Stakeholders: Engaging Partners in Watershedbased Planning

Holly Hudson Chicago Metropolitan Agency for Planning

Watershed-based Planning Conference November 30, 2017 Springfield, Illinois **Our Agenda**

What is a stakeholder
Why do we need them
Where do we find them
When & how do we involve them
How do we keep it going

Stakeholder

Person or group who has a *stake* in a process.

responsible for developing or implementing a management action

affected by the action

aid or prevent its implementation

Watershed Stakeholders – what they bring

- Local knowledge, input
- Trust & support
- Shared responsibility
- Adoptable solutions
- Stronger working relationships
- Enhanced communication & resource coordination
- Plan implementation

Watershed Planning Steps

From Handbook for Developing Watershed Plans to Restore and Protect our Waters (USEPA, 2008)

Watershed Stakeholder Hideouts

Source: Univ. of Wisconsin - Extension and Wisconsin DNR

Nonpoint Source (NPS) Pollution

Stakeholder Categories

Technical Experts

Specific knowledge & skills, Advisors, Decision makers

Interested Folks

Want to contribute

General Public

"Population uninterested or unaware of environmental implications of their everyday actions."

Watershed Stakeholder Categories

- Responsible for implementing
- Affected by implementation
- Can provide information on issues and concerns
- Have knowledge of existing plans, policies, politics, programs
- Can provide data
- Can provide technical or financial assistance in developing and/or implementing the WBP

Watershed Stakeholders – a diversity of people and groups

- Homeowners, HOAs
- Farm owners, operators
- Business & industry reps
- Schools, Colleges, Universities
- Community service orgs
- Religious orgs
- Libraries
- Land trusts
- Native American tribes
- Environ/Conserv groups

- Vol monitors/stewards
- Recreation-based clubs: fishing, hunting, sailing, canoeing, rowing ...
- Municipal, Twp, County, State, Fed gov't agencies
- Regional planning cmsn.
- Park / Forest Preserve Districts
- Soil & Water Cons. Dists.
- Irrigation Dists.
 -

Engaging Stakeholders in Watershed Planning

No "one size fits all" approach

Each process ~ unique

Consider:

- Motivation / Driving forces
- Internal goals
- Political climate

- Geography: scale, location
- **Time**
- Budget

Engaging Stakeholders in Watershed Planning

- Build contact list
- Determine structure
- Consider communication pathways

Convene stakeholders

Onward to Implementation!

- Determine how continue to operate, secure funding support
- Prepare work plans
- Encourage action
- Share results

Photo from: http://www.hickorycreek watershed.org/bioblitz-2016/bio-blitz-2016/

Evaluate & make adjustments

Stakeholder Engagement Resources

Guidance for Developing Watershed Action Plans in Illinois (CMAP & IEPA, 2007)

http://www.cmap.illinois.gov/livability/water/water-qualitymanagement/watershed-planning

Handbook for Developing Watershed Plans to Restore and Protect our Waters (USEPA, 2005) https://www.epa.gov/sites/production/files/2015-09/documents/2008_04_18_nps_watershed_handbook_handbook -2.pdf

Getting in Step: Engaging and Involving Stakeholders in your Watershed (2nd Ed.) (USEPA, 2013) <u>https://cfpub.epa.gov/npstbx/files/stakeholderguide.pdf</u>

Watershed Academy Web http://cfpub.epa.gov/watertrain/index.cfm

Watershed Stakeholders in Review

Questions? Cheers?

Holly Hudson Sr. Aquatic Biologist 312-386-8700 hhudson@cmap.illinois.gov

Chicago Metropolitan Agency for Planning 233 S. Wacker Drive, Suite 800 Chicago, IL 60606 <u>www.cmap.illinois.gov</u>

Causes & Sources of Pollution, Load Reductions & Management Measures Watershed-Based Planning Conference

Jeff Boeckler Northwater Consulting

Watershed Plan

- A watershed description and characterization
- Estimates of pollution loading
- Causes and sources
- Strategies (practices) to reduce loading and estimates of expected load reductions
- Critical areas and priorities
- Goals & targets
- Milestones and cost estimates
- Education and outreach
- Monitoring

Causes of Pollution

- Typically established by regulatory agencies
 - Pollutant impacting support of a designated use
 - Aesthetic quality
 - Aquatic life
 - Fish consumption
- Can be a pollutant with/without a regulatory standard
 - Phosphorus standard for lakes but not streams
 - Can cause algal blooms

Causes of Pollution

- Total Suspended Solids
 - Degrades aquatic habitat, impacts water chemistry, and transports other pollutants

Mercury

 Public health issues if in fish that are consumed

Source

Analysis

- Meaningful source assessment is critical for prioritization
- Simply stating sources is inadequate
 - Analysis is critical
 - Stating something is a source if it is not is both misleading and counterproductive

Why do it Right?

- Lends validity to the process and plan
- Avoids making recommendations that will not adequately address the problem

Source Assessment

In Lake Springfield, golf courses listed as a potential nutrient source in TMDL and water quality report Golf courses are responsible for less than 1% of phosphorus load Crop ground: • Lake Springfield – 94% of N and 87% of P • Waverly – 81% of N and 70% of P **Otter Lake** 63% of eroding gullies responsible for 90% of gully sediment load

Useful Tools/Techniques for Source

Assessment

- GIS mapping and analysis
 - Layers readily available
 - Can overlay and evaluate with other layers
 - Analysis to identify locations of pollutant sources
 - Custom layers landuse
- Field assessments and direct measurements
 - Lake bank and streambank assessment
 - Watershed surveys

Landuse

- Understanding of type, quantity, and distribution of landuse and landcover
- Understanding of pollution sources
- Critical for modeling and analysis
 - Crap in is crap out

2900950.461 2397843.436 Feet

10:41 AM 8/5/2017

0

Stream/Lake Bank Erosion

- Quantify source loads
 - Nutrient and sediment
- Aids in prioritization and site selection
- Direct

measurements are critical or source locations can be mischaracterized

Shoreline Erosion Lake Springfield

- Shoreline erosion minimal
- 912 tons/yr Sediment (0.6%)
- 1,049 lbs/yr Phosphorus (0.5%)
- 2,098 lbs/yr Nitrogen (0.6%)

Waverly

- Lake shoreline erosion is responsible for 6% of the lakes' P load and 9% of its sediment load
 - 19% of banks
 responsible for 84% of the
 shoreline phosphorus load
 and 81% of the sediment
 load

Otter

 15% of shoreline responsible for 80% of N, 79% of P, and 78% of sediment load from shorelines

Soils

- Soil types, properties, and distribution
 - Hydrologic groupings
 - Septic suitability
 - Erosion potential (HEL)
- Critical for modeling
- Combine with other layers to draw meaningful conclusions on sources

HEL Soils Analysis

• In Lake Springfield:

- 56% of all cropped HEL soils are conventionally tilled
- 35% of entire sediment load originating from crop ground is from 6,952 acres (6%) of cropped HEL soils
 In Waverly Lake:

39% of entire sediment load from crop ground is originating from only 6% of all crop ground acreage – Conventionally tilled HEL

Water Quality Targets

- Several ways to skin this cat:
 - Based on TMDL modeling and percent reduction needed to meet a standard
 - Based on Illinois Nutrient Loss Reduction Strategy
 - Something more subjective
 - In Lake Springfield:
 - 93% reduction needed to meet P standard (TMDL)
 - 54% reduction in sediment needed (TMDL)
 - In Waverly Lake
 - 82% reduction needed to meet P standard (TMDL)
 - 82% reduction in sediment
 - 45% reduction in nitrogen (INLRS)
Lake Springfield

- All watershed practices outlined in the plan can:
 - Reduce total N load by 48%
 - Reduce total P load by 53%
 - Reduce total Sediment load by 59%
 - Additional reductions are still needed to meet phosphorus standard and may require:
 - In-lake sediment traps
 - Management of phosphorus rich sediment
 - conversion of crop ground to prairie or forest

Waverly Lake

ТҮРЕ	Quantity	N Reduction (% of total load)	N Reduction (% of P Reduction (% of total load) total load)	
Cover Crop	330 (ac)	1.26%	0.75%	0.66%
No-Till/Strip-Till	4,334 (ac)	23.2%	19.93%	26.05%
Filter Strip	1.3 (ac)	0.5%	0.83%	1.25%
Field Border	61.6 (ac)	4.56%	3.98%	3.77%
Grass Conversion	16.3 (ac)	0.11%	0.06%	0.03%
Grade Control	33 (#)	0.49%	1.07%	1.52%
Streambank/Riffle	233 (ft) / 6 (#)	0.94%	1.84%	2.54%
Livestock Waste System	1 (#)	0.05%	0.05%	0.004%
Livestock Fencing/Crossing	6,708 (ft) / 3 (#)	0.24%	0.12%	0.03%
Grassed Waterway	15,367 (ft) / 18.3 (ac)	5.31%	5.4%	6.75%
In-Lake Low-flow Dam	1,960 (ft)	12.19%	22.55%	29.36%
WASCB	109 (#) / 16,350 (ft)	2.8%	5.14%	6.06%
Wetland	3 (ac)	0.67%	0.91%	1.21%
Pond	39 (#)	4.22%	5.01%	5.84%
Lake Shoreline Stabilization	6,418 (ft)	2.73% 5.37%		7.50%
Nutrient Management (Plan)	4,620 (ac)	5.69%	8.19%	0%
Septic Systems	14 (#)	1.12%	1.93%	0%
Dredging	N/A	0%	2.76%	N/A
Total		66%	86%	93%

Pollution Loading & Modeling

- Model selection generally based on the question that needs to be answered
 - Different models are needed to quantify in-lake nutrient concentrations vs stream loads
 - Different models are needed for different pollutants
- All models have limitations
 - Crap in is crap out
 - Data intensive if more accurate predictions are desired
 - Calibration using sampled data is important BUT data often lacking

SWAMM

- Spatially explicit GIS based nonpoint source model
- Shares characteristics with other models such as SWAT and pLoad except:
 - Can evaluate loading at the field level
 - Can evaluate the exact placement of treatment practices
 - Can be visualized in map format
- It is relatively simple, relying on good input data for accurate outputs rather than complicated equations
- Easy to perform needed analysis
 - Load allocation and load reductions

Landuse Category	Acres	Nitrogen Load (lbs/yr)	Per Acre	Phosphorus Load (lbs/yr)	Per Acre	Sediment Load (tons/yr)	Per Acre
Row Crops	8,948	88,903	10	9,295	1.0	8,038	0.90
Open Water Pond/Reservoir	817	2,577	3.2	172	0.21	5.2	0.01
Forest	1,533	1,892	1.2	209	0.14	38	0.03
Pasture	145	957	6.6	93	0.64	10	0.07
Urban Open Space	352	773	2.2	45	0.13	7.7	0.02
Roads	89	609	6.8	90 1.0 17		0.19	
Grassland	854	401	0.5	73 0.09 11		11	0.01
Open Water Stream	22	236	11	21	0.92	0.29	0.01
Farm Building	23	132	5.7	8.1	0.35	1.6	0.07
Rural Residential	51	129	2.5	18	0.35	2.4	0.05
Camp Ground	17	88	5.3	11	0.64	2.7	0.16
Feed Area	2.6	33	13	5.6	2.1	0.32	0.12
Wetland	32	31	1.0	2.2	0.07	0.35	0.01
Utilities	10	20	2.0	4.7	0.46	0.48	0.05
Cemetery	0.92	0.69	0.75	0.10	0.11	0.01	0.01
Total	12,898	96,782	7.5	10,047	0.78	8,135	0.63

Lake Springfield Nitrogen Loading -Runoff

- Model calibrated to in-stream data
- Annual Nitrogen load 2,281,826
 lbs or 13.51 lbs/ac (98%)
 - 94% from crop ground (50% of this is tile flow)
- South Fork Lick Johns Creek 17.11 lbs/ac/yr (24%)
- Panther Creek 16.6 lbs/ac/yr (11%)

Waverly Lake

- Total nutrient and sediment loading to Lake Waverly is: 39,698 lbs/yr nitrogen, 8,990 lbs/yr phosphorus, 7,074 tons/yr sediment.
 - Row crops: 78% of nitrogen, 67% of phosphorus, 66% of sediment

Best Management Practices

- Must be specific
 - Tied to an ACTUAL location
 - Focused the greatest bang-for-the-buck; lowest per dollar load reductions
 - Education and outreach can be more general because it is
 - Must address the actual problems and be cost-effective
 - Avoid broad recommendations, those that are unrealistic, or those that poorly thought out (lazy)
 - IE recommending buffer strips on streams where there are no streams

BMP Expected Pollutant Removal Efficiencies

ВМР	Reduction % Nitrogen	Reduction % Phosphorus	Reduction % Sediment		
WASCB/Terrace ^{1,3}	20%	60%	70%		
Grade Control/Riffle ¹	2%	5-10%	10-15%		
Detention Basin/Pond	22-31%	34-50%	60-70%		
Pasture Management System	40%	45%	65%		
Feed Area Waste System	80%	90%	90%		
Grassed Waterway ³	30%	25%	45%		
Filter Strip/Field Border	10%	40%	65%		
Saturated Buffer ⁴	50%	0%	0%		
In-Lake/Low Flow Dam	10-30%	10-30%	20-40%		
Livestock Stream Fencing	40%	45%	65%		
Wetland ²	20-90%	10-90%	38-95%		
No-Till/Strip Till	10%	50%	70%		
Cover Crop	30%	30%	40%		
Nutrient Management (Plan) ⁴	15%	7%	0%		
Bioreactor ⁴	40%	0%	0%		

Туре	Quantity	Area Treated (ac)	Nitrogen Reduction (lbs/yr)	Phosphorus Reduction (lbs/yr)	Sediment Reduction (tons/yr)
Cover Crop	85 locations	658	1,636	188	207
No-Till/Strip-Till	443 locations	8,263	8,334	4,329	5,262
Saturated Buffer	13 structures	628	1,653	0	0
Denitrifying Bioreactor	76 locations/82 structures	4,097	6,622	0	0
Filter Strip	15 locations / 24.2 ac	774	841	331	319
Field Border	47 locations/73.6 ac	1,989	1,681	662	769
Grade Control	5 locations/10 structures	481	297	45	93
Livestock Waste System	4	1.03	9.5	1.9	0.1
Pasture Management/ Fencing	2,695 ft / 2 locations	11.3	99.41	10.37	2.20
Grassed Waterway	11,006 ft/12.51 ac	789	2,498	238	385
New In-Lake / Low-flow Dam	3 structures	2,091	4,262	279	554
Existing In-Lake / Low-flow Dam	13.6 ac	6,944	6,360	664	1,098
WASCB/Terrace	36 structures/ 5,540 ft	87	520	111	158
Constructed Wetland	14 locations/22.8 ac	2,149	4,412	283	667
Pond	17 structures	782	2,669	361	598
Nutrient Management (Plans)	8,948 ac	8,948	13,335	651	0
Streambank Stabilization / Riffle	14 locations/26 riffles/1,550 ft	N/A	631	171	159
Lake Shoreline Stabilization	23,792 ft	N/A	1,391	2,211	3,429
Septic Systems	22 (#)	N/A	686	268	0
Total		38,692	57,937	10,804	13,700

Lake Springfield -No-Till

- Possible on 109,083 ac
- Annual Nitrogen reduction = 599,141 lbs
- Annual Phosphorus reduction = 49,728 lbs
- Annual Sediment reduction = 58,138 tons

Lake Springfield -Filter Strips

- 324 ac possible (440,200 ft)
- Annual Nitrogen reduction = 54,298 lbs
- Annual Phosphorus reduction = 9,279 lbs
- Annual Sediment reduction = 9,651 tons

Questions?

Watershed-based Planning:

Management Measures and Implementation Schedule Elements C & F

> Watershed-based Planning Conference November 30, 2017

Describe management measures that will achieve load reductions and targeted critical areas

Prerequisites for recommending best management practices (BMP)

- Identify sources of pollutants and impairments to waterbodies
- Define pollutant loads for watershed and subwatersheds
- Develop pollutant load reduction targets

BMP Checklist

- Identify potential BMP
- Goals of the Plan
- Watershed Council/ Public input
- Land Use
- Site-specific/ Watershed-wide measures
- Load Reductions

• Cost

Identify Potential BMP

- Create a list of BMP
- Find speakers to discuss successful implementation

	BEST MA	NAGEMENT PRACTICES IDEAS
	STRUCTURAL	NONSTRUCTURAL
_	Contour buffer strips	Brush management
	Grassed waterway	Conservation coverage
	Herbaceous wind barriers	Conservation tillage
	Mulching	Educational materials
R	Live fascines	Erosion and sediment control plan
5	Live staking	Nutrient management plan
5	Livestock exclusion fence (prevents	Pesticide management
R	livestock from wading into streams)	Prescribed grazing
AG	Revetments	Residue management
	Riprap	Requirement for minimum riparian buffer
	Sediment basins	Rotational grazing
	Terraces	Workshops/training for developing nutrient management
	Waste treatment lagoons	plans
	Broad-based dips	Education campaign on forestry-related nonpoint source
	Culverts	controls
	Establishment of riparian buffer	Erosion and sediment control plans
_	Mulch	Forest chemical management
E I	Revegetation of firelines with adapted Fi	Fire management
ES	herbaceous species	Operation of planting machines along the contour to avoid
ö	Temporary cover crops	ditch formation
<u> </u>	Windrows	Planning and proper road layout and design
		Preharvest planning
		Training loggers and landowners about forest management
		practices, forest ecology, and silviculture
	Bioretention cells	Planning for reduction of impervious surfaces (e.g., eliminating
	Breakwaters	or reducing curb and gutter)
	Brush layering	Management programs for onsite and clustered
	Infiltration basins	(decentralized) wastewater treatment systems
	Green roofs	Educational materials
	Live fascines	Erosion and sediment control plan
	Marsh creation/restoration	Fertilizer management
3	Establishment of riparian buffers	Ordinances
3B/	Riprap	Pet waste programs
5	Stormwater ponds	Pollution prevention plans
	Sand filters	No-wake zones
	Sediment basins	Setbacks
	Tree revetments	Stormdrain stenciling
	Vegetated gabions	Workshops on proper installation of structural practices
	Water quality swales	Zoning overlay districts
	Clustered wastewater treatment	Preservation of open space
	systems	Development of greenways in critical areas
	* BMP are not exclusive to one category	1

BMP Considerations

Goals of the Plan

- Incorporate objectives in plan with BMP selection
- Goals and BMP selection can vary in size and scope

Public Input

- Local knowledge of watershed issues
- Attempt to reach out to larger group beyond planning council
- Public meetings

Public Input

- Watershed Planning Committee suggestions
- Public input and acceptance of proposed BMP
- May require meeting with individuals or groups

Hurricane Creek Watershed BMP Worksheet											
ВМР	Target Area (Be as specific as possible)	Amount (If applicable)	Unit (If applicable)								
e.g. Bioswales	E Cherry St. between 148 and N 14th St Herrin,IL	450	square feet								
e.g. Dry Detention Area	Intersection of N 43rd St. and Herrin-Colp Rd.	13,068	square feet								
e.g. Permeable Pavement	Herrin High School Parking Lot	14,500	square feet								
e.g. Streambank Stabilization	Hurricane Creek, North of Herrin-Colp Rd.	1,400	feet								

Land Use

Agricultural/ Forested/ Urban

- Land use in Illinois
- Can dictate types of BMP
- Various limitations for each category

ce: Living History Farm

Location of Management Measures

- Watershed-wide practices
- Site-specific BMP

Load Reductions

- Calculate load reductions for BMP
 - Various models
- Load reductions should be for watershed-wide and site-specific BMP
- Consider reduction targets

DMD	Amount	1 Junit	Load Reduct	tions- lbs/ yı	r (N,P, TSS, B	OD, COD), t	on/yr- (Se	ediment)
DIVIP	Amount	Unit	Ν	Р	Sediment	TSS	BOD	COD
Conservation Tillage	306.5	acres	1467 786 671 -		-	-		
Green Roof	2	acres	17	1	-	1723	86	471
Porous Pavement	20	acres 784		59	-	92934	-	34608
Streambank Stabilization	ambank Stabilization 43,349		4421.6	2210.8	2210.8	-	-	-
		TOTALS:	6689.6	3056.8	2881.8	94657	86	35079
			Ν	Р	Sediment	TSS	BOD	COD

General Area		Man	Target Area				Load Red	ductions- lbs/	vr (N.P. TSS.	BOD. COD).	ton/vr- (Sed	iment)	
(Contributing Area)	ВМР	ID	(Reach Code)	Amount	Unit	N	Р	Sediment	TSS	BOD	COD	к	Priority
		19	7140106001218	196	feet	59	32	29	-	-	-		
	A suis da una l Filas a Cauia	20	7140106001218	3543	feet	873	468	405	-	-	-	-	н
	Agricultural Filter Strip	21	7140106001218	1340	feet	383	205	182	-	-	-	-	Н
		22	7140106006989	503	feet	59	32	29	-	-	-	-	L
		47	7140106001218	587	feet	40.9	20.5	20.5	-	-	-	-	L
		48	7140106001218	897	feet	62.5	31.3	31.3	-	-	-	-	L
		49	7140106001218	713	feet	277.3	138.6	138.6	-	-	-	-	L
North Herrin	Grassed Waterways	50	7140106001218	547	feet	72.1	36	36	-	-	-	-	L
Tributany	Grassed Water ways	51	7140106001218	1111	feet	136	68	68	-	-	-	-	L
moutary		52	7140106001218	403	feet	17.6	8.8	8.8	-	-	-	-	L
		53	7140106001218	252	feet	16.1	8	8	-	-	-	-	М
		54	7140106001218	375	feet	37.3	18.7	18.7	-	-	-	-	М
	Streambank Stabilization	86	7140106001218	206	feet	7	3.5	3.5	-	-	-	-	L
	Streambark Stabilization	87	7140106001218	1052	feet	36	18	18	-	-	-	-	М
		106	7140106001218	1304	feet	79	10	-	7773	375	2061	-	М
	Vegetative Filter Strip	109	7140106001218	194	feet	3	0	-	825	13	176	-	L
		110	7140106001218	1087	feet	13	2	0	1196	59	297	-	L
	Agricultural Filter Strip	8	7140106001217	441	feet	22	12	11	-	-	-	-	L
	Agricultur ar ritter Strip	9	7140106001217	492	feet	110	59	54	-	-	-	-	L
		37	7140106001217	348	feet	76.9	38.5	38.5	-	-	-	-	М
		38	7140106001217	799	feet	108.7	54.3	54.3	-	-	-	-	М
	Grassed Waterways	39	7140106007055	521	feet	62	31	31	-	-	-	-	L
South Herrin		40	7140106007055	829	feet	98.7	49.3	49.3	-	-	-	-	L
Tributary		41	7140106007055	360	feet	32.1	16.1	16.1	-	-	-	-	L
	Detention Basin	29	7140106001217	10	acres	18	2	-	3564	61	290	-	М
	Detention Dasin	30	7140106001217	12	acres	14	2	-	2398	36	184	-	М
		82	7140106001217	520	feet	265.2	132.6	132.6	-	-	-	-	н
	Streambank Stabilization	83	7140106001217	955	feet	568.4	284.2	284.2	-	-	-	-	н
		91	7140106001217	473	feet	32	16	16	-	-	-	-	М
					TOTALS:	3579.8	1797.4	1683.4	15756	544	3008	0	
						N	Р	Sediment	TSS	BOD	COD	К	

- Weigh various components of management measures with cost
 - Goals
 - Load reductions
 - Cost Effective

Final Selection of BMP

- List of Potential BMP
- Watershed Committee and public input
- Consider previous components
- Prioritize BMP
- Other considerations
 - Structural vs. non-structural
 - Labor
 - Legal requirements/ ordinances
 - Other benefits

Element F:

Develop an Implementation Schedule

Part of the overall implementation program that can:

- Provide a timeline for goals and objectives
- Guide development of the plan
- Prioritize BMP in plan

Timeline for Goals and Objectives

• Helps guide implementation of plan

- Can include general goals or specific BMP
 - This includes other components of plan

• Schedule can be divided into phases and other increments

Element F

	Pha	se l		Pha	se ll		Phase III			
🕻 🛛 Target 🌽	Short-te	rm (2 yr)		Mid-term (3-6 yr)			Lo	ong-tern	ו (7-10 y	r)
	1	2	3	4	5	6	7	8	9	10
Establish watershed action committee	х									
Hold public meetings to gain input	х	х	х	x	х	х				
Post watersheds sign for public awareness and BMP implementation	х	х	х	x	х	х	х	х	х	х
Create a website for watershed activities and key dates		х								
Enlist volunteers for litter cleanup days	х	х	х	x	х	х	х	х	х	х
Distribute flyers for stormwater mana gement and similar topi cs	х		х		х		х		х	
Hold workshops to inform public on stormwater management		х		x		х		х		
Continue researching funding and technical assistance	х	х	х							
Select site-specific BMPs for preliminary designs	х	х	х							
Submit grant applications based on BMPs in plan		х	х	x	х	х	х	х		
Meet with landowners to review BMPs in plan		х	х	x	х	x	х	х		
Implement and execute BMPs			х	x	х	х	х	х	х	х
Monitor BMP implementation				x	х	х	х	х	х	х
Announce success of plan implementation					х	х	х	х	х	х

Phases and Quarters

Target	Pha	se l		Pha	se ll			Pha	se III	
	Short-te	rm (2 yr)	Mid-term (3-6 yr))	Long-term (7-10 yr)			
	1	2	3	4	5	6	7	8	9	10

Phase I Goals

- Short-term (o-2 years)
- Immediate actions
- Public participation
- BMP selection

Phase II Goals

- Mid-term (3-6 years)
- Bulk of components
- BMP applications and implementation
- Continued public participation
- Monitoring

<u>Phase III Goals</u>

- Long-term (7-10 years)
 - Monitor implementation

- Continued BMP implementation
- Continued public participation
- Review plan

Element F

Key Components of Elements C & F

Management measures:

- Incorporate goals in plan
- Involve various groups and public
- Meet load reduction targets
- Be cost effective

Implementation Schedule:

- Part of overall implementation and monitoring strategy
- Use a timeline for goals and objectives
- Helps guide development of plan
Questions/Comments

Tyler Carpenter Greater Egypt 618-997-9351 tylercarpenter@greateregypt.org

Technical & Financial Assistance; Relevant Authorities; and Information & Education Outreach Requirements for a WBP

> Randy Stowe Nippersink Watershed Association www.nippersink.org nippersinkcreek@gmail.com

Nippersink Creek Watershed

• Description of technical and financial assistance (i.e., amount, estimate costs, sources) for the WBP.

Once a WBP has been prepared, and has been approved by USEPA / IEPA, watershed stakeholders can apply for Section 319 funding cost-share grants through IEPA to help implement water quality BMP projects identified in the plan.

If a Section 319 grant is awarded, the 319 grant will provide up to 60% of the project cost; with the applicant required to provide the remaining 40% portion as local cost-share match. Local cost-share match can come from a variety of sources, as long as they are "non-federal" dollars. This match can be provided as cash from the cooperating stakeholder(s); other "non-federal" grants; approved donated services; and even the value of a conservation easement placed on land critical to water quality protection.

While the exact source and composition of this local cost-share funding, or final project cost, may not be known until a particular BMP project is ready to be implemented, <u>potential</u> sources of technical and financial assistance must be identified in the WBP in order to be approved as a compliant "9-element" plan.

• Description of technical and financial assistance (i.e., amount, estimate costs, sources) for the WBP.

Some of the most important considerations in preparing to implement WBP Best Management Practices include identifying the potential logistics / costs of initially designing the project and securing any required regulatory approvals. This is in addition to the actual cost of the BMP implementation itself.

To receive Section 319 funding, IEPA generally requires that any "constructiontype" BMP will need plans prepared by a Professional Engineer, USDA-NRCS staff, or a NRCS certified Technical Service Provider. Depending on your area, the costs and availability of these services may vary greatly, and should be budgeted accordingly.

Similarly, any "construction-type" BMP will also typically require regulatory permits or written clearance from a variety of agencies, including, but not limited to: U.S. Army Corps of Engineers; U.S. Fish and Wildlife Service; Illinois Department of Natural Resources – Office of Water Resources; IEPA Water Quality Section; Illinois DNR Endangered Species; Illinois Historic Preservation Agency; local County & Municipal entities, etc.

• Description of technical and financial assistance (i.e., amount, estimate costs, sources) for the WBP.

For more common BMP's, potential design / permitting / construction cost estimates may be available from local resource agencies, consultant's, or land improvement contractors.

As a significant amount of time may pass before a specific WBP recommended BMP is actually implemented, it is critical that consideration be given to factoring in some type of "cost-of-living" increase adjustment when budgeting BMP projects during the WBP planning process. Often, a 3% to 5% per year adjustment factor is warranted.

The estimated cost of installing required Soil Erosion and Sediment Control (SESC) practices; regulatory permit and SESC inspection fees; or other costs required to implement a BMP project should also be included in the budget.

Finally, Section 319 grants typically require that a 10-year operation and maintenance (O&M) plan be implemented upon completion of the BMP to ensure its success. While this O&M cost is typically not eligible for Section 319 funding, the cost of implementing the O&M plan should be considered.

• Who are the parties (i.e., authorities) needed to implement the WBP?

Unless situated entirely on a privately owned parcel, it often takes more than one "party" to move a WBP recommended BMP to actual implementation.

In addition to the landowner, these parties could include:

- County and/or local municipalities that might have some type of regulatory permit oversight, potential in-kind labor and equipment contributions, or even better, MONEY!;
- County, Municipal or Township Highway Departments;
- Wastewater Treatment operators, Water Supply operators;
- Drainage Districts;
- Park District, County Park, Forest Preserve District, Conservation District;
- Homeowner Associations;
- Soil & Water Conservation District / NRCS;
- Local not-for-profit environmental advocacy groups, Land Trusts.

• Who are the parties (i.e., authorities) needed to implement the WBP?

As part of the WBP development process, you want to identify the "logical" parties that would likely be involved in implementing a particular BMP. It is sometimes necessary to point out to the included parties that being listed as a "party" in no way obligates them to anything.

- Description of technical and financial assistance (i.e., amount, estimate costs, sources) for the WBP.
- Who are the parties (i.e., authorities) needed to implement the WBP?

D. Technical and financial assistance and relevant authorities

			Location in Plan			For IEPA Use Only	For USEPA Use Only
	Component	Local Review	Section(s)	Page(s)	Comment	IEPA Review	USEPA Review
39	Potential local, state, and federal technical assistance and authorities needed to implement the plan	OYes ONo				⊖Yes ⊖No	⊖Yes ⊖No

Does the plan describe the technical and financial assistance (amount, costs, and sources) and relevant authorities needed to implement the plan?

OYes ○Partial

al 🔵 No

• I&E tools to provide public understanding, direction and encourage for the implementation of the WBP.

Information and Education is a major component of developing and implementing a 9-element WBP.

It should be recognized that those folks actively participating in the WBP development likely already have some level of understanding about watershed issues and potential solutions.

However, the critical path in having a WBP gain traction in the larger watershed community is having a strategic program in place to inform and educate watershed stakeholders, whether units of governments, local businesses, property owners, or individual residents.

To develop this program, you must set realistic goals and objectives for how to structure and focus your I&E efforts, and correctly identify your ideal target audiences. Keep in mind that these goals and objectives may vary depending on the watershed stakeholder group being targeted.

E. Information and education component

			Location in Plan			For IEPA Use Only	For USEPA Use Only	
	Component	Local Review	Section(s)	Page(s)	Comment	IEPA Review	USEPA Review	
40	I/E goals and objectives	<pre>OYes</pre> ONO				OYes ONo	⊖Yes ⊖No	
41	I/E target audiences	<pre>OYes</pre> ONO				⊖Yes ⊖No	OYes ONo	
42	I/E programs, tools, materials, actions, campaigns	<pre>OYes</pre> ONO				⊖Yes ⊖No	⊖Yes ⊖No	
43	I/E delivery mechanisms	<pre>OYes</pre> ONO				⊖Yes ⊖No	⊖Yes ⊖No	
44	I/E priority/schedule	○Yes ○No				⊖Yes ⊖No	⊖Yes ⊖No	
45	I/E lead and supporting organizations	○Yes ○No				⊖Yes ⊖No	⊖Yes ⊖No	
46	I/E expected outcome / behavior change	○Yes ○No				⊖Yes ⊖No	⊖Yes ⊖No	
47	I/E estimated cost	OYes ONo				⊖Yes ⊖No	⊖Yes ⊖No	
48	I/E indicators of success	○Yes ○No				⊖Yes ⊖No	⊖Yes ⊖No	

Does the plan describe an information and education component to enhance public understanding and to encourage implementation of the plan?

OYes

Maintaining What We Value The Nippersink Creek Watershed Management Plan

A Report on the Community Survey

Photo Credit: Ray Mathis

Prepared By the Department of Sociology and Anthropology, Illinois State University

Dr. Joan M. Brehm Associate Professor Department of Sociology and Anthropology Illinois State University

Dr. Brian W. Eisenhauer Associate Professor of Sociology Acting Director Center for the Environment Plymouth State University Danielle Pasko Graduate Student Department of Sociology and Anthropology Illinois State University 4. Please indicate your level of agreement or disagreement with the statements below.

		Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
a) Th de	ne economic stability of my community epends upon good water quality.	0	0	0	0	0
b) Th ca sti	ne way that I care for my lawn and yard nn influence water quality in local reams and lakes.	0	0	0	0	0
c) Iti pr	is my personal responsibility to help otect water quality	0	0	0	0	0
d) Iti ifi	is important to protect water quality even it slows economic development.	0	0	0	0	0
e) W dif	'hat I do on my land doesn't make much fference in overall water quality.	0	0	0	0	0
f) La ind loc	awn and yard-care practices (on dividual lots) do not have an impact on cal water quality.	0	0	0	0	0
g) My qu	y actions can have an impact on water Jality.	0	0	0	0	0
h) Ta to	aking action to improve water quality is o expensive for me.	0	0	0	0	0
i) Iti pr	is okay to reduce water quality to omote economic development.	0	0	0	0	0
j) Iti ifi	is important to protect water quality even it costs me more.	0	0	0	0	0
k) Iv wa ta:	vould be willing to pay more to improve ater quality (for example: through local xes or fees).	0	0	0	0	0
l) Iv for qu	vould be willing to change the way I care r my lawn and yard to improve water µality.	0	0	0	0	0
m) Th de sti	ne quality of life in my community epends on good water quality in local reams, rivers and lakes.	0	0	0	0	0

Table 7: Crosstab Comparison between Survey Year on Respondents' Values and Attitudes about Water Quality Issues								
Value	Survey Year 2010			Survey Year 2013				
	Disagree	Neutral	Agree	Disagree	Neutral	Agree		
The economic stability of my community depends upon good water quality	8.2%	20.4%	71.4%	3.7%	18.1%	78.2%		
The way that I care for my lawn and yard can influence water quality in local streams and lakes	4.3%	9.0%	86.7%	4.1%	12.7%	83.2%		
It is my personal responsibility to help protect water quality	2.3%	8.3%	89.4%	3.0%	8.9%	88.2%		
It is important to protect water quality even if it slows economic development	6.0%	12.4%	81.6%	4.5%	18.6%	77.0%		
What I do on my land doesn't make much difference in overall water quality	76.8%	11.2%	12.0%	74.9%	13.1%	12.0%		
Lawn and yard care practices (on individual lots) do not have an impact on local water quality	76.5%	9.2%	14.3%	73.5%	10.2%	16.1%		
My actions can have an impact on water quality	3.7%	8.0%	88.4%	4.1%	11.8%	84.1%		
Taking action to improve water quality is too expensive for me	41.6%	44.2%	14.2%	42.4%	47.2%	10.4%		
It is OK to reduce water quality to promote economic development	86.7%	7.7%	5.7%	83.8%	11.8%	4.5%		
It is important to protect water quality even if it costs me more	11.8%	28.3%	59.8%	13.4%	27.9%	58.7%		
I would be willing to pay more to improve water quality	32.8%	26.3%	40.8%	36.9%	28.6%	34.5%		
I would be willing to change the way I care for my lawn and yard to improve water quality	6.0%	19.9%	74.1%	6.7%	22.7%	70.6%		
The quality of life in my community depend on good water quality in local streams, rivers and lakes	5.5%	15.9%	78.6%	3.0%	16.8%	80.2%		

FEWER CHEMICALS, BETTER WATER QUALITY

Phosphorous-Free Fertilizers

Help protect the Nippersink Creek Watershed

PROTECT A KEY ILLINOIS RESOURCE

It begins with you, right in youryard. The Nippersink Creek watershed is one of the highest quality watersheds in Northeastern Illinois. It is is home to over 50 endangered or threatened species of plants, fish and freshwater mussels and boasts one of the best river rails and the second s for canoeing and kayaking. For more information go to www.nippersinkwatershed.org

Runoff from lawn fertilizers with phosphorus can stimulate over-growth of algae and aquatic plants in the Nippersink Watershed. This causes a lack of oxygen for native aquatic life throughout our watershed. Homeowners can do many simple steps to help protect our local water quality.

Back

2) Use lawn clippings as a source of 4) Test your soil to see if your soil Nitrogen for the soil

1) Use phosphorus-free fertilizers 3) Mow your grass 3 to 4 inches tall needs additional nutrients

From a 2012 survey of homeowners in the Nippersink Watershed, the majority of your neighbors stated they were willing to change the way they care for their lawn and vard to improve water quality. Help do your part by protecting the water quality in the Nippersink Watershed.

ant

INIPPERSINK

phosphorus and may only need some 22.0.15 extra nitrogen. The best time to fertilize your lawn is in the spring and fall. Don't waste money by applying expensive unneeded chemicals. Use phosphorus-free

fertilizers and help protect our valuable watershed.

The health of the **Nippersink** begins at your front yard.

Use phosphorus free fertilizer

Front

Wonder Lake

A Septic Social Event

Mon., March 11, 2013, 7-8pm, MPOA Offices OR Tues., March 12, 2013, 7-8pm, Wonder Lake Village Hall

Refreshments will be provided, along with an opportunity to win a \$100 certificate towards a septic cleaning from local professionals at Pitel Septic.

Did you know that most of the homes in Wonder Lake use a septic system to manage their wastewater? Are you one of them? Are you concerned about how Wonder Lake looks and if it is safe for residents' recreation? Do you want to avoid costly repairs to your septic system?

If so, please join your neighbors on March 11 or March 12, 2013 for the first of several "septic social" events in the watershed – a free one-hour gathering organized by the Nippersink Watershed Association and the Wonder Lake Master Property Owners Association to share information about healthy septic systems and how to minimize the costs of their maintenance by ensuring they work properly. Local experts from the Nippersink Watershed Association, Illinois State University, and Pitel Septics will lead an informal discussion among neighbors to share important tips and information. Understanding how your septic works can help you to do something good for your home, your family, your community and the environment.

All information exchanged will be used to assist homeowners in understanding and properly maintaining their systems. These actions will in turn contribute to protecting the water quality of Wonder Lake and Nippersink Creek. This event is being organized for one simple reason: We want to help you to learn easy and inexpensive practices you can use to keep your system running effectively and to know the signs that you might have a problem, before it becomes a very expensive problem.

Sponsored by:

Funding for this project provided, in part, by the Governor of Illinois and the Illinois Environmental Protection Agency through Section 319 of the Clean Water Act.

For more information, or to RSVP, please contact the MPOA Office, 815-653-1000 or email nippersinkcreek@gmail.com

NEWS

Wonder Lake water subject of 3-day study

We are

doing more

monitoring

the rest of

the state.

- Randy Stowe,

Wonder Lake

Manager

intensive

EcoMapper maps lake bottom. measures water quality

By CAROLYN HANDROCK The Independent

In 2009 at an Illinois Lake Management Association conference, Wonder Lake Manager Randy Stowe saw an interesting new technology - the United States Geological Survey's new EcoMapper, a torpedo-shaped instrument that measures water quality in large bodies of water.

Stowe approached USGS officials and asked if they would be interested in mapping Wonder Lake. They agreed to use the EcoMapper to analyze the lake.

"Knowing that we were moving toward the dredging process, it seemed like a great idea," said Stowe.

"They were familiar with our area, and they thought it would be cool to come out here and do pre- and post-dredging surveys," added Master Property Owner's Association President Dick Hilton.

The EcoMapper is an AUV - autonomous underwater vehicle - designed to map water quality, currents and the depth of a lake's bottom. It can be fitted with a number of water quality sensors and is programmed with GPS coordinates. The USGS has one of only a handful of the units. Other EcoMappers are owned by the Navy and Purdue University.

The EcoMapper is based on similar units used in oceanography. These machines cost upward of \$500,000. The company YSI, Yellow Springs, Ohio, decided to make a more affordable AUV to use in lakes. The EcoMapper came out in 2008 with a base price of \$60,000, and the USGS was the first to purchase one. Its model cost about \$120,000, because

or it can dive up to 200 feet, useful in bigger lakes such as Lake Michigan. Water quality sensors take a reading once a second.

USGS

The

spent

is

days, Aug. 11 to 13, mapping all of Wonder Lake. The plan to return for a second than most of scan after the dredging is completed. "We would

three

like to see if the dredging had any overall effect in the water quality,"

said Ryan Jackson, a hydrologist with the USGS.

Although it will be a while before all the data has been analyzed, Jackson said Wonder Lake was very still.

"I was pretty amazed at the level and concentration of algae," he said.

Jackson also was surprised how warm the water was. The USGS had previously studied Clinton Lake in Central Illinois. which receives water runoff from the Clinton Nuclear Generating Station. At Clinton Lake, the USGS studied thermal pollution. The USGS staff was surprised to find water temperatures in Wonder Lake were higher than in Clinton Lake. According to Jackson, Wonder Lake's warm water is at least partly due to its shallowness.

The USGS also examined lake currents, particularly at the entrance points of Nippersink Creek and two other small streams. The USGS is interested in how sediment enters the lake and whether there is a way to keep as much as possible out of the lake.

Under the current dredging plan, 1 mil-

tion to the data collected by the Eco-Mapper, the USGS will use water data collected throughout the year by Stowe and several trained volunteers as well as the McHenry County Health Department's data from testing the beaches for E. coli.

"It wasn't just us out there," said Jackson. "It took fantastic organization to bring all these people together."

"There is a lot of different testing going on during the year," said Stowe. "We are doing more intensive monitoring than most of the rest of the state."

The M.P.O.A. is currently obtaining

various permits required before actual dredging can begin. The USGS data, as well as information on sediment, will be used in the process.

"This will be of great significance to our consultants," said Hilton.

Depending on how long the actual dredging takes, the USGS will return in August 2011 to ensure data are comparable.

"The main thing we are trying to do is get a baseline," said Stowe. "We expect to be able to show scientifically the improvement in the water quality after the dredging."

Observations.....

- It is sometimes thought that with the completion of a USEPA/IEPA approved 9-Element WBP, the hard work has been completed. This perspective may explain why some watershed plans languish, and never really move to implementation. In reality, the hard work has just begun.....
- 2) Make sure you (or your consultant) truly understands the watershed, the watershed stressor's, and what BMP's watershed stakeholders may realistically be willing to consider / cost-share. There is sometimes a tendency for WBP's to recommend very expensive "urban" type BMP's to achieve Pollution Loading Reduction (PLR) goals, even if the watershed isn't necessarily urban. Identifying millions of dollars in urban BMP's in a "non-urban" community (whose main source of municipal revenue maybe a highway speed-trap) will likely cause "sticker-shock", and probably won't result in much BMP implementation.
- 3) In the current economic climate, it may be easier to work with private landowners on BMP implementation, rather than cash-strapped units of government.
- 4) Education and outreach can often be a successful means of achieving "incremental" water quality benefits, even if the resulting PLR benefits may be harder to quantify.

HEARTL 2NDS conservancy

Investing In The Nature Of Southwestern Illinois

Janet Buchanan Project Manager

WATERSHED PLANNING – ELEMENTS 7, 8, 9

Watershed Plans in St Louis Metro East

Groups involved:

- Local govt.s
- USACE
- Scott Air Force Base
- HOAs
- NRCS & SWCDs
- Universities
- Sanitary districts and many more...

Upper Silver Creek Watershed Plan

A Guide to Protecting and Restoring Watershed Health

June 2016 Review Draft

Element 7/g - Milestones

g. A description of interim measurable milestones for determining whether nonpoint source management measures or other control actions are being implemented. (Schapter 12.)

Element 8/h - Assessing load reduction

h. A set of criteria that can be used to determine whether loading reductions are being achieved over time and substantial progress is being made toward attaining water quality standards.

Element 9/i - Monitoring

i. A monitoring component to evaluate the effectiveness of the implementation efforts over time, measured against the criteria established under item h immediately above.

Element 7 / g - Milestones

g. A description of interim measurable milestones for determining whether nonpoint source management measures or other control actions are being implemented. (\$\$ Chapter 12.)

"...interim, measurable milestones"
Upper Silver Creek - Milestones

- Progress Report Cards (included in Appendix H)
- Milestones for short-term (1-10 years; 2016-2026), medium-term (10-20 years; 2026-2036), and long-term (20+ years; 2036+) timeframes
- Use to track plan implementation and effectiveness

Upper Silver Creek – types of milestone

- Document success in terms of:
 - Action Plan effectiveness: absolute improvements seen in water quality, flooding, habitat, & other plan goals
 - Action Plan implementation: the # and extent of Management Measures implemented
- Measurement indicators for both were identified
- Interim tracking steps along the way
- Measurable knowable factors
- Measuring ongoing improvement allows for more dynamic, directed, and effective implementation.

Upper Silver Crk – Interim milestones

Interim milestones

- Meetings of watershed plan partners held twice a year, at six month intervals
- Larger annual meeting incl. stakeholders & the public
- Plan revision assessed at 5-year intervals
- As deficiencies in plan implementation are found, the timeline and focus should be revised
 - \odot Pay attention to new data
 - Reiterate the watershed planning process of issue identification, goal-setting, and management measure recommendation should be reiterated

Measures of success & measurement indicators

Measure of success,

e.g., Projects and practices implemented

Measurement indicator,

e.g., Number & extent of projects implemented

Measures of success & measurement indicators by plan goal

Goal(s)	Measure of Success	Measurement Indicators					
Addressed							
Surface	Use Impairments: The reduction of use impairments as	Removal of Silver Creek and Troy Creek from the IEPA 303(d)					
Water	defined by IEPA.	list.					
Quality	Pollutant Loads: A decrease in pollutants observed	Concentrations and loads of in-stream pollutants including					
	through water quality monitoring.	phosphorus and sediment (assessed by monitoring), to					
		measure against plan target reductions.					
	Point-source Pollution Facility Upgrades: Upgrades to	Nutrient removal technologies incorporated into upgrades of					
	facilities such as sewage treatment plants and others	wastewater treatment plants in the watershed. New					
	that require a NPDES permit.	pollutant loads in effluent.					
	Connecting to Public Sewers: Connection of new and	Percentage of new development projects with private sewer.					
	existing properties to public sewers so that individual	Number of existing on-site treatment systems connected to					
	septic systems are no longer needed.	public sewers.					
	Inspection and Maintenance of On-Site Waste Systems:	Number and extent of local ordinances requiring regular					
	Local government codes and programs for on-site	inspection and maintenance of on-site sewage systems.					
	treatment systems.	Number of county/municipal programs inspecting more					
		frequently than is complaint-driven.					

Measures of success & measurement indicators by plan goal

Goal(s) Addressed	Measure of Success	Measurement Indicators	
Surface Water Quality / Flooding and Flood Damage	Wetlands: Restoring and creating wetlands, which are very effective at storing and filtering stormwater.	Number and acreage of wetland construction/restoration, enhancement, and protection.	
Flooding and Flood Damage	Stream Discharge: Moderate peak flows and adequate minimum stream flows.	Stream flow data from the USGS gauge on mainstem Silver Creek, plus flow data collected from monitoring at other HUC14 locations. Data correlated with rainfall.	
	Flood Protection Ordinances: Enaction of local ordinances to restrict construction in floodplains and floodprone areas.	Number and extent of flood damage prevention ordinances, riparian buffer ordinances, and other actions by local governments to restrict construction in floodplains and riparian areas.	
Environmentally Sensitive Development Practices	Infiltration: Practices allowing stormwater to infiltrate to groundwater.	Area of impervious surfaces in new development (see NLCD Percent Developed Impervious Surface dataset) and number of detention basins or other stormwater infrastructure constructed and retrofitted to allow more infiltration.	

Progress Report Cards

- The Progress Report Cards provide for each goal:
 - Summaries of current conditions
 - Measures of progress (Measurement Indicators)
 - Milestones for short-, medium-, and long-term timeframes
 - Sources of data required to evaluate milestones
 - Notes section

Progress Report Cards

- Use at every meeting of watershed plan partners, and fully filled out every five years
- Grades for each milestone term should be calculated using the following scale:

Grade	Percentage milestones met
А	80-100%
В	60-79%
С	40-59%
Fail	<40%

- Lack of progress should be explained in Notes section
 - e.g. water quality monitoring results show no improvement, new environmental problems, lack of technical assistance, or lack of funds

• Goal, Existing Conditions, Targets & Recommendations, Milestones

Goal 1: Improve Surface Water Quality **Existing Conditions** 264,952 lbs/year of phosphorus, 60,230 tons/year of sediment, and 1,178,496 lbs/yr of nitrogen enter the upper Silver Creek watershed every year, based on the STEPL model. Silver Creek has seen low Dissolved Oxygen (DO) levels between 1972 and 2011, with a minimum of 2 mg/L (mean 7.7 mg/L). High concentrations of dissolved manganese have been found in Silver Creek between 1972 and 2011 (mean 417 µg/L, median 290 µg/L, and maximum 3200 $\mu g/L$). Fecal coliform levels in Silver Creek have spiked several times between 1972 and 2011 (with most spikes in the 70's and 80's); the median level was 630 cfu/100ml. Over 3,000 private sewage systems are present in the watershed. Given a national estimated failure rate of 10%, 300 systems are currently failing. The actual number may be higher because many of these systems are older. Watershed Impairment Reduction Targets and recommendations 25% or 66,238 lbs/year reduction in phosphorus loading by 2025, based on the Illinois Nutrient Loss Reduction Strategy. 20% or 12,046 tons/year reduction in sediment loading by 2025, based on estimated impacts of proposed BMPs. 15% or 176,774 lbs/year reduction in phosphorus loading by 2025, based on the Illinois Nutrient Loss Reduction Strategy. No DO samples lower than the minimum concentration in streams: March – July: 5.0 mg/L at any time, 6.0 mg/L as a daily mean averaged over 7 days; August – February: 3.5 mg/L at any time, 4.0 mg/L as a daily mean averaged over 7 days, 5.5 mg/L as a daily mean averaged over 30 days. Based on 35 III. Adm. Code 302. No manganese samples higher than the general use water quality standard of 1,000 μg/L, and a general reduction in mean manganese concentrations. 68% or 430 cfu/100 ml reduction in fecal coliform, to reach a geometric mean of 200 cfu/100 ml in a minimum of 5 samples taken over a period of ≤30 days; based on 35 Ill. Adm. Code 302. Removal of Silver Creek and Troy Creek from the Illinois EPA 303(d) list. Programmatic changes regarding wastewater treatment, private sewer, and conservation easements.

Measurement	Milestone			Data source	Achiev	
Indicator	Short-term (1-10 years)	Medium- term (10-20 years)	Long-term (20+ years)			ed?
Removal of Silver Creek and Troy Creek from Illinois EPA 303(d) list.	PM	ΡM	A	All streams in the watershed removed from the 303(d) list	Illinois EPA 303(d) list	
Concentrations and loads of in- stream pollutants	PM	PM	A	Measured reductions in in-stream phosphorus, sediment, nitrogen, fecal coliform, and manganese (see Monitoring Plan). Measured increases in in-stream dissolved oxygen (see Monitoring Plan).	NGRREC (water quality monitoring results)	
Enrollment of land in conservation easements including CRP and CREP	1.5	2	2.5	times the 2015 acreage enrolled in CRP and CREP	NRCS	

GRADE

Measurement Indicator	Milestone			Data	Achie	
	Short-term (1-	Medium-term	Long-term (20+		source	ved?
	10 years)	(10-20 years)	years)			
Number and extent of	19,131	38,263	57,394	ft of poor condition riparian	NRCS,	
Management Measures				areas ecologically restored,	SWCD,	
(BMPs) implemented				including 100% Critical Riparian	contractors	
				Areas (cumulative)		
	240	481	721	acres wetlands restored,		
				enhanced, or created (100% of		
				Critical Wetland Areas)		
				(cumulative)		
	3,300	6,600	9,900	ft logjam removal sites (5% of		
				the Critical Logjam Areas)		
Macroinvertebrate	PM	PM	A	All Illinois RiverWatch samples	Illinois	
sampling results from				indicate "Good", "Fair", or	RiverWatch	
RiverWatch volunteers				"Excellent" Taxa Richness, EPT Taxa	, Illinois	
and fish sample data				Richness, and MBI water quality	Natural	
collected by INHS				scores	History	
				No decrease in water quality	Survey	
				indicated by INHS fish sampling		

Other examples

- What kind of measuring success have you seen?
 - Ongoing continuity of plan implementation & evaluation Nippersink watershed
 - Regular monthly meetings (eg Lake County)
 - Slower followup due to a lack of funds
 - Early implementation of plan incl 319 funds, with outreach including annual BioBlitz (Big Muddy watershed)

Element 8 / h – Assessing load reduction

h. A set of criteria that can be used to determine whether loading reductions are being achieved over time and substantial progress is being made toward attaining water quality standards.

"...set of criteria... loading reductions... over time"

Load reduction criteria = Targets

- Refer back to Targets set earlier in the plan
- Can be direct measurements (e.g. fecal coliform concentrations) or indirect indicators (e.g. numbers of beach closings)
- Indicate how plan may be revised if criteria not met

Element 9 / i – Monitoring

i. A monitoring component to evaluate the effectiveness of the implementation efforts over time, measured against the criteria established under item h immediately above.

"...monitoring... criteria established under item h"

Upper Silver Creek - Monitoring

 Water quality monitoring will be conducted by the National Great Rivers Research and Education Center (NGRREC), as funding allows, on a 3-5 year cycle through the year 2025.

The National Great Rivers Research & Education Center

Upper Silver Creek Sample Sites

Cities

HUC14

Sample sites

Fig. 2. Map showing the locations of one Continuous and six Discrete sampling sites on the main stem of Silver Creek in Madison County, IL. HUC14 watersheds are designated by areas with colored backgrounds.

Continuous & discrete sampling

Continuous automated sampling

- $\,\circ\,$ At USGS gage on Silver Creek
- Will provide data year-round
- Will allow comparison with historical water quality data collected by the USGS and the Illinois Water Sciences Center (IWSC) from this same location for several periods between 1974 and 2011

Discrete sampling

- $\,\circ\,$ All upstream from USGS gage
- Conducted on a quarterly basis (spring, summer, fall, and winter)
- $\,\circ\,$ Identify the relative contributions of subwatersheds
- Additional dates added based on precipitation events in order to capture a range of hydrologic conditions – specifically, sampling stormflow conditions

Following initial sampling season, create future sampling strategies. Assess where BMPs have been implemented – has this impacted results?

Sampling schedule & equipment

Sampling schedule

- Continuous monitoring at one site year-round
- Discrete sampling at the sub-watershed level
 - Generally collected quarterly in March, June, September, and December
 - Emphasis on capturing stormflow eventsSampling completed by August 30, 2018

Equipment

- Isco 6712 automatic sampler with a 720 Bubbler Flow module
- SmartChem Discrete analyzer measurement of all forms of N and P
- Elementar Vario TOC carbon analysis
- Cable-suspended Price velocity meter outfit with bridgeboard and sounding reel

Thank You! Questions?

Contact: Janet Buchanan at janet.buchanan@heartlandsconservancy.org Visit: www.heartlandsconservancy.org/uppersilvercreek