Science Assessment to Support an Illinois Nutrient Reduction Strategy

Mark David, George Czapar, Greg McIsaac, Corey Mitchell August 8, 2013

Technical Tasks

- develop a science based technical assessment of:
 - current conditions in Illinois of nutrient sources and export by rivers in the state from point and nonpoint sources
 - methods that could be used to reduce these losses and estimates of their effectiveness throughout Illinois
 - estimates of the costs of statewide and watershed level application of these methods to reduce nutrient losses to meet TMDL and Gulf of Mexico goals

Steps we will take

- 1. determine current conditions
- 2. identify critical watersheds
- 3. estimate potential reductions and costs
- 4. develop scenarios

1. Current Conditions

- nutrient (nitrate and total P) loads from major river basins of Illinois
 - estimates of point and non-point sources
 - compare 1980-1996 with 1997-2011
 - determine direction of loads
- determine current agricultural management practices across the state
 - nutrient inputs and management (fertilizers and manure)
 - current cropping practices
 - N and P loads and yields from water quality data

Point Source P Analysis

- began with IEPA's total P analysis
 - USEPA nutrient loading tool that is linked to the Integrated Compliance Information System (ICIS)
 - focused on larger point sources in state
 - IEPA focused on 108 sources (used IAWA request for data)
 - 42 facilities responded with P data
 - we added one additional facility (Decatur)
- also looked at the other majors and all minors
 - mostly used ICIS concentrations for total P
 - IEPA knowledge of industrial sources for total P concentrations
 - some industrial sources have shut down; actual number is currently less

Point Source N Analysis

- solicited total N and nitrate data from operators via IAWA
 - received useable data from 31 facilities (1.3 to 712 MGD, median 12 MGD)
 - most provided 5-years of data (2008 to 2012)
- total N 16.8 mg N/L; nitrate-N 14.9 mg N/L applied to other facilities in ICIS N database
 - average from typical plants in survey
 - applied to 392 sources in ICIS
 - all POTW's

Point Source N Loads

	Total N	Nitrate-N
	1000 tons N yr	⁻¹ (392 sources)
State	39.6	34.1
Illinois River	34.1	29.2
Green River	0.05	0.04
Big Muddy	0.55	0.49
Kaskaskia River	1.00	0.88
Little Wabash	0.22	0.20
Rock River	1.79	1.58
Vermilion River	0.70	0.62
Embarras River	0.27	0.24
All other basins	0.94	0.80
State (David and Gentry, 2000)	39.0	
State consumption of N (David et al., 2010)	56.0	

Point Source P Loads

	Total P (1000 to	ons P yr⁻¹)
	(all, 1660 sources)	(majors, 263) [*]
State	8.16	7.54
Illinois River	6.62	6.25
Green River	0.01	0.01
Big Muddy	0.10	0.08
Kaskaskia River	0.23	0.18
Little Wabash	0.08	0.06
Rock River	0.46	0.41
Vermilion River	0.10	0.09
Embarras River	0.05	0.03
All other basins	0.51	0.43
State (David and Gentry, 2000)	6.67	
State consumption of P (Jacobson et al., 2011)	5.92	

*this number is from ICIS 2009, some are no longer operational

Riverine fluxes

- used USGS flow data and IEPA and USGS nutrient data for 1980 through 2011
- eight major rivers in state (drain 74% of state)

- assumed to represent all of the state

- used both linear interpolation for total N, nitrate-N, dissolved reactive P (DRP), and total P; USGS WRDTS for nitrate-N, DRP, and total P
- Rock River contribution by difference in stations or by assuming outlet represents Illinois well

Load Estimators

 no standard method, unless you have a concentration every day

much argument about various methods

- interpolation is simple, and works well for larger rivers and nutrients such as nitrate-N
- for P, interpolation has limitations at high flows, when most P loss occurs (Royer et al., 2006)
 - Weighted Regressions on Time, Discharge, and Season is newer USGS approach (Hirsch et al., 2010)

Riverine fluxes continued

- interpolation and WRDTS gave similar results for nitrate-N; for DRP and total P WRDTS gave higher estimates for smaller rivers
 - Illinois River nearly the same for both nitrate-N and total P with either method
 - Rock River best estimated by difference between upstream and downstream sites
- we used interpolation for nitrate-N and total N, WRDTS for DRP and total P for final estimates

Riverine N and P Fluxes

	Water	Nitrate-N	Total N	DRP	Total P
	10 ⁹ m ³ yr ⁻¹		1000 tons N	or P yr ⁻¹	
David & Gentry (2000)	47		244		14.2
1980-1996	48.2	183	239	7.0	15.4
1997-2011	48.8	186	243	8.4	17.0
Point sources		34.1	39.6		8.2
		P	ercent of 199	7-2011 load	
Point sources		18.4	16.3		48
David & Gentry (2000)			16		47

Flow and Nutrient Loads

Trends through time

- no significant trend for flow using linear regression of annual volume
- regression model with flow and time
 - for nitrate, R²=0.77, flow p < 0.0001, year not significant
 - for total P, R²=0.97, flow and year both significant at p < 0.0001
 - for DRP, R²=0.96, flow and year both significant at p < 0.0001

Riverine N and P loads (1997-2011)

	Nitrate-N	Total P		
	1000 tons N or P yr ⁻¹			
State	186	17.0		
Illinois River	104	8.5		
Green River	4.1	0.2		
Big Muddy	9.0	0.5		
Kaskaskia River	4.7	1.2		
Little Wabash	2.5	1.1		
Rock River	13	0.8		
Vermilion River	8.6	0.4		
Embarras River	6.6	0.5		

Riverine Loads through Time

Illinois Compared with MRB

Illinois as % of MRB

David and Gentry (2000) 15% for total N, 10% for P

N and P Yields for State, 1980 to 1997

From David and Gentry (2000)

N and P Yields for State, 1997 to 2011

Point and agricultural sources (1997-2011)

N or P Yield (kg ha⁻¹ yr⁻¹)

Point and agricultural sources (1997-2011)

Dissolved Reactive P versus Total P

Goal or Target

- 45% reduction in 1980 to 1996 loads
 - nitrate-N target of 100,000 tons N yr $^{-1}$
 - total P target of 8,500 tons P yr⁻¹
- larger reductions needed from 1997 to 2011 average loads
 - 186,000/86,000 tons N as nitrate-N needed (46%)
 17,000/8,500 tons total P needed (50%)
- example reduction for point source P
 - all majors P reduction to 1 mg P/L limit, 0.7 mg P/L average would give a 4,800 ton P reduction

Point and agricultural sources (1997-2011)

Nitrate-N and Total P Targets

Red line is target, purple is average 1997 to 2011

2. Critical Watershed Identification

- identify 8 digits HUCs with the highest nutrient yields and loads to the Gulf of Mexico
- identify watersheds with nutrient impaired water bodies (303d list)
- determine overlap
- estimate point and non-point sources of N and P within watersheds

3. Estimate Potential Reductions and Costs

- estimate field-level effectiveness of various agricultural management practices
 - utilize SAB, Iowa, and Lake Bloomington Project estimates
 - knowledge in Illinois
- determine possible point source reductions
- estimate costs
 - Gary Schnitkey (agricultural economist) will lead
 - initial investments
 - likely to annualize costs over 25 years

Combined MLRA's

		Lands	cape		Climate	
MLRA	Description	Elevation m (ft)	Local Relief	Precipitation mm (inches)	Annual Temperature	Freeze Free
050	Couthorn Wisconsin and	200 to 200	m (n)	700 to 000		170
900	Northern Illinois Drift Plain	(660 to 980)	(25)	(30 to 38)	(43 to 48)	170
97	Southwestern Michigan Fruit and Truck Crop Belt	200 to 305 (600 to 1000)	2 to 5 (5 to 15)	890 to 1,015 (35 to 40)	8 to 11 (47 to 52)	200
98	Southern Michigan and Northern Indiana Drift Plain	175 to 335 (570 to 1,100)	15 (5)	735 to 1,015 (29 to 40)	7 to 10 (44 to 50)	175
110	Northern Illinois and Indiana Heavy Till Plain	200 (650)	3 to 8 (10 to 25)	785 to 1,015 (31 to 40)	7 to 11 (42 to 52)	185
105	Northern Mississippi Valley Loess Hills	200 to 400 (660 to 1,310)	3 to 6 (10 to 20)	760 to 965 (30 to 38)	6 to 10 (42 to 50)	175
108A	Illinois and Iowa Deep Loess and Drift, Eastern Part	200 to 300 (660 to 985)	1 to 3 (3 to 10)	890 to 1,090 (35 to 43)	8 to 12 (47 to 54)	195
108B	Illinois and Iowa Deep Loess and Drift, East- Central Part	200 to 300 (660 to 985)	1 to 3 (3 to 10)	840 to 990 (33 to 39)	8 to 12 (47 to 54)	185
113	Central Claypan Areas	200 (660)	1.5 to 3 (5 to 10)	915 to 1,170 (36 to 46)	11 to 14 (51 to 57)	205
115A	Central Mississippi Valley Wooded Slopes, Eastern Part	100 to 310 (320 to 1,020)	3 to 15 (10 to 50)	1,015 to 1,195 (40 to 47)	11 to 14 (53 to 57)	210
114B	Southern Illinois and Indiana Thin Loess and Till Plain, Western Part	105 to 365 (350 to 1,190)	3 to 15 (10 to 50)	940 to 1,170 (37 to 46)	11 to 14 (52 to 56	210
115C	Central Mississippi Valley Wooded Slopes, Northern Part	130 to 270 (420 to 885)	3 to 6 (10 to 20)	865 to 1,015 (34 to 40)	9 to 13 (48 to 55)	200
120A	Kentucky and Indiana Sandstone and Shale Hills and Valleys, Southern Part	105 to 290 (345 to 950)	Varies widely	1,145 to 1,370 (45 to 54)	13 to 14 (55 to 58)	210
115B	Central Mississippi Valley Wooded Slopes, Western Part	100 to 310 (320 to 1,020)	3 to 15 (10 to 50)	965 to 1,220 (38 to 48)	12 to 14 (53 to 57)	205
131A	Southern Mississippi River Alluvium	0 to 100 (0 to 330	Max 5 (15)	1,170 to 1,525 (46 to 60)	14 to 21 (56 to 69)	210 (North)
134	Southern Mississippi Valley Loess	25 to 185 (80 to 600)	3 to 6 (10 to 20)	1,195 to 1,525 (47 to 60)	14 to 20 (57 to 68)	215 (North)

Major Land Resource Areas (MLRAs) in Illinois, showing combinations to be used for analysis (15 combined into 9). Bold MLRAs are the numbers that will be used throughout our analysis.

Agricultural Management by MLRA

Combined MLRA	Description	Corn (acres)	Soybean (acres)	Wheat (acres)	Drained acres (% of crop acres)	Corn yield (bushels /acre)	Soybean yield (bushels /acre)
MLRA 1	Northern Illinois drift plain	515,905	224,186	20,192	288,491 (39)	161	48
MLRA 2	Northeastern Illinois heavy till plain	1,532,100	1,111,885	42,404	2,063,695 (78)	150	39
MLRA 3	Northern Mississippi Valley	163,507	52,432	1,975	20,942 (10)	160	50
MLRA 4	Deep loess and drift	5,579,980	3,343,444	76,078	5,437,807 (61)	164	52
MLRA 5	Claypan	1,609,633	1,991,939	352,839	310,087 (9)	128	39
MLRA 6	Thin loess and till	664,242	689,773	161,180	226,971 (17)	130	42
MLRA 7	Central Mississippi Valley, Northern Part	2,058,853	1,288,686	73,884	1,284,588 (38)	155	49
MLRA 8	Sandstone and shale hills and valleys	83,969	115,244	10,658	49,565 (25)	103	33
MLRA 9	Central Mississippi Valley, Western Part	203,736	314,662	78,250	23,769 (5)	125	39
Sum		12,411,925	9,132,251	817,460	9,705,916 (43)		

Average crop acres and yields 2008 through 2012

Agricultural Management by MLRA

Combined MLRA	Description	Estimated corn fertilizer (Ibs N/acre/yr)	Estimated corn fertilizer + manure (lbs N/acre/yr)	Row crops (acres)	Nitrate-N yield per row crop acre (lbs N/acre/yr)
MLRA 1	Northern Illinois drift plain	152	168	760,283	20.4
MLRA 2	Northeastern Illinois heavy till plain	158	164	2,686,389	25.0
MLRA 3	Northern Mississippi Valley	135	158	217,914	31.3
MLRA 4	Deep loess and drift	150	159	8,999,502	19.6
MLRA 5	Claypan	180	196	3,954,411	6.6
MLRA 6	Thin loess and till	156	170	1,515,195	7.4
MLRA 7	Central Mississippi Valley, Northern Part	155	169	3,421,423	24.5
MLRA 8	Sandstone and shale hills and valleys	209	219	209,871	3.9
MLRA 9	Central Mississippi Valley, Western Part	192	204	596,648	4.0
Sum		157	168	22,361,636	

Agricultural Management by MLRA

Combined MLRA	Description	Estimated Corn fertilizer (Ibs N/acre/yr)	Estimated Corn fertilizer + manure (lbs N/acre/yr)	Row crops (acres)	Nitrate-N yield per row crop acre (lbs N/acre/yr)
MLRA 1	Northern Illinois drift plain	152	168	760,283	20.4
MLRA 2	Northeastern Illinois heavy till plain	158	164	2,686,389	25.0
MLRA 3	Northern Mississippi Valley	135	158	217,914	31.3
MLRA 4	Deep loess and drift	150	159	8,999,502	19.6
MLRA 5	Claypan	180	196	3,954,411	6.6
MLRA 6	Thin loess and till	156	170	1,515,195	7.4
MLRA 7	Central Mississippi Valley, Northern Part	155	169	3,421,423	24.5
MLRA 8	Sandstone and shale hills and valleys	209	219	209,871	3.9
MLRA 9	Central Mississippi Valley, Western Part	192	204	596,648	4.0
Sum		157	168	22,361,636	

Iowa Strategy to Reduce Nutrient Loss: Nitrogen Practices

This table lists practices with the largest potential impact on nitrate-N concentration reduction (except where noted). Corn yield impacts associated with each practice also are shown as some practices may be detrimental to corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% Nitrate-N Reduction*	% Corn Yield Change**
			Average (SD*)	Average (SD*)
		Moving from fall to spring pre-plant application	6 (25)	4 (16)
	Timing	Spring pre-plant/sidedress 40-60 split Compared to fall-applied	5 (28)	10 (7)
		Sidedress – Compared to pre-plant application	7 (37)	0 (3)
		Sidedress – Soil test based compared to pre-plant	4 (20)	13 (22)"
닅	Course	Liquid swine manure compared to spring-applied fertilizer	4 (11)	0 (13)
B	Source	Poultry manure compared to spring-applied fertilizer	-3 (20)	-2 (14)
Nitrogen Manag	Nitrogen Application Rate	Nitrogen rate at the MRTN (0.10 N:com price ratio) compared to current estimated application rate. (ISU Com Nitrogen Rate Calculator – http://extension.agron.iastate.edu/soiffertility/nrate.aspx can be used to estimate MRTN but this would change Nitrate-N concentration reduction)	10	-1
	Nitrification Inhibitor	Nitrapyrin in fall – Compared to fall-applied without Nitrapyrin	9 (19)	6 (22)
	Cover Crops	Rye	31 (29)	-6 (7)
		Oat	28 (2)	-5 (1)
	Living Mulches	e.g. Kura clover – Nitrate-N reduction from one site	41 (16)	-9 (32)
	0	Energy Crops – Compared to spring-applied fertilizer	72 (23)	
ŝ	Perennial	Land Retirement (CRP) - Compared to spring-applied fertilizer	85 (9)	
and	Extended Rotations	At least 2 years of alfalfa in a 4 or 5 year rotation	42 (12)	7 (7)
1	Grazed Pastures	No pertinent information from Iowa – assume similar to CRP	85	
	Drainage Water Mgmt.	No impact on concentration	33 (32)	
eld	Shallow Drainage	No impact on concentration	32 (15)	
H-H-	Wetlands	Targeted water quality	52	
š	Bioreactors		43 (21)	
33	Buffers	Only for water that interacts with the active zone below the buffer. This would only be a fraction of all water that makes it to a stream.	91 (20)	

⁺ A positive number is nitrate concentration or load reduction and a negative number is an increase.

⁺⁺ A positive corn yield change is increased yield and a negative number is decreased yield. Practices are not expected to affect soybean yield.
* SD – standard deviation. Large SD relative to the average indicates highly variable results.

** This increase in crop yield should be viewed with caution as the sidedress treatment from one of the main studies had 95 ib-N/scre for the pre-plant treatment but 110 ib-N/acre to 200 ib-N/acre for the sidedress with soil test treatment so the corn yield impact may be due to nitrogen application rate differences.

SP 435 Februa

Water Quality Improvement Case Study: Assessment of the Lake Bloomington Watershed
Final Report, March 10, 2008

Nitrogen reduction practices (tile drainage)

Practice Expected reduction (%) nitrification inhibitors 10 spring vs. fall fertilization 20recommended rate vs. above¹ no-till vs. conventional 0 25 cover crops water table management 40 shallow or wide tiles 25 conversion to CRP 95 conversion to perennial crops 80 constructed wetlands (20:1) 50 bioreactors no data available

Iowa Strategy to Reduce Nutrient Loss: Phosphorus Practices

Practices below have the largest potential impact on phosphorus load reduction. Corn yield impacts associated with each practice also are shown, since some practices may increase or decrease corn production. If using a combination of practices, the reductions are not additive. Reductions are field level results that may be expected where practice is applicable and implemented.

	Practice	Comments	% P Load Reduction®	% Corn Yield Change ^b
			Average (SD ^c)	Average (SD ^c)
	Phosphorus	Applying P based on crop removal – Assuming optimal STP level and P incorporation	0.6 ⁴	0
s	Application	Soil-Test P – No P applied until STP drops to optimum	17°	0
ment Practic	Source of Phosphorus	Liquid swine, dairy, and poultry manure compared to commercial fertilizer – Runoff shortly after application	46 (45)	-1 (13)
		Beef manure compared to commercial fertilizer – Runoff shortly after application	46 (96)	
Aanage	Placement of Phosphorus	Broadcast incorporated within 1 week compared to no incorporation, same tillage	36 (27)	0
iorus N		With seed or knifed bands compared to surface application, no incorporation	24 (46)	0
ldso	Cover Crops	Winter rye	29 (37	-6 (7)
Phé	Tillage	Conservation till – chisel plowing compared to moldboard plowing	33 (49)	0 (6)
		No till compared to chisel plowing	90 (17)	-6 (8)

Water Quality Improvement Case Study: Assessment of the Lake Bloomington Watershed

Final Report, March 10, 2008

Jse ge	Descript	Energy Crops	Dhamhama na huatian ana stiana				
han	Vegetation	Land Retirement (CRP)	Phosphorus reduction practices				
La C		Grazed pastures					
trol Field	Terraces		Practice	Expected reduction %			
on Com ge-of-l actic es	Buffers			Tile drainage	Surface runoff		
Erosi and Ed Pro	Control	Sedimentation basins or ponds	recommended rate vs. above		5		
^a - A positive n ^b - A positive o	umber is P load re om yield change i	duction and a negative number is increased P load. s increased yield and a negative number is decreased yield. Practi	subsurface vs. surface broadcast		20		
² - SD = standard deviation. Large SD relative to the average indicates highly variable results. ⁴ Maximum and suprame estimated by comparing application of 200 and 125 kg P. 0. (b) respective			cover crops	5	25		
requirements) ° - Maximum a	(Mallarino et al., 2 nd average estima	002). Ites based on reducing the average STP (Bray-1) of the two highes	shallow or wide tiles + - conversion to CRP 50 7				
Mallarino et a	il., 2011a), respecti in wetlands is high	vely, to an optimum level of 20 ppm (Mailarino et al., 2002). Minimur Iv variable and dependent upon such factors as hydrologic loading					
	,		conversion to perennial crops	50	95		
			WASCOB installation		75		
			sedimentation basins		95 ¹		
IOWA STATE UNIVERSITY Extension and Outwach		NIVERSITY ison State University Education and Education programs are nor profer identity, proved in threading, search in the state of Completion, search interesting, search interesting of the state of Completion, search interesting of the state of the state of Completion, search interesting of the state of the state of Completion, search interesting of the state of the state of Completion, search interesting of the state of the state of Completion, search interesting of the state of the state of Completion, search interesting of the state of the state of Completion of the state of the state of the state of the state of Completion, search interesting of the state of the state of the state of the state of the sta	riparian buffers		50^{2}		
LAULIBIOI	i ana Ourico	No. 4	constructed wetlands		20 ³		

4. Develop Scenarios

- combine possible point source reductions and field level agricultural reductions
 - percent reduction by practice
 - costs of implementation
 - target 45% reductions in N and P
- scale-up to critical watersheds and statewide
- provide a range of scenarios to meet reduction targets
 - area needed by practice
 - initial investment and annualized costs