

Aerial Assessment of Fox River Jasper, Richland and Edwards Counties

November 2004 Prepared by Wayne Kinney for the IL. Dept. of Agriculture

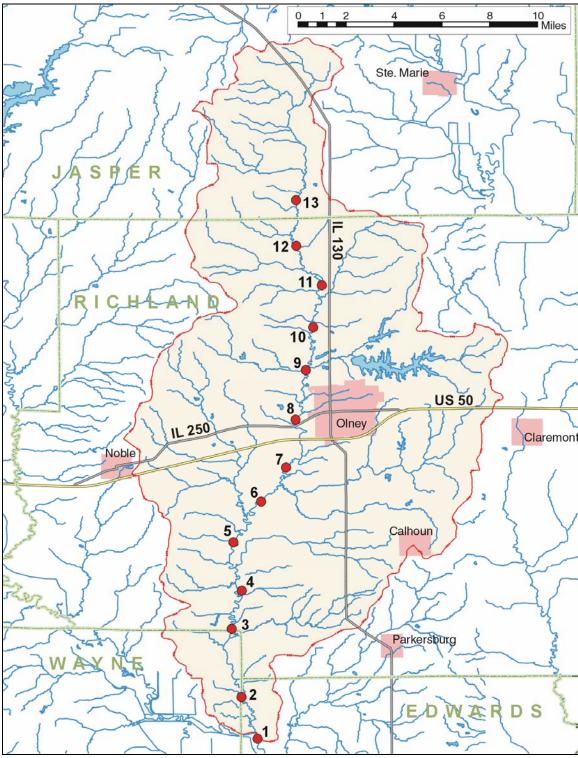
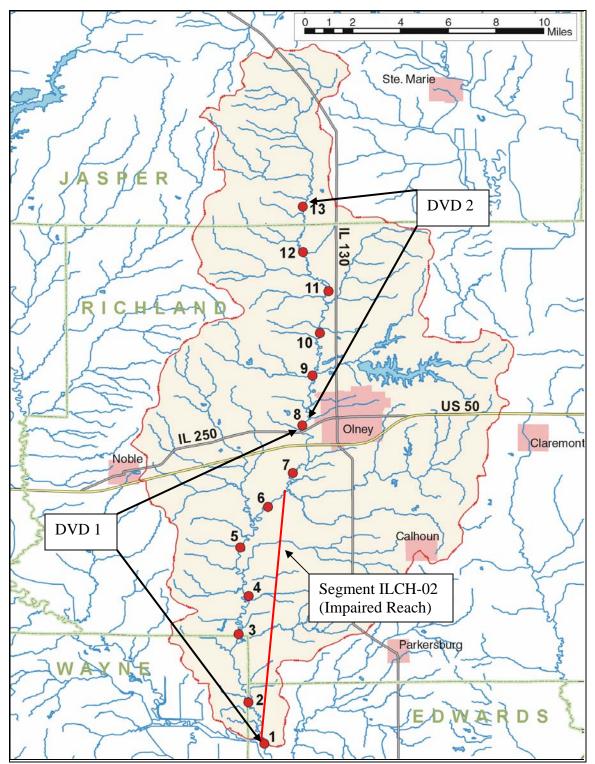
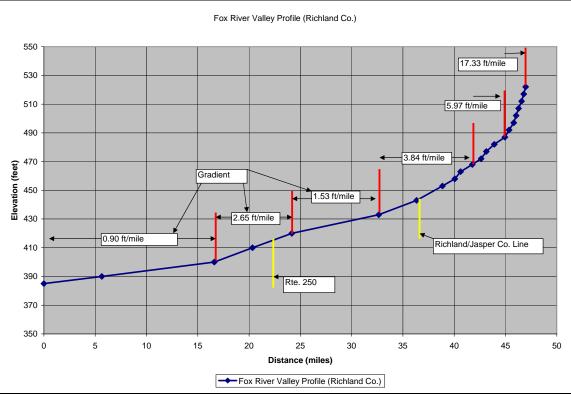


Fig. 1 Aerial Assessment Map of Fox River




Fig. 2 Fox River DVD Tape Segments and Impaired Reach

Assessment Procedure

Low level geo-referenced video was taken of Fox River in March, 2004. Video taping was completed by Fostaire Helicopters, Sauget, IL, using a camera mounted beneath a helicopter to record data from just above tree top level in DVD format for further evaluation and assessment. Video mapping began at the confluence of the Fox River with the Little Wabash River in Edwards County. The mapping progressed upstream thru Richland County and ended in Jasper County at the confluence with Richland Creek near West Liberty, IL. Aerial video of tributaries was not part of the project, regardless of the stream size or vegetation.

After videotaping the stream, the DVD tapes were processed by USGS to produce a georeferenced DVD showing flight data and location. Next, USGS identified features from the video and created shapefiles containing the GPS location, type of feature identified, and the time on the DVD to allow cross referencing. The shape-files along with the DVD were then used to identify and locate the points where ground investigations were needed to verify aerial assessment assumptions and gather additional data.

The ground investigations or "ground truthing" is intended to accomplish two primary functions. First, it provides those viewing videos the opportunity to verify the correct interpretation of the video. Second, the video allows the user to identify and gather field data at the most appropriate locations to more closely represent the entire study portion of the stream.

Figure 3 Channel Profile of Fox River

Detailed elevation data is not available; therefore the channel slope is calculated from USGS topo maps by measuring the channel length between contour lines. The report refers to this as "valley profile" although a true valley profile would use a straight line distance down the floodplain rather than channel length. However, this method is used because it incorporates sinuosity into the calculation and allows the channel slope to be assume equal to "valley slope" in order to estimate channel capacity, velocity, etc., although there are short segments where the channel slope may differ significantly near roads, logjams, knickpoints, etc.

Figure 4 Valley Profile with Cross Section Locations

	CHAPTERS ON DVD AND ASSESSMENT REPORT Fox RiverRichland County						
DVD		Beginning	Report	Cross			
Disc	DVD chapter	Time	Chapter	Sections			
1	2	5:00	1				
1	3	10:00	2				
1	4	15:00:00	3				
1	5	20:00:00	4				
1	6	25:00:00	5				
1	7	30:00:00	6	6			
1	8	35:00:00	7	5			
2	2	5:00	8	4			
2	3	10:00	9	3			
2	4	15:00:00	10	2			
2	5	20:00:00	11				
2	6	25:00:00	12	1			
2	7	30:00:00	13				

Note: Flight path is from downstream to upstream

Table 1 DVD Chapters and Report Guide

The DVD has been divided into "chapters" of approximately five minutes of video (Table 1) to enhance the ability to navigate within the flight video and provide a simple way to identify and discuss different stream segments. Although the report will begin with a broader more general assessment of the entire study reach, it will also provide an assessment and treatment recommendations by chapter or group of chapters. The chapter divisions are clearly arbitrary and do not reflect "change points" in the stream characteristics or treatment recommendations. For clarity the conclusions and recommendations are presented for each stream "chapter".

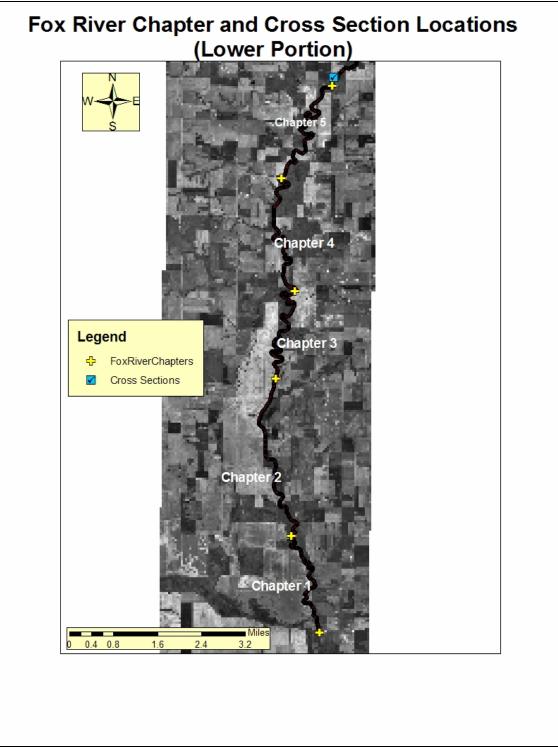


Fig. 5 Chapter Division and Cross Section Locations—Lower Reach

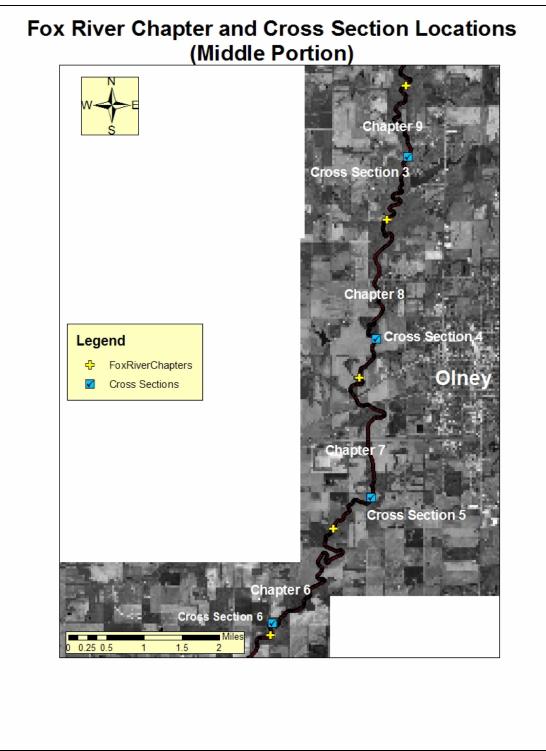


Figure 6 Chapter Division and Cross Section Locations –Middle Reach

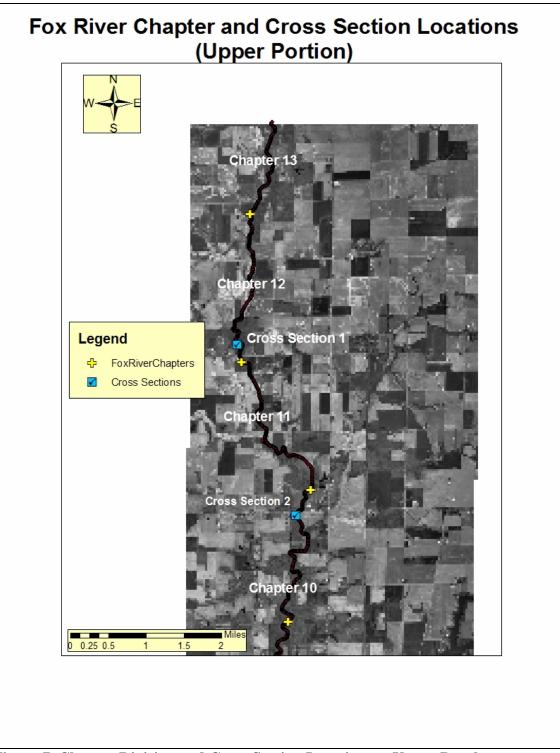


Figure 7 Chapter Division and Cross Section Locations --- Upper Reach

The major factors indicating channel conditions identified from the aerial assessment have been totaled by DVD chapter in Table 3 below. This tabulation allows a general comparison of the relative dominance of features found in each chapter and provides a

				DENTIFIE			ED	
		FEAIL				ΠΑΓΙ	EK	
	ROCK		GEOTECH		BED	BREAK		SEVERE
CHAPTER	OUTCROP	LOGJAM	FAILURE	DEPOSITION	I CONTROL	POINT	EROSION	EROSION
1	0	2	0	0	0	0	23	0
2	0	1	0	0	0	0	34	0
3	0	4	1	2	1	0	40	1
4	0	4	0	1	1	0	42	0
5	1	1	2	0	1	0	44	0
6	0	4	1	1	0	0	52	0
7	1	1	1	1	3	0	29	0
8	0	2	0	1	2	0	33	0
9	0	4	0	0	0	0	29	0
10	3	3	0	3	1	0	33	0
11	1	2	1	4	0	1	38	0
12	1	7	0	4	1	1	41	0
13	2	1	0	6	1	3	27	0
TOTALS	9	36	6	23	11	5	465	1

means of comparing stream characteristic between chapters. A discussion of the major differences will follow later in this report.

 Table 3 Features by Chapter Identified with Aerial Assessment

Six cross sections were taken at selected locations on the Fox River after viewing the DVD's. The cross sections are located at "riffle" locations to best represent the channel characteristics and to allow for comparison of width, depth, x-sec. area, etc. along the channel at similar geometric locations. The result of the hydraulic analysis at each site is presented in summary form in Table 4 and the approximate location of each cross section along the channel profile is found in Fig. 4. Aerial views of cross sections locations are shown in Figs. 5 thru 7. Exact locations as Eastings and Northings and more detail can be found in Appendix A

		Cross	Sec	tion Su	mma	ary -	-FO)	(Riv	er					
				Valley	Q2	BKF			W/D	Vel.	Bedload	CEM	CFS per	BKF cfs/
X-Sec	Easting	Northing	ADA	Slope ft/m	CFS	CFS	Width	Depth	Ratio	FPS	Dia.	Stage	Sq. Mi.	Q2 cfs
1	403011	4299092	28.01	5.2	1052	256	33	3.46	9.54	2.2	1	3	9.14	0.24
2	404256	4295454	41.45	3.7	1175	260	45	3.98	11.31	1.5	1	3	6.27	0.22
3	404132	4291675	58.46	3.7	1541	429	60	4.31	13.92	1.7	1	1	7.34	0.28
4	403456	4287803	65.17	3.1	1542	804	69	4.99	13.83	2.3	1	4	12.34	0.52
5	403346	4284418	72.87	3.1	1685	854	56	5.82	9.62	2.6	1	5	11.72	0.51
6	401250	4281747	103.81	3	2193	1190	63	6.59	9.56	2.9	1	4	11.46	0.54

 Table 4 Cross Section Summary

Figure 8 Logjam at 19:34 on DVD Tape 1

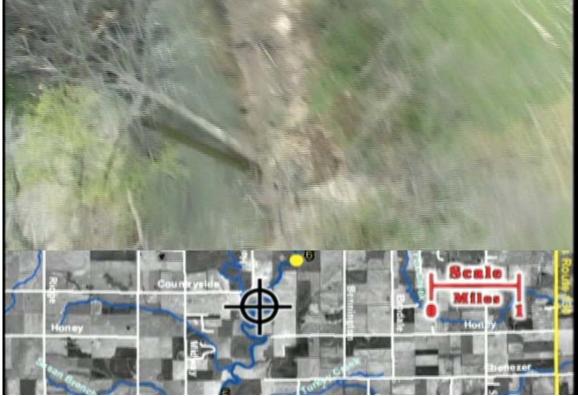


Figure 9 Large tree and rootball in channel at 28:24 on DVD tape 1

Figure 10 Erosion on lower reach -note little or no point bar on inside

Figure 11 Riprap bank protection at pipeline crossing – 35:37 on DVD tape 1

Figure 12 Structure below water treatment plant at Olney—7:35 DVD tape 2

Figure 13 Channel segment with riparian border removed—but little or no straightening: DVD Tape 2 at 27:14

Figure 14 Upper reach with sediment slug (deposition) in channel---DVD Tape 2 at 32:35

General Observations

- 1. The impaired reach on the lower end of Fox River with low DO is the low gradient section with only 0.90 ft/mile valley slope.
- 2. This reach has very low velocity based on observations and aerial video, although the water depth and access to this reach did not allow any cross section to be gathered.
- 3. Due to low gradient and low velocity it will be difficult to achieve significant reaeration in this reach using rock riffle grade controls or stream barbs. Observations made from the aerial assessment show very low turbulence around stream obstructions even though the water levels were somewhat elevated at flight time.
- 4. The channel throughout the Fox has very little point bar development, especially on the impaired reach. This is due in part to the fine sediment that is easily transported but it also suggests that the lateral bank movement is not rapid.
- 5. There is no gage data available to calibrate the channel capacity to carry the 1yr. to 1.5 yr. event, however the upper reach will only carry about 25% of the predicted 2 yr. event from the NRCS Streambank I & E calculations using USGS data from the Little Wabash at Clay City. The middle reach has a steeper valley slope and will carry about 50% of the predicted 2 yr. storm. The lower reach cannot be estimated due to lack of cross section data.

- 6. The bank erosion and loss of mature trees with little bar development may suggest one of two scenarios in the lower impaired reach. First, the flow regime is or has changed to increase the "geomorphic bankfull" discharge and the channel is now adjusting. However, the adjustment seems to be in width rather than depth which would indicate an aggrading system. Second, the channel could be aggrading due to the volume of sediment being produced in the watershed and aggravated by the obstruction created by the logjams.
- 7. The upper reach represented by cross sections 1 and 2 is definitely downcutting with knickzones present in riffle sections. Cross section 3 is in the flatter middle section and is depositional. Cross sections 4 thru 6 have a steeper channel slope and appear to be transporting sediment from the upper reach to the lower impaired reach.
- 8. Solutions for the DO levels in the impaired reach may include limited re-aeration in this reach and reductions in BOD and SOD demands thru stabilization of the middle and upper reaches. The recommended solutions for stream stabilization will consider the effect on aeration as well as the reduction of woody debris and sediment generated within the stream system.

Recommendations Chapter 1-6

This reach has low DO and low gradient, but also has 235 erosion sites or over 50% of the total erosion sites identified. This reach also has 16 logjams or almost 50% of all those identified. No cross sections were obtained in this reach, however to achieve the objective of reducing sediment and woody debris from bank erosion the recommended solution is to use Stream Barbs for lateral bank protection due to the increased turbulence created over use of Stone Toe Protection or Bendway Weirs. No grade control structures are recommended as the gradient is very low and riffles would not achieve significant reaeration. Also, without a more comprehensive study of this reach, riffles can not be recommended as the potential to increase aggradation cannot be overlooked. Stream Barbs on the other hand will tend to direct flow to the mid channel and by directing flow toward the center have the potential to both limited re-aeration and increase sediment transport by keeping the channel from becoming overwidened which appears to be happening based on the absence of point bars.

•	TREATMENTCHAPTERS 1 THRU 6						
	Lateral Bank Protection with Stream Barbs						
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost		
1	23	350	8050	\$25.00	\$201,250.00		
2	34	350	11900	\$25.00	\$297,500.00		
3	40	350	14000	\$25.00	\$350,000.00		
4	42	350	14700	\$25.00	\$367,500.00		
5	44	350	15400	\$25.00	\$385,000.00		
6	52	350	18200	\$25.00	\$455,000.00		
Total	235		82250		\$2,056,250.00		

Recommendations Chapter 7-8

This reach has a gradient almost three times that of the lower reach (2.65 ft/mi. compared to 0.90 ft/mi.) and has only 62 erosion sites and 3 logjams. The recommended treatment for lateral bank migration in this section will include the use of Stone Toe Protection and/or Stream Barbs as dictated by the stream geometry and cross sections at each site. STP will effectively control the bank erosion and should be used where there is no sediment accumulation on the opposite bank, but STP will not produce as much aeration.

	TREATMENTCHAPTERS 7 and 8						
	Lateral Ba	nk Treatment	with Stream	Barbs or STP			
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost		
7	29	350	10150	\$25.00	\$253,750.00		
8	33	350	11550	\$25.00	\$288,750.00		
Total	62		21700		\$542,500.00		

Table 6	Treatment	Recommendations	Chapter 7 and 8
---------	-----------	-----------------	-----------------

Recommendation Chapter 9-10

This reach is a lower gradient again that the reach immediately above or below and is a depositional reach with a low channel capacity of only about 25% of the 2 yr. storm event. Cross section 3 represents this reach. Although cross section 2 is also in this flatter reach according to the USGS topographic maps and has a low capacity, field checks have identified a hard clay bed and downcutting. Therefore the division between the depositional zone and the downcutting upper reaches need to be better identified with more intense ground truthing.

This report will consider chapters 9 and 10 to be depositional and recommend only treatment with STP given the low width/depth ratios and apparent frequent out of bank flows.

	TREATMENTCHAPTERS 9 and 10							
Lateral Bank Treatment with STP								
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost			
9	29	300	8700	\$25.00	\$217,500.00			
10	33	300	9900	\$25.00	\$247,500.00			
Total	62		18600		\$465,000.00			

 Table 7 Treatment Recommendations Chapter 9 and 10

Recommendation Chapter 11-13

This reach is the upper end of the aerial assessment and represents the highest concentration of depositional features and logjams in spite of the increased gradient. Field observations suggest these features are likely the result of heavy sediment contributions from an actively downcutting system over loading the channels transport capacity. Therefore the recommendation is to extend the information upstream beyond the aerial assessment to determine the exact location and extent of the downcutting. Preliminary calculations show that Rock Riffle Grade Controls can be built in this reach to a height of 1.7 ft. above the flowline with no increase in out of bank flow or backwater. This report will recommend use of Rock Riffle Grade Control Structures at a height of 1.5 ft. and STP in chapters 11-13 with the recommendation that no implementation be planned until a better understanding of the need to extend these practices to the upstream channel is obtained.

	TREATMENTCHAPTERS 11 through 13							
	Lateral Bank Treatment							
Chapter	Erosion Sites	Average Length(ft)	Total Length	Average Cost/foot	Total Cost			
11	38	200	7600	\$25.00	\$190,000.00			
12	41	200	8200	\$25.00	\$205,000.00			
13	27	200	5400	\$25.00	\$135,000.00			
Total	106		21200		\$530,000.00			

	Rock Riffle Grade Control						
Chapter	Number Riffles	Average Tons Stone	Total Tons Stone	Average Cost/ton	Total Cost		
11	65	120	7800	\$30.00	\$234,000.00		
12	55	120	6600	\$30.00	\$198,000.00		
13	36	100	3600	\$30.00	\$108,000.00		
Total	156		18000		\$540,000.00		

 Table 8 Treatment Recommendations Chapter 11 through 13

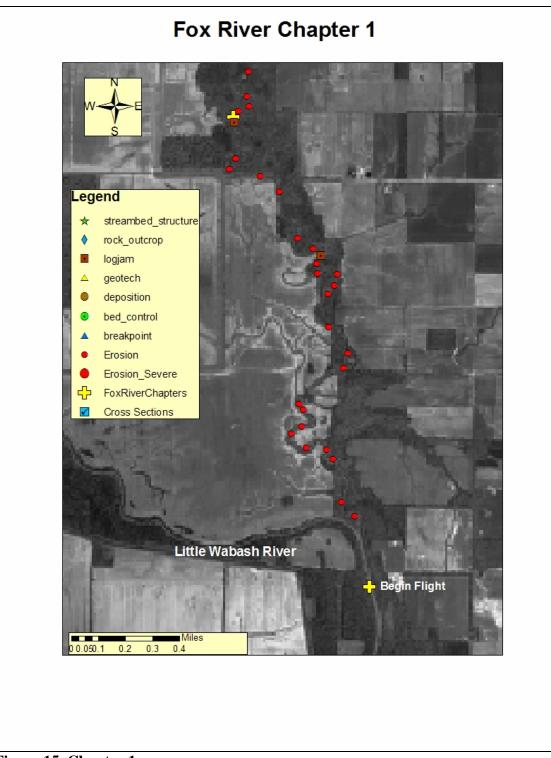


Figure 15 Chapter 1

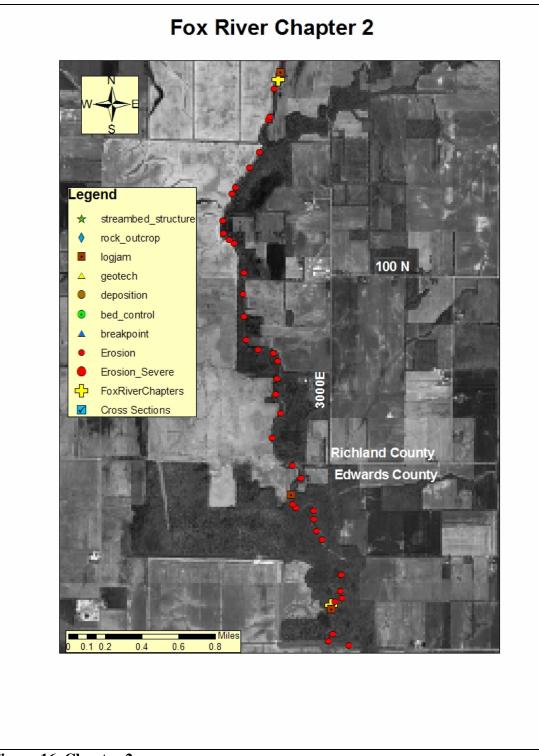


Figure 16 Chapter 2

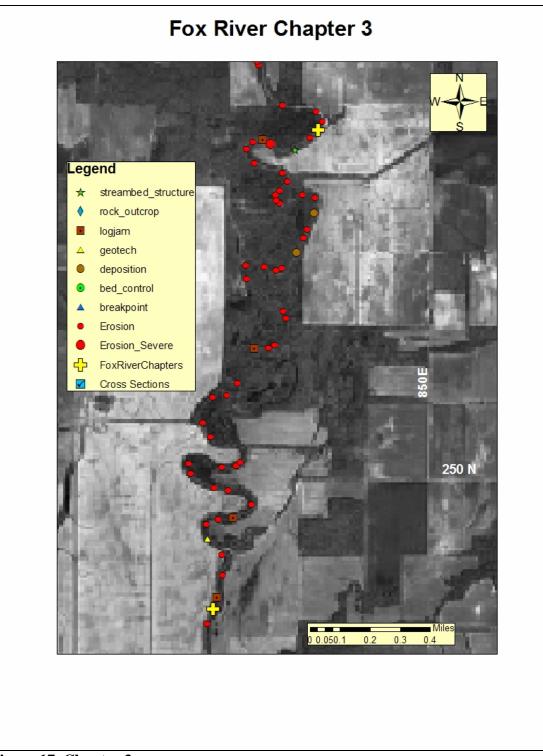


Figure 17 Chapter 3

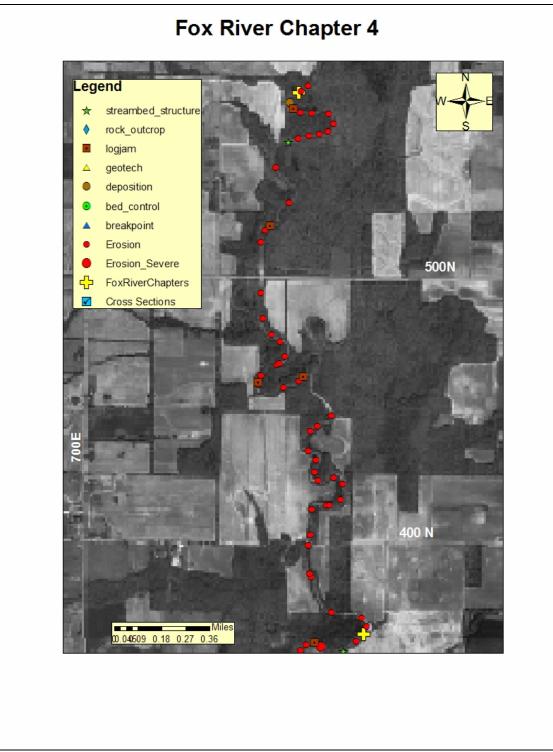


Figure 18 Chapter 4

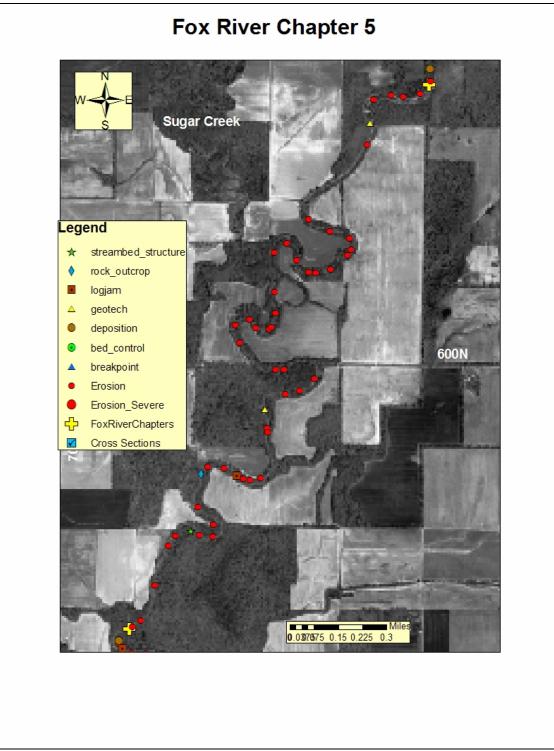


Figure 19 Chapter 5

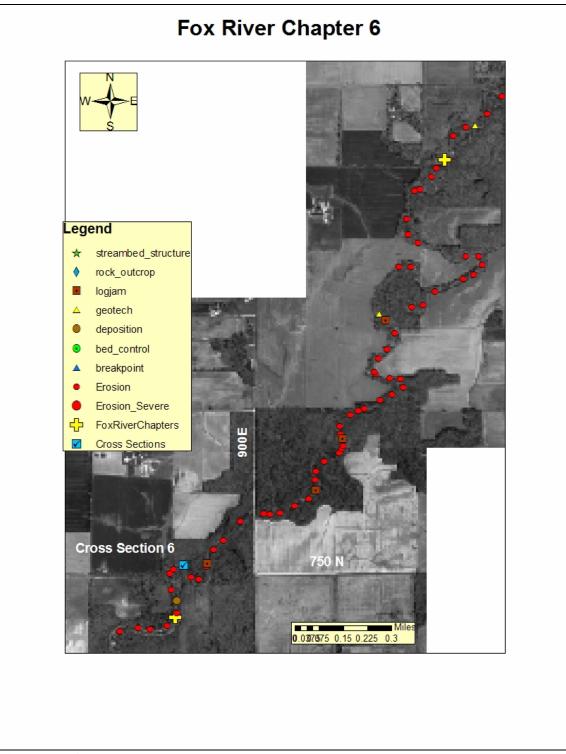


Figure 20 Chapter 6

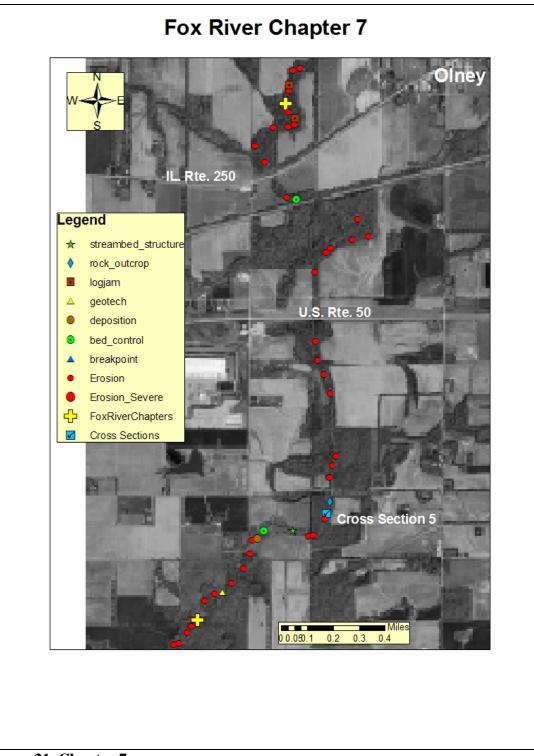


Figure 21 Chapter 7

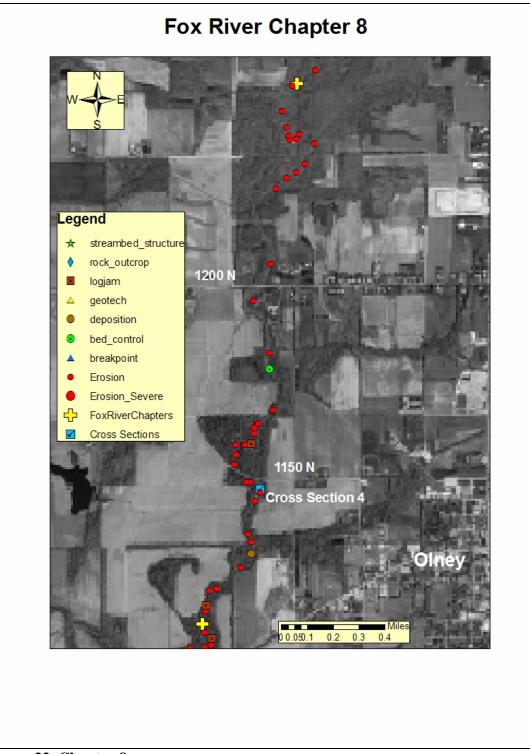


Figure 22 Chapter 8

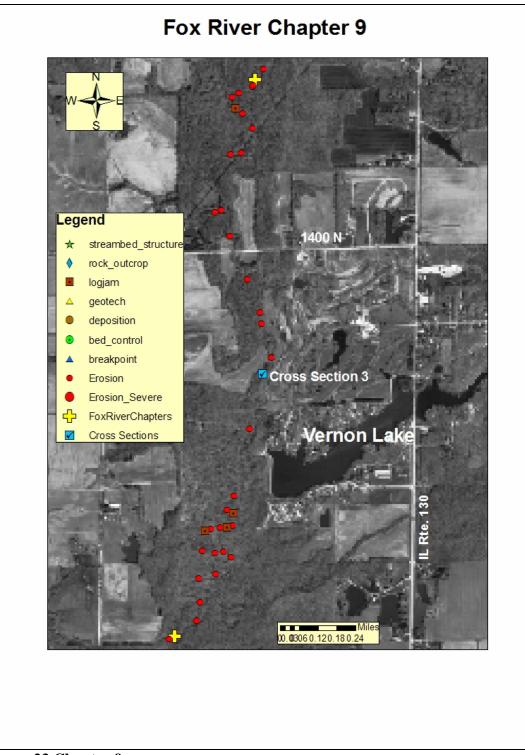


Figure 23 Chapter 9

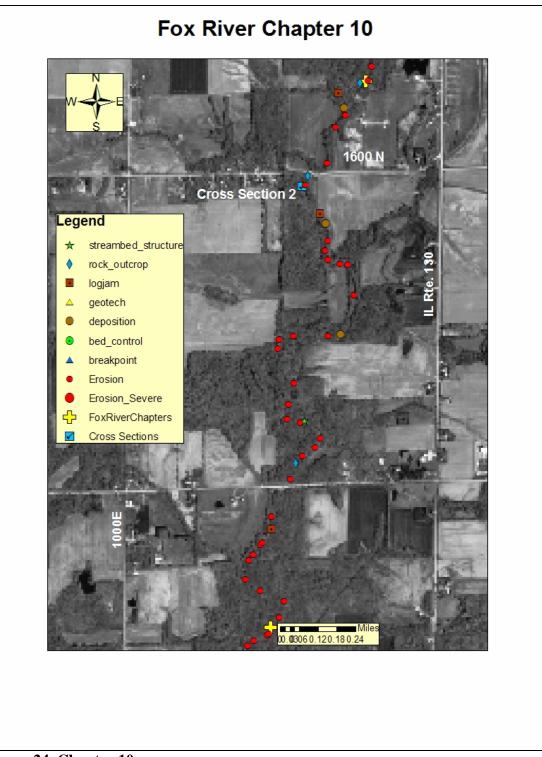


Figure 24 Chapter 10

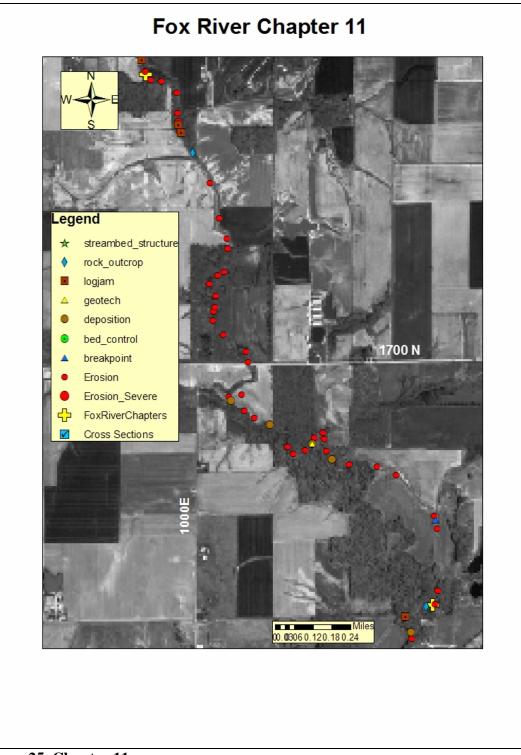


Figure 25 Chapter 11

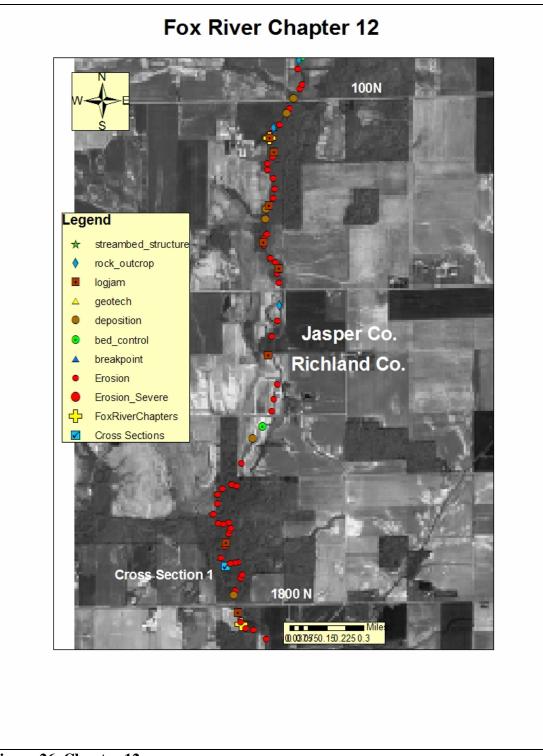


Figure 26 Chapter 12

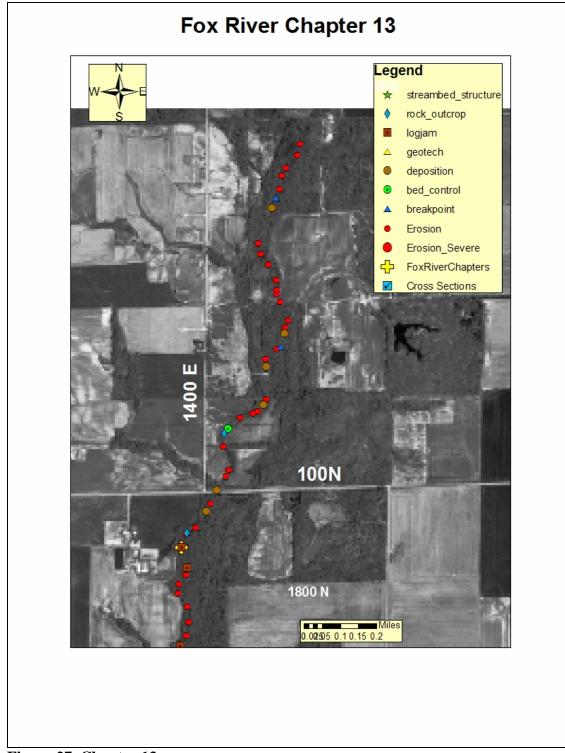
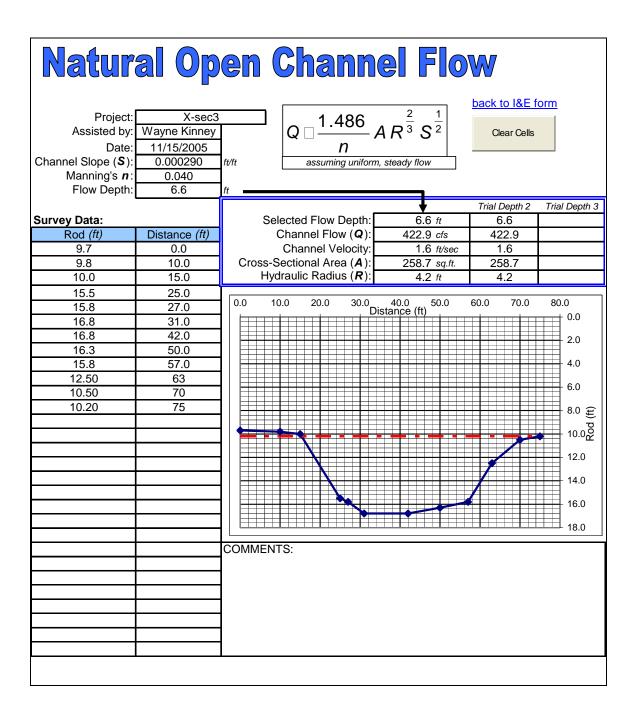


Figure 27 Chapter 13

APPENDIX A

CROSS SECTION DATA


Stream Sto	abilizati	on I & E For	m	ILLINO	IS NRCS - Versi	ion 2.05- modified 9,	/12/04 R.Book	
County	Richland	•	Т	R.		Sec		
Date	11/1	5/2005	Ву	Wayne Kinne	еу			
Stream Name Landowner Nam	e	Fox River X-sec1			UTM Coord.		E403011	N4299092
Drainage Area		<u>28.01</u> sq. m	i.			Clear Cells		
Regional Curve								
Bankfull dimensi	ons	Width Depth	55 ft. 3.9 ft.	Cross Section	onal Area	216	<mark>3</mark> sq. ft.	
Reference Strea	m Gage:							
Little Wabash River	· below Clay C	ity	– r	Station No.	03379500		Gage Q ₂ Regression	13000 cfs
Clay County,	bolott oldy o	IL	L	Drainage Area			•	12500 cfs
Oldy Obdinty,								
USGS Flood-Pea								
Valley Slope:	5.2	ft./mi. (user-enter				-	pression Q ₂	976 cfs
		ft/mi (from works	-		(2 yr, 24 hr)		djusted Q ₂	1015 cfs
	0.0010	ft./ft.	Regional Facto	r <u>1.057</u>		I ypical Rai	nge for Bank	full Discharge: to 820 cfs
							400	10 020 015
Local Stream Mo	orphology:							
Channel De	scription:	(c) Clean, winding,	some pools and shoal	s			-	
Manning's "n"	0.04		·					
			Stream Le	0		ft.		
Basic Field Data:		22 4	Valley Len	-		ft.		
Bankfull Width Mean Bankfull D	onth	33 ft. 3.46 ft.	Contour In Estimated			feet 💌		
Width/Depth Rat		9.54 <i>n</i> .	LStimateu	Sindosity				
		0.01	Channel Slop	be:		Bankfull Q from	:	
Max. Bankfull De	epth	4.8 ft.	Surveyed		ft./ft.	Cross-Section	251	cfs
Width at twice m	•	800 ft.	Estimated	:	ft./ft.	Basic field data		cfs
	(9.6 ft.)					Selected C	256	cfs
Entrenchment R	atio	24.24		Curvature (Rc)		ft.		
			RC/E	Bankfull width:	0.00			
Bankfull Velocity	Check:	(typical Illinois str	eams will have av	erage bankfull	velocity betw	veen 3 and 5 ft/s	ec.)	
Bedload:	D ₉₀	1 🔻 in.	Velocity re	quired to move	e D ₉₀ :	2.1	ft./sec.	
	D ₅₀	in.	Velocity fro	om Cross-Sect	tion data:	2.19	ft./sec.	
GOAL: Develop	confidence	by matching		om basic field o		2.30	ft./sec.	
velocities	from differe	ent sources.	Velocity fro	om selected Q	:	2.2	ft./sec.	
Channel Evolutio	on Stage	III –	Stream T	ype (Rosgen)				
Notes								
0.13 of 100 m								
9.13 cfs/sq. mi.								

Natur	al Op	en Channel Flow
Project: Assisted by: Date: Channel Slope (S): Manning's n : Flow Depth:	X-sec1 Wayne Kinney 11/15/2005 0.000727 0.040 4.8	$ \begin{array}{c} $
Survey Data: Rod (ft) 9.3 8.9 9.5	Distance (ft) 72.0 62.0 59.0	Trial Depth 2 Trial Depth 2 Trial Depth 3 Selected Flow Depth: 4.8 ft 6.5 Channel Flow (Q): 250.6 cfs 394.4 Channel Velocity: 2.2 ft/sec 2.2 Cross-Sectional Area (A): 114.2 sq.ft. 178.8 Hydraulic Radius (R): 3.2 ft 3.3
10.6 13.2 14.0 15.3 15.4 15.3 14.40 12.70 8.10 8.10	55.0 50.0 46.0 42.0 37.0 32.0 27 24 20 10 0	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 0.0 2.0 4.0 6.0 70.0 80.0 2.0 4.0 6.0 70.0 10.0 2.0 4.0 6.0 70.0 10.0 2.0 4.0 6.0 70.0 10.0 2.0 4.0 6.0 10.0 2.0 4.0 6.0 10.0 2.0 4.0 6.0 10.0 2.0 10.0 10
		COMMENTS:

Stream St	abilizati	on I & E For	rm	ILLINOIS NRCS - Ve	rsion 2.05- modified 9	/12/04 R.Book	
County	Richland	•	т.	R.	Sec		
Date	11/1	5/2005	Ву	Wayne Kinney			
Stream Name Landowner Nam		Fox River X-sec2		UTM Coord	d.	E404256	N4295454
	e			-	Clear Cells		
Drainage Area		41.45 sq. m	11.				
Regional Curve			64 ft.	Cross Sectional Area		4	
Bankfull dimensi	ons	Width Depth	64 ft. 4.4 ft.	Cross Sectional Area	28	<mark>1</mark> sq. ft.	
Reference Strea	m Gage:						
Little Wabash Rive	r bolow Clay C	ity	-	Station No. 03379500		Gage Q ₂	13000 cfs
	i below ciay c	IL	<u> </u>	Drainage Area 1131 sq.m			12500 cfs
Clay County,		IL		KEFEKEN	CE STREAM DA		
USGS Flood-Pe	ak Discharg	ge Predictions:					
Valley Slope:	3.7	ft./mi. (user-ente	red)		Reç	gression Q ₂	1129 cfs
		ft/mi (from works	<i>heet)</i> Rainfa	all <u>3.20 in</u> (2 <i>yr,</i> 24 hi	/	Adjusted Q ₂	1175 cfs
	0.0007	ft./ft.	Regional Facto	or <u>1.057</u>	Typical Ra		full Discharge:
						460	to 940 cfs
Local Stream Mo	orphology:						
Channel De		(a) Class winding		le .		-	
Manning's "n"	0.04	(c) Clean, winding	, some pools and shoa	IS			
			Stream Le	ength	ft.		
Basic Field Data:			Valley Ler	ngth	ft.		
Bankfull Width		45 ft.	Contour Ir		feet 🔻		
Mean Bankfull D	•	3.98 ft.	Estimated	Sinuosity			
Width/Depth Rat	tio	11.31					
Max. Bankfull De	onth	5.8 ft.	Channel Slo Surveye		Bankfull Q from Cross-Section		cfs
Width at twice m	•	1000 ft.	Estimated		Basic field data		cfs
	(11.6 ft.)		Louindio		Selected C		cfs
Entrenchment R	atio	22.22	Radius of (Curvature (Rc)	ft.		
			Rc/	Bankfull width: 0.00			
	- · ·						
Bankfull Velocity Bedload:	<u>Check:</u>			verage bankfull velocity be equired to move D ₉₀ :		sec.) ft./sec.	
bedioad.	D ₉₀ D ₅₀	1		om Cross-Section data:	2.1	ft./sec.	
GOAL: Develop				om basic field data:	1.51	ft./sec.	
		ent sources.	,	om selected Q:	1.59	ft./sec.	
Velocities	nom unere	ant sources.	velocity if	un selected Q.	1.5	11./360.	
Channel Evolution	on Stage	III –	Stream 7	Гуре (Rosgen)			
Notes							
6.27 cfs/sq. mi.							
0.21 013/SY. IIII.							

Natur	Natural Open Channel Flow				
Project: Assisted by: Date: Channel Slope (S): Manning's n : Flow Depth:	X-sec2 Wayne Kinney 11/15/2005 0.000290 0.040 5.8	$ \begin{array}{c} $			
Survey Data: Rod (ft) 10.4 9.7 10.9	Distance (ft) 72.0 60.0 53.0	Trial Depth 2 Trial Depth 2 Trial Depth 3 Selected Flow Depth: 5.8 ft 5.8 Channel Flow (Q): 234.3 cfs 234.3 Channel Velocity: 1.3 ft/sec 1.3 Cross-Sectional Area (A): 178.9 sq.ft. 178.9 Hydraulic Radius (R): 3.0 ft 3.0			
14.8 15.3 15.5 15.5 15.3 10.9 8.90 8.70 9.00	47.0 42.0 33.0 25.0 23.0 19.0 13 5 0	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 0.0 2.0 4.0 6.0 6.0 70.0 80.0 10.0 2.0 4.0 6.0 10.0 2.0 4.0 6.0 10.0 2.0 4.0 10.0 2.0 4.0 10.0 2.0 4.0 10.0 2.0 10.0 10			
		COMMENTS:			

Stream Sto	abilizati	on I & E Fo	rm	ILLINOIS NRCS - V	ersion 2.05- modified §	0/12/04 R.Book	
County	Richland	•	Т.	R.	Sec	.	
Date	11/15	5/2005	Ву	Wayne Kinney			
Stream Name		Fox River		UTM Coo	ord.	E404132	N4291675
Landowner Nam	е	X-sec3					
Drainage Area		<u>58.46</u> sq. r	ni.		Clear Cells		
Regional Curve							
Bankfull dimensi	ons	Width Depth	73 ft. 4.9 ft.	Cross Sectional Area	35	<mark>5</mark> sq. ft.	
Reference Strea	m Gage:						
Little Wabash Rive	r below Clay C	ity	-	Station No. 0337950 Drainage Area 1131 sq.		Gage Q ₂ Regression	13000 cfs 12500 cfs
Clay County,	-	IL		-	NCE STREAM DA		12000 013
	alı Diaaharı	na Dradiatiana.					
USGS Flood-Per Valley Slope:	ак Discharg 3.7	ft./mi. (user-ente	ered)		Re	gression Q ₂	1482 cfs
		ft/mi (from work	*	all <u>3.20 in</u> <i>(2 yr, 24 l</i>	hr)	Adjusted Q ₂	1541 cfs
	0.0007	ft./ft.	Regional Facto		•	nge for Bank	full Discharge:
			-			610	to 1240 cfs
Local Stream Mo	orphology:						
Channel De		(c) Cloan windin	g, some pools and shoa	le .		-	
Manning's "n"	0.04	(c) clean, windin	g, some pools and shoa	IS		•	
-		-	Stream Le	ength	ft.		
Basic Field Data:			Valley Ler	°	ft.		
Bankfull Width	anth	60 ft.	Contour Ir		feet		
Mean Bankfull D Width/Depth Rat	•	4.31 <i>ft.</i> 13.92	Estimated	Sinuosity			
Width/Deptil Rat		10.92	Channel Slo	ne.	Bankfull Q from	ı.	
Max. Bankfull De	epth	6.6 <i>ft.</i>	Surveyed		Cross-Sectio		cfs
Width at twice m	ax. depth	1000 ft.	Estimated	d: <u>ft./ft.</u>	Basic field dat	a <u>435</u>	cfs
	(13.2 ft.)				Selected (Q 429	cfs
Entrenchment R	atio	16.67		Curvature (Rc)	ft.		
			Rc/I	Bankfull width: 0.00			
Bankfull Velocity	Check:	(typical Illinois s	treams will have av	erage bankfull velocity b	etween 3 and 5 ft/s	sec.)	
Bedload:	D ₉₀	1 v in.		equired to move D ₉₀ :	2.1	ft./sec.	
	D ₅₀	in.	Velocity fr	om Cross-Section data:	1.63	ft./sec.	
GOAL: Develop	confidence	by matching	Velocity fr	om basic field data:	1.68	ft./sec.	
velocities	from differe	ent sources.	Velocity fr	om selected Q:	1.7	ft./sec.	
Channel Evolution	on Stage	I •	Stream 1	ype (Rosgen)			
Notes							
7.34 cfs/sq. mi.							

Stream St	tabilizat	ion I & E Fo	rm	ILLINOIS NR	CS - Version 2.05-	modified 9/12/04 R.Boo	k
County	Richland	-	т	R.		Sec.	
Date	11/1	15/2005	Ву	Wayne Kinney			
Stream Name		Fox River		UTM	I Coord.	E403456	N4287803
Landowner Nar	ne	X-sec 4					
Drainage Area		<u>65.17</u> sq. r	ni.		Clear	Cells	
Regional Curve							
Bankfull dimens	sions	Width Depth	76 ft. 5.0 ft.	Cross Sectional A	Area	<mark>382</mark> sq. ft.	
Reference Stre	am Gage:						
Little Wabash Riv	er below Clav	City	•		379500	Gage Q	
Clay County,	or bolow only	IL		Drainage Area 113 ⁻ REF		Regression EAM DATA ONLY	12500 cfs
Valley Slope:	eak Dischai 3.1	rge Predictions: ft./mi. (user-ente	ered)			Regression Q	2 1483 cfs
		ft/mi (from work		ifall <u>3.20 in</u> (2 yr	; 24 hr)	Adjusted Q	
	0.0006	ft./ft.	Regional Fac		-	ypical Range for Ba	nkfull Discharge:
						610) to 1240 cfs
Local Stream N	Norphology:						
Channel D Manning's "n"	escription	I: (c) Clean, windin	g, some pools and sh	oals		•	
3		_	Stream	Length	ft.		
Basic Field Data:			Valley L	-	ft.		
Bankfull Width Mean Bankfull	Donth	69 ft. 4.99 ft.	Contour	Interval ed Sinuosity	feet		
Width/Depth Ra	•	13.83	LSumat				
			Channel S			ull Q from:	
Max. Bankfull D	•	6.8 ft.	Survey			s-Section 768	cfs
Width at twice r	max. deptn (13.6 ft.	800 ft.	Estimat	ed: <i>ft./ft.</i>		e field data 840 Selected Q 804	cfs cfs
Entrenchment I		.) <u>11.59</u>	Radius o	f Curvature (Rc)	ft.		
			R	c/Bankfull width:	0.00		
Bankfull Valaai	h. Chaola	(tunical Illinaia a	troome will have	avaraga hankfull vala	aitu batwaan 2	and E ft/acc)	
Bankfull Velocit Bedload:	<u>р Спеск:</u> D ₉₀	1 e in.		average bankfull veloc required to move D ₉₀ :		2.1 ft./sec.	
	D ₅₀	in.	Velocity	from Cross-Section d	ata:	2.23 ft./sec.	
GOAL: Develop	o confidence	e by matching	Velocity	from basic field data:		2.44 ft./sec.	
velocitie	s from diffei	rent sources.	Velocity	from selected Q:		2.3 ft./sec.	
Channel Evolut	ion Stage	IV	Stream	n Type (Rosgen)			
Notes							
12.33 cfs/sq. m							
12.00 013/34.11							

Natur	al Op	en Channel Flow	
Project: Assisted by: Date: Channel Slope (S):	X-sec 4 Wayne Kinney 11/15/2005 0.000502		
Manning's <i>n</i> : Flow Depth: Survey Data:	0.040 6.8	ft Trial Depth 2 Trial	pth 3
Rod (ft) 6.3 7.5 8.5	Distance (ft) 100.0 90.0 80.0	Channel Flow (Q): 768.1 cfs 1,224.7 Channel Velocity: 2.2 ft/sec 2.5 Cross-Sectional Area (A): 344.4 sq.ft. 499.3 Hydraulic Radius (R): 4.4 ft 5.1	
8.0 11.0 11.9 13.8 14.5 14.9 14.70 13.90 12.50 6.90 3.40 	76.0 67.0 62.0 57.0 50.0 42.0 30 19 12 6 0	0.0 20.0 40.0 <u>60.0</u> 80.0 100.0 120.0 0.0 <u>20.0</u> 40.0 <u>Distance (ft)</u> 0.0 2.0 <u>40.0</u> <u>100.0</u> 120.0 2.0 <u>40.0</u> <u>100.0</u> <u></u>	0.0 2000 2000 2000 2000 2000 2000
		COMMENTS:	

Stream St	abilizat	ion I & E Fo	rm	ILLINOIS NR	RCS - Version 2.0	5- modified 9/12/04 R.I	3ook
County	Richland	•	Т.	R.		Sec.	
Date	11/1	5/2005	Ву	Wayne Kinney			
Stream Name		Fox River		UTN	A Coord.	E4033	46 N4284418
Landowner Nar	ne	X-sec5					
Drainage Area		72.87 sq. n	ni.		Clea	ar Cells	
Regional Curve					-		
Bankfull dimens	sions	Width Depth	79 ft. 5.2 ft.	Cross Sectional	Area	412 sq. ft.	
Reference Stre	am Gage:						
Little Wabash Riv	er below Clav	City	-		379500	Gage	
Clay County,	or bolon only	IL		Drainage Area 113 REF		Regress REAM DATA ONL	
USGS Flood-Pe	eak Dischar 3.1	ge Predictions: ft./mi. (user-ente	ered)			Regression	Q ₂ 1620 cfs
		ft/mi (from works	,	fall <u>3.20 in</u> (2 y	r, 24 hr)	Adjusted	
	0.0006	ft./ft.	Regional Fac		-	Typical Range for I	Bankfull Discharge
							670 to 1350 cfs
Local Stream N	lorphology:						
Channel D Manning's "n"	escription	: (c) Clean, winding	g, some pools and sho	pals			•
ina in igo ii	0.0.	_	Stream I	_ength	ft.		
Basic Field Data:			Valley Le	-	ft.		
Bankfull Width Mean Bankfull I	Denth	56 ft. 5.82 ft.	Contour	Interval ed Sinuosity	feet		
Width/Depth Ra	•	9.62	Estimate				
			Channel S			full Q from:	
Max. Bankfull D	•	8.7 ft. 1000 ft.	Survey			oss-Section 826 ic field data 881	
Width at twice r	nax. deptn (17.4 ft.		Estimate	ed:ft./ft.	. Bas	ic field data 881 Selected Q 854	
Entrenchment F		17.86	Radius of	Curvature (Rc)	ft.		
			Ro	c/Bankfull width:	0.00		
Bankfull Velocit	v Check	(typical Illinois s	treams will have a	average bankfull velo	ncity hetween '	3 and 5 ft/sec)	
Bedload:	D ₉₀	1 ▼ in.		required to move D ₉₀		2.1 ft./sec	
	D ₅₀	in.	Velocity	from Cross-Section of	data:	2.53 ft./sec	
GOAL: Develop	o confidence	e by matching	Velocity	from basic field data:	:	2.70 ft./sec	
velocitie	s from differ	rent sources.	Velocity	from selected Q:		2.6 ft./sec	
Channel Evolut	ion Stage	v	Stream	Type (Rosgen)			
Notes							
11.71 cfs/sq. m							
11.71 015/54.11	1.						

Natural Open Channel Flow				
Project: Assisted by: Date: Channel Slope (S): Manning's n :	X-sec5 Wayne Kinney 11/15/2005 0.000502 0.040	$Q \oint \frac{1.486}{n} A R^{\frac{2}{3}} S^{\frac{1}{2}}$ ft/ft $assuming uniform, steady flow$ $back to I\&E f$ $Clear Cells$	orm	
Flow Depth:	8.7	ft	Trial Depth 3	
Rod (ft)	Distance (ft)	Channel Flow (Q): 826.3 cfs 776.8		
7.1	82.0	Channel Velocity: 2.5 ft/sec 2.3		
7.1	70.0	Cross-Sectional Area (A): 326.2 sq.ft. 338.1		
13.6	63.0	Hydraulic Radius (\mathbf{R}) : 5.3 ft 4.6		
14.6	57.0			
16.1	54.0	0.0 20.0 40.0 60.0 80.0 Distance (ft)	100.0	
17.1	48.0		0.0	
15.3	38.0			
15.2	33.0		2.0	
14.3	30.0		4.0	
14.40	21			
9.40	15		6.0	
8.40	12			
8.20	6	┤│ ┞╛╚┉┥╴┼╸╶╷┿╸╶╎┿╸╶╷┿╸┨╸┍┢╵╴	8.0 €	
8.20	0		10.0	
0.20	0			
			12.0	
			14.0	
			14.0	
			16.0	
			18.0	
		COMMENTS:		

Stream St	tabilizat	ion I & E Fo	rm	ILLINOIS NRC	S - Version 2.05- mod	ified 9/12/04 R.Book	
County	Richland	•	Т	R.		Sec.	
Date	11/1	5/2005	Ву	Wayne Kinney			
Stream Name		Fox River		UTM	Coord.	E401250	N4281747
Landowner Nar	ne	X-sec6					
Drainage Area		103.81 sq. n	ni.		Clear Cells		
Regional Curve							
Bankfull dimens	sions	Width Depth	91 ft. 5.8 ft.	Cross Sectional Ar	ea	<mark>524</mark> sq. ft.	
Reference Stre	am Gage:						
Little Wabash Riv	er below Clav	City	-		<mark>9500</mark>	Gage Q ₂	13000 cfs
Clay County,	ci below oldy	IL		Drainage Area 1131 REFE	<u>sq.mi</u> RENCE STREAN	Regression (DATA ONLY	12500 cfs
USGS Flood-Po	eak Dischar 3.0	rge Predictions: ft./mi. (user-ente	ared)			Regression Q ₂	2109 cfs
valley olope.	0.0	ft/mi (from works	<i>,</i>	fall <u>3.20 in</u> (2 vr.)	24 hr)	Adjusted Q ₂	2103 cfs
	0.0006	ft./ft.	Regional Fac			al Range for Bank	
			0			870	to 1760 cfs
Local Stream N	Iorphology:						
Channel D	escription	: (c) Clean, winding	g, some pools and sh	oals		•	
Manning's "n"	0.04		0		0		
Basic Field Data:			Stream I Valley Le	0	ft. ft.		
Bankfull Width		63 ft.	Contour		feet T	•	
Mean Bankfull	Depth	6.59 ft.		ed Sinuosity		_	
Width/Depth Ra	atio	9.56					
		0.5	Channel S		Bankfull Q		
Max. Bankfull D Width at twice r	•	8.5 ft. 1000 ft.	Survey Estimat		Cross-Se Basic field		cfs cfs
width at twice i	(17.0 ft.		Esumai	eu <i>II./II.</i>			cís cfs
Entrenchment I		15.87	Radius of	f Curvature (Rc)	ft.		
			R	c/Bankfull width: 0.	00		
Bankfull Velocit Bedload:	ty Check: D ₉₀			average bankfull veloci required to move D ₉₀ :	ty between 3 and 2.1	5 ft/sec.) ft./sec.	
Deuloau.	D ₉₀ D ₅₀	1 ▼ In.		from Cross-Section da			
GOAL: Develop	••			from basic field data:	2.94	ft./sec.	
		rent sources.		from selected Q:	2.9	ft./sec.	
			,				
Channel Evolut	ion Stage	IV 🔽	Stream	Type (Rosgen)			
Notes							
11 17 of 0/07							
11.47 cfs/sq. m	II.						

Natural Open Channel Flow				
Project: Assisted by: Date: Channel Slope (S): Manning's n :	X-sec6 Wayne Kinney 11/15/2005 0.000502 0.040	$ \begin{array}{c} $		
Flow Depth: Survey Data: Rod (ft) 3.0 3.3 4.0	8.5 Distance (ft) 105.0 100.0 90.0	ft Trial Depth 2 Trial Depth 3 Selected Flow Depth: 8.5 ft 10.2 Channel Flow (Q): 1,161.6 cfs 1,415.5 Channel Velocity: 2.8 ft/sec 2.7 Cross-Sectional Area (A): 415.3 sq.ft. 531.9 Hydraulic Radius (R): 6.2 ft 5.7		
4.9 6.5 11.6 14.2 14.9 14.6 14.80 14.60 14.10 13.50 8.90 5.30 4.9 4.7	87.0 83.0 76.0 70.0 64.0 58.0 50 40 36 30 24 19 10 0	0.0 20.0 40.0 <u>Distance (ft)</u> 80.0 100.0 120.0 0.0 2.0 4.0 6.0 0.0 100.0 120.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
		COMMENTS:		