Science Assessment to Support an Illinois Nutrient Reduction Strategy

Mark David, Greg McIsaac, George Czapar, Gary Schnitkey, Corey Mitchell University of Illinois at Urbana-Champaign September 18, 2013

Technical Tasks

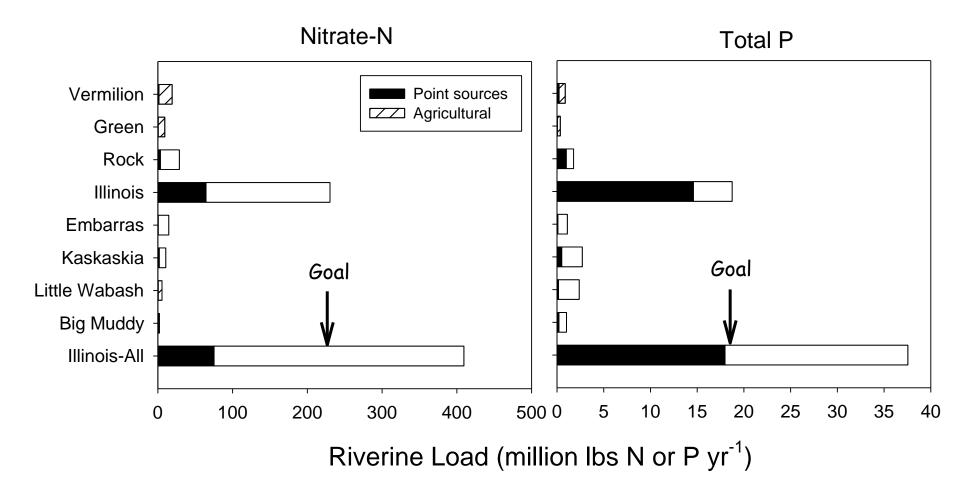
- develop a science based technical assessment of:
 - current conditions in Illinois of nutrient sources and export by rivers in the state from point and nonpoint sources
 - methods that could be used to reduce these losses and estimates of their effectiveness throughout Illinois
 - estimates of the costs of statewide and watershed level application of these methods to reduce nutrient losses to meet TMDL and Gulf of Mexico goals

Steps we will take

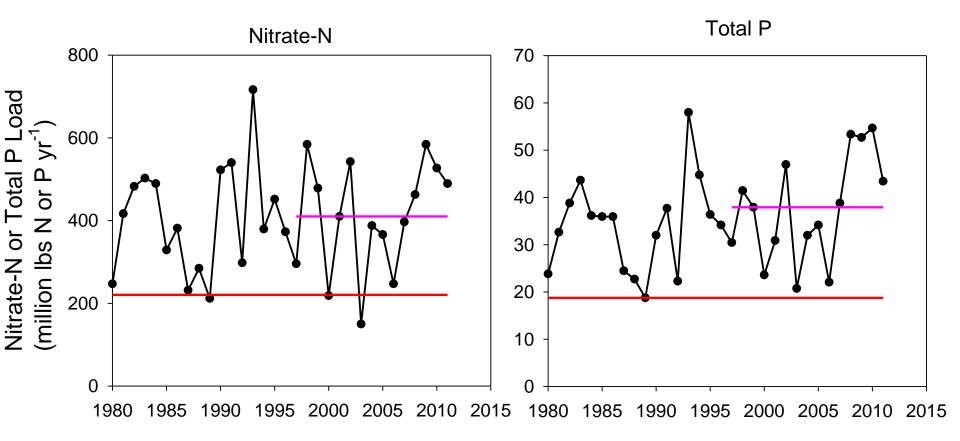
- 1. determine current conditions
- 2. identify critical watersheds
- 3. estimate potential reductions and costs
- 4. develop scenarios

1. Current Conditions

- nutrient (nitrate and total P) loads from major river basins of Illinois
 - estimates of point and non-point sources
 - compare 1980-1996 with 1997-2011
 - determine direction of loads
- determine current agricultural management practices across the state
 - nutrient inputs and management (fertilizers and manure)
 - current cropping practices
 - N and P loads and yields from water quality data

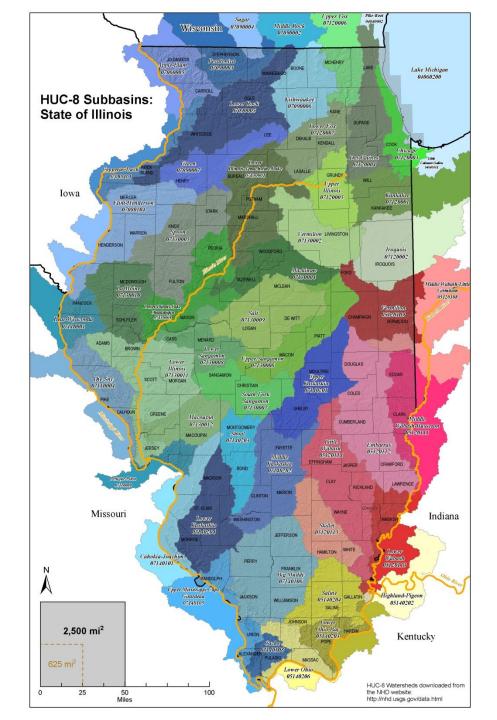

Riverine N and P Fluxes

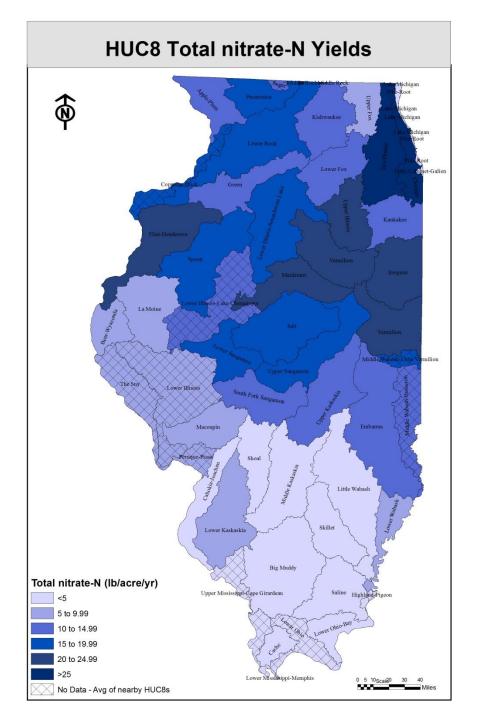
	Water	Nitrate-N	Total N	DRP	Total P
	10 ⁹ m ³ yr ⁻¹		million lbs N	or P yr ⁻¹	
David & Gentry (2000)	47		538		31.3
1980-1996	48.2	404	527	15.4	34.0
1997-2011	48.8	410	536	18.5	37.5
Point sources		75.2	87.3		18.1
		P	ercent of 199	7-2011 load	
Point sources		18.4	16.3		48
David & Gentry (2000)			16		47

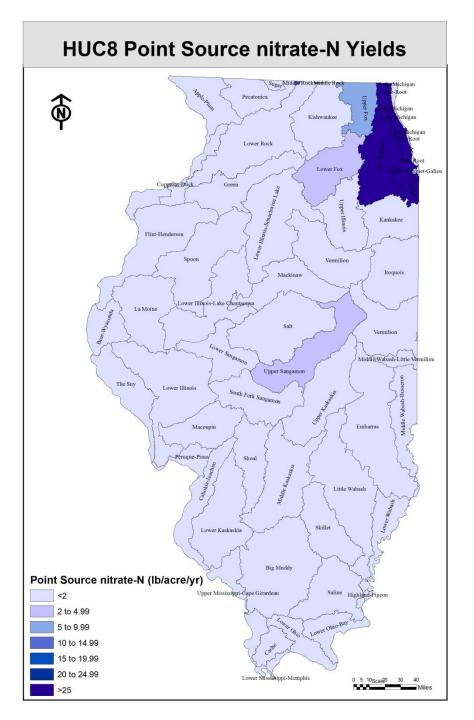

Goal or Target

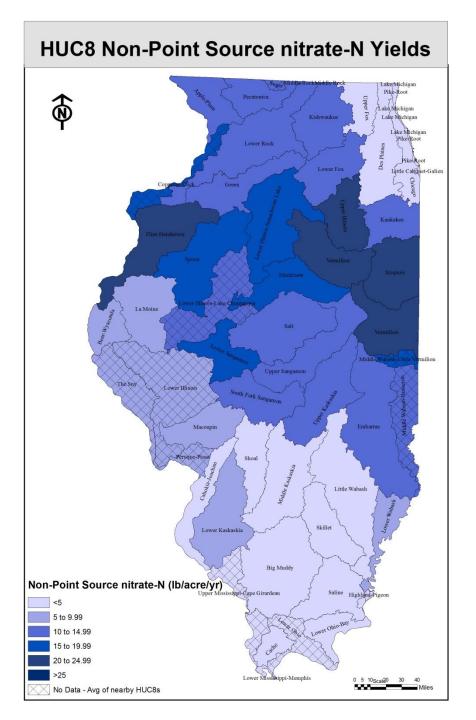
- 45% reduction in 1980 to 1996 loads
 - nitrate-N target of 222 million lbs N yr⁻¹
 - total P target of 18.7 million lbs P yr⁻¹
- larger reductions needed from 1997 to 2011 average loads
 - 410/188 million lbs N as nitrate-N needed (46%)
 - 37.5/18.8 million lbs total P needed (50%)

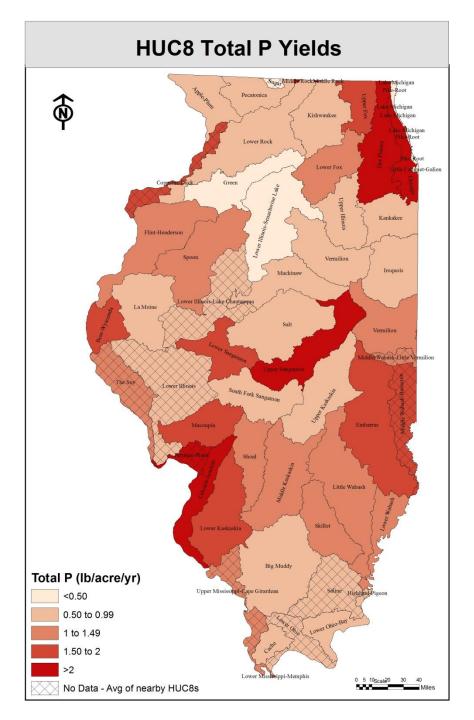
Point and agricultural sources (1997-2011)

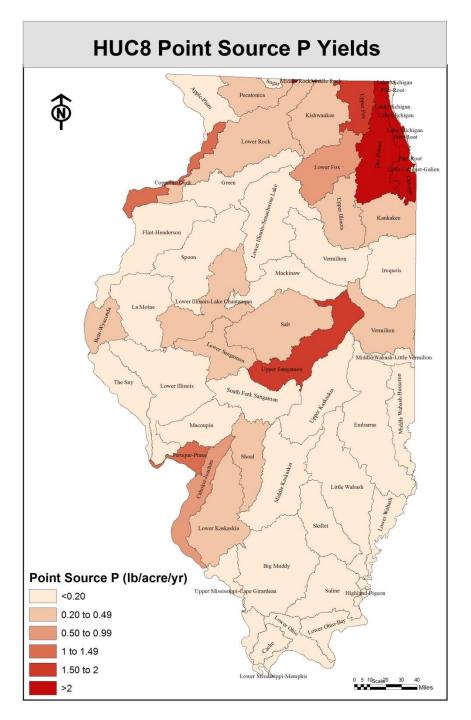

Nitrate-N and Total P Targets

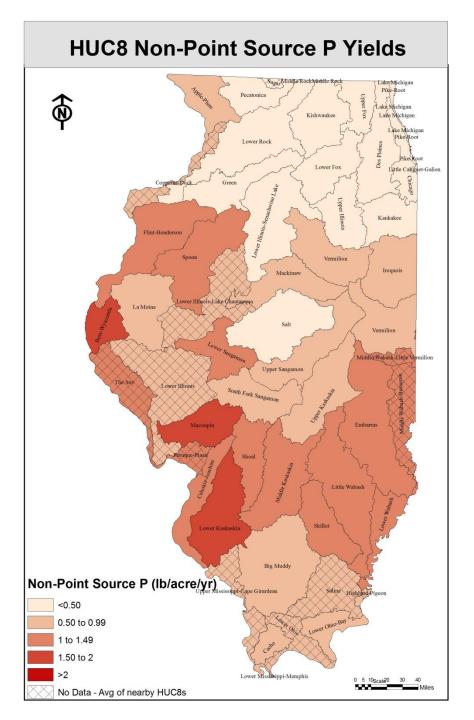


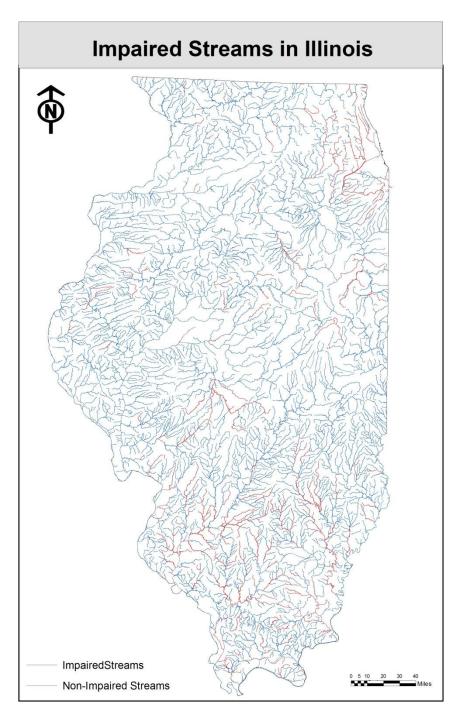

Red line is target, purple is average 1997 to 2011

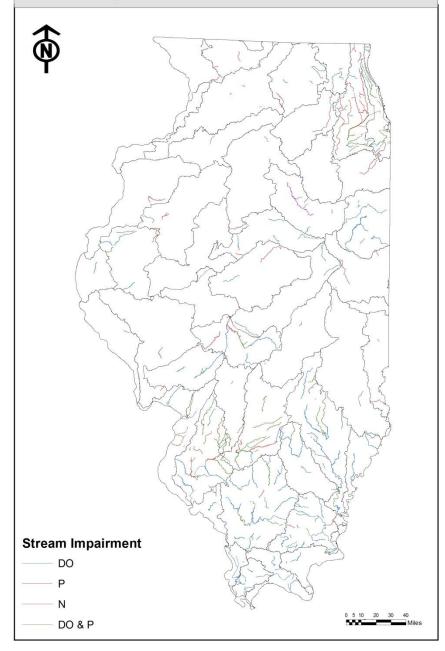

2. Critical Watershed Identification

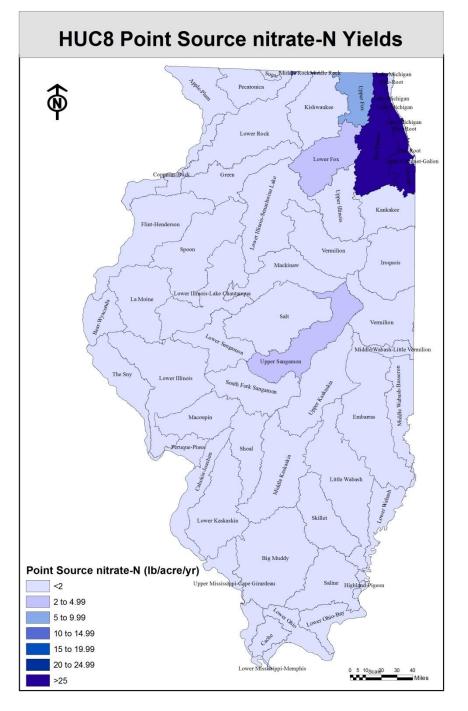

- identify 8 digits HUCs with the highest nutrient yields and loads to the Gulf of Mexico
- identify watersheds with nutrient impaired water bodies (303d list)
- determine overlap
- estimate point and non-point sources of N and P within watersheds



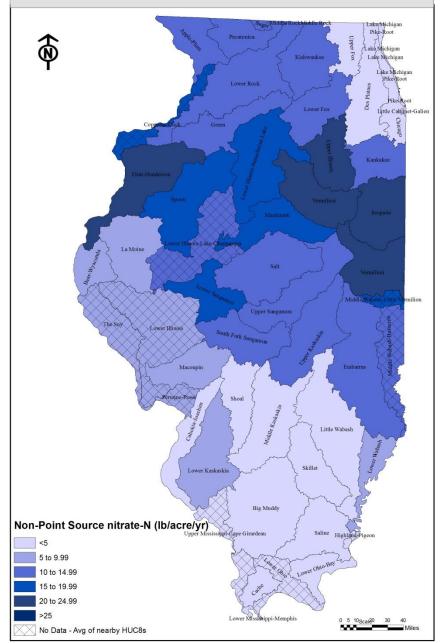


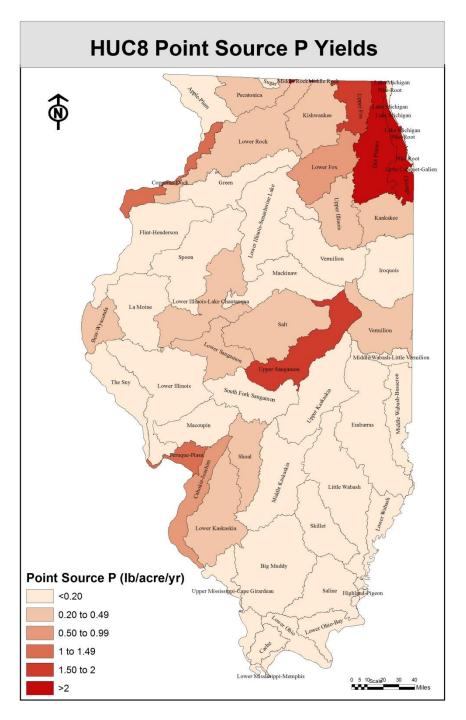


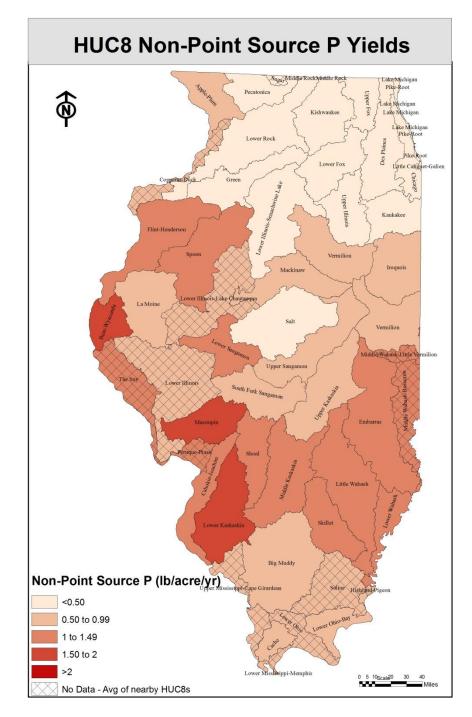




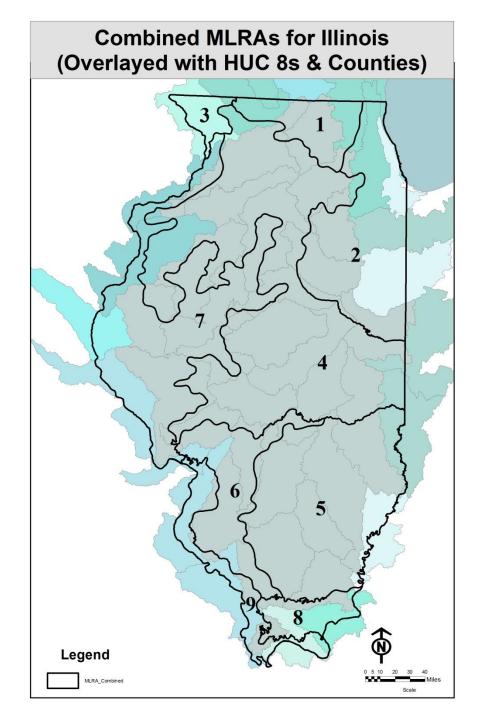
Impaired Streams in Illinois

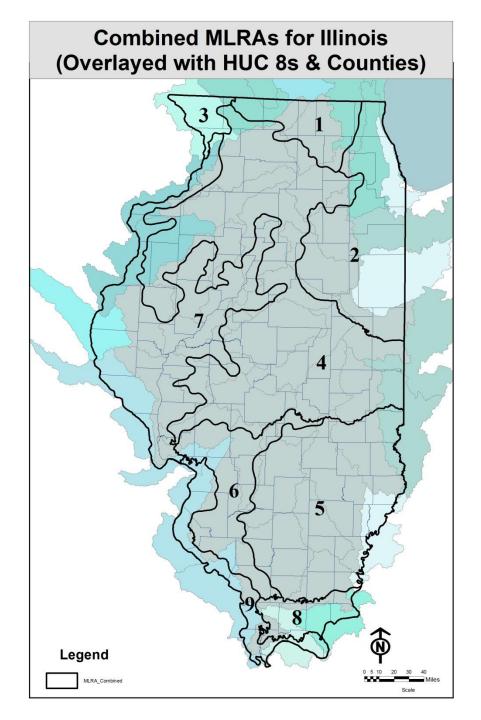



Relationship of 303d miles to N and P


- weak overall
- Dissolved oxygen impairments may not be due to nutrients
- best correlation (p=0.03) of 303d miles with point source N
- next with point source P (p=0.09)
- non-point source N correlated, but negatively (p=0.002)

HUC8 Non-Point Source nitrate-N Yields


3. Estimate Potential Reductions and Costs


- estimate field-level effectiveness of various agricultural management practices
 - utilize SAB, Iowa, and Lake Bloomington Project estimates
 - knowledge in Illinois
- determine possible point source reductions
- estimate costs
 - Gary Schnitkey (agricultural economist) will lead
 - initial investments
 - likely to annualize costs over 25 years

Combined MLRA's

	<u> </u>	Landscape Climate				
MLRA	Description	Elevation m (ft)	Local Relief m (ft)	Precipitation mm (inches)	Annual Temperature °C (°F)	Freeze Free Days
95B	Southern Wisconsin and Northern Illinois Drift Plain	200 to 300 (660 to 980)	8 (25)	760 to 965 (30 to 38)	6 to 9 (43 to 48)	170
97	Southwestern Michigan Fruit and Truck Crop Belt	200 to 305 (600 to 1000)	2 to 5 (5 to 15)	890 to 1,015 (35 to 40)	8 to 11 (47 to 52)	200
98	Southern Michigan and Northern Indiana Drift Plain	175 to 335 (570 to 1,100)	15 (5)	735 to 1,015 (29 to 40)	7 to 10 (44 to 50)	175
110	Northern Illinois and Indiana Heavy Till Plain	200 (650)	3 to 8 (10 to 25)	785 to 1,015 (31 to 40)	7 to 11 (42 to 52)	185
105	Northern Mississippi Valley Loess Hills	200 to 400 (660 to 1,310)	3 to 6 (10 to 20)	760 to 965 (30 to 38)	6 to 10 (42 to 50)	175
108A	Illinois and Iowa Deep Loess and Drift, Eastern Part	200 to 300 (660 to 985)	1 to 3 (3 to 10)	890 to 1,090 (35 to 43)	8 to 12 (47 to 54)	195
108B	Illinois and Iowa Deep Loess and Drift, East- Central Part	200 to 300 (660 to 985)	1 to 3 (3 to 10)	840 to 990 (33 to 39)	8 to 12 (47 to 54)	185
113	Central Claypan Areas	200 (660)	1.5 to 3 (5 to 10)	915 to 1,170 (36 to 46)	11 to 14 (51 to 57)	205
115A	Central Mississippi Valley Wooded Slopes, Eastern Part	100 to 310 (320 to 1,020)	3 to 15 (10 to 50)	1,015 to 1,195 (40 to 47)	11 to 14 (53 to 57)	210
114B	Southern Illinois and Indiana Thin Loess and Till Plain, Western Part	105 to 365 (350 to 1,190)	3 to 15 (10 to 50)	940 to 1,170 (37 to 46)	11 to 14 (52 to 56	210
115C	Central Mississippi Valley Wooded Slopes, Northern Part	130 to 270 (420 to 885)	3 to 6 (10 to 20)	865 to 1,015 (34 to 40)	9 to 13 (48 to 55)	200
120A	Kentucky and Indiana Sandstone and Shale Hills and Valleys, Southern Part	105 to 290 (345 to 950)	Varies widely	1,145 to 1,370 (45 to 54)	13 to 14 (55 to 58)	210
115B	Central Mississippi Valley Wooded Slopes, Western Part	100 to 310 (320 to 1,020)	3 to 15 (10 to 50)	965 to 1,220 (38 to 48)	12 to 14 (53 to 57)	205
131A	Southern Mississippi River Alluvium	0 to 100 (0 to 330	Max 5 (15)	1,170 to 1,525 (46 to 60)	14 to 21 (56 to 69)	210 (North)
134	Southern Mississippi Valley Loess	25 to 185 (80 to 600)	3 to 6 (10 to 20)	1,195 to 1,525 (47 to 60)	14 to 20 (57 to 68)	215 (North)

Major Land Resource Areas (MLRAs) in Illinois, showing combinations to be used for analysis (15 combined into 9). Bold MLRAs are the numbers that will be used throughout our analysis.

Agricultural Management by MLRA

Combined MLRA	Description	Corn (acres)	Soybean (acres)	Wheat (acres)	Drained acres (% of crop acres)	Corn yield (bushels /acre)	Soybean yield (bushels /acre)
MLRA 1	Northern Illinois drift plain	515,905	224,186	20,192	288,491 (39)	161	48
MLRA 2	Northeastern Illinois heavy till plain	1,532,100	1,111,885	42,404	2,063,695 (78)	150	39
MLRA 3	Northern Mississippi Valley	163,507	52,432	1,975	20,942 (10)	160	50
MLRA 4	Deep loess and drift	5,579,980	3,343,444	76,078	5,437,807 (61)	164	52
MLRA 5	Claypan	1,609,633	1,991,939	352,839	310,087 (9)	128	39
MLRA 6	Thin loess and till	664,242	689,773	161,180	226,971 (17)	130	42
MLRA 7	Central Mississippi Valley, Northern Part	2,058,853	1,288,686	73,884	1,284,588 (38)	155	49
MLRA 8	Sandstone and shale hills and valleys	83,969	115,244	10,658	49,565 (25)	103	33
MLRA 9	Central Mississippi Valley, Western Part	203,736	314,662	78,250	23,769 (5)	125	39
Sum		12,411,925	9,132,251	817,460	9,705,916 (43)		

Average crop acres and yields 2008 through 2012

Agricultural N Management by MLRA

Combined MLRA	Description	Estimated corn fertilizer (Ibs N/acre/yr)	Estimated corn fertilizer + manure (lbs N/acre/yr)	Row crops (acres)	Nitrate-N yield per row crop acre (lbs N/acre/yr)
MLRA 1	Northern Illinois drift plain	152	168	760,283	20.4
MLRA 2	Northeastern Illinois heavy till plain	158	164	2,686,389	25.0
MLRA 3	Northern Mississippi Valley	135	158	217,914	31.3
MLRA 4	Deep loess and drift	150	159	8,999,502	19.6
MLRA 5	Claypan	180	196	3,954,411	6.6
MLRA 6	Thin loess and till	156	170	1,515,195	7.4
MLRA 7	Central Mississippi Valley, Northern Part	155	169	3,421,423	24.5
MLRA 8	Sandstone and shale hills and valleys	209	219	209,871	3.9
MLRA 9	Central Mississippi Valley, Western Part	192	204	596,648	4.0
Sum		157	168	22,361,636	

Corn Fertilizer N by MLRA

Combined MLRA	Description	Estimated CS fertilizer + manure (lbs/acre/yr)	MRTN (10 to 1) CS (lbs N/acre/yr)	Estimated CC fertilizer + manure (lbs/acre/yr)	MRTN (10 to 1) CC (lbs N/acre/yr)
MLRA 1	Northern Illinois drift plain	156	146	196	199
MLRA 2	Northeastern Illinois heavy till plain	151	155	190	197
MLRA 3	Northern Mississippi Valley	146	146	184	199
MLRA 4	Deep loess and drift	147	155	185	197
MLRA 5	Claypan	181	171	227	189
MLRA 6	Thin loess and till	157	171	198	189
MLRA 7	Central Mississippi Valley, Northern Part	156	163	197	194
MLRA 8	Sandstone and shale hills and valleys	202	171	254	189
MLRA 9	Central Mississippi Valley, Western Part	188	171	237	189

MRTN is Maximum Return to N

Nitrate Yield by MLRA

Combined MLRA	Description	Drained cropland (acres)	Nitrate-N yield per row crop acre (lbs N/acre/yr)	Nitrate-N yield per tile drained acre (lbs N/acre/yr)	Nitrate-N yield from non-tiled land (lbs N/acre/yr)
MLRA 1	Northern Illinois drift plain	288,491	20.4	43	6.6
MLRA 2	Northeastern Illinois heavy till plain	2,063,695	25.0	29	10.8
MLRA 3	Northern Mississippi Valley	20,942	31.3		31.3
MLRA 4	Deep loess and drift	5,437,807	19.6	26	9.9
MLRA 5	Claypan	310,087	6.6		6.6
MLRA 6	Thin loess and till	226,971	7.4	30	3.5
MLRA 7	Central Mississippi Valley, Northern Part	1,284,588	24.5	46	11.8
MLRA 8	Sandstone and shale hills and valleys	49,565	3.9		3.9
MLRA 9	Central Mississippi Valley, Western Part	23,769	4.0		4.0

Iowa Strategy to Reduce Nutrient Loss: Nitrogen Practices

This table lists practices with the largest potential impact on nitrate-N concentration reduction (except where noted). Corn yield impacts associated with each practice also are shown as some practices may be detrimental to corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% Nitrate-N Reduction ⁺	% Corn Yield Change**
			Average (SD*)	Average (SD*)
		Moving from fall to spring pre-plant application	6 (25)	4 (16)
	Timing	Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)"
Ħ	Source	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
B	Source	Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
Nitrogen Management	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:com price ratio) compared to current estimated application rate. (ISU Com Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soiffertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	31 (29)	-6 (7)
	Cover Crops	Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
-		Energy Crops - Compared to spring-applied fertilizer	72 (23)	
Use	Perennial	Land Retirement (CRP) - Compared to spring-applied fertilizer	85 (9)	
Land Use	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
-	Grazed Pastures	No pertinent information from Iowa – assume similar to CRP	85	
	Drainage Water Mgmt.	No impact on concentration	33 (32)	
eld	Shallow Drainage	No impact on concentration	32 (15)	
E-F	Wetlands	Targeted water quality	52	
Edge-of-Field	Bioreactors		43 (21)	
193	Buffers	Only for water that interacts with the active zone below the buffer. This would only be a fraction of all water that makes it to a stream.	91 (20)	

⁺ A positive number is nitrate concentration or load reduction and a negative number is an increase.

⁺⁺ A positive corn yield change is increased yield and a negative number is decreased yield. Practices are not expected to affect soybean yield.
* SD – standard deviation. Large SD relative to the average indicates highly variable results.

** This increase in crop yield should be viewed with caution as the sidedress treatment from one of the main studies had 95 ib-N/scre for the pre-plant treatment but 110 ib-N/acre to 200 ib-N/acre for the sidedress with soil test treatment so the corn yield impact may be due to nitrogen application rate differences.

SP 435 Februa

Water Quality Improvement Case Study: Assessment of the Lake Bloomington Watershed
Final Report, March 10, 2008

Nitrogen reduction practices (tile drainage)

Practice Expected reduction (%) nitrification inhibitors 10 spring vs. fall fertilization 20recommended rate vs. above¹ no-till vs. conventional 0 25 cover crops water table management 40 shallow or wide tiles 25 conversion to CRP 95 conversion to perennial crops 80 constructed wetlands (20:1) 50 bioreactors no data available

Example Statewide Results

Practice/Scenario	% reduction per acre	Nutrient reduced (million lbs)	Total Load (million Ibs)	Nutrient Reduction % (from baseline)
Baseline				
Nitrogen or phosphorus management in field				
Edge-of-field				
Landscape change				
Point source management				

Example Statewide Results for N

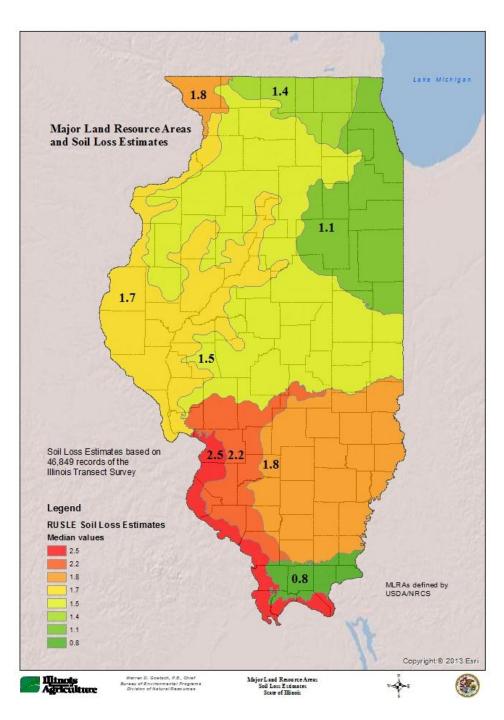
	Practice/Scenario	% Nitrate- N reduction per acre	Nitrate-N reduced (million lbs N)	Total Load (million lbs N)	Nitrate-N Reduction % (from baseline)
	Baseline		188	410	
	Reducing N rate from background to the MRTN (10% of acres)	10	4		1.0
ק	Nitrification inhibitor with all fall applied fertilizer	10	6		1.5
In-field	Split (50%) fall and spring (50%) on tile-drained corn acres	7.5 to 10	10		2.5
	Fall to spring on tile-drained corn acres	15 to 20	21		5.0
	Cover crops on all corn/soybean tile-drained acres	30	84		20.5
	Cover crops on all corn/soybean non-tiled acres	30	32		7.9
÷	Bioreactors on 50% of tile-drained land	40	56		13.6
Edge-of- field	Wetlands on 25% of tile-drained land	40	35		8.5
Ed fie	Buffers on all applicable crop land (reduction only for water that interacts with active area)	90			
Land use change	Perennial/energy crops equal to pasture/hay acreage from 1987	90	10		2.5
Land us change	Perennial/energy crops on 10% of tile-drained land	90	25		6.1
nce	Point source reduction to 6 mg nitrate-N/L		35		8.5
Point source	Point source reduction in N due to biological nutrient removal for P		8		1.8

Agricultural P Management by MLRA

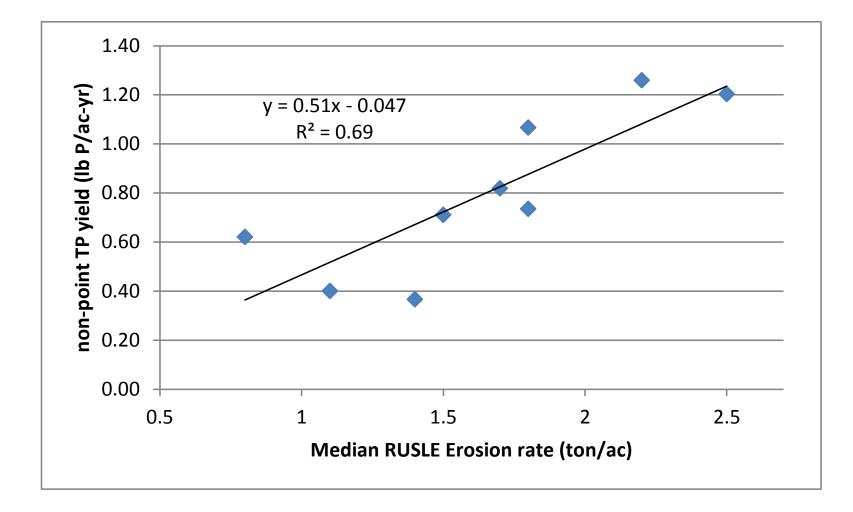
Combined MLRA	Description	Estimated fertilizer (lbs P/acre/yr)	Estimated manure (lbs P/acre/yr)	Row crops (acres)	Total P yield per row crop acre (lbs P/acre/yr)
MLRA 1	Northern Illinois drift plain	14.9	3.9	760,283	0.71
MLRA 2	Northeastern Illinois heavy till plain	13.4	1.3	2,686,389	0.68
MLRA 3	Northern Mississippi Valley	13.4	5.4	217,914	1.72
MLRA 4	Deep loess and drift	13.6	2.3	8,999,502	0.96
MLRA 5	Claypan	11.7	2.4	3,954,411	1.74
MLRA 6	Thin loess and till	11.3	2.5	1,515,195	2.09
MLRA 7	Central Mississippi Valley, Northern Part	13.6	3.4	3,421,423	1.45
MLRA 8	Sandstone and shale hills and valleys	11.3	1.3	209,871	2.82
MLRA 9	Central Mississippi Valley, Western Part	11.0	1.6	596,648	2.82
Sum				22,361,636	

Iowa Strategy to Reduce Nutrient Loss: Phosphorus Practices

Practices below have the largest potential impact on phosphorus load reduction. Corn yield impacts associated with each practice also are shown, since some practices may increase or decrease corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.


	Practice	Comments	% P Load Reduction ^a	% Corn Yield Change ^b
			Average (SD ^c)	Average (SD ^c)
	Phosphorus	Applying P based on crop removal – Assuming optimal STP level and P incorporation	0.6 ⁴	0
se	Application	Soil-Test P – No P applied until STP drops to optimum	17°	0
Practic	Source of Phosphorus	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application	46 (45)	-1 (13)
e me nt		Beef manure compared to commercial fertilizer – Runoff shortly after application	46 (96)	
Aanage	Placement of	Broadcast incorporated within 1 week compared to no incorporation, same tillage	36 (27)	0
Phosphorus Management Practices	Phosphorus	With seed or knifed bands compared to surface application, no incorporation	24 (46)	0
ldso	Cover Crops	Winter rye	29 (37	-6 (7)
Ph	Tillage	Conservation till – chisel plowing compared to moldboard plowing	33 (49)	0 (6)
		No till compared to chisel plowing	90 (17)	-6 (8)

Water Quality Improvement Case Study: Assessment of the Lake Bloomington Watershed


Final Report, March 10, 2008

Land Use Change	Perennial Vegetation	Energy Crops Land Retirement (CRP) Grazed pastures	Phosphorus reduction practices		
Build Vegetation Grazed pastures Image: Second Se		Sedimentation basins or ponds duction and a negative number is increased P load. s increased yield and a negative number is decreased yield. Practil a SD relative to the average indicates highly variable results. the d by comparing application of 200 and 125 kg P ₂ O ₂ /ha, respective 002). tes based on reducing the average STP (Bray-1) of the two highes vely, to an optimum level of 20 ppm (Mallarino et al., 2002). Minimu hy variable and dependent upon such factors as hydrologic loading VIVERSITY	Practice recommended rate vs. above subsurface vs. surface broadcast cover crops shallow or wide tiles conversion to CRP conversion to perennial crops WASCOB installation sedimentation basins riparian buffers constructed wetlands	Expected reduction % Tile drainage 5 + 50 50	⁶ Surface runoff 5 20 25 - 75 95 75 95 ¹ 50 ² 20 ³

Illinois Dept. of Ag Transect Survey Median Soil Loss Estimates

Non-point TP yield from MLRAs as a function of median soil erosion estimates

Sediment TP Reduction by MLRA

MLRA	% fields > 5 ton/ac	Avg. RUSLE >5 ton/ac (ton/ac)	SDR	TP reduction (million lb/yr)
1	8.0	7.8	0.16	0.08
2	3.3	7.2	0.14	0.05
3	18.3	8.7	0.18	0.10
4	8.2	8.2	0.12	0.72
5	14.1	8.9	0.13	0.50
6	18.6	9.0	0.15	0.35
7	14.9	9.0	0.13	0.74
8	15.3	13.0	0.17	0.08
9	24.3	12.4	0.16	0.36
Total				2.99

Future estimates may be refined by using % of fields eroding>T based on IDOA data and alternative estimates of SDR (e.g., CEAP)

Example Statewide Results for P

	Practice/Scenario	% Total P reduction per acre	Total P reduced (million lbs P)	Total Load (million Ibs P)	Total P Reduction % (from baseline)
	Baseline		18.8	37.5	
In-field	Erosion control to 5 tons per acre on all acres		3.0		8.0
	P rate reduction on fields with soil test P above the recommended maintenance level	20			
	Cover crops on all CS acres	30	5.7		15.2
	Incorporation of all P fertilizers	25			
Edge- of-field	Wetlands on 25% of tile-drained land	0	0		0.0
	Buffers on all applicable crop land	60	7.2		19.2
Land use change	Perennial/energy crops equal to pasture/hay acreage from 1987	90	1.0		2.7
	Perennial/energy crops on 10% of tile- drained land	50	0.3		0.8
Point source	Point source reduction to 1 mg total P/L limit (0.7 mg P/L actual)		10.6		28.3

4. Develop Scenarios

- provide a range of scenarios to meet reduction targets
 - area needed by practice
 - initial investment and annualized costs
 - point and non-point source reductions
- could have range of targets (20%, 30%, 45%)
- focus reduction practices on most critical watersheds (HUC8s)