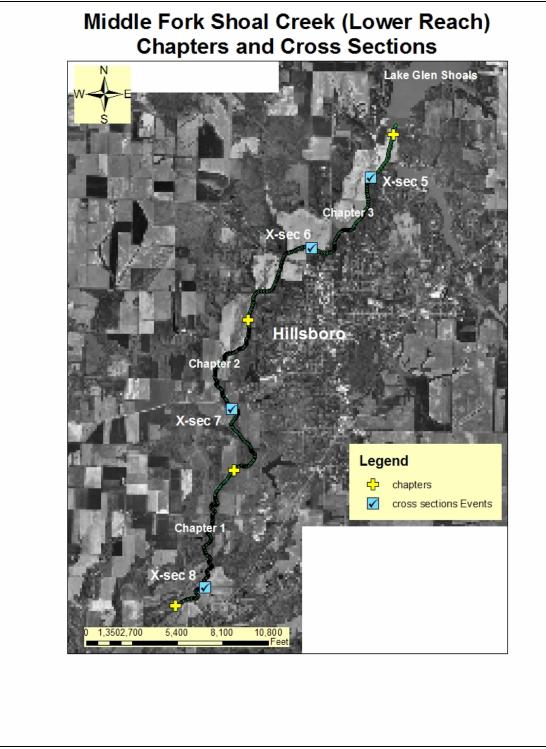


Fig. 4 Chapter Division and Cross Section locations (lower Middle Fork Shoal)

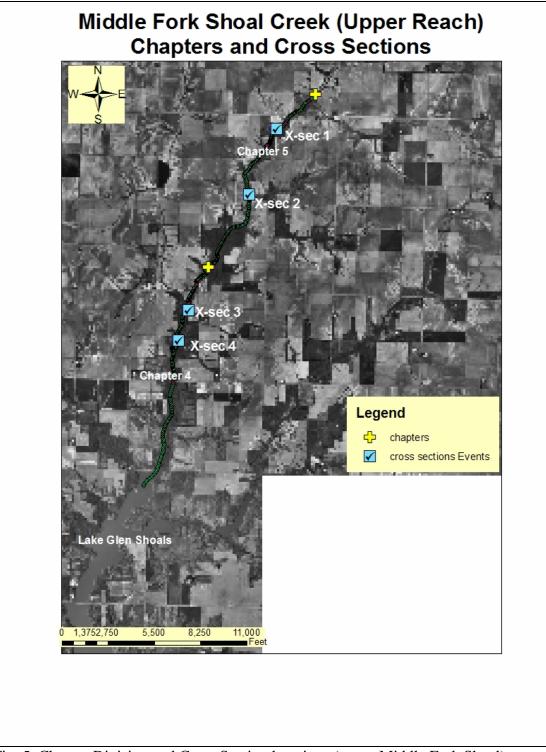


Fig. 5 Chapter Division and Cross Section locations (upper Middle Fork Shoal)

Eight cross sections were taken at selected locations on the Middle Fork of Shoal Creek after viewing the DVD's. The cross sections are located at "riffle" locations to best represent the channel characteristics and to allow for comparison of width, depth, x-sec.

area, etc. along the channel at similar geometric locations. The result of the hydraulic analysis at each site is presented in summary form in Table 2 and the approximate location of each cross section along the channel profile is found in Fig. 2. Aerial views of cross sections locations are shown in Figs. 17 thru 23. Exact locations as Eastings and Northings and more detail can be found in Appendix A.

	Cross Section DataMiddle Fork Shoal Creek													
	Montgomery County, Illinois													
				Valley		Bank	Width	Mean			Bedload		CFS/	BKF Q/
X-sec	Easting	Northing	ADA	Slope	Q2	Full Q	Ft.	Depth	W/D	Vel.	Dia.	CEM	sq. mi.	Q2
			Sq. Mi.	ft/mi.	cfs	cfs		Ft.	Ratio	fps	Inches	Simon		
1	290226	4353177	17.95	6.4	979	529	38	4.53	8.39	3.1	2	4	29.47	0.54
2	289725	4351989	18.33	5.8	949	537	34	4.91	6.92	3.2	1	4	29.3	0.57
3	288626	4349890	27.67	5.9	1325	792	40	5.64	7.09	3.5	1	5	28.62	0.60
4	288451	4349345	28.28	5.9	1348	714	43	5.07	8.48	3.3	1	5	25.64	0.53
5	285440	4339479	83.85	5.2	2993	1815	65	7.56	8.6	3.7	2	4	21.65	0.61
6	284365	4338197	88.75	5.2	3130	2098	64	8.45	7.57	3.9	1	4	23.64	0.67
7	282913	4335280	102.3	5.1	3468	1959	77	7.28	10.6	3.5	2	6	19.16	0.56
8	282435	4332047	105.8	5	3530	1282	57	8.19	6.96	2.7	1	3	12.11	0.36

Table 2 Cross Section Summary

USGS Gage#05593900 is located on the East Fork of Shoal Creek near Coffeen, IL. The drainage area at this location is 55.5 sq. miles. Given the similar size and location this gage has been used as a comparison for flow data as there is no data available for the Middle Fork. A plot of the probability for an Annual Maximum Peak Discharges from the East Fork has been produced from USGS data for the period 1981-2004. (Fig. 6) By applying a logarithmic trend line to the data the 2 yr. return interval annual maximum peak discharge is estimated at 2250 cfs or about 40.5 cfs/sq. mi. of drainage area. The 1.5 yr. return interval discharge is estimated at 1575 cfs or about 28.4 cfs/sq. mi. of drainage area.

These figures compare well with the field determined bankfull discharges ranging from 29.47 cfs/sq. mi. at cross section 1 down to 19.16 cfs/sq. mi. at cross section 7 which has a drainage area of 102.3 sq. miles or nearly twice that found at gage site on the East Fork of Shoal Creek. The discharge per sq. mi. of drainage can be expected to decrease as the watershed becomes larger, therefore it is reasonable to assume that the bankfull discharge for the Middle Fork of Shoal Creek is near or slightly below the 1.5 yr. return interval based on the East Fork data.

Cross Section 8 however has a significantly lower bankfull capacity and out of bank flow in this lower reach near Miller Creek and approx. 2.5 miles above the confluence with Shoal Creek will be much more frequent. Cross section 8 however is located in a definite "knickzone" where there is active degradation occurring which will result in a larger channel capacity as the channel degrades. The result will also be increased bank failures and logjams while the channel makes this adjustment.

While this aerial assessment did not include any segments downstream, there has been extensive channelization Shoal Creek and the downcutting found at Cross Section 8 may

be the result of degradation on Shoal Creek, caused by the channelization, progressing upstream to this reach of the Middle Fork.

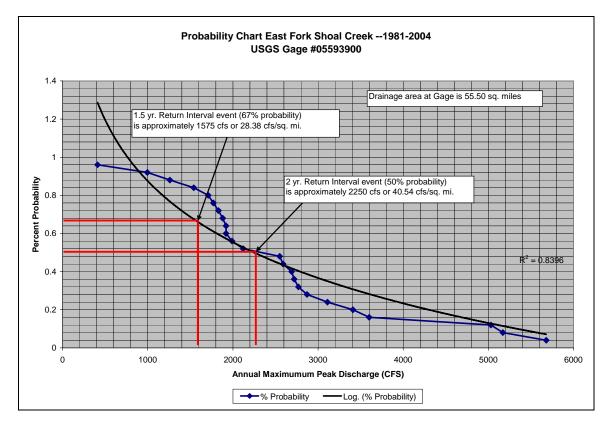


Fig. 6 Annual Maximum Peak Flow Probability Chart for East Fork Shoal Creek

General Observations

- 1. All cross sections taken on Middle Fork have at least a small floodplain area at or near the field determined "bankfull discharge".
- 2. "Bankfull discharge" appears to be near or slightly below the 1.5 yr. return interval storm using USGS gage 05593900 as a comparison.
- 3. The aerial assessment includes a reach above Lake Glen Shoals that potentially contribute to the impaired water and also a reach below Lake Glen Shoals where there is no identified impairment. The report will cover both reaches.
- 4. Cross sections 1-4 are above Lake Glen Shoals and 5-8 are below Lake Glen Shoals. The cross sections indicate degrading and/or widening of the channel at cross sections 1 and 2, Lake Glen Shoals backwater is preventing degradation at cross sections 3 and 4.
- 5. The principle spillway discharge on Lake Glen Shoals is rated at 2466cfs, according to NRCS design information, while the field determined bankfull discharge below the lake is only 1815 cfs. Therefore while the lake is a flood control structure and reduces peak floods, it has little or no effect on the "channel forming" discharge that determines the channel morphology downstream. The lake does however, extend the time the channel flows at capacity and the lake also

acts as a sediment trap that then releases "cleaner" and therefore more erosive flow.

- 6. The aerial assessment does not extend upstream much beyond Road 2100N due to the channel size. The aerial assessment ends where the channel is in CEM stage 4. It is likely that there is a stage 3 channel upstream that has not been assessed.
- 7. Cross section 8 is downcutting significantly and will advance upstream if left unattended.

Treatment Recommendations: Chapter 1

This chapter is degrading (CEM stage 3), possibly from degradation that has occurred downstream on Shoal Creek. There are 8 geotech failures in the lower portion of this chapter due to the degradation. The channel capacity in this reach is however, approximately 35% lower than that upstream in Chapter 2 where there is a CEM stage 6 channel. Therefore additional study is needed to determine if grade control is necessary, or if the channel is undersized and needs to be allowed to enlarge through degradation or mechanical means. No treatment recommendation can be made at this time pending further analysis.

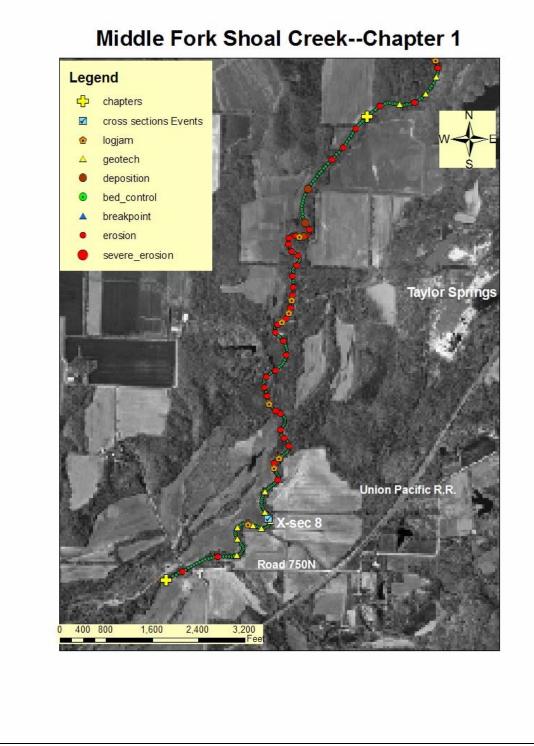


Fig. 7 Chapter1

Treatment Recommendations: Chapter 2 and 3

These chapters contain cross section 7 which is a CEM stage 6 channel and cross sections 5 and 6 which are CEM stage 4 channels. Although two cross sections are determined to be CEM stage 4 the channels are not incised with all cross sections being connected to a floodplain. Further the channels do not appear to be either degrading or aggrading in this reach. Rather the 76 erosion sites within this Chapter along with 11 geotech failures appear to be the result of lateral bank erosion and toe scour. This reach may in fact be reacting to the changes in flow regime as a result of the flood control function of Lake Glen Shoals. With the addition of flood storage within the lake there is a longer period of elevated flow within the channel that may be a significant factor in the lateral bank erosion.

The treatment recommendation for these chapters is to treat the lateral bank stability problems with Stone Toe Protection (STP) and/or Stream Barbs to control the toe scouring and subsequent bank failure. This treatment option has been used near cross section 5 in two separate locations. STP installed approximately 7 years ago can be viewed on the DVD at 18:58 and 19:13. (Fig. 8 and 9) Both installations appear to be working well.

The geotech failures in Middle Fork appear to be primarily due to oversteepening of the bank from toe scour, therefore these sites are included in the estimate for lateral bank protection. Geotech sites will need special attention to determine the presence or absence of any internal drainage problems that must be addressed.

TREATMENTCHAPTERS 2 and 3									
Lateral Bank Protection									
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost				
2	44	350	15400	\$30.00	\$462,000.00				
3	43	350	15050	\$30.00	\$451,500.00				
Total	87		30450		\$913,500.00				

The estimated treatment cost and quantities are presented below in Table 3.

Table 3. Treatment needs and cost for Chapters 2 and 3

Fig. 8 Stone Toe Protection installed around 1998 for lateral bank treatment. Note the stable banks and ponded water behind the STP in the apex of the bend.

Fig. 9 Stone Toe Protection installed around 1998 for toe protection.

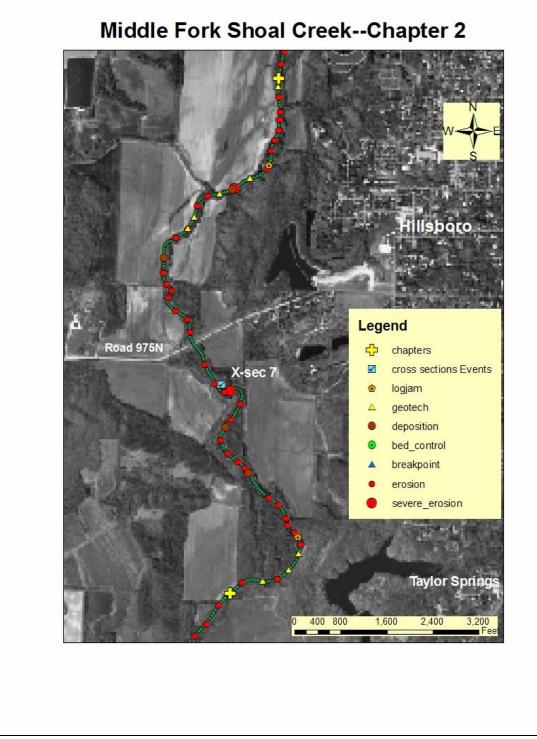


Fig. 10 Chapter2

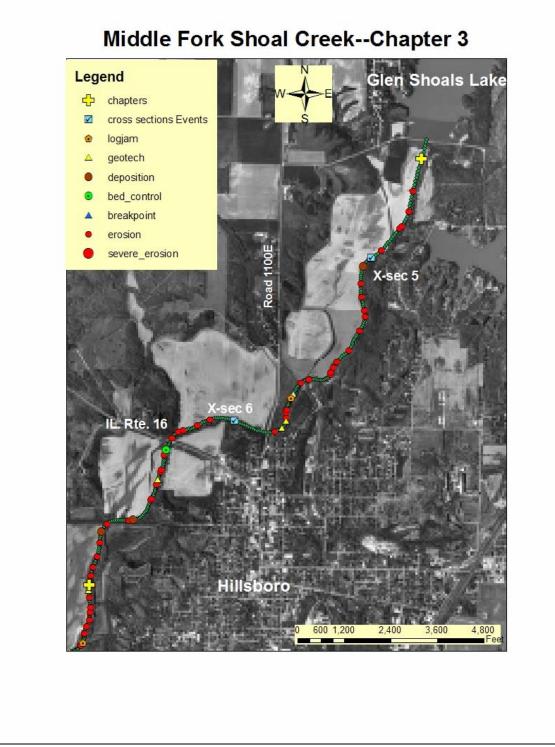


Fig. 11 Chapter3

Treatment Recommendations: Chapter 4

This chapter begins at the upper end of Lake Glen Shoals and continues upstream for 2.6 miles. This reach contains cross sections 3 and 4 which are determined to be CEM stage 5 with some aggradation due to the backwater effects of the lake. There are 28 erosion sites in this chapter and they are recommended to be treated with Stone Toe Protection. The channel is too narrow at 40 ft. to make use of Bendway Weirs or Stream Barbs an effective treatment. There is no need for grade control.

The treatment needs and estimated of	cost are provide below in Table 4.
--------------------------------------	------------------------------------

`	TREATMENTCHAPTER 4								
Lateral Bank Protection									
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost				
4	28	200	5600	\$25.00	\$140,000.00				
Total	28		5600		\$140,000.00				

Table 4. Treatment needs and cost for chapter 4.

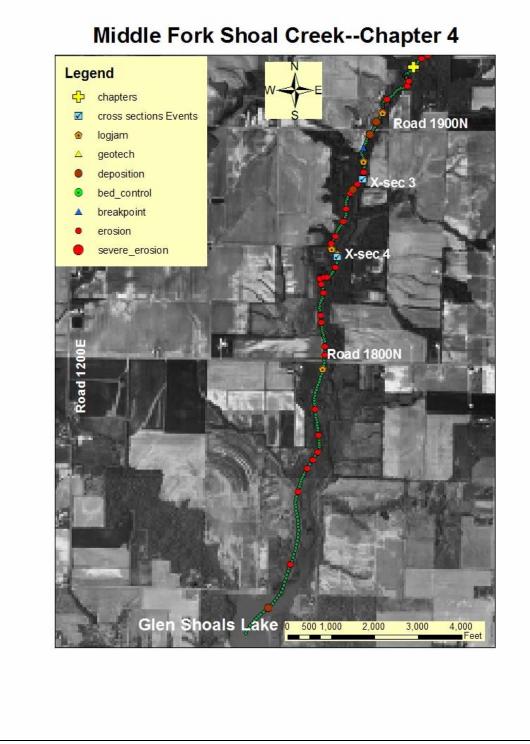


Fig. 12 Chapter 4

Treatment Recommendations: Chapter 5

This reach is the upper 2.5 miles of the aerial assessment. It contains cross sections 1 and 2 which are CEM stage 4 channels. There are 22 erosion sites identified in this chapter and 1 geotech failure. Unlike the stage 4 channels found below Lake Glen Shoals these locations appear to have active downcutting. Therefore the use of Rock Riffle Grade control plus lateral bank treatment is recommended in chapter 5. However the use of Rock Riffles will likely reduce the need for lateral bank treatment significantly below that shown in Table 5. Table 5 assumes no credit for lateral bank stability to the Rock Riffles as it is uncertain how significant the downcutting will be in this reach and existing bridges and culverts may be relied upon to control the degradations. If this option is pursued additional study of existing grade controls need to be completed.

TREATMENTCHAPTER 4								
Lateral Bank Protection								
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost			
5	23	200	4600	\$25.00	\$115,000.00			
Total	23		4600		\$115,000.00			

Rock Riffle Grade Control								
Chapter	Rock Riffles	Average Tonnage	Ave. Cost Ton	Average Cost/Riffle	Total Cost			
5	54	120	\$30.00	\$3,600.00	\$194,400.00			

Table 5. Treatment needs and costs for Chapter 5

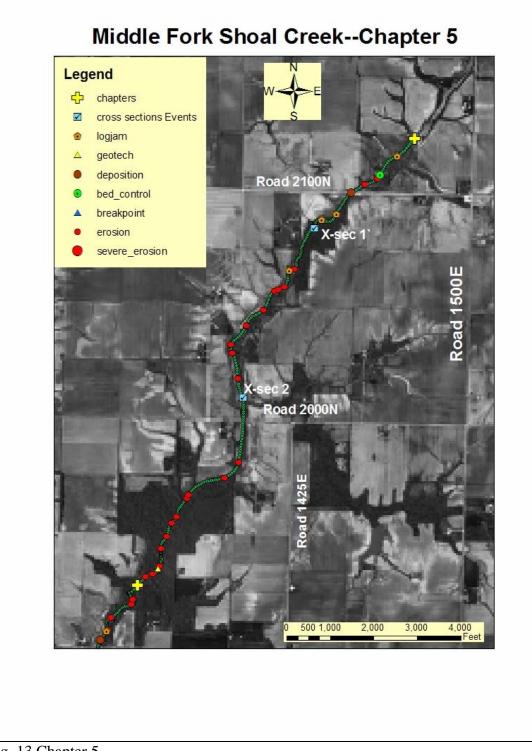


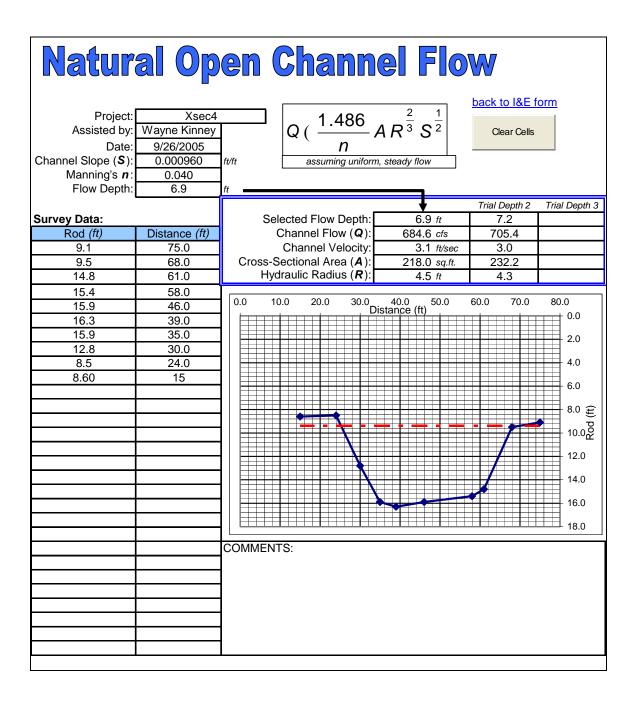
Fig. 13 Chapter 5

APPENDIX A

CROSS SECTION DATA

			_					
Stream St	abilizati	on I & E F	Form	ILLING	OIS NRCS - Vers	ion 2.05- modified 9/	′12/04 R.Book	
County	Montgomery	•	т.	R		Sec		
Date	9/26	/2005	Ву	Wayne Kinn	ney	1		
Stream Name		Middle Fork \$	Shoal Creek		UTM Coord.		E290226	N4353177
Landowner Nam	ne	X-sec 1						
Drainage Area		17.95 s	q. mi.			Clear Cells		
Regional Curve							_	
Bankfull dimens	ions	Width Depth	46 ft. 3.5 ft.	Cross Secti	ional Area	159	<mark>)</mark> sq. ft.	
Reference Strea	am Gage:							
East Fork Shoal Cr	eek near Coffe	en	-	Station No. Drainage Area	05593900 56 sq.mi	F	Gage Q ₂ Regression (2130 cfs 1880 cfs
Montgomery Co	unty,	IL				E STREAM DAT		1000 010
USGS Flood-Pe	ak Dischard	e Predictions						
Valley Slope:	6.4	ft./mi. (user-e				Reg	ression Q ₂	864 cfs
		ft/mi (from we	orksheet) R	ainfall 3.35 in	(2 yr, 24 hr)	А	djusted Q ₂	979 cfs
	0.0012	ft./ft.	Regional I	actor 1.057		Typical Rar	U	kfull Discharge:
							390	to 790 cfs
Local Stream M	orphology:							
Channel De Manning's "n"	escription:	(c) Clean, wir	iding, some pools and	l shoals			•	
···			Strea	m Length		ft.		
Basic Field Data:				/ Length		ft.		
Bankfull Width)onth	38 ft 4.53 ft		our Interval		feet		
Mean Bankfull D Width/Depth Ra	•	4.53 n 8.39	ESUIT	ated Sinuosity				
				el Slope:		Bankfull Q from		_
Max. Bankfull D	•	6.8 ft 400 ft		/eyed: 0.00096	ft./ft.	Cross-Section		cfs
Width at twice m	(13.6 ft.)	400 //	ESU	nated:	ft./ft.	Basic field data Selected C		cfs cfs
Entrenchment R	. ,	10.53	Radius	s of Curvature (Rc))	ft.		0.0
				Rc/Bankfull width	0.00			
Bankfull Velocity	Check:	(typical Illinoi	s streams will have	/e average bankfu	ll velocity bety	voon 3 and 5 ft/s	ec)	
Bedload:	D ₉₀	2 v in		ity required to mov		2.9	ft./sec.	
	D ₅₀	in	. Veloc	ity from Cross-Sec	ction data:	2.97	ft./sec.	
GOAL: Develop	confidence	by matching	Veloc	ity from basic field	data:	3.16	ft./sec.	
velocities	s from differe	ent sources.	Veloc	ity from selected C	Q:	3.1	ft./sec.	
Channel Evolution	on Stage	IV	Stre	am Type (Rosgen))	L		
Notes								
20 47 of log								
29.47 cfs/sq. mi								

Natur	al Op	en Channel Flow	
		back to I&E fo	<u>rm</u>
Project: Assisted by: Date:	X-sec 1 Wayne Kinney 9/26/2005	$Q \prod \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ Clear Cells	
Channel Slope (S): Manning's n : Flow Depth:	0.000960 0.040 6.8	ft/ft assuming uniform, steady flow	
		Trial Depth 2	Trial Depth 3
Survey Data:		Selected Flow Depth: 6.8 ft 7.1	, in the second s
Rod (ft)	Distance (ft)	Channel Flow (Q): 514.0 cfs 440.9	
8.1	68.0	Channel Velocity: 3.0 ft/sec 2.4	
8.6	62.0	Cross-Sectional Area (A): 173.2 sq.ft. 186.3	
12.2	59.0	Hydraulic Radius (R): 4.1 ft 2.9	
17.0	53.0	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0	80.0
18.6	50.0	Distance (ft)	0.0
18.9 18.7	45.0 40.0		
18.7	34.0		2.0
17.0	31.0		4.0
13.50	26		6.0
12.10	20		
12.00	17		8.0
11.80	10		10.07
11.80	0		10.0 po 12.0 ²
			12.0
			14.0
			16.0
			10.0
			18.0
			20.0
		COMMENTS:	
		4	
		4	
		1	
		1	

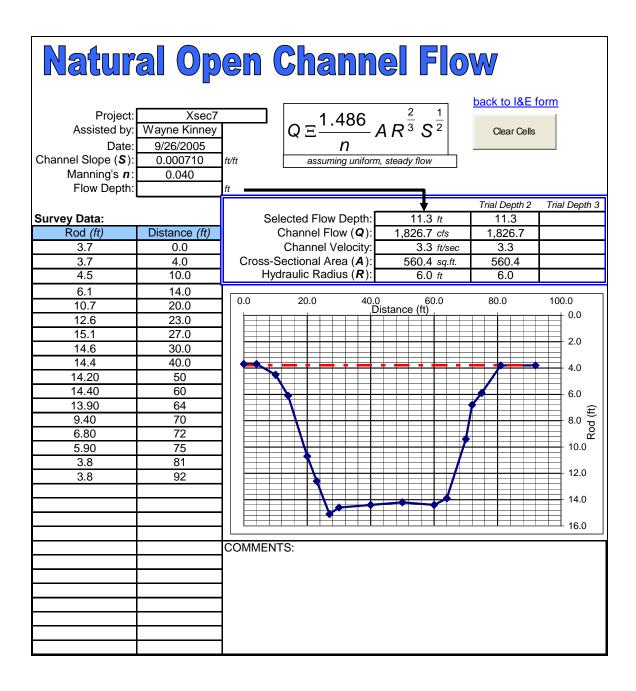

Stream Sto	abilizati	on I & E	Form		ILLING	DIS NRCS - Vers	ion 2.05- r	nodified 9/	12/04 R.Book	
County	Montgomery	•	Т.		R.			Sec.		
Date	9/26	/2005	E	Зу	Wayne Kinr	ney				
Stream Name Landowner Nam	e	Middle Fork Xsec2	Shoal Creek			UTM Coord			E289725	N4351989
Drainage Area		18.33	sq. mi.				Clear C	Cells		
Regional Curve	Predictions:									
Bankfull dimensi		Width Depth	46 f 3.5 f		Cross Secti	onal Area		162	sq. ft.	
Reference Strea	m Gage:									
East Fork Shoal Cre	ook poor Coffo	on			Station No.	05593900			Gage Q ₂	2130 cfs
				D	rainage Area		C OTDE		egression	1880 cfs
Montgomery Co	unity,	IL				REFERENC	ESIKE			
USGS Flood-Pe	ak Discharg	e Prediction	s:							
Valley Slope:	5.8	ft./mi. (user-	entered)					•	ression Q ₂	838 cfs
		ft/mi (from v	vorksheet)	Rainfall	3.35 in	(2 yr, 24 hr)		A	djusted Q ₂	949 cfs
	0.0011	ft./ft.	Regio	onal Factor	1.057		Тур	oical Rar	-	kfull Discharge:
									370	to 760 cfs
Local Stream Mo	orphology:									
Channel De		(a) Class		اممط ماممام					_	
Manning's "n"	0.04	(c) Clean, w	inding, some poo	is and shoals					•	
······································			5	Stream Ler	ngth		ft.			
Basic Field Data:			١	/alley Leng	gth		ft.			
Bankfull Width				Contour Int			feet	-		
Mean Bankfull D	•		ft. E	Estimated S	Sinuosity					
Width/Depth Rat	10	6.92					Developed	0 6 4 4 4 4 4		
Max. Bankfull De	enth	8.2	ft.	Channel Slope Surveyed:		ft./ft.		I Q from: S-Section		cfs
Width at twice m	•			Estimated:		ft./ft.	_	ield data		cfs
	(16.4 ft.)					-	Se	lected Q	537	cfs
Entrenchment R	atio	0.00	R	adius of C	urvature (Rc)		ft.			
				Rc/B	ankfull width:	0.00				
Devision	Charles	(4			waaa baalifii					
Bankfull Velocity Bedload:			ois streams wi in.		quired to mov			na 5 tvs 2.1	ft./sec.	
Doulouu	D ₅₀				m Cross-Sec			.09	ft./sec.	
GOAL: Develop					m basic field			.34	ft./sec.	
	from differe	, ,			m selected C		-	3.2	ft./sec.	
Channel Evolutio	on Stage			Stream Ty	/pe (Rosgen)					
			l	,			•			
Notes										
29.3 cfs/sq. mi.										

Natur	al Op	en Channel Flow	
Project: Assisted by: Date: Channel Slope (S): Manning's n :	Xsec2 Wayne Kinney 9/26/2005 0.000960 0.040	$ \begin{array}{c} $	
Flow Depth: Survey Data: <u>Rod (ft)</u> 7.2 7.7 7.8	8.2 Distance (ft) 85.0 78.0 74.0	ft Trial Depth 2 Trial Depth 2	al Depth 3
8.8 9.0 8.8 9.3 11.8 15.1 16.90 17.00 17.20 17.00 14.90 8.40 7.3 7.5	65.0 55.0 45.0 41.0 37.0 33.0 31 27 23 21 16 11 6 0	0.0 20.0 40.0 60.0 80.0 10 Distance (ft)	00.0 0.0 2.0 4.0 6.0 10.0 porture 12.0 14.0 16.0 18.0 20.0
		COMMENTS:	

Stream Stabi	lization I &	E Form	ILLINOIS NRCS	- Version 2.05- modified	9/12/04 R.Book	
County Mo	ntgomery 💌	т	R.	Se	ec.	
Date	9/26/2005	Ву	Wayne Kinney			
Stream Name Landowner Name	Middle F Xsec3	ork Shoal Creek	UTM C	coord.	E288626	N4349890
Drainage Area	27.6	67 sq. mi.		Clear Cells		
Regional Curve Pre	dictions:					
Bankfull dimensions		54 ft. 3.9 ft.	Cross Sectional Are	ea <u>2</u>	<mark>14</mark> sq. ft.	
Reference Stream G	Gage:					
East Fork Shoal Creek r	near Coffeen		Station No. 05593			2130 cfs
Montgomery County			Drainage Area 56 so REFE	RENCE STREAM DA	Regression (1880 cfs
monigomory county	, 12					
USGS Flood-Peak L				D	egression Q ₂	1100 -1-
Valley Slope:	,	ser-entered)	infoll 2.25 in /2 ur 2		Adjusted Q ₂	1169 cfs
	0.0011 ft./ft.	<i>m worksheet)</i> Ra Regional F	ainfall <u>3.35 in</u> (2 yr, 2 actor <u>1.057</u>	,		1325 cfs full Discharge:
	<u></u> <i>n./n.</i>	Regionari		Турісаї Ка	520	to 1060 cfs
Local Stream Morph	oloav:					
Channel Desci	intion.	n, winding, some pools and	shoals		•	
Manning's "n"	0.04					
			n Length	ft.		
<i>Basic Field Data:</i> Bankfull Width	40		Length ur Interval	ft.		
Mean Bankfull Dept			ated Sinuosity	leet		
Width/Depth Ratio	7.09					
•		Channe	l Slope:	Bankfull Q fror	m:	
Max. Bankfull Depth	7.1	ft. Surve	eyed: 0.00096 ft./ft.	Cross-Section	on 760 (cfs
Width at twice max.		ft. Estim	ated: ft./ft.	Basic field da		cfs
(Entrenchment Ratio	14.2 ft.) 12.50	Padius	of Curvature (Rc)	Selected ft.	Q 792	cfs
	12.50		Rc/Bankfull width: 0.0			
				-		
Bankfull Velocity Ch			e average bankfull velocity			
Bedload: D ₉			ty required to move D ₉₀ :	2.1	ft./sec.	
			ty from Cross-Section data		ft./sec.	
GOAL: Develop con	tidence by match m different source	0	ty from basic field data:	3.66 3.5	ft./sec.	
verocities ffor		s. velocii	ty from selected Q:	3.3	11./SEC.	
Channel Evolution S			··· T ··· · (D · · · · · ·)			
	tage v	▼ Strea	m Type (Rosgen)			

Natur	al Op	en Channel Flow
Project: Assisted by:	Xsec3 Wayne Kinney	$Q \setminus \frac{1.486}{R} A R^{\frac{2}{3}} S^{\frac{1}{2}}$
Date: Channel Slope (S): Manning's n :	9/26/2005 0.000960 0.040	ft/ft assuming uniform, steady flow
Flow Depth:	7.1	ft
Survey Data:		▼ Trial Depth 2 Trial Depth 3 Selected Flow Depth: 7.1 ft 8.4
Rod (ft)	Distance (ft)	Channel Flow (Q): 759.6 cfs 824.0
7.4	75.0	Channel Velocity: 3.4 ft/sec 2.8
7.0	60.0	Cross-Sectional Area (A): 225.7 sq.ft. 292.5
14.3	54.0	Hydraulic Radius (R): 5.0 ft 3.8
15.2	50.0	
15.2	40.0	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 Distance (ft)
15.4	31.0	
14.2	26.0	
8.3	19.0	
8.0	15.0	
7.70	10	
7.20	5	6.0
5.00	0	8.0 €
		10.02
		12.0
		16.0
		18.0
		COMMENTS:
		4
		4
		4
		4
		4
		4

Stream St	abilizati	on I & E	Form		ILLING	DIS NRCS - Vers	sion 2.05- modified §	9/12/04 R.Book	
County	Montgomery	•	Т	-	R		Se	c	
Date	9/26	/2005		Ву	Wayne Kinr	ney			
Stream Name Landowner Nam	ne	Middle Fork Xsec4	Shoal Cree	ek	_	UTM Coord		E288451	N4349345
Drainage Area		28.28	sq. mi.				Clear Cells		
Regional Curve	Predictions	:							
Bankfull dimens	ions	Width Depth		<mark>5</mark> ft. <mark>9</mark> ft.	Cross Secti	onal Area	21	<mark>7</mark> sq. ft.	
Reference Strea	am Gage:								
East Fork Shoal Cr	reek near Coffe	en		-	Station No. Drainage Area	05593900	-	Gage Q ₂ Regression	2130 cfs 1880 cfs
Montgomery Co	ounty,	IL			Drainage Area		E STREAM DA	0	1000 015
USCS Flood D	ok Diashar	no Dradiation							
USGS Flood-Pe Valley Slope:	ак Discharg 5.9	ft./mi. (user					Re	gression Q ₂	1190 cfs
		ft/mi (from	,	Rair	nfall 3.35 in	(2 yr, 24 hr)		Adjusted Q ₂	1348 cfs
	0.0011	ft./ft.	Re	egional Fa	ctor 1.057		Typical Ra	-	kfull Discharge:
								530	to 1080 cfs
Local Stream M	orphology:								
Channel De		(c) Clean, v	vinding, some	pools and sh	noals			-	
Manning's "n"	0.04	-		Stream	Length	_	ft.		
Basic Field Data:				Valley L	U U		ft.		
Bankfull Width		43	ft.	Contour	Interval		feet 💌		
Mean Bankfull	•	5.07 8.48	ft.	Estimate	ed Sinuosity		-		
Width/Depth Ra	llio	0.40		Channel S	Slope:		Bankfull Q fron	n:	
Max. Bankfull D	epth	6.8	ft.	Survey		ft./ft.	Cross-Sectio		cfs
Width at twice n	•		ft.	Estimat	ted:	ft./ft.	Basic field dat		cfs
Entrenchment R	(13.6 ft.) Patio	23.26		Padius o	f Curvature (Rc)		Selected ft.	Q 714	cfs
	Kallo	23.20			c/Bankfull width:		n. –		
						0.00			
Bankfull Velocity Bedload:	y Check: D ₉₀				average bankful required to mov				
Deuloau.	D ₉₀ D ₅₀		in. in.		from Cross-Sec	00	2.1 3.14	ft./sec.	
GOAL: Develop					from basic field		3.14	ft./sec.	
	s from differe	, ,			from selected C		3.3	ft./sec.	
Channel Evoluti	on Stage	v 🔻		Stream	n Type (Rosgen)				
Notes			=						
25.24 cfs/sq. mi	backwat	er effect fror	n Glens Sho	oals may b	be a factor at this	s point only 2	ft.(+ or -) above	normal pool	


Stream St	abilizati	on I & E	Form		ILLIN	OIS NRCS - Ver	sion 2.05- modified §	9/12/04 R.Book	
County	Montgomery	•		Т	R	R	Sec	c.	
Date	9/26	/2005		Ву	Wayne Kin	ney			
Stream Name		Middle Forl	k Shoal Cre	eek		UTM Coord		E285440	N4339479
Landowner Nan	ne	Xsec5							
Drainage Area		83.85	sq. mi.				Clear Cells		
Regional Curve									
Bankfull dimens	sions	Width Depth		<mark>34</mark> ft. .4 ft.	Cross Sec	tional Area	45	<mark>3</mark> sq. ft.	
Reference Strea	am Gage:								
East Fork Shoal C	reek near Coffe	en		-	Station No.			Gage Q ₂	2130 cfs
Montgomery Co		IL			Drainage Are		E STREAM DA	Regression (TA ONLY	1880 cfs
		5						-	
USGS Flood-Pe	5.2	ft./mi. (usei					Re	gression Q ₂	2642 cfs
	-	ft/mi (from	,	Rai	infall 3.35 in	(2 yr, 24 hr)		Adjusted Q ₂	2993 cfs
	0.0010	ft./ft.	R	egional Fa	actor 1.057		Typical Ra	-	(full Discharge:
								1190	to 2400 cfs
Local Stream M	lorphology:								
Channel De Manning's "n"	escription: 0.04	(c) Clean, v	vinding, some	e pools and s	hoals			•	
3		-		Stream	Length		ft.		
Basic Field Data:		05	<i>c</i> ,	Valley L	-		ft.		
Bankfull Width Mean Bankfull [Jenth	65 7.56	ft. ft.		r Interval ted Sinuosity		feet		
Width/Depth Ra	•	8.60		Louina			_		
				Channel		a. (a.	Bankfull Q from		
Max. Bankfull D Width at twice n	•	10.2 1200	ft. ft.	Surve Estima	·	ft./ft. ft./ft.	Cross-Sectio Basic field dat		cfs cfs
width at twice h	(20.4 ft.)		п.	ESuma		11./11.	Selected (cfs
Entrenchment F	,	18.46		Radius o	of Curvature (Ro	:)	ft.		
				F	Rc/Bankfull width	n: 0.00			
Bankfull Velocit	v Check [.]	(typical Illin	ois stream	s will have	e average bankfi	ıll velocitv bet	ween 3 and 5 ft/s	sec)	
Bedload:	D ₉₀	2	in.		y required to mo		2.9	ft./sec.	
	D ₅₀	,	in.	Velocity	y from Cross-Se	ction data:	3.56	ft./sec.	
GOAL: Develop		, ,	9	-	y from basic field		3.83	ft./sec.	
velocities	s from differe	ent sources.		Velocity	y from selected	Q:	3.7	ft./sec.	
Channel Evoluti	on Stage	IV 💌		Stream	m Type (Rosger	i)			
Notes									
21.65 cfs/sq. mi									

Natur	al Op	en Channel Flow
Project: Assisted by: Date: Channel Slope (S): Manning's n :	Xsec5 Wayne Kinney 9/26/2005 0.000710 0.040	$\begin{bmatrix} Q \div \frac{1.400}{n} A R^3 S^2 \\ n \end{bmatrix}$ <i>Example 1 Example 1 Clear Cells Example 2 Clear Cells Example 3 Clear Cells Example 3 Clear Cells Example 4 Clear Cells Clea</i>
Flow Depth: Survey Data: Rod (ft) 4.1 4.8 4.8	10.2 Distance (ft) 0.0 7.0 10.0	Trial Depth 2 Trial Depth 3 Selected Flow Depth: 10.2 ft 11.1 Channel Flow (Q): 1,750.2 cfs 1,867.0 Channel Velocity: 3.6 ft/sec 3.3 Cross-Sectional Area (A): 491.1 sq.ft. 561.0 Hydraulic Radius (R): 6.8 ft 6.2
5.0 9.1 11.4 14.6 14.4 14.70 15.20 14.90 12.00 6.80 0.90 1.1	18.0 25.0 29.0 32.0 42.0 52.0 59 66 70 73 82 86 95	0.0 20.0 40.0 60.0 80.0 100.0 0.0 2.0 4.0 4.0 6.0 8.0 0.0 0.0 2.0 4.0 6.0 8.0 0.0 10.0 10.0 10.0 10.0 10.0 10.0
		Principle spillwayGlen Shoals discharge =2466 cfs or 29.4 cfs/sq. mi.

Stream St	abilizati	on I & E	Form		ILLIN	OIS NRCS - Ver	sion 2.05- modified 9	/12/04 R.Book	
County	Montgomery	•		Т	R	R	Sec		
Date	9/26	/2005		Ву	Wayne Kin	ney			
Stream Name		Middle Forl	c Shoal Cre	eek		UTM Coord		E284365	N4338197
Landowner Nam	ne	Xsec6							
Drainage Area		88.75	sq. mi.				Clear Cells		
Regional Curve									
Bankfull dimens	sions	Width Depth		<mark>36</mark> ft. .5 ft.	Cross Sec	tional Area	47	<mark>1</mark> sq. ft.	
Reference Strea	am Gage:								
East Fork Shoal Cr	reek near Coffe	en		-	Station No.			Gage Q ₂	2130 cfs
Montgomery Co		IL			Drainage Are		E STREAM DA	Regression (TA ONLY	1880 cfs
USGS Flood-Pe	5.2	ft./mi. (use					Reg	pression Q ₂	2763 cfs
<u> </u>		ft/mi (from	,	Rai	infall 3.35 in	(2 yr, 24 hr)	A A	Adjusted Q ₂	3130 cfs
	0.0010	ft./ft.	R	egional Fa	actor 1.057			nge for Ban	full Discharge:
								1250	to 2510 cfs
Local Stream M	lorphology:								
Channel De Manning's "n"	escription: 0.04	(c) Clean, v	vinding, some	pools and s	hoals			•	
	0.01	-		Stream	Length		ft.		
Basic Field Data:			_	Valley I	-		ft.		
Bankfull Width Mean Bankfull [Jonth	64 8.45	ft. ft.		r Interval		feet		
Width/Depth Ra	•	7.57	п.	ESuma	ted Sinuosity		_		
				Channel		_	Bankfull Q from		
Max. Bankfull D	•	10.9	ft.	Surve	·	ft./ft.	Cross-Section		cfs
Width at twice n	(21.8 ft.)	1500	ft.	Estima	ated:	ft./ft.	Basic field data Selected C		cfs cfs
Entrenchment R	,	23.44		Radius o	of Curvature (Ro	:)	ft.	2000	010
				F	c/Bankfull width	n: 0.00			
Bankfull Velocit	v Check:	(typical Illin	ois stream	s will have	average hankfi	ıll velocitv bet	ween 3 and 5 ft/s	ec)	
Bedload:	D ₉₀	1	in.		y required to mo		2.1	ft./sec.	
	D ₅₀		in.	Velocity	y from Cross-Se	ction data:	3.64	ft./sec.	
GOAL: Develop	confidence	by matching	9	Velocity	y from basic field	data:	4.12	ft./sec.	
velocities	s from differe	ent sources.		Velocity	y from selected	Q:	3.9	ft./sec.	
Channel Evoluti	on Stage	IV –		Stream	m Type (Rosger	i)			
Notes									
24.33 cfs/sq. mi	i.								

Natural Open Channel Flow									
Project: Assisted by: Date: Channel Slope (S): Manning's n : Flow Depth:	Xsec6 Wayne Kinney 9/26/2005 0.000710 0.040 10.9	$Q \oint \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ ft/ft $assuming uniform, steady flow$							
Survey Data: Rod (ft) 1.7 2.4 4.3	Distance (ft) 95.0 90.0 78.0	Trial Depth 2 Trial De							
8.6 14.8 15.3 14.7 14.9 14.6 14.50 14.50 6.70 4.20 4.50 1.9	74.0 72.0 67.0 58.0 51.0 45.0 39 30 26 20 14 7 0	0.0 20.0 40.0 60.0 80.0 100.0 Distance (ft) 0.0 2.0 4.0 6.0 8.0 ±00 10.0 12.0 12.0 14.0 10.0 12.0 10.0 10.0 10.0 10.0 10.0 10							
		COMMENTS:							

Stream St	abilizati	on I & E	Form		ILLIN	OIS NRCS - Ver	sion 2.05- modified 9	/12/04 R.Book	
County	Montgomery	•		т	F	R	Sec		
Date	9/26	/2005		Ву	Wayne Kin	ney			
Stream Name		Middle Forl	k Shoal Cre	eek		UTM Coord		E282913	N4335280
Landowner Nam	ne	Xsec7							
Drainage Area		102.25	sq. mi.				Clear Cells		
Regional Curve									
Bankfull dimens	ions	Width Depth		91 ft. .7 ft.	Cross Sec	tional Area	51	<mark>8</mark> sq. ft.	
Reference Strea	am Gage:								
East Fork Shoal Cr	eek near Coffe	en		-	Station No Drainage Are			Gage Q ₂	2130 cfs
Montgomery Co		IL			Dialitage Ale		E STREAM DA	Regression (TA ONLY	1880 cfs
	al. Disahaw	na Duadiatian							
USGS Flood-Pe	ак Discharg 5.1	ft./mi. (usei					Re	gression Q ₂	3061 cfs
		ft/mi (from	,	Rai	nfall 3.35 in	(2 yr, 24 hr)		Adjusted Q ₂	3468 cfs
	0.0010	ft./ft.	R	egional Fa	actor 1.057		Typical Ra	U U	kfull Discharge:
								1380	to 2780 cfs
Local Stream M	orphology:								
Channel De Manning's "n"	escription:	(c) Clean, v	winding, some	e pools and s	hoals			•	
···		-		Stream	Length		ft.		
Basic Field Data:			~	Valley L	-		ft.		
Bankfull Width Mean Bankfull D	Penth	77 7.28	ft. ft.		r Interval ted Sinuosity		feet		
Width/Depth Ra	•	10.58		Louina			_		
				Channel		a. (a.	Bankfull Q from		
Max. Bankfull De Width at twice m	•	11.3 1500	ft. ft.	Surve Estima		ft./ft. ft./ft.	Cross-Sectio Basic field dat		cfs cfs
width at twice if	(22.6 ft.)		п.	LSund		11./11.	Selected (cfs
Entrenchment R	Ratio	19.48		Radius o	of Curvature (Ro	;)	ft.		
				F	c/Bankfull width	n: 0.00			
Bankfull Velocity	y Check:	(typical Illin	ois stream	s will have	average bankfu	Ill velocity bet	ween 3 and 5 ft/s	sec.)	
Bedload:	D ₉₀	2 🔻	in.		required to mo		2.9	ft./sec.	
	D ₅₀		in.		/ from Cross-Se		3.26	ft./sec.	
GOAL: Develop		, ,	9		/ from basic field		3.73	ft./sec.	
velocities	s from differe	ent sources.		velocity	/ from selected	يا: ا	3.5	ft./sec.	
Channel Evolution	on Stage	VI		Stream	n Type (Rosger)			
Notes									
19.16 cfs/sq. mi									

Stream St	abilizati	on I & E	Form		ILLIN	OIS NRCS - Ver	sion 2.05- modified 9	/12/04 R.Book	
County	Montgomery	•		т	R		Sec		
Date	9/26	/2005		Ву	Wayne Kin	ney			
Stream Name		Middle Forl	Shoal Creater	eek		UTM Coord		E282435	N4332047
Landowner Nan	ne	Xsec8							
Drainage Area		105.83	sq. mi.				Clear Cells		
Regional Curve									
Bankfull dimens	sions	Width Depth		92 ft. .8 ft.	Cross Sect	ional Area	53	<mark>1</mark> sq. ft.	
Reference Strea	am Gage:								
East Fork Shoal C	reek near Coffe	en		-	Station No.			Gage Q ₂	2130 cfs
Montgomery Co		IL			Drainage Area		E STREAM DA	Regression (TA ONLY	1880 cfs
		5							
USGS Flood-Pe	5.0	ft./mi. (usei					Reg	pression Q ₂	3116 cfs
		ft/mi (from	· ·	Rai	nfall 3.35 in	(2 yr, 24 hr)	i A	Adjusted Q ₂	3530 cfs
	0.0009	ft./ft.	R	egional Fa	ictor 1.057			nge for Ban	full Discharge:
								1410	to 2830 cfs
Local Stream M	lorphology:								
Channel De Manning's "n"	escription: 0.04	(c) Clean, v	vinding, some	e pools and s	hoals			•	
Marining 5 Tr	0.04	-		Stream	Length		ft.		
Basic Field Data:				Valley L	-		ft.		
Bankfull Width	Jonth	57	ft. ft.		r Interval		feet		
Mean Bankfull [Width/Depth Ra	•	8.19 6.96	п.	Esumai	ed Sinuosity		_		
				Channel	Slope:	_	Bankfull Q from		
Max. Bankfull D	•	10.2	ft.	Surve	,	ft./ft.	Cross-Section		cfs
Width at twice n	nax. depth (20.4 ft.)	2000	ft.	Estima	ited:	ft./ft.	Basic field data Selected 0		cfs cfs
Entrenchment F	,	35.09		Radius o	of Curvature (Rc)	ft.	1202	013
					c/Bankfull width				
Bonkfull Valaait	Chook	(trunical Illin	oio otroom	a will have	avaraga bankfu	ul volocity bot	woon 2 and E ft/s		
Bankfull Velocit Bedload:	D ₉₀	1	in.		required to mov		ween 3 and 5 ft/s 2.1	ft./sec.	
	D ₅₀		in.	Velocity	, from Cross-Se	ction data:	2.39	ft./sec.	
GOAL: Develop	confidence	by matching	7	Velocity	/ from basic field	l data:	3.10	ft./sec.	
velocities	s from differe	ent sources.		Velocity	/ from selected 0	Q:	2.7	ft./sec.	
Channel Evoluti	on Stage	III •		Stream	n Type (Rosgen)			
Notes									
12.11 cfs/sq. mi	_								
12.11 UI3/34. III									

Natur	al Op	en Channel Flow	
		back to I&E fo	<u>orm</u>
Project: Assisted by:	Xsec8	$Q \approx \frac{1.486}{2} A R^{\frac{2}{3}} S^{\frac{1}{2}}$	
	Wayne Kinney	$Q \otimes AR^3 S^2$ Clear Cells	
Date: Channel Slope (S):	9/26/2005 0.000420	ft/ft assuming uniform, steady flow	
Manning's n :	0.000420	ft/ft assuming uniform, steady flow	
Flow Depth:	0.040	ft	
r iow Bopuil.		Trial Depth 2	Trial Depth 3
Survey Data:		Selected Flow Depth: 10.2 ft 10.2	па Берит з
Rod (ft)	Distance (ft)	Channel Flow (Q): 1,115.8 <i>cfs</i> 1,115.8	
5.5	0.0	Channel Velocity: 2.4 ft/sec 2.4	
5.5	4.0	Cross-Sectional Area (A): 467.2 sq.ft. 467.2	
4.7	10.0	Hydraulic Radius (R): 5.6 ft 5.6	
4.5	15.0		
4.5	19.0	0.0 20.0 40.0 60.0 80.0 Distance (ft)	100.0
10.6	24.0		0.0
11.6	28.0		2.0
13.6	37.0		2.0
14.5	40.0		4.0
14.50	50		
14.70	52		6.0
13.60	61		Ē
13.20	67		8.0 (H) 8.0 (H)
11.20 3.90	73 76		10.0
3.90	85		10.0
5.9	00		12.0
			∔]
			14.0
			16.0
		COMMENTS:	