Environmental Protection Agency

Annual Groundwater and Drinking Water Program Review

Calendar Year 2020

Illinois Environmental Protection Agency

Annual Groundwater and Drinking Water Program Review Calendar Year 2020

Illinois Environmental Protection Agency Bureau of Water Division of Public Water Supplies

Annual Compliance Report for 2020

Introduction

Each year, the Illinois Environmental Protection Agency (IEPA) provides citizens and the EnvironmentalProtection Agency (EPA) with a report on the status of public drinking water in Illinois. This report provides both an assessment of how well public water supply systems are doing at meeting the standards set in the federal Safe Drinking Water Act and insights about current challenges faced by public water suppliers.

Ongoing attention, investment, and response to new and ongoing challenges to our water resources is needed to maintain the ability to rely on an adequate supply of safe water. Sustainable water resources are critical to personal and public health. Protecting water sources, treating the water, and testing the water after it is treatedare part of the multi-barrier approach to assuring an adequate supply of water that is safe to drink.

As we issue this report, we are still dealing with the coronavirus disease 2019 (COVID-19). Our priority has working with public water suppliers to keep them up and running as well as in compliance with the Safe Drinking Water Act while keeping our employees and others safe.

Though the pandemic necessitated changes, the Drinking Water Protection (DWP) program at IEPA sustained its work to keep drinking water safe for everyone.

Protecting and supplying safe water depends on many organizations and individuals. While the Illinois Environmental Protection Agency administers and enforces the provisions of the federal Safe Drinking Water Act on behalf of the EPA, we rely on our partners in in areas ranging from government to industry to non-profit organizations to take an active role and contribute this quest.

These partners include everyone, including individual citizens. Everyone plays a part in ensuring safe water. As always, our aim with this report is to provide a clear picture of what is done to protect the quality of their drinking water and the success of the efforts to do so.

In Illinois, regulatory oversight of public water systems (PWS)¹ is shared by the Illinois EPA and DPH. The Illinois EPA was designated as Illinois' primary enforcement authority by the U.S. EPA on August 29, 1979. The Illinois EPA, through an Intergovernmental Funding Agreement has empowered the Illinois DPH to administer the Non-Community PWS Program while the Illinois EPA retains regulatory authority over Community PWS².

¹ PWS serve 15 service connections or 25 residents.

² CWS serve 15 or more <u>year-round service</u> connections or 25 or <u>more year-round</u> residents.

The Illinois EPA regulates 1,756 CWS. These water supplies utilize groundwater and surface water sources of potable water. Currently, 1,140 CWS use groundwater sources, 616 use surface water sources or groundwater sources under the direct influence of surface water, 12 use both ground and surface water sources, and 740 supplies purchase water from other CWS. A total of 12,031,118 persons are served by those systems; 39 percent of that population is directly served from surface water systems. Thirty five percent of the

population is served by purchased surface water, two percent by purchased groundwater, and 24 percent by groundwater systems. It is worth noting that although only 26 percent of the population is served by groundwater (including purchased groundwater), groundwater dependent systems

comprise almost 65 percent of the total number of CWS.

The Transient Non-Community (TNC) PWS served a population of 328,786 in 2020, while NTNC PWS served a population of 158,115. A total of 432,241 persons are served by systems using groundwater, while only 54,660 persons are served by surface water. These numbers reflect the areas where NCPWS are located predominantly in rural or nonincorporated areas where groundwater is generally available as a source of potable water.

Statutory Background

The program to protect PWS in Illinois began in 1915 and has undergone considerable legal and regulatory restructuring over the years. In 1970, the General Assembly formulated the Illinois Environmental Protection Act (Act), 415 ILCS 5/14. They found that "state supervision of public water supplies is necessary in order to protect the public from disease and to assure an adequate source of pure water for all beneficial uses," and "It is the purpose of this Title to assure adequate protection of public water supplies." The Illinois Groundwater Protection Act (IGPA), 415 ILCS 55/1 was also adopted in 1987. Additionally, programs to protect groundwater were initiated by the Act in conjunction with "Water Quality Standards" for waters of the state that included underground water (35 Ill. Adm. Code 302). In 1991, the Illinois Pollution Control Board (IPCB) adopted comprehensive groundwater quality (35 Ill. Adm. Code 620).

The "core mission" of the Illinois EPA's Division of Public Water Supplies (DPWS) is to *assure that all persons served by community public water supplies receive water which is safe in quality, clean, adequate in quantity and of satisfactory mineral character for ordinary domestic consumption*. To accomplish this goal, the DPWS oversees the design, construction, and operation of CWS in Illinois. More specifically, the Illinois EPA must review the safety and protection of drinking water source water, implement a permitting program for the design, construction, and operation of PWS treatment facilities, and maintain a surveillance program of water systems' untreated and treated waters.

To support these activities, the DPWS has been staffed by a diverse contingent of engineers, geologist and scientist that comprise the Compliance Assurance (CAS), Field Operations (FOS), Groundwater (GWS), and Permit (PS) Sections. The DPWS is further supported by the Infrastructure and Financial Assistance Section (IFAS) of the Bureau of Water (BOW), the Division of Legal Counsel, the Division of Laboratories, the State of Illinois' Central Management Services and Department of Innovation and Technology (DoIT).

As mentioned previously, the Illinois DPH supports the Non-Community PWS program through a series of rules including, but not limited to: the Illinois Plumbing Code (77 Ill. Adm. Code 890); the Illinois Water Well Construction Code (415 ILCS 30); the Surface Source Water Treatment Code (77 Ill. Adm. Code 930) and the Drinking Water Systems Code (77 Ill. Adm. Code 900). The Illinois DPH's Division of Environmental Health works to reduce the incidence of disease and injury related to environmental factors that fall within five major areas of responsibility: rulemaking; plan reviews and construction permits; inspections; vocational and facility licensing; and engineering and toxicological reports.

To support these areas of responsibility within the Non-Community PWS, Illinois DPH has field staff located in the Illinois DPH's six Regional Offices (RO) and leverages the resources of Local Health Departments (LHD). Compliance assurance and engineering services are generally conducted by staff located in the Central Office in Springfield. Consistent with the requirements of the Safe Drinking Water Act (SDWA) program activities include sanitary surveys, water analysis and reporting; plan review; technical assistance; and training and education.

Under the SDWA and subsequent amendments, the U.S. EPA sets national limits on contaminant levels in drinking water to ensure that the water is safe for human consumption. These limits are known as Maximum Contaminant Levels (MCLs) and Maximum Residual Disinfectant Levels (MRDLs). For some regulations, treatment techniques (TT) are established in lieu of an MCL to control unacceptable levels of contaminants in water. The SDWA also requires PWS to notify their consumers when they have violated these regulations. The consumer notifications must provide an understandable explanation of the nature of the violation, its potential adverse health effects, steps that the PWS is undertaking to correct the violation and the possibility of using alternative water supplies during the violation.

Through the ongoing review of Illinois EPA's programs, the U.S. EPA has granted the Illinois EPA primary enforcement authority to determine the frequency that CWS monitor and report on the contaminants present in their water. (Generally, the larger the population served by a water system, larger the number of samples collected and the more frequent the monitoring and reporting (M&R) requirements. Additionally, the U.S. EPA supports the development of new MCLs by requiring CWS to monitor and report on currently unregulated contaminants (e.g., Unregulated Contaminant

Monitoring Regulation (UCMR)). As data are acquired for these contaminants, scientific analyses are conducted to determine the need for development of new MCLs.

In 1998, the Illinois EPA began making CWS revolving loans through a partnership with the U.S. EPA and the Federal Government. Since this time, the Illinois EPA has made more than \$2.3 billion in revolving loans to water systems. This money has gone to public water supply systems around the state to maintain compliance with federal and state laws and regulations and maintain and improve the state's drinking water infrastructure.

OVERVIEW OF THE PWS PROGRAMS IN ILLINOIS

Community Public Water Supply Surveillance Program

To sustain compliance with regulatory requirements and ensure the safety of Illinois CWS consumers, the Illinois EPA is committed to completing engineering evaluations (sanitary surveys) as frequently as possible. Through the DPWS' institutional knowledge, the more frequent the contact between the Illinois EPA and CWS, the higher the percentage of compliant water systems.

The focus of the Illinois EPA's inspections of CWS continues to be an evaluation of the general operation and maintenance practices at the respective systems. Inspectors evaluate state regulations under 35 Ill. Adm. Code and various ancillary programs that affect the CWS, such as the regulations under the Title IV: Drinking Water Security and Safety of the *Public Health Security & Bioterrorism Preparedness & Response Act of 2002* (Public Act 107-188, June 12. 2002). Fundamental aspects of these inspections also revolve around the provision of technical assistance, identification of significant deficiencies and necessary corrective actions to ensure the safety of drinking water supplies. The engineering evaluations include an on-site review of the eight components of the sanitary survey, including source, treatment, distribution system, finished water storage, pumps, monitoring & reporting, management & operation, and operator compliance assessments. The DPWS conducts surveillance and inspections at CWS from six regional offices located in Rockford, Elgin, Champaign, Springfield, Collinsville, and Marion.

Field Operations Section (FOS)						
Steve Vance, Manager						
Champaign Regional Office	Springfield Regional Office					
Vacant, Manager	John Bartolomucci, EPS IV					
Matt Talbert, P.E, EPE IV	Michael Dragovich, EPE III					
Shane McCully, EPE III	Jamie Cowles, EPE III					
Rockford Regional Office	Collinsville Regional Office					
Vacant, Manager	Gayle Renth, Manager					
Joy Bliton, EPE III	James Blessman, EPE III					
Andrew Holloway, EPE II	Regan Taylor, EPE III					
Fei Zaho, EPE I						
Elgin Regional Office	Marion Regional Office					
Segundo Nallatan, P.E., Manager	Vacant, Manager					

Dwayne Booker, EPE III	John Kinder, EPE III
Grover Hopkins, EPE III	Chris Johnston, EPE III
Dharmishtha Patel, EPE III	
Shibu Vazha, EPE III	
Gopi Ramanathan, EPE III -	
Marlene Diamond (Admin.	
Support)	

With assistance of national stakeholder groups, the U.S. EPA has established that over the next two-year reporting cycle, state primary enforcement programs should complete sanitary surveys at a minimum of 79.5 percent of the CWS in their state on a 3-year frequency. For this reporting period (2018-2020), the Illinois EPA has conducted sanitary surveys at approximately 80.2 percent (1,409 of 1,756) of the CWS under its regulatory authority.

Non-Community Public Water Supply Surveillance Program

The NCPWS surveillance Program shares many commonalities with the CWS surveillance activities. Sanitary surveys are intended to review the adequacy of the water system's source of water, facilities, equipment, operation, and maintenance to ensure the production and distribution of safe drinking water. Sanitary surveys for NCPWS are intended to identify and correct significant deficiencies and are conducted once every two years by the Illinois DPH or LHD field staff. Illinois DPH Field Offices are located in Rockford, Peoria, Champaign, Marion, Edwardsville, and West Chicago. There are 93 LHDs throughout the State that help conduct NCPWS surveillance and perform sanitary surveys. Illinois DPH RO staff and LHD staff that perform sanitary surveys generally work in several Public Health Surveillance Programs and many times conduct multiple program inspections while visiting a NCPWS. Illinois DPH Policy sets a goal for completing sanitary surveys once every two years. For the 2020 calendar year timeframe, the Illinois DPH has conducted sanitary surveys at approximately 96.3 percent of the NCPWS under its regulatory authority.

Community Public Water Supply Compliance Assurance Program

To ensure Illinois CWS are in compliance with state and federal statutes and regulations, the Illinois Pollution Control Board (IPCB) adopts identical in substance regulatory provisions from the U.S. EPA, per Section 5/7.2 of the Act. Ensuring that CWS are in compliance with these regulations, which include MCLs in drinking water, is substantially the core mission of the Compliance Assurance Section (CAS). Additionally, CAS coordinates technical outreach to water systems to assure proactive compliance measures are taken ahead of formal enforcement. The DPWS conducts compliance efforts for CWS from the Central Office in Springfield.

Compliance Assurance Section
Mary Reed, Manager
Andrea Rhodes, EPS IV
Jay Timm, EPS IV
Alexandra Miranda, EPS I
David Saladino, EPS I
EPS III, Vacant

<u>Non-Community Public Water Supply Compliance Assurance</u> <u>Program</u>

Similar to the CWS compliance program, the Illinois DPH tracks water system compliance with state and federal statutes and regulations. All NCPWS are tested at least annually for total coliform bacteria and nitrate. NTNC PWS are also tested for contaminants, such as pesticides, solvents, lead and copper, arsenic, metals, and disinfection byproducts. Responsibility for tracking water system compliance is shared by Regional and Central Office staff. Data tracking activities are conducted by Central Office Staff.

IDPH Non-Community Water Supply Program						
Environmental Health Services Section Chief						
Vacant						
Eric Portz, P.E., Safe Drinking Water Program Manager - Non-Community Water Supplies						
Jamie Tosetti, Environmental Health Specialist III						
Jennifer Krick, Environmental Health Specialist II						
Benjamin Koester, Environmental Health Specialist I						
Maria Crain, Administrative Assistant						

Community Public Water Supply Operator Certification Program

The Illinois Public Water Supply Operations Act (415 ILCS 45/) establishes the statutory basis for the community water supply operator certification program in Illinois. This statute further establishes a reliable mechanism for Illinois EPA communications with CWS, ensuring that Responsible Operators in Charge (ROINC) supervise the portions of the CWS for which they are accountable, and requiring the timely submittal of information that the Illinois EPA relies upon to protect drinking water quality. Finally, this statute provides the basis for the regulatory requirements found in 35 Ill. Adm. Code Part 681. The most recent amendments to this Part became effective in 2017. The 2017 revisions to the regulation focused on further defining the experience requirements to become a licensed water supply operator in Illinois.

The Illinois EPA would also like to make note of our training partners. The operator training opportunities provided by the Environmental Resources Training Center at Southern Illinois University-Edwardsville, the Illinois Potable Water Supply Operators Association, Illinois Rural Water Association, Illinois Section of the American Water Works Association and two-year colleges are a huge factor in the successful treatment of potable water in Illinois. Whether large conferences, webinars, semester long classes, regional forums, or water system specific curricula these educators, associations and individuals have afforded opportunities to water professionals in Illinois that is unparalleled across the country.

The Illinois EPA's CWS Operator Certification Program is administered by the CAS of the DPWS. The Illinois EPA estimates that this program requires approximately two full time staff. The Operator Certification Program is coordinated by a staff member from the CAS of the DPWS:

Operator Certification Unit

Tatum DeMay, Operator Certification Coordinator EPS III

Katherine Andring, EPS I

Adam Nutt, Life Science Career Trainee

<u>Non-Community Public Water Supply Operator Certification</u> <u>Program</u>

The Illinois DPH NCPWS program administers a program to properly credential NTNC PWS from the Central Office in Springfield. The Illinois DPH uses the services of the Water Quality Association to conduct initial Operator Certification Training and administer, certification examinations. The following Illinois DPH Environmental Health Services staff is actively involved in the administration of the program:

Personnel
Eric Portz, Safe Drinking Water Program Manager
Maria Crain, Administrative Assistant

Community Public Water Supply Capacity Development Program

The Illinois EPA and DPH continue to support the Capacity Development Program and are convinced that maintaining PWS capacity is essential in operating a safe drinking water system. The original premises presented in the Illinois Capacity Development Strategy have proven accurate. Technical assistance remains the cornerstone in developing capacity in PWS that are in distress. Although the resource demands of capacity assistance are significant, Illinois continues to believe that capacity development is an integral element of the working relationship between regulatory staff and PWS officials. As such, capacity demonstration elements will continue to be integrated into the routine activities of both Agencies in order to ensure continued progress.

It is difficult to estimate the full-time equivalents devoted to this program as it is integrated into all aspects of the drinking water program. In several recent U.S. EPA evaluations of the Illinois Capacity Development Program, U.S. EPA has expressed concerns that this program is understaffed. The Capacity Development program is now coordinated by a staff member from the Permit Section of the DPWS:

<u>Non-Community Public Water Supply Capacity Development</u> <u>Program</u>

The Safe Drinking Water Program Manager coordinates Capacity Development Program activities at Illinois DPH. Currently, the Program Manager reviews new NTNC Public Water System Construction Permit Applications and performs capacity reviews on these new systems. When capacity reviews are needed at existing NTNC Public Water Systems, the Program Manager coordinates the reviews with water system personnel and RO/LHD field staff.

Cross-Connection Control Program

The Cross-Connection Control Program in Illinois is one of several tools intended to protect water consumers in the state. Statutes in Illinois establish that no person can threaten a water supply and water supply officials are responsible for protecting their water mains from connections that have the potential to allow the backflow of contaminants into their respective distribution systems (a cross-connection). Regulations have been developed and modified to outline what comprises a viable Cross-Connection Control Program.

Water supplies in Illinois have significant partners in the implementation of their Cross-Connection Control Program. While it is up to the Illinois EPA to ensure that CWS have viable programs through physical inspection of water treatment facilities and documentation reviews, the Illinois DPH deals with the plumbing aspects of the program.

The Environmental Resources Training Center located at Southern Illinois University-Edwardsville provides for the training of licensed plumbers who wish to become certified Cross-Connection Control Device Inspectors (CCCDI). While any Illinois licensed plumber can inspect plumbing, or install a backflow device or assembly, only an Illinois CCCDI can test that device or assembly. Additionally, the Illinois EPA relies upon the Environmental Resources Training Center to track and properly credential CCCDIs. It is difficult to estimate the full-time equivalents devoted to this program as it is integrated into all aspects of the DPWS's programs.

Groundwater and Source Water Protection Program

The Groundwater and Source Water Protection Program in Illinois is framed by Public Acts 83-1268 and 85-063, and the SDWA Section 1453. These laws amended the Act, created the Illinois Groundwater Protection Act (IGPA) 415 ILCS 55/1, and led to the development of IPCB regulations for groundwater quality standards and protection requirements. Further, the IGPA requires stakeholder input from the ICCG and Groundwater Advisory Council (GAC) on the development of groundwater protection programs, laws, and policies. The Act was amended to require the development and implementation of a "priority" Regional Groundwater Protection Planning Program comprised of local stakeholders. In addition, the IGPA requires the ICCG to undertake a comprehensive evaluation of progress being made under these laws with biennial reporting to the Governor and General Assembly. See the IGPA Biennial Report; https://www2.illinois.gov/epa/topics/water-quality/groundwater/wellheadprotection/Documents/2020_01_07 Final IGPA Report.pdf In August of 2019, Part 604 of the Board regulations required each CWS system that treats surface or groundwater as a primary or emergency supply of water to develop source water protection plans that must be approved by the IEPA. The DPWS source water protection initiatives are generally managed from the Central Office in Springfield and the Rockford Office by the GWS of the DPWS.

Groundwater Section							
Mike Summers, P.G., Manager, Groundwater Section							
Source Water Protection Unit Anthony Dulka, P.G., Manager	Hydrogeology and Compliance Unit VACANT, Manager						
Greg White, P.G., EPS III (Rockford Office)	Lynn Dunaway, P.G., Lead Geologist, EPS IV						
Ryan Bennett, EPG III	Amy Zimmer, EPG III						
Alan Fuhrman, EPG III	Melinda Shaw, P.G., EPG I						
Keri Beckham, EPG II	Lauren Martin, EPG I						
Karen Bridges, EPG I							

Permitting Program

Correct construction and operation of a PWS is essential for providing a safe and adequate supply of drinking water. The DPWS conducts all permitting functions for CWS from the Central Office in Springfield.

Permit Section						
David Cook, I	David Cook, P.E., Manager					
Jenny Larson, P.E., EPE IV (Des Plai	nes) - Capacity Development					
Coordinator						
EPE IV Lead Engineer, Vacant	EPE IV Lead Engineer, Vacant					
Kent Cook, P.G., GIS II	Chris Kohrman, EPE III					
Todd Lamm, EPE I	Gerard Zimmer, EPE III					
Cody Bauer, EPE II	Interviewing EPE I					
Markhardt, Eric, EPE I	Proposed 2nd - EPE I					

The Safe Drinking Water Program Manager conducts all permitting functions for NTNCWS from the Central Office in Springfield.

Personnel Eric Portz, Safe Drinking Water Program Manager

Public Water Supply Revolving Loan Program

The PWS revolving loan program is administered by the Illinois EPA's BOW-IFAS. IFAS also administers the Water Pollution Control revolving loan program. IFAS manages all aspects of the funding process with input from the DPWS. Detailed program information is available on the Illinois EPA web site at <u>https://www2.illinois.gov/epa/topics/grants-loans/state-revolving-fund/Pages/default.aspx</u>.

Generally, the first step toward the Illinois EPA working with an applicant to fund a project is the submittal of a planning report, called a "Project Plan" in Illinois' Administrative Loan Rules. An applicant must also complete a Project Planning Submittal Checklist which identifies the location of other necessary information for application processing. Once a scope of work is identified in a "Project Plan," IFAS staff will distribute the planning report to the PS and FOS for review and approval. The CAS is also consulted to ensure funding is provided to address the loan applicant's most pressing needs. Once comments from each of these Sections are received, IFAS sends a review letter requesting any additional information that is needed or answers to any questions the Illinois EPA may have. IFAS then produces a Project Summary document and the loan applicant will be required to either hold a public hearing (if the potential for environmental issues exists or if financial impacts to the loan applicant's residents are significant), or simply place an ad in the local newspaper announcing the proposed project and request for funding. The public hearing, or placement of an ad in the local newspaper, is followed by a 10-day public comment period allowing for the submission of written comments concerning the proposed project. Once the public comment period is over and IFAS receives proof of the public notification in the newspaper and any responses to any public comments, the Illinois EPA will issue Planning Approval. Planning Approval is good for five years. Therefore, once a scope of work has been identified and approved, the loan applicant can pursue funding for any portion(s) of that scope within the following five years.

The Illinois EPA's revolving loan funding process is unlike that of a bank in the respect that the Illinois EPA does not offer the funding agreement until after the recipient has demonstrated a definitive need for the project, obtained Illinois EPA Planning Approval, obtained all necessary permits, demonstrated the means and ability to

The U.S. EPA has determined that lead service line replacement is an eligible loan expense. Following a legislative amendment, the Illinois EPA processed its first lead service line replacement project in 2017.

repay the funding, adopted all necessary ordinances to do so and then gone out to bid on the project. Once a "winning/low" bidder is identified, the Illinois EPA can issue the Loan Agreement followed by the loan applicant entering into the contract for construction of the project. The Illinois EPA can fund the construction costs as well as planning efforts, design engineering and construction engineering/oversight. As of July 1, 2017, loan applicants can qualify for reduced interest rates (Small Community Rate and/or Hardship Rate) based upon their service population, median household income, unemployment rate and population trends. Loan applicants qualifying for the Small Community Rate or Hardship Rate also have the option of extending the term of their loan beyond the traditional 20 years, up to a maximum of 30 years, provided the term of the loan does

not exceed the useful life of the funded project. Details on the fixed loan rate of a loan agreement and repayment periods can be found within 35 Ill. Adm. Code Part 662.

Laboratory certification

Illinois continued to provide an adequate laboratory certification program for all regulated contaminants, at a minimum, to certify commercial laboratories within the State. An on-site audit of Illinois EPA's laboratory was conducted on September 10-14, 2018 and a draft audit report was sent to the state on March 17, 2019. Illinois EPA submitted responses to the draft report on May 9, 2019. Interim Certification was granted on August 28, 2019 which is effective until a final certification decision is issued and is contingent upon the laboratory's continued demonstration of acceptable performance through the analysis of annual proficiency testing samples.

The DPH's Lab audit visit occurred from September 10-13, 2018 and full certification was granted for microbiological analytes and methods on June 20, 2019. Following full certification, IDPH requested certification for an additional method. Interim Certification was granted on August 28, 2019.

- Illinois continues to certify all laboratories that produce results for compliance with SDWA at least once every three years and will meet all regulatory requirements.
- Illinois EPA's Division of Laboratories maintains a certification program and a certified State Lab for inorganic and organic contaminants of concern.
- Illinois DPH maintains a certification program and a certified State Lab for bacteriologic contaminants of concern.
- Illinois EPA and DPH submit annual questionnaires to U.S. EPA Region 5.
- U.S. EPA Region 5 tracks state commitments to conduct laboratory certification activities by the Illinois DPH and the Illinois EPA's Division of Laboratories.

Compliance and enforcement management

Illinois EPA and IDPH maintain an adequate enforcement and compliance assistance program. Illinois and U.S. EPA Region 5 continue to implement data exchange to ensure that enforcement resources are targeted at the non-compliant PWSs. Current and historical violation data³ and follow-up enforcement actions can be found at the following web site: http://water.epa.state.il.us/dww/index.jsp

Data management and reporting

Illinois EPA and DPH maintain adequate data management systems (and updates it for new rules, and new versions of FedRep) that tracks requirements for all rules, which includes the appropriate combination of hardware, software, and personnel to accurately and within a reasonable timeframe identify the inventories (including routine updates of system information), maintain

³ The data for this reporting originates and is maintained in the Illinois Safe Drinking Water Act Information System.

water quality monitoring information, and track compliance with all M/R, MCL, MRDL, TT, PN, and public information requirements.

- Illinois EPA and DPH continue to report to U.S. EPA actions and sample data quarterly and inventory data at least annually in accordance with 40 CFR 142.15.
- Illinois EPA and DPH utilizes SDWIS/STATE to manage water system compliance with all regulatory compliance concerns.
- U.S. EPA Region 5 tracked quarterly and annual data reporting requirements.

Operator certification

Illinois continued to maintain regulations for the operation and maintenance of all public water systems by properly certified individuals

- Illinois continues to report to U.S. EPA the status of the operator certification program on an annual basis.
- U.S. EPA Region 5 tracks completion of this report to avoid a 20 percent withholding of the Illinois Drinking Water Revolving Loan Fund grant should Illinois fail to meet this commitment.

Capacity development

Illinois continued to work with existing PWSs and required capacity demonstrations for new PWSs to enhance water system technical, managerial, and financial capacity to operate in compliance with federal and state regulations.

Illinois EPA and IDPH continued to report to U.S. EPA the status of the Illinois Capacity Development Program on an annual basis.

- U.S. EPA Region 5 tracks completion of this report to avoid a 20 percent withholding of the Illinois Drinking Water Revolving Loan Fund grant should Illinois fail to meet this commitment.
 - The U.S. EPA Region 5 staff will continue to work with Illinois to promote proactive efforts that will build water system capacity.

Source water assessments and protection

Illinois continued to report the number of CWSs with source water protection (SWP) plans and the number of CWSs implementing SWP measures electronically via SDWIS/STATE 49.6 percent (871 of 1,756) of CWS have source water protection (SWP) plans and where risk to public health is minimized through source water protection. Additionally, 72.6 percent (8,728,659 of 12,027,856) of the population served by community water systems have source water that has been substantially protected by their respective water systems. In August of 2019, Part 604 will require CWS to prepare source water protection plans that must be approved by the Illinois EPA. CWS serving a total population greater than 50,000 plans are due by July 26, 2022, with CWS serving a total population greater than 3,000 due by July 26, 2023, and the remaining CWS's due by July 26, 2024. We anticipate that these efforts will drastically improve the percent of CWS that have

minimized risks to public health through substantial implementation of source water protection programs.

Illinois continued to update source water assessments, as resources allow, and completed source water assessment reports for new public water systems.

• U.S. EPA Region 5 continued to track the Source Water Assessment and Protection Program through SDWIS and other State and Federal Reports.

Reporting Requirements

Each quarter, the Illinois EPA submits data to the Federal Safe Drinking Water Information System (SDWIS/FEDERAL), an automated database maintained by the U.S. EPA. The data submitted by Illinois include, but are not limited to the following:

- PWS inventory information.
- incidences of violations of MCLs, MRDLs, monitoring, and TT violations.
- information on enforcement activity related to these violations; and
- source water protection information.

The Illinois EPA publishes a report on its web site which contains information on permits issued during the previous year. The report includes CWS construction and operating permit process including milestones that measure program efficacy.

The ICCG reports biennially to the Governor and the General Assembly on groundwater quality, quantity, and the State's enforcement efforts.

Measures and Indicators

Illinois continued to use quantitative measures developed by U.S. EPA Region 5 to regularly assess program performance. (See Appendix E)

- Illinois continued to participate in semi-annual conference calls with U.S. EPA Region 5 to discuss national program measures, Region 5 specific shared goals and special high priority queries.
- Illinois continued to provide information regarding lead action level exceedances upon request from U.S. EPA Region 5.
- U.S. EPA Region 5 continued to track the status of the Illinois Drinking water program with respect to national program measures, Region 5 specific shared goals and special high priority queries.
- Public health concerns related to Lead and Copper Rule (LCR) implementation will remain a high priority area of focus.

Monitoring: What We Test For—and Why

Illinois community water supplies are tested for a number of different types of contaminants. The number of samples and how often the testing is done depends on the type of contaminant and other factors. The type of contaminant also determines what actions are taken if unacceptable levels are

Acute vs. Chronic Indicators - It is important that safe drinking water be free of contamination which has the potential to cause either short-term or long-term health effects. Contaminants fall into two groups according to the health effects that they cause:

ACUTE

Acute effects occur within hours or days of the time that a person consumes a contaminant. People can suffer acute health effects from almost any contaminant if they are exposed to extraordinarily high levels (as in the case of a spill). In drinking water, microbes, such as bacteria and viruses, are the contaminants with the greatest chance of reaching levels high enough to cause acute health effects. Most people's bodies can fight off these microbial contaminates the way they fight off germs; and these acute contaminants typically do not have permanent effects. Nonetheless, when high enough levels occur, they can make people ill, and can be dangerous or deadly for infants, the elderly and persons whose immune systems are already weak due to HIV/AIDS, chemotherapy, steroid use, or another reason.

CHRONIC

Chronic effects occur after people consume a contaminant at levels over EPA's safety standards for many years. U.S. EPA develops the standards for chronic MCLs on the basis that a person may have an adverse health effect after consuming two liters of water daily over a 70-year lifetime. The drinking water contaminants that can have chronic effects are chemicals (such as disinfection by-products, solvents, and pesticides), radionuclides (such as radium), and minerals (such as arsenic). Examples of the chronic effects of drinking water contaminants are cancer, liver or kidney problems, or reproductive difficulties.

As described previously, over 98 percent of the population served by Illinois CWS received drinking water in compliance with acute (short-term) health requirements, and 98 percent were in compliance with chronic (long-term) health requirements. It is important to note that most non-compliance was for a short duration, and the potential for health risk was minimized through prompt corrective action by the water supplies. Supplies with microbial problems (bacterial or turbidity non-compliance) are required to issue boil orders when the violation occurs. Community water systems with acute MCLs were limited to 2 (nitrate, nitrite, and e coli MCL and SWTR TT) water systems.

Bacterial Contamination. Community water supply systems serving more than 1,000 people aretested one or more times per month for coliform bacteria. Smaller systems are tested four times a year. The coliform test is used as a general indicator of water quality in the system, in terms of potential microbial contamination. If the coliform test is negative, it is an indication that the system is adequately protected against contamination from other types of disease- causing organisms. However, if coliform bacteria are found in the water, it is assumed that the system may be compromised, and steps are taken to protect the people who use the water.

Total coliform bacteria (without the detection of fecal coliform or *E. coli*) are generally not harmful. In these cases, the system will identify the source of the contamination, correct the problem, and thoroughly disinfect its system. The public will also be notified of the situation; however, unless unusual circumstances exist to cause particular concern about the safety of the

water, a boil water notice would not be issued as would be if fecal coliform or *E. coli* were found.

Nitrate/Nitrite. Community water supply systems in Illinois are tested once a year for nitrate, a chemical which may occur naturally in the environment but that can also enter the water from sources like fertilizer run-off, decaying plant and animal wastes, and sewage. Nitrate is a health concern primarily for infants under the age of six months. The infant's digestive system can convert the nitrate to nitrite, which can interfere with the ability of the infant's blood to carry oxygen. The result is a serious illness known as methemoglobinemia, or "blue baby syndrome." Methemoglobinemia can be fatal if nitrate levels in the water are highenough and the illness isn't treated properly.

The MCL for nitrate in drinking water is 10 parts per million (ppm). If a water supply system exceeds the standard, the people who use the water are notified and advised not to use the water for mixing infant formula or other uses that might result in consumption of the water by infants under six months of age. The advisory is kept in place until steps can be taken to reducenitrate levels in the water. Possible remedial measures include treating the water to remove the nitrate or drilling a new water well.

Older children and adults are generally not at risk from drinking nitrate-contaminated water. In fact, the average adult consumes about 20-25 milligrams of nitrate per day in food, primarily from vegetables. Because of changes that occur after six months of age, the digestive tract no longer converts nitrate into nitrite. However, some adults—including people with low stomach acidity and people with certain blood disorders—may still be at risk for nitrate-induced methemoglobinemia.

Inorganic Chemicals. Community water systems in Illinois are tested for 13 other inorganic chemicals in addition to nitrate. If past results don't indicate the presence of inorganic chemicals, testing is usually done once every nine years; otherwise it may be done as often as once a year. The list includes antimony, arsenic, barium, beryllium, cadmium, chromium, cyanide, fluoride, mercury, nickel, selenium, sulfate, and thallium. In some cases, these chemicals may be naturally present in the groundwater. If a water supply system were to exceed the MCL for one of these chemicals, the people who use the water would be notified, and appropriate steps would be taken to reduce levels of these chemicals in the water.

Radioactive Elements. Community water systems in Illinois are also usually tested once every three years—or as often as once a year, in some cases—for a list of radioactive elements. These radioactive elements, or radiochemicals, are present in the water from natural sources. If a system were to exceed the federal MCL for one of these radioactive elements, the people who use the water would be notified and steps would be taken to correct the problem.

Disinfection By-products. Disinfection rids drinking water of microbiological organisms, such asbacteria, viruses, and protozoa, that can cause and spread diseases. The most common method of disinfection is the addition of chlorine to drinking water supplies. Not only is chlorine effective against waterborne bacteria and viruses in the source water, it also provides residual protection to inhibit microbial growth after the treated water enters the distribution system. This means it continues working to keep the water safe as it travels from the treatment plant to the consumer's tap.

However, even though chlorine has been a literal lifesaver with regard to drinking water, it also has the potential to form by-products that are known to produce harmful health effects. Chlorine can combine with organic materials in the raw water to create contaminants called trihalomethanes (THMs) and haloacetic acids (HAAs). Repeated exposure to elevated levels of

THMs over a long period of time could increase a person's risk of cancer.

The formation of disinfection by-products is a greater concern for water systems that contain organics or use surface water, such as rivers, lakes, and streams, as their source. Surface water sources are more likely to contain the organic materials that combine with chlorine to form THMs and HAAs.

All community water systems that add a disinfectant to the water must regularly test their treated water to determine if THMs and HAAs are present. If the THMs or HAAs exceed the limits set by the EPA, the water system must take action to correct the problem. The corrective actions include notifying all residents served by the water system.

Lead and Copper. All community and nontransient public water systems have been tested for lead and copper. In community water systems, the water was tested in a number of homes within each system to determine if they exceeded the federal "action level" of 15 parts per billion (ppb) for lead or 1,300 ppb for copper. If a system exceeded the action level for lead or copper in more than 10 percent of the locations tested, it was required to take corrective actionand do further testing. Current testing requirements are based partly on the results of that initial round of testing and of the success of subsequent efforts to reduce risk of lead contamination in systems that have previously exceeded the action level.

Monitoring Test Results for Calendar Year 2020

The following table summarizes the number of CWS in violation with aspects of the drinking water compliance program during 2020. In the case of a violation, a watersystem takes corrective actions. These actions include public notification to inform affected residents of the situation and if there are any special precautions they should take. In all cases noted here, residents were advised directly by the water system at the time the violation occurred. All community water systems have also noted any violations in the annual water quality reports (also called Consumer Confidence Reports) they distribute to their residents.

Information on all violations for community and noncommunity water systems in 2020 is in Appendix A and B for CWS and Appendix C and D for NCWS.

Violations during Calendar Year 2020 COMMUNITY Water Systems							
Total Number of Regu	175	6					
Total Number of System	ms in Violatio	n*			324	4	
Total Number of Viola	tions				79	0	
	R	lule Subtotal	by Violation 7	Гуре			
Rule	МС	CLs	Treatment	Techniques	Significant Monitoring Reporting		
Category	Number	Number	Number	Number	Number	Number	
	of	of	of	of	of	of Systems*	
	Violations Systems* Violations Systems*						
Arsenic	10	4	0	0	4	4	
Radiological	8	5	NA	NA	10	7	
Nitrates	1	1	NA	NA	20	17	

	Viol	ations during	g Calendar Ye	ar 2020		
Total Number of Regu	lated Systems		Y water Syst	ems	175	56
Total Number of Syste	ms in Violatic	n*			32	4
Total Number of Viola	tions				79	0
	F	Rule Subtotal	by Violation 1	Гуре		
					Sign	ificant
Rule	MO	CLs	Treatment	Techniques	Monitorin	g Reporting
Category	Number	Number	Number	Number	Number	Number
	of	of	of	of	of	of Systems*
	Violations	Systems*	Violations	Systems*	Violations	
IOCs	0	0	NA	NA	0	0
SOCs	0	0	NA	NA	126	4
VOCs	0	0	NA	NA	41	2
Coliform	0 0		NA	NA	67	44
Ground Water Rule	NA	NA	0	0	1	1
All SWTR	NA	NA	1	1	1	1
DBPR (Stage 1) (chlorine chloramines)	NA	NA	0	0	79	64
DBPR (Stage 2)	36	13	0	0	67	33
Lead & Copper	NA	NA	10	9	193	172
Public Notice	NA	NA	NA	NA	69	43
Consumer Confidence Rule	NA	NA	NA	NA	46	46
TOTALS	55	23	11	10	724	437
	*Percentage In Compliar	of Systems $ce = 98.7\%$	*Percentage In Complian	of Systems $ce = 99.4\%$	*Percentag In Complia	e of Systems nce = 82.6%

*Numbers from U.S. EPA-CDX Reporting Services. Although a CWS may be out of compliance with more than one contaminant or violation type, when calculating totals, it is counted no more than once within the population being totaled. So, the sum of NUMBER OF CWS IN VIOLATION, over the various violation types or contaminants, may not add up to the total.

		Violations dur NON-COMM	ing Calendar V UNITY Water	Year 2020 · Systems			
Total Number of Regulated Systems3,692							
Total Number of	Systems in Vio	lation*			348		
Total Number of	Violations				4775		
		Rule Subto	tal by Violatio	n Type			
					Significant		
Rule	M	CLs	Treatment	Techniques	Monitoring Reporting		
Category	Number	Number	Number	Number	Number	Number	
	of	of Systems	of	of	of	of Systems	
	Violations		Violations	Systems	Violations		
Radiological	NA	NA	NA	NA	NA	NA	
Arsenic	1	1	NA	NA	17	11	
IOCs	0	0	NA	NA	72	4	
Nitrates	0	0	NA	NA	20	13	

SOCs	0	0	NA	NA	882	15
VOCs	0	0	NA	NA	3465	118
Coliform	1	1	0	0	115	81
Ground Water	0	0	0	0	0	0
Rule						
SWTRs	0	0	0	0	0	0
DBPR (Stage 2)	3	2	0	0	0	0
Lead & Copper	NA	NA	1	1	191	100
Consumer	NA	NA	NA	NA	0	0
Awareness						
TOTALS	5	4	1	1	4769	348
	*Percentage of Systems		*Percentage of Systems		*Percentage of Systems	
	In Complian	ce = 99.99%	In Compliance = 99.99 %		In Compliance = 90.5%	

*Although a NCPWS may be out of compliance with more than one contaminant or violation type, when calculating totals, it is counted no more than once within the population being totaled. So, the sum of NUMBER OF NCPWS IN VIOLATION, over the various violation types or contaminants, may not add up to the total.

- Illinois (EPA & DPH) continue to address all systems not in compliance with state rule and regulation. Specifically, Illinois will address non-compliant PWSs that have a score of 11 or higher on the U.S. EPA's Enforcement Targeting Tool report.
- As an enforcement option, Illinois continues to refer noncompliant PWSs to the U.S. EPA Region 5 for follow-up action.
- Illinois EPA and DPH continue to keep records relating to enforcement decisions.
- Illinois EPA and DPH continue to produce an annual compliance report by July 1 as part of a consolidated report program efficacy.
- U.S. EPA Region 5 tracked state commitments under measure SDWA02 (involving addressing with a formal enforcement action or return to compliance), the number of priority systems equal to the number of its PWSs that have a score of 11 or higher on the July Enforcement Targeting Tool report, and update Illinois quarterly.
- Illinois EPA and DPH worked with U.S. EPA on the National Compliance Initiative (NCI).

Appendix A Illinois EPA Annual Compliance Report Calendar Year 2020* Summary Community Water Supplies Violations

*Numbers Used from USEPA's CDX Reporting Services database

Rule Family	Violation Category	Contaminant Code	Contaminant	# of Violations	# of Resolved Violations	# of PWS in Violation
Consumer Confidence Rule	Other Violation	7000	Consumer Confidence Rule	46	46	46
Groundwater Rule	Monitoring and Reporting	3014	E. COLI	1	1	1
Inorganic Chemicals	Maximum Contamina nt Level Violation	1040	Nitrate	1	1	1
Inorganic Chemicals	Maximum Contamina nt Level Violation	1005	Arsenic	10	2	4
Inorganic Chemicals	Monitoring and Reporting	1005	Arsenic	4	4	4
Inorganic Chemicals	Monitoring and Reporting	1040	Nitrate	15	11	14
Inorganic Chemicals	Monitoring and Reporting	1041	Nitrite	4	4	3
Lead and Copper Rule	Treatment Technique Violation	5000	Lead and Copper Rule	11	7	10
Lead and Copper Rule	Monitoring and Reporting	5000	Lead and Copper Rule	196	160	173

Public Notice Rule	Other Violation	7500	Public Notice	66	34	40
Radionuclides	Maximum Contamina nt Level Violation	4010	Combined Radium (-226 and -228)	6	4	5
Radionuclides	Maximum Contamina nt Level Violation	4000	Gross Alpha, Excl. Radon and U	2	2	1
Radionuclides	Monitoring and Reporting	4000	Gross Alpha, Excl. Radon and U	2	0	2
Radionuclides	Monitoring and Reporting	4010	Combined Radium (-226 and -228)	10	8	7
Stage 1 Disinfectants and Disinfection Byproducts Rule	Monitoring and Reporting	999	Chlorine	69	64	56
Stage 1 Disinfectants and Disinfection Byproducts Rule	Monitoring and Reporting	1006	Chloramine	8	8	7
Stage 1 Disinfectants and Disinfection Byproducts Rule	Monitoring and Reporting	2920	CARBON, TOTAL	1	0	1
Stage 1 Disinfectants and Disinfection Byproducts Rule	Maximum Residual Disinfectan t Level	999	Chlorine	2	2	1
Stage 2 Disinfectants and Disinfection Byproducts Rule	Monitoring and Reporting	2456	Total Haloacetic Acids (HAA5)	34	14	32
Stage 2 Disinfectants and Disinfection Byproducts Rule	Monitoring and Reporting	2950	ТТНМ	36	14	33
Stage 2 Disinfectants and Disinfection Byproducts Rule	Maximum Contamina nt Level Violation	2456	Total Haloacetic Acids (HAA5)	16	10	7

Stage 2 Disinfectants and Disinfection Byproducts Rule	Maximum Contamina nt Level Violation	2950	ТТНМ	20	11	9
Surface Water Treatment Rules	Monitoring and Reporting	200	Surface Water Treatment Rule	1	1	1
Surface Water Treatment Rules	Treatment Technique Violation	300	Interim Enhanced Surface Water Treatment Rule	1	1	1
Synthetic Organic Chemicals	Monitoring and Reporting	2031	Dalapon	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2959	Chlordane	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2946	ETHYLENE DIBROMIDE	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2931	1,2- DIBROMO-3- CHLOROPRO PANE	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2383	Total Polychlorinate d Biphenyls (PCB)	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2326	Pentachloroph enol	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2306	Benzo(a)pyren e	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2274	HEXACHLO ROBENZENE	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2110	2,4,5-TP	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2105	2,4-D	5	3	4
Synthetic Organic Chemicals	Monitoring and Reporting	2067	Heptachlor epoxide	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2065	Heptachlor	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2051	LASSO	4	2	3

Synthetic Organic Chemicals	Monitoring and Reporting	2050	Atrazine	5	3	4
Synthetic Organic Chemicals	Monitoring and Reporting	2047	Aldicarb	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2046	Carbofuran	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2044	Aldicarb sulfone	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2043	Aldicarb sulfoxide	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2042	Hexachlorocyc lopentadiene	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2041	Dinoseb	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2040	Picloram	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2039	Di(2- ethylhexyl) phthalate	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2037	Simazine	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2005	Endrin	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2010	BHC- GAMMA	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2015	Methoxychlor	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2020	Toxaphene	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2032	Diquat	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2033	Endothall	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2035	Di(2- ethylhexyl) adipate	4	2	3
Synthetic Organic Chemicals	Monitoring and Reporting	2036	OXAMYL	4	2	3

Total Coliform Rules	Maximum Contamina nt Level Violation	3100	Coliform (TCR)	4	0	1
Total Coliform Rules	Monitoring Violation	8000	Revised Total Coliform Rule	67	62	44
Total Coliform Rules	Monitoring and Reporting	3100	Coliform (TCR)	2	0	2
Volatile Organic Chemicals	Monitoring and Reporting	2990	Benzene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2989	CHLOROBEN ZENE	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2987	Tetrachloroeth ylene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2985	1,1,2- Trichloroethan e	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2984	Trichloroethyl ene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2983	1,2- Dichloropropa ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2981	1,1,1- Trichloroethan e	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2980	1,2- Dichloroethan e	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2979	trans-1,2- Dichloroethyle ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2977	1,1- Dichloroethyle ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2969	p- Dichlorobenze ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2968	o- Dichlorobenze ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2964	DICHLOROM ETHANE	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2955	Xylenes, Total	3	1	2
Volatile Organic Chemicals	Monitoring and Reporting	2380	cis-1,2- Dichloroethyle ne	2	0	1

Volatile Organic Chemicals	Monitoring and Reporting	2378	1,2,4- Trichlorobenze ne	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2991	Toluene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2992	Ethylbenzene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2996	Styrene	2	0	1
Volatile Organic Chemicals	Monitoring and Reporting	2982	Carbon tetrachloride	2	0	1

Appendix B Illinois EPA 2020 Annual Compliance Report Maximum Contaminant Level and Treatment Technique Violations Sorted by CWS From USEPA's CDX Reporting Services database

Community Water System ID	Community Water System Name	Contaminant Name	Violation Category	Compliance Status
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement

ſ	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	TTHM	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
-	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
-	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
-	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
-	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0054360	DONNELLSON	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0110650	MINERAL	Lead and Copper Rule	TT	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0130010	CALHOUN COUNTY RWD	TTHM	MCL	Returned to Compliance
	IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance
	IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
	IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance

IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
H 0150200	GILLIBION		MGI	Compliance
1L0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
II 0150200	SHANNON	Combined Redium (226 and 228)	MCI	Poturnad to
120130300	SHANNON	Combined Radium (-220 and -220)	WICL	Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
II 0150200	SHANNON	Combined Bedium (226 and 228)	MCI	Deturned to
1L0150500	SHANNON	Combined Radium (-226 and -228)	MCL	Compliance
IL.0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
120100000				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
II 0150200	SHANNON	C_{1} $(22(-1.220))$	MCI	Compliance
1L0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
II 0150300	SHANNON	Combined Padium (226 and 228)	MCI	Peturned to
110150500	SHANNON	Combined Radium (-220 and -228)	MCL	Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
IL.0150300	SHANNON	Gross Alpha Excl. Radon and U	MCL	Returned to
120130300		Gross ruphu, Exer. Radon and O	MICL	Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
		1 /		Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
1				Compliance

IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to Compliance
II 0150300	SHANNON	Gross Alpha Excl. Radon and U	MCI	Returned to
110150500	SHANNON	Gross Alpha, Excl. Radon and O	WICL	Compliance
II 0150300	SHANNON	Gross Alpha Excl. Padon and U	MCI	Peturned to
IL0130300	SHANNON	Gross Alpha, Excl. Radoli and O	WICL	Compliance
II 0150200	SHANNON	Cross Alaba Evel Deden and U	MCI	Deturned to
IL0150500	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Commission of
II 0150200	GHANDION		MOL	Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
H 0150200	all a briant) (CI	Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0150300	SHANNON	Gross Alpha, Excl. Radon and U	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	ТТНМ	MCL	Returned to
120191000	1020110		men	Compliance
II 0191000	TOLONO	ТТНМ	MCI	Returned to
120171000	TOLONO	1 111111	MCL	Compliance
II 0101000	TOLONO	ТТИМ	MCI	Poturnad to
IL0191000	IOLONO	1 1 1 1 1 1	WICL	Compliance
II 0101000	TOLONO	TTIM	MCI	Deturned to
1L0191000	TOLONO	ППИ	MCL	Commission of
II 0101000	TOLONO		MCI	Det 14
IL0191000	TOLONO	I I HM	MCL	Returned to
II 0101000	TOLONO		MOL	Compliance
IL0191000	TOLONO	IIHM	MCL	Returned to
H 0101000	TOLONO		MGI	Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	ТТНМ	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0191000	TOLONO	TTHM	MCL	Returned to
				Compliance
IL0195100	PENFIELD PWD	Lead and Copper Rule	TT	Other
II 0105100	DENEIEL D DWD	Land and Common Dula	тт	Othan
1L0195100	PENFIELDPWD	Lead and Copper Rule	11	Other
IL0195100	PENFIELD PWD	Lead and Copper Rule	TT	Other
II 0105100	DENEIEI D DWD	Land and Conner Dula	тт	Other
1L0193100	FENTILLDPWD	Leau and Copper Kule	11	Other
IL0195100	PENFIELD PWD	Lead and Copper Rule	TT	Other
II 0105025	TDIANCLEMID	 A recenic	MCI	Under Enforcement
1L0193923	I NIANULE MIHP	Arsenic	WICL	Under Emorcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
II 0105025	TRIANCI E MHD	Arsonio	MCI	Under Enforcement
11.0173723		Aistiit	WICL	
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
II 0105025	TDIANCI E MUD	Arconia	MCI	Under Enforcement
1L0193923	I KIANOLE MHP	Arsenic	WICL	Under Enforcement

IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0195925	TRIANGLE MHP	Arsenic	MCL	Under Enforcement
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance
IL0450100	CHRISMAN	Arsenic	MCL	Returned to Compliance

IL0490350	MONTROSE	TTHM	MCL	Returned to
11.0400250	MONTROSE	<u>ጥጥ፤ 18 ፊ</u>	MCI	Compliance
IL0490330	MONTROSE	ITHM	MCL	Compliance
IL0490350	MONTROSE	ТТНМ	MCL	Returned to
120190000				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
11.0400250	MONTROSE	TTUM	MCI	Compliance Deturned to
1L0490330	MONTROSE	ITHM	MCL	Compliance
IL.0490350	MONTROSE	ТТНМ	MCL	Returned to
120190000				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
II 0400250	MONTBOSE	TTUM	MCI	Returned to
IL0490330	MONTROSE	1 I HIVI	NICL	Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
11.0400250	MONTROSE	TTUM	MCI	Compliance Deturned to
IL0490550	MONTROSE	ITHM	MCL	Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
				Compliance
IL0490350	MONTROSE	TTHM	MCL	Returned to
11.0490350	MONTROSE	ТТНМ	MCI	Returned to
120490330	MONTROSE	1 1111/1	WICL	Compliance
IL0535100	STELLE COMMUNITY	Lead and Copper Rule	TT	Returned to
	ASSN			Compliance
IL0535100	STELLE COMMUNITY	Lead and Copper Rule	TT	Returned to
II 0525100	ASSN STELLE COMMUNITY	Leed on A Common Deda	TT	Compliance
1L0535100	ASSN	Lead and Copper Rule	11	Compliance
IL0535100	STELLE COMMUNITY	Lead and Copper Rule	TT	Returned to
	ASSN			Compliance
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
11.0570000	TABLE CROVE	TTUM	MCI	Under Enforcement
IL0370900	TABLE OROVE	I I IIIVI	WICL	
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
II 0570900	TABLE GROVE	TTHM	MCI	Under Enforcement
H 0570900			MCL	
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL0570900	TABLE GROVE	TTHM	MCL	Under Enforcement
IL 0570950	VERMONT	ТТНМ	MCI	Under Enforcement
IL0570950			NICL	
IL0570950	VERMONT	TIHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
			1	1

IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	TTHM	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0570950	VERMONT	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Compliance Returned to
				Compliance

IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
U 0610150	CDEENEIELD	Total University Asida (UAA5)	MCI	Compliance Returned to
1L0010150	GREENFIELD	Total Haloacetic Acids (HAAS)	MCL	Compliance
IL0610150	GREENFIELD	Total Haloacetic Acids (HAA5)	MCL	Returned to
		(- <i>)</i>		Compliance
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0610200	HILLVIEW	Nitrate	MCL	Under Enforcement
IL0630200	COAL CITY	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL0630200	COAL CITY	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL0630200	COAL CITY	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL0630200	COAL CITY	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
			1.01	Compliance
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Compliance
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
11.0725200			MOL	Compliance
IL0/35280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Compliance
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
				Compliance
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
				Compliance
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
IL0735280	LYNWOOD 3RD ADDITION	Arsenic	MCL	Returned to
				Compliance
IL0735280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	TT	Returned to Compliance
IL0735280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	TT	Returned to
11.0725290	LVANNOOD 2DD ADDITION		TT	Compliance
IL0/35280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	11	Compliance
IL0735280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	TT	Returned to
				Compliance
IL0735280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	TT	Returned to
IL0735280	LYNWOOD 3RD ADDITION	Lead and Copper Rule	TT	Returned to
	_	11		Compliance
IL0750350	DANFORTH	TTHM	MCL	Returned to
II 0750350	DANEOPTH	ТТНМ	MCI	Compliance Returned to
1L0750550	DANIOKIII	1 11111	WICL	Compliance
IL0750350	DANFORTH	TTHM	MCL	Returned to
IL 0750350	DANFORTH	ТТНМ	MCL	Returned to
110750550		1 111171	mel	Compliance
IL0750350	DANFORTH	TTHM	MCL	Returned to
II 0750250	ΠΑΝΕΩΡΤΗ	ТТИМ	MCI	Compliance Returned to
120750550	DANTOKIT	1 1 1 1 1 1	WICL	Compliance
IL0935300	HIDE-A-WAY LAKES	Combined Radium (-226 and -228)	MCL	Returned to
				Compliance

IL0935300	HIDE-A-WAY LAKES	Combined Radium (-226 and -228)	MCL	Returned to
II 0025200		Combined Bedium (226 and 228)	MCI	Compliance Deturned to
1L0933300	HIDE-A-WAY LAKES	Combined Radium (-226 and -228)	MCL	Compliance
II 0935300	HIDE-A-WAVI AKES	Combined Radium (-226 and -228)	MCI	Returned to
11.0935500	HIDE-A-WAT LAKES	Combined Radium (-220 and -228)	MCL	Compliance
IL.0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
120770330	MENDOIN	Total Haloacette Melds (HMMS)	MCL	Compliance
IL.0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
120990000			mee	Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL0990550	MENDOTA	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL1110200	FOX RIVER GROVE	Lead and Copper Rule	11	Under Enforcement
IL1110200	FOX RIVER GROVE	Lead and Copper Rule	TT	Under Enforcement
IL1110200	FOX RIVER GROVE	Lead and Copper Rule	TT	Under Enforcement
IL1110200	FOX RIVER GROVE	Lead and Copper Rule	TT	Under Enforcement
IL1110200	FOX RIVER GROVE	Lead and Copper Rule	TT	Under Enforcement
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1130400	COOKSVILLE	TTHM	MCL	Returned to
				Compliance
IL1135150	CROPSEY MUTUAL	Lead and Copper Rule	TT	Other
	WATER ASSOCIATION			1
IL1135150	CROPSEY MUTUAL	Lead and Copper Rule	11	Other
TT 1105150	WATER ASSOCIATION			0.1
1L1135150	CROPSEY MUTUAL	Lead and Copper Rule	11	Other
II 1125150	CROPSEN MUTUAL	Land and Common Data	TT	Oth an
1L1135150	UKUPSEY MUTUAL	Lead and Copper Kule	11	Other
II 1125150	CRODSEV MUTUAL	Lood and Conner Del-	TT	D otrama of t-
11133130	WATER ASSOCIATION	Lead and Copper Kule	11	Compliance
II 1125150	CROPSEV MUTUAI	Lead and Conner Dula	тт	Returned to
121155150	WATER ASSOCIATION		11	Compliance
IL1135150	CROPSEV MUTUAI	Lead and Conner Rule	ТТ	Returned to
121133130	WATER ASSOCIATION	Loui and copper rule		Compliance
		1	1	

IL1135150	CROPSEY MUTUAL	Lead and Copper Rule	TT	Returned to
H 1125150	WATER ASSOCIATION			Compliance
IL1135150	CROPSEY MUTUAL WATER ASSOCIATION	Lead and Copper Rule	TT	Returned to
IL1350300	HILLSBORO	Total Haloacetic Acids (HAA5)	MCL	Returned to
		· · · · ·		Compliance
IL1350300	HILLSBORO	Total Haloacetic Acids (HAA5)	MCL	Returned to
II 1350300	HILLSBORO	Total Haloacetic Acids (HAA5)	MCI	Returned to
121550500	IIIEESDORO	Total Haloacette Helds (III 113)	MCL	Compliance
IL1350300	HILLSBORO	Total Haloacetic Acids (HAA5)	MCL	Returned to
II 1250200			MCI	Compliance
1L1550500	HILLSBORD	Total Haloacetic Acids (HAA5)	MCL	Compliance
IL1350300	HILLSBORO	Total Haloacetic Acids (HAA5)	MCL	Returned to
H 1250500				Compliance
IL1350700	WAGGONER	Lead and Copper Rule	TT	Compliance
IL1350700	WAGGONER	Lead and Copper Rule	TT	Returned to
				Compliance
IL1350700	WAGGONER	Lead and Copper Rule	TT	Returned to
IL1350700	WAGGONER	Lead and Copper Rule	TT	Returned to
				Compliance
IL1350700	WAGGONER	Lead and Copper Rule	TT	Returned to
IL1350700	WAGGONER	Lead and Copper Rule	ТТ	Returned to
121550700	WIGGOILLK	Loud and copper Rule	11	Compliance
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
II 1470200	DELAND	Arsenic	MCL	Under Enforcement
IL 1470200	DELAND	Arsenio	MCI	Under Enforcement
IL1470200	DELAND	Alsenie	MCL	
IL14/0200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL 1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL 1470200	DELAND	Arsenic	MCI	Under Enforcement
IL1470200	DELAND		MCL	
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1470200	DE LAND	Arsenic	MCL	Under Enforcement
IL1570600	SPARTA	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL1570600	SPARTA	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL1570600	SPARTA	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL1570600	SPARTA	Total Haloacetic Acids (HAA5)	MCL	Under Enforcement
IL1570600	SPARTA	Total Haloacetic Acids (HAA5)	MCI	Under Enforcement
1213/0000	51711(171		INCL	

IL1635030	COMMONFIELDS OF CAHOKIA PWD	Coliform (TCR)	MCL	Inactive
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF CAHOKIA PWD	Coliform (TCR)	MCL	Inactive
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF CAHOKIA PWD	Coliform (TCR)	MCL	Inactive
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
II 1625020	COMMONEIELDS OF	Coliform (TCP)	MCI	Inactiva
IL1033030	CAHOKIA PWD	Comorni (TCK)	NICL	mactive
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
H 1(25020	CAHOKIA PWD		MGI	Ŧ /*
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
II 1635030	COMMONEIELDS OF	Coliform (TCR)	MCI	Inactive
121055050	CAHOKIA PWD	comonin (Text)	MCL	maetrive
IL1635030	COMMONFIELDS OF	Coliform (TCR)	MCL	Inactive
	CAHOKIA PWD			
IL1770550	WINSLOW	Lead and Copper Rule	TT	Returned to
				Compliance
IL1770550	WINSLOW	Lead and Copper Rule	TT	Returned to
II 1770550	WINGLOW		TT	Compliance
IL1//0550	WINSLOW	Lead and Copper Rule	11	Compliance
IL1770550	WINSLOW	Lead and Copper Rule	ТТ	Returned to
111770000		Lead and copper rate		Compliance
IL1770550	WINSLOW	Lead and Copper Rule	TT	Returned to
				Compliance
IL1770550	WINSLOW	Lead and Copper Rule	TT	Returned to
11.150.5500) (CI	Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
II 1795780	NORTH TAZEWELL PWD	ТТНМ	MCI	Returned to
121795760		1 1 1 1 1 1 1	WICL	Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
				Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
			1.00	Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
II 1795780	NORTH TAZEWELL PWD	ТТНМ	MCI	Returned to
IL1/95/80	NORTH TAZE WELLT WD	1 11111	WICL	Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
				Compliance
IL1795780	NORTH TAZEWELL PWD	TTHM	MCL	Returned to
				Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
H 1705700			NO	Compliance
IL1/95/80	NORTH TAZEWELL PWD	I otal Haloacetic Acids (HAA5)	MCL	Keturned to
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
121793700			INCL	Compliance

IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
II 1705780	ΝΟΡΤΗ ΤΑΖΕΨΕΙΙ ΡΨΟ	Total Haloacetic Acids (HAA5)	MCI	Compliance Returned to
111/95/80	NORTH TALE WELLT WD	Total Haloacette Actus (HAAS)	MCL	Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
II 1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCI	Compliance Returned to
121795760		Total Haloacette Helds (HHHS)	WICE	Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
121790700			men	Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
H 1705700			MOL	Compliance
IL1/95/80	NORTH TAZEWELL PWD	I otal Haloacetic Acids (HAA5)	MCL	Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
H 1705700			MOL	Compliance
IL1795780	NORTH TAZEWELL PWD	I otal Haloacetic Acids (HAA5)	MCL	Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
				Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to Compliance
IL1795780	NORTH TAZEWELL PWD	Total Haloacetic Acids (HAA5)	MCL	Returned to
TI 10000000				Compliance
IL1830600	GALENA TERRITORY - OAKWOOD	Interim Enhanced Surface Water Treatment Rule	11	Returned to Compliance
IL1830600	GALENA TERRITORY -	Interim Enhanced Surface Water Treatment	TT	Returned to
	OAKWOOD	Rule		Compliance
IL1830600	GALENA TERRITORY - OAKWOOD	Interim Enhanced Surface Water Treatment Rule	TT	Returned to Compliance
IL1830600	GALENA TERRITORY -	Interim Enhanced Surface Water Treatment	TT	Returned to
II 1820600	OAKWOOD	Rule	тт	Compliance Deturned to
IL1830000	OALENA TERRITORY -	Rule	11	Compliance
IL1830600	GALENA TERRITORY -	Interim Enhanced Surface Water Treatment	TT	Returned to
H 1050200	OAKWOOD	Rule	тт	Compliance
IL1930200	ERIE	Lead and Copper Rule	11	Other
IL1950200	ERIE	Lead and Copper Rule	11	Other
IL1950200	ERIE	Lead and Copper Rule	TT	Other
IL1955225	HONEYCUTT HILL MHP	Lead and Copper Rule	TT	Returned to
IL1955225	HONEYCUTT HILL MHP	Lead and Copper Rule	TT	Returned to
	LLC			Compliance
IL2015488	GREAT OAKS AND	Combined Radium (-226 and -228)	MCL	Returned to
	APARTMENTS			Compnance
IL2015488	GREAT OAKS AND	Combined Radium (-226 and -228)	MCL	Returned to
	BEACON HILLS			Compliance
IL2015488	GREAT OAKS AND	Combined Radium (-226 and -228)	MCL	Returned to
	BEACON HILLS			Compliance
IL 2015488	APARTMENTS GREAT OAKS AND	Combined Radium (-226 and -228)	MCI	Returned to
122012700	BEACON HILLS	Contoniou Rudium (-220 and -220)	MCL	Compliance
	APARTMENTS			

IL2015488	GREAT OAKS AND BEACON HILLS APARTMENTS	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL2015488	GREAT OAKS AND BEACON HILLS APARTMENTS	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL2015488	GREAT OAKS AND BEACON HILLS APARTMENTS	Combined Radium (-226 and -228)	MCL	Returned to Compliance
IL2015495	GREEN MEADOW ESTATES OF ROCKFORD LLC	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL2015495	GREEN MEADOW ESTATES OF ROCKFORD LLC	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL2015495	GREEN MEADOW ESTATES OF ROCKFORD LLC	Combined Radium (-226 and -228)	MCL	Under Enforcement
IL2015495	GREEN MEADOW ESTATES OF ROCKFORD LLC	Combined Radium (-226 and -228)	MCL	Under Enforcement

Appendix C Calendar Year 2020 Summary Non-Community Violations

Numbers Used from USEPA's CDX Reporting Services database

Rule	Violation Category	Contaminant	# of Violations	# of Resolved Violations	# of PWS in Violation
Inorganic Chemicals	Monitoring and Reporting	Arsenic	17	2	11
Inorganic Chemicals	Monitoring and Reporting	Barium	8	6	4
Inorganic Chemicals	Maximum Contaminant Level Violation	Arsenic	1	0	1
Inorganic Chemicals	Monitoring and Reporting	Cadmium	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Chromium	8	6	4
Inorganic Chemicals	Monitoring and Reporting	CYANIDE	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Mercury	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Nitrate	17	15	13
Inorganic Chemicals	Monitoring and Reporting	Nitrite	3	1	1
Inorganic Chemicals	Monitoring and Reporting	Selenium	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Antimony, Total	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Beryllium, Total	8	6	4
Inorganic Chemicals	Monitoring and Reporting	Thallium, Total	8	6	4

Lead and Copper Rule	Monitoring and Reporting	Lead and Copper Rule	191	46	100
Lead and Copper Rule	Treatment Technique Violation	Lead and Copper Rule	1	0	1
Stage 2 Disinfectants and Disinfection Byproducts Rule	Maximum Contaminant Level Violation	Total Haloacetic Acids (HAA5)	2	0	2
Stage 2 Disinfectants and Disinfection Byproducts Rule	Maximum Contaminant Level Violation	TTHM	1	0	1
Synthetic Organic Chemicals	Monitoring and Reporting	Methoxychlor	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	ETHYLENE DIBROMIDE	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	1,2-DIBROMO- 3- CHLOROPROP ANE	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Total Polychlorinated Biphenyls (PCB)	34	8	13
Synthetic Organic Chemicals	Monitoring and Reporting	Pentachlorophen ol	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Benzo(a)pyrene	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	HEXACHLORO BENZENE	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	2,4,5-TP	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	2,4-D	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Heptachlor epoxide	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Heptachlor	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	LASSO	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Atrazine	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Carbofuran	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Hexachlorocyclo pentadiene	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	Dinoseb	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	Picloram	26	4	10
Synthetic Organic Chemicals	Monitoring and Reporting	Di(2-ethylhexyl) phthalate	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	Simazine	28	4	11

Synthetic Organic Chemicals	Monitoring and Reporting	OXAMYL	26	4	10
Synthetic Organic Chemicals	Monitoring and Reporting	Di(2-ethylhexyl) adipate	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	Glyphosate	26	4	10
Synthetic Organic Chemicals	Monitoring and Reporting	Endothall	26	4	10
Synthetic Organic Chemicals	Monitoring and Reporting	Diquat	26	4	10
Synthetic Organic Chemicals	Monitoring and Reporting	Endrin	25	4	9
Synthetic Organic Chemicals	Monitoring and Reporting	BHC-GAMMA	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Chlordane	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Toxaphene	35	8	14
Synthetic Organic Chemicals	Monitoring and Reporting	Dalapon	25	4	9
Total Coliform Rules	Maximum Contaminant Level Violation	Revised Total Coliform Rule	1	1	1
Total Coliform Rules	Monitoring Violation	Revised Total Coliform Rule	115	60	81
Total Coliform Rules	Monitoring and Reporting	Coliform (TCR)	1	0	1
Volatile Organic Chemicals	Monitoring and Reporting	CHLOROBENZ ENE	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Tetrachloroethyle ne	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,1,2- Trichloroethane	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Trichloroethylene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,2- Dichloropropane	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Carbon tetrachloride	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,1,1- Trichloroethane	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,2- Dichloroethane	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	trans-1,2- Dichloroethylene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,1- Dichloroethylene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Vinyl chloride	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	p- Dichlorobenzene	165	31	118

Volatile Organic Chemicals	Monitoring and Reporting	o- Dichlorobenzene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	DICHLOROME THANE	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Xylenes, Total	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	cis-1,2- Dichloroethylene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	1,2,4- Trichlorobenzene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Benzene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Toluene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Styrene	165	31	118
Volatile Organic Chemicals	Monitoring and Reporting	Ethylbenzene	165	31	118

Appendix D Illinois EPA 2020 Annual Compliance Report Maximum Contaminant Level and Treatment Technique Violations Sorted by NCWS From USEPA's CDX Reporting Services database

Non-Community Water System ID	Non-Community Water System Name	Contaminant Name	Violation Category	Compliance Status
	ROOKS CREEK			
IL3005413	ELEMENTARY SCHOOL	TTHM	MCL	Under Enforcement
	ROOKS CREEK			
IL3005413	ELEMENTARY SCHOOL	TTHM	MCL	Under Enforcement
	ROOKS CREEK	Total Haloacetic Acids		
IL3005413	ELEMENTARY SCHOOL	(HAA5)	MCL	Under Enforcement
	ROOKS CREEK	Total Haloacetic Acids		
IL3005413	ELEMENTARY SCHOOL	(HAA5)	MCL	Under Enforcement
		Total Haloacetic Acids		
IL3057844	OLYMPIA SCHOOL	(HAA5)	MCL	Under Enforcement
		Total Haloacetic Acids		
IL3057844	OLYMPIA SCHOOL	(HAA5)	MCL	Under Enforcement
	FLOWER GARDEN	Revised Total Coliform		Returned to
IL3118646	ANNEX	Rule	MCL	Compliance
	FLOWER GARDEN	Revised Total Coliform		Returned to
IL3118646	ANNEX	Rule	MCL	Compliance
	FLOWER GARDEN	Revised Total Coliform		Returned to
IL3118646	ANNEX	Rule	MCL	Compliance

	FLOWER GARDEN	Revised Total Coliform		Returned to
IL3118646	ANNEX	Rule	MCL	Compliance
	FLOWER GARDEN	Revised Total Coliform		Returned to
IL3118646	ANNEX	Rule	MCL	Compliance
	CORN BELT ENERGY			
IL3141184	CORP	Arsenic	MCL	Under Enforcement
	CORN BELT ENERGY			
IL3141184	CORP	Arsenic	MCL	Under Enforcement
	CORN BELT ENERGY			
IL3141184	CORP	Arsenic	MCL	Under Enforcement
IL3113837	ILLINOIS CENTRAL	Lead and Copper Rule	TT	Other

Appendix E Table of FY20 Regional/State Measures

Description	Name and	Target
	update schedule	
# of ETT priority systems to be	OECA Measure:	FY20: # of ETT priority
addressed		systems
Percent of CWSs and population	SDW-2.1.1	FY20:
served by CWSs that meet all		% CWS Systems
applicable health-based drinking		FY20: % population served
water standards		by CWS Systems
Percent of CWS and NCWS with san.	R5 - Updated by Region 5	FY20:
survey w/in the past 3 or 5 yrs. as	in April and October	% CWS
required.		% NCWS
Percent of CWS where risk to public	R5 SWP Program	FY20:
health is minimized through source	measure	% CWS Systems
water protection (SDW-SP4a)		
Percent of population served by CWS	R5 SWP Program	FY20: % population served
where risk to public health is	measure	by CWS Systems
minimized through source water		
protection (SDW-SP4b)		
All Rule Violation Completeness	R5 High Priority:	FY20:
Reporting	Updated quarterly by	% of rules
	Region 5	

1. Percent of <u>CWS systems</u> meeting all health-based standards	Shared Goals: Updated annually in April by Region 5	CY20: ≥95%
2. Percent of <u>population</u> of CWS_ meeting all health-based standards	Shared Goals: Updated annually in April by Region 5	CY20: ≥95%
3. Percent of <u>NTNCWSs</u> meeting all health-based standards	Shared Goals: Updated annually in April by Region 5	CY20: ≥95%
4. Percent of <u>TNCWSs</u> meeting all health-based standards	Shared Goals: Updated annually in April by Region 5	CY20: ≥95%
5. Percent of <u>population</u> served by CWSs with <u>significant /major</u> <u>monitoring violations</u>	Shared Goals: Updated annually in April by Region 5	CY20: <5%
6. Percent of <u>CWS systems</u> with <u>significant /major monitoring</u> <u>violations</u> (includes LCR Type 66 violations)	Shared Goals: Updated annually in April by Region 5	CY20: <10%
7. Percent of <u>NTNCWSs</u> with significant/major monitoring violations for <u>acute</u> health risks	Shared Goals: Updated annually in April by Region 5	CY20: <5%
8. Percent of <u>NTNCWSs</u> with significant/major monitoring violations for <u>chronic</u> health risks	Shared Goals: Updated annually in April by Region 5	CY20: <10%
9. Percent of <u>TNCWSs</u> with significant/major monitoring violations	Shared Goals: Updated annually in April by Region 5	CY20: <10%